JPH0235801A - Small ridge waveguide and coaxial line converter - Google Patents

Small ridge waveguide and coaxial line converter

Info

Publication number
JPH0235801A
JPH0235801A JP18607288A JP18607288A JPH0235801A JP H0235801 A JPH0235801 A JP H0235801A JP 18607288 A JP18607288 A JP 18607288A JP 18607288 A JP18607288 A JP 18607288A JP H0235801 A JPH0235801 A JP H0235801A
Authority
JP
Japan
Prior art keywords
ridge
coaxial
coaxial line
waveguide
impedance matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18607288A
Other languages
Japanese (ja)
Inventor
Toshihiko Yamagata
山形 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18607288A priority Critical patent/JPH0235801A/en
Publication of JPH0235801A publication Critical patent/JPH0235801A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To more satisfactorily execute the impedance matching in a small and wide band of one octave or above by changing the diameter of the coaxial core in the pipe of a mode converting part to two steps and providing it close to a pipe electric field wall. CONSTITUTION:A mode converting part 42 provided between a single ridge 40b and a coaxial line part 41 and to obtain the impedance matching of a ridge waveguide part 40 and the coaxial line part 41 is constituted by arranging plural coaxial cores 43 and 44 having a different diameter in an axial direction and provided close to a pipe electric field wall 45 so as not to abut to a pipe electric field wall 45. Thus, the impedance matching of the coaxial line part 41 and the ridge waveguide part 40 can be fine adjusted, the characteristic impedance of the converting part 42 is lowered, and can be sufficiently set to the characteristic impedance of the coaxial line part 41. Thus, the impedance matching can be easily and satisfactorily executed. By using the double ridge, by specifying the cross section accurately, the action frequency of the wide band of one octave or above can be secured, and the small waveguide of the aperture diameter of lambda/4 or below at a lower limit frequency can be formed.

Description

【発明の詳細な説明】 (概S) 一方をダブルリッジ、他方をシングルリッジに構成して
シングルリッジ側に同軸線路を設け、同軸線路のTEM
モードからリッジ導波管のTEモードへの変換を行なう
リッジ導波管/@軸線路変換器に関し、 小形で、かつ、1オクタ一ブ以上の広帯域においてイン
ピーダンス整合をより良好に行なうようにすることを目
的とし、 シングルリッジと同軸線路部との間に設けられてリッジ
導波管部と上記同軸線路部とのインピーダンス整合をと
るモード変換部を、径の異なる複数の同軸芯を軸方向に
並べて構成し、かつ、管内電界壁に当接しないように該
管内゛上界壁に近接して設けた構成とする。
[Detailed description of the invention] (General S) One side is configured as a double ridge and the other side is configured as a single ridge, and a coaxial line is provided on the single ridge side, and the TEM of the coaxial line is
To provide a ridge waveguide/@axis line converter that converts a mode to a TE mode of a ridge waveguide, which is small and achieves better impedance matching in a wide band of one octave or more. For this purpose, a mode conversion section is provided between a single ridge and a coaxial line section to match the impedance of the ridge waveguide section and the coaxial line section, by arranging a plurality of coaxial cores with different diameters in the axial direction. and is arranged close to the upper boundary wall inside the tube so as not to come into contact with the electric field wall inside the tube.

〔産業上の利用分野〕[Industrial application field]

本発明は、一方をダブルリッジ、他方をシングルリッジ
に構成してシングルリッジ側に同軸線路を設け、rFr
I軸線路のTEMモードからリッジ導波管のTEモード
への変換を行なうリッジ導波管/同軸線路変換器に関す
る。
In the present invention, one side has a double ridge and the other side has a single ridge, and a coaxial line is provided on the single ridge side.
The present invention relates to a ridge waveguide/coaxial line converter that converts the TEM mode of an I-axis line to the TE mode of a ridge waveguide.

このような構成のりフジ導波管/同軸線路変換器は、マ
イクロ波帯域のレーダや通信装置等のフェーズド・アレ
イ・アンチノー・システムに用いられる超小形広帯域ア
ンテナ等に利用され、近年の通信システムの多方面から
の需要に伴なってその研究開発が盛んに行なわれている
Fuji waveguide/coaxial line converters with such a configuration are used in ultra-small wideband antennas used in phased array anti-no systems such as microwave radar and communication equipment, and are used in recent communication systems. Research and development is actively being carried out in response to demand from various fields.

一般に、フェーズド・アレイ・アンテナでは、アンテナ
素子間の配列ピッチdが次の条件を満足していない場合
、メインビーム以外の方向に不要ビーム(グレーティン
グローブと称し、メインビームと同レベル)が発生する
。rHを動作上限周波数、Cを光速、λH=C/f+、
±θをビーム走査範囲とすると、直線配列の場合の不要
ビームが発生しないための配列ピッチdの条件は、d≦
λH/(1+sin  1 θI )となる。従って7
エーズアレイアンテナの高帯域化を図る程、配列ピッチ
dの条件は厳しいものとなる。例えば、周波数帯域2:
1.ビーム走査ね囲±45°のとき、不要ビームを発生
しない直線配列の配列ピッチdは、d=0.59λH−
0,29AL(−C/ f L 、  f L G、t
e作下限周波a)以下に設定する必要があり、アンテナ
素子は小形化を強いられる。
In general, in a phased array antenna, if the array pitch d between antenna elements does not satisfy the following conditions, unnecessary beams (referred to as grating lobes and at the same level as the main beam) will be generated in directions other than the main beam. . rH is the operating upper limit frequency, C is the speed of light, λH=C/f+,
If ±θ is the beam scanning range, the condition for the array pitch d to avoid generating unnecessary beams in the case of a linear array is d≦
λH/(1+sin 1 θI). Therefore 7
The higher the bandwidth of the Aze array antenna, the more severe the conditions for the array pitch d become. For example, frequency band 2:
1. When the beam scanning radius is ±45°, the array pitch d of the linear array that does not generate unnecessary beams is d = 0.59λH-
0,29AL(-C/ f L , f L G, t
It is necessary to set the operating frequency below the lower limit frequency a), and the antenna element is forced to be smaller.

そこで、この条件を満足するために超小形で、かつ、同
軸線路とりッジ導波管との広帯域インピーダンス整合を
良好に行ない1qるリッジ導波管/同軸線路変換器の出
現が要望されている。
Therefore, in order to satisfy this condition, there is a demand for a 1q ridge waveguide/coaxial line converter that is ultra-small and has good broadband impedance matching with the coaxial line and ridge waveguide. .

〔従来の技術〕[Conventional technology]

第6図は一般のりフジ導波管/同軸線路変換器の構成図
を示す。同図(A)に示ず電界結合形は同軸線路1の軸
″方向とリッジ導波管2の軸方向とが直角をなす構造の
もので、両端とらにダブルリッジであり、現在使用され
ている変換器の殆どがこのタイプのものである。このも
のは同軸線路1の軸方向とリッジ導波管2の軸方向とが
直角であるためにスペースを比較的広く必要とし、実装
スペースに余裕がない場合は使用できない。
FIG. 6 shows a configuration diagram of a general Norifuji waveguide/coaxial line converter. The electric field coupling type, not shown in Figure (A), has a structure in which the axial direction of the coaxial line 1 and the axial direction of the ridge waveguide 2 are at right angles, and has double ridges at both ends, and is not currently used. Most of the converters currently available are of this type.Since the axial direction of the coaxial line 1 and the axial direction of the ridge waveguide 2 are perpendicular to each other, a relatively large space is required for this type, and there is plenty of space for mounting. Cannot be used if it is not present.

同図(B)に示す磁界結合形(エンドランチャ)は同@
線路3の軸方向とリッジ導波管4の軸方向とが平行をな
す構造のもので、一端はダブルリッジ、他端はシングル
リッジで、スペースを余り必要としないので、実装スペ
ースに余裕がない場合に使用する。
The magnetic field coupling type (end launcher) shown in the same figure (B) is the same @
It has a structure in which the axial direction of the line 3 and the axial direction of the ridge waveguide 4 are parallel, with a double ridge at one end and a single ridge at the other end, which does not require much space, so there is no extra space for mounting. Use in case.

しかしながら、電界結合形も磁界結合形も内寸法は0.
4λL以上、導波管肉厚も含めれば外形寸法は05λL
以上である(λL=c/’ffi:、fLは動作下限周
波数、Cは光速)。
However, the internal dimensions of both the electric field coupling type and the magnetic field coupling type are 0.
4λL or more, external dimension is 05λL including waveguide wall thickness
This is the above (λL=c/'ffi:, fL is the lower limit frequency of operation, and C is the speed of light).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高密度実装を要求される場合、上記従来例の構造では大
きすぎ、小形化しようとすると広帯域化が実現できず、
両者ともに満足できるものが現在では実現されていない
。一般に導波管の小形化と広帯域化とは相反する技術で
ある。
When high-density packaging is required, the conventional structure described above is too large, and if you try to downsize it, you cannot achieve a wide band.
Currently, nothing has been achieved that satisfies both parties. In general, miniaturization of waveguides and broadbandization are contradictory technologies.

そこで本出願人は先に、特願昭62−19517号(発
明の名称1超小形広帯域アンテナ」)で「アンテナ軸方
向に設けられた同軸導波管変換部と、該同軸導波管変換
部とインピーダンス整合するダブルリッジ導波管部と、
該ダブルリッジ導波管部と外部空間とのインピーダンス
整合する誘電体とより構成されて成る。1超小形広帯域
アンテナを提案した。このものは、同軸/導波管変換部
を、給電用向@]ネクタをアンアノ−の軸の中心に位置
させるためにシングルリッジとステップトランスフォー
マとから成るインピーダンス整合のためのバラン回路で
構成し、徐々にダブルリッジ構造としてダブルリッジ導
波管部を形成し、インピーダンス整合をとっている。ま
た、空間とのインピーダンス整合は開口部に誘電体を装
着した構成どしている。
Therefore, the present applicant previously proposed in Japanese Patent Application No. 19517/1983 (title of the invention 1: Ultra-small wideband antenna) "a coaxial waveguide conversion section provided in the antenna axis direction, and the coaxial waveguide conversion section. and a double ridge waveguide section that impedance matches the
It is composed of a dielectric material that matches the impedance between the double ridge waveguide section and the external space. 1. We proposed an ultra-small wideband antenna. In this device, the coaxial/waveguide conversion section is configured with a balun circuit for impedance matching consisting of a single ridge and a step transformer in order to position the power supply connector at the center of the axis of the antenna. A double ridge waveguide portion is gradually formed as a double ridge structure, and impedance matching is achieved. In addition, impedance matching with space is achieved by installing a dielectric material in the opening.

このものによれば、ダブルリッジ導波管の断面を厳密に
規定することによって1オクターブ以Eの動作周波数が
確保されるとともに、下限周波数で四分の一波長以下の
開口直径が実現され、小形化できる。また、信号が給電
される同軸コネクタから信号が送出される開口部までの
インピーダンス整合をとることにより、全帯域にわたっ
て良好なSWR(定在波化)特性を得ている。
According to this product, by strictly defining the cross section of the double ridge waveguide, an operating frequency of more than one octave is secured, an aperture diameter of less than a quarter wavelength is realized at the lower limit frequency, and a small size is achieved. can be converted into In addition, good SWR (standing wave) characteristics are obtained over the entire band by matching the impedance from the coaxial connector where the signal is fed to the opening where the signal is sent out.

然るにこのものは、インピーダンス整合をより良好に行
なうことができる詳細な構造にまで言及されておらず、
小形で、かつ、広帯域性を1qる点に留まっている。
However, this method does not mention the detailed structure that allows for better impedance matching.
It is small and has a broadband performance of 1q.

本発明は、小形で、かつ、1オクタ一ブ以上の広帯域に
おいてインピーダンス整合をより良好に行なうことがで
きる小形リッジ導波管/同軸線路変換器を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small ridge waveguide/coaxial line converter that is small and can perform impedance matching better in a wide band of one octave or more.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図を示す。同図中、40はリッジ
導波管部で、−rがダブルリッジ40a。
FIG. 1 shows a diagram of the principle of the present invention. In the figure, 40 is a ridge waveguide section, and -r is a double ridge 40a.

他端がシングルリッジ40bにて構成される。The other end is constituted by a single ridge 40b.

41は同軸線路部で、シングルリッジ40b側に設けら
れている。本発明が対象とする変換器は、リッジ導波管
部40の軸と、同軸I!J路部47の軸とが平行に構成
される磁界結合形のリッジ導波管/同軸線路変換器であ
る。
A coaxial line portion 41 is provided on the single ridge 40b side. The transducer targeted by the present invention is coaxial with the axis of the ridge waveguide section 40! This is a magnetic field coupling type ridge waveguide/coaxial line converter in which the axis of the J path portion 47 is configured parallel to the axis.

本発明は、シングルリッジ40bと同軸線路部41との
間に設けられてリッジ導波管部40と同軸線路部41と
のインピーダンス整合をとるモード変換&;42を、径
の異なる複数の同軸芯43゜44を軸方向に並べて描成
し、がっ、管内電界壁45に当接しないように管内電界
壁45に近接して設けてなる。
The present invention provides a mode converter &; 42 provided between the single ridge 40b and the coaxial line section 41 for impedance matching between the ridge waveguide section 40 and the coaxial line section 41, which is connected to a plurality of coaxial cores having different diameters. 43° 44 are drawn side by side in the axial direction, and are provided close to the intra-tube electric field wall 45 so as not to come into contact with the intra-tube electric field wall 45.

(作用〕 変換部42の管内同軸芯の径を2段階に変化させた構成
(同軸芯43.44)とすることにより、同軸線路部4
1とリッジ導波管部4oとのインピーダンス整合を微妙
に調整することができ、又、変換8II42の同軸芯4
3.44を管内電界壁45に近接して設けることにより
、変換部42の特性インピーダンスが低くされ、同@線
路部41の特性インピーダンスに十分近く設定でき、こ
れらにより、インピーダンス整合を容易に、かっ、良好
に行ない得る。
(Function) By having a configuration in which the diameter of the coaxial core inside the pipe of the converting section 42 is changed in two stages (coaxial core 43, 44), the coaxial line section 4
1 and the ridge waveguide section 4o, and the coaxial core 4 of the conversion 8II42 can be finely adjusted.
By providing 3.44 close to the electric field wall 45 in the tube, the characteristic impedance of the conversion section 42 is lowered and can be set sufficiently close to the characteristic impedance of the line section 41, thereby making impedance matching easy and easy. , can perform well.

一方、ダブルリッジを用いてその断面を厳密に規定する
ことにより、1オクタ一ブ以上の広帯域の動作周波数を
確保し得ると共に、上限周波数でのλ/4以下の開口直
径の小形の導波管を実現できる。
On the other hand, by using a double ridge and strictly defining its cross section, it is possible to secure a broadband operating frequency of one octave or more, and to create a small waveguide with an aperture diameter of λ/4 or less at the upper limit frequency. can be realized.

〔実施例] 第2図は本発明の一実施例の燐酸量を示す。同図(A>
は側断面図、同図(B)はB−B−断面図、同図(C)
はC−c″′所面図である。なお、各図に示す寸法の単
位は履である。このものは、内寸8#×6IrMl(ッ
マリ、o、21λL X O,16λL)となり、λL
/4以下であり、周波数帯域は8GHz〜18GHzで
ある。
[Example] Figure 2 shows the amount of phosphoric acid in an example of the present invention. Same figure (A>
is a side sectional view, (B) is a BB cross-sectional view, and (C) is a side sectional view.
is a C-c''' top view.The unit of dimensions shown in each figure is shoes.This item has an inner dimension of 8# x 6IrMl (tmari, o, 21λL x O, 16λL), and λL
/4 or less, and the frequency band is 8 GHz to 18 GHz.

同図中、10はダブルリッジ、10aは7ランジ、11
はシングルリッジで、テーバ部12を間にしてTEモー
ドのリッジ導波管部を形成している。13は50Ωの同
情コネクタで、フッ素樹脂14に包囲されて131φ(
動作中心周波数f。
In the same figure, 10 is a double ridge, 10a is a 7 lunge, 11
is a single ridge, and forms a TE mode ridge waveguide section with the tapered section 12 in between. 13 is a 50Ω sympathy connector, which is surrounded by fluororesin 14 and has a diameter of 131φ (
Operating center frequency f.

=13GHzにおいて0806λ0)の同軸芯15が設
けられており、TEMモードの同軸線路部を形成してい
る。16.17は管内同軸芯で、夫々2.4Hφ(0,
1λO)、2Hφに設定されており、同軸芯15と同軸
的に設けられてシングルリッジ11に当接されている。
A coaxial core 15 of 0806λ0) at 13 GHz is provided, forming a TEM mode coaxial line section. 16.17 are coaxial cores in the tube, each having a diameter of 2.4Hφ (0,
1λO) and 2Hφ, and is provided coaxially with the coaxial core 15 and in contact with the single ridge 11.

管内同軸芯16.17でTEモード/TEMモード変換
部を形成している。
The coaxial cores 16 and 17 in the tube form a TE mode/TEM mode conversion section.

ここで、管内同軸芯16.17の合計の長さは動作中心
周波数foにて0.13λ0であり、管内同軸芯16の
径は同軸コネクタ13の同軸芯15の径の2倍程度に設
定されている。この場合、変換部の管内同軸芯の径を2
段階に変化さ旭た構成(管内同軸芯16.17)として
いるので、同軸線路部とリッジ導波管部とのインピーダ
ンス整合を微妙に調整することができ、インピーダンス
整合を良好に行なうことができる。
Here, the total length of the inner tube coaxial cores 16 and 17 is 0.13λ0 at the operating center frequency fo, and the diameter of the inner tube coaxial core 16 is set to about twice the diameter of the coaxial core 15 of the coaxial connector 13. ing. In this case, the diameter of the coaxial core inside the pipe of the converter is 2
Since it has a structure that changes in stages (coaxial cores in the tube 16 and 17), it is possible to finely adjust the impedance matching between the coaxial line part and the ridge waveguide part, and it is possible to perform good impedance matching. .

又、管内同軸芯16.17は管内電界壁18に当接しな
い程度に管内電界壁18に近接して設けられている。こ
れにより、変換部の特性インピーダンスが低くされ、同
軸線路部の特性インピーダンス50Ωに十分近く設定で
きる。通常、モード変換部に当る管内同軸芯16.17
の長さは管内波長に応じて設定されるが、一般にモード
変換部における電磁界分布は非常に複雑であり、管内波
長を容易に算出することはできず、モード変換部の管内
同軸芯の長さを容易に設定できず、同軸線路部とりッジ
導波管部とのインピーダンス整合をうまくとり得ない。
Further, the in-tube coaxial cores 16 and 17 are provided close to the in-tube electric field wall 18 to the extent that they do not come into contact with the in-tube electric field wall 18. As a result, the characteristic impedance of the converting section is lowered and can be set sufficiently close to the characteristic impedance of the coaxial line section, 50Ω. Usually, the inner coaxial core 16.17 corresponds to the mode conversion part
The length is set according to the tube wavelength, but the electromagnetic field distribution in the mode converter is generally very complex, and the tube wavelength cannot be easily calculated. The impedance matching between the coaxial line section and the ridge waveguide section cannot be achieved easily.

ぞこで、本発明では、変換部の管内同軸芯の径を2段階
に変化させた構成(管内同軸芯16.17)とし、かつ
、電界壁18に近接して設けた構成とすることにより、
容易に、かつ、良好にインピーダンス整合をとるように
している。
Therefore, in the present invention, the diameter of the inner coaxial core of the converting section is changed in two stages (inner coaxial core 16 and 17), and the diameter is changed in two steps (inner coaxial core 16 and 17), and by providing a structure close to the electric field wall 18, ,
Impedance matching is easily and satisfactorily achieved.

一方、シングルリッジ11は特性インピーダンスが同@
線路部の特性インピーダンス50Ωに近付くように(8
GHzで63Ω、18GHzで48Ω)、又、基本モー
ドT E +iのカットオフ周波数が使用周波数帯域よ
り十分低くなるように、寸法の最適化を行なう。この場
合、カットオフ周波数を高めに設定すると特性インピー
ダンスが高くなり、同軸線路部との整合が得にくくなる
。カットオフ周波数の実際の数値として、シングルリッ
ジ11のカットオフ周波数は基本モードT E IGに
てfc to = 5.4GHz 、高次モードTE?
Qにてfc冗=25GHzであり、ダブルリッジ10の
カットオフ周波数は基本モードT E toにてfcl
O=6.7GHz、高次モードT E 20にてf’c
n=45GHzである。従って、実際の使用帯域8GH
z〜18GHzでの導波管内モードは基本モードT E
 toのみとなる。
On the other hand, the single ridge 11 has the same characteristic impedance @
The characteristic impedance of the line section should be close to 50Ω (8
(63Ω at GHz, 48Ω at 18GHz), and the dimensions are optimized so that the cutoff frequency of the fundamental mode T E +i is sufficiently lower than the frequency band used. In this case, if the cutoff frequency is set high, the characteristic impedance will increase, making it difficult to match with the coaxial line section. As the actual value of the cutoff frequency, the cutoff frequency of the single ridge 11 is fc to = 5.4 GHz in the fundamental mode TE IG, and in the higher mode TE?
In Q, fc redundancy = 25 GHz, and the cutoff frequency of double ridge 10 is fcl in fundamental mode T E to
O=6.7GHz, f'c at higher mode T E 20
n=45GHz. Therefore, the actual usage band 8GH
The mode in the waveguide at z ~ 18 GHz is the fundamental mode T E
There will be only to.

このような構成により、モード変換部において、同@線
路部のTEMモードからリッジ導波管部のTEモードへ
のモード変換が行なわれ、その際、インピーダンス整合
が良好に行なわれる。又、本出願人が先に提案した前述
の「縮小形広帯域アンテナ」と同様に、ダブルリッジを
用いてその断面をIi!密に規定することによって1オ
クタ一ブ以上の動作周波数が確保されると共に、下限周
波数でのλ/4以下の開口直径の小形の導波管が実現で
きる。
With such a configuration, the mode conversion section performs mode conversion from the TEM mode of the line section to the TE mode of the ridge waveguide section, and at that time, impedance matching is performed satisfactorily. Also, similar to the aforementioned "reduced wideband antenna" previously proposed by the present applicant, a double ridge is used to change the cross section to Ii! By closely defining it, an operating frequency of one octave or more can be ensured, and a small waveguide with an aperture diameter of λ/4 or less at the lower limit frequency can be realized.

第3図は本発明の他の実施例の構成図を示す。FIG. 3 shows a block diagram of another embodiment of the present invention.

同図(A)は側断面図、同図(B)はB−B−断面図、
同図(C)はC−C−断面図である。なお、各図”に示
す寸法の単位は履である。このものは、広帯域フェーズ
ド・アレイ・アンテナに適用するために外形を10φの
円形としており、周波数帯域は第2図のものと同じ8G
Hz〜18GHzで、これにより外径は0.27λLど
なる。
The same figure (A) is a side sectional view, the same figure (B) is a BB-sectional view,
The same figure (C) is a CC cross-sectional view. Note that the unit of dimensions shown in each figure is ``1''.This antenna has a circular outer shape of 10φ in order to be applied to a wideband phased array antenna, and the frequency band is 8G, which is the same as the one in Figure 2.
Hz to 18 GHz, which results in an outer diameter of 0.27λL.

同図中、20はダブルリッジ、21はシングルリッジで
、テーパ部22を間にしてTEモードのリッジ導波管部
を形成している。導波管内部は外形に合わせて丸味を持
たせ、9■φとしており、0.24λLどなる。シング
ルリッジ21の特性インピーダンスは、8GHzで84
Ω、18GHzで51Ωである。23は50Ωの同軸コ
ネクタで、エアーラインタイプとされており、フッ素樹
脂24に包囲されて0.7tmφの同軸芯25及び1.
3■φの同軸芯26が設けられており、TEMモードの
同軸線路部を形成している。この場合、同軸コネクタ2
3はエアーラインタイプであるので同軸芯が通常のもの
より細いため、本実施例の同軸芯25.26のように段
階的に太くなる構成としている。
In the figure, 20 is a double ridge, 21 is a single ridge, and a TE mode ridge waveguide portion is formed with a tapered portion 22 in between. The inside of the waveguide is rounded to match the outer shape, and has a diameter of 9mm, with a diameter of 0.24λL. The characteristic impedance of the single ridge 21 is 84 at 8 GHz.
Ω, 51Ω at 18GHz. 23 is a 50Ω coaxial connector, which is an airline type, surrounded by a fluororesin 24, and connected to coaxial cores 25 and 1 of 0.7 tmφ.
A coaxial core 26 with a diameter of 3 mm is provided, and forms a coaxial line section in the TEM mode. In this case, coaxial connector 2
Since the coaxial core 3 is an airline type, the coaxial core is thinner than a normal coaxial core, so the coaxial core 25 and 26 of this embodiment are configured to gradually become thicker.

27.28は管内同軸芯で、夫々2.3順φ〜2.4a
a+φ、 2am+φに設定されており、同軸芯252
6と同軸的に設けられてシングルリッジ21に当接され
ており、管内電界壁29に近接して設けられている。管
内同軸芯27.28でTEモード/TEMモード変換部
を形成している。この実施例では、同軸コネクタ23と
導波管軸とが一致する構成の中央給電方式をとるため、
シングルリッジ21の導波管サイズ(4,4m)はダブ
ルリッジ20の導波管サイズ(6、w )に比して小さ
く設定されている。
27 and 28 are coaxial cores in the pipe, each having an order of 2.3 and φ to 2.4a.
It is set to a+φ, 2am+φ, and the coaxial core is 252
6 and is in contact with the single ridge 21, and is provided close to the intra-tube electric field wall 29. The tube coaxial cores 27 and 28 form a TE mode/TEM mode conversion section. In this embodiment, since a central feeding system is adopted in which the coaxial connector 23 and the waveguide axis are aligned,
The waveguide size (4, 4 m) of the single ridge 21 is set smaller than the waveguide size (6, w 2 ) of the double ridge 20.

以上の構成は、フェーズド・アレイ・アンテナにおける
配列性を考慮してなされている。
The above configuration is made in consideration of arrangement properties in a phased array antenna.

カットオフ周波数の実際の数値として、シングルリッジ
21のカットオフ周波数は基本モードT E toにて
f c to = 6.6GHz 、高次モードTEm
にてfc〜−33GHzであり、ダブルリッジ20のカ
ットオフ周波数は基本モードT E toにてf Ct
o = 6.6GHz 、高次モードT E 2Gにて
fcn=45GHzである。このものも、実際の使用帯
域8GHz〜18GHzでの導波管内モードは基本モー
ドT E toのみとなる。
As an actual value of the cutoff frequency, the cutoff frequency of the single ridge 21 is f c to = 6.6 GHz in the fundamental mode T E to , and in the higher order mode T E m
The cutoff frequency of the double ridge 20 is f Ct in the fundamental mode T E to.
o = 6.6 GHz, fcn = 45 GHz in higher mode T E 2G. In this case as well, the only mode within the waveguide in the actual usage band of 8 GHz to 18 GHz is the fundamental mode T E to.

ところで、第2図及び第3図に示す各実施例のものにお
ける挿入損失を測定する場合、第4図に示す如く、変換
器30のダブルリッジ側に金属板31を当接し、同軸コ
ネクタ32から入力波を入れ、金属板で反射させて反射
波として取り出す。
By the way, when measuring the insertion loss in each of the embodiments shown in FIGS. 2 and 3, as shown in FIG. An input wave is input, reflected by a metal plate, and extracted as a reflected wave.

人力波と反射波との夫々のレベルから挿入損失を測定す
ると、第5図に示す如くとなる。同図中、−点鎖線が8
GHz〜18GH2における挿入損失特性であり、各実
施例ともに0.4〜0.6cEである。
When the insertion loss is measured from the respective levels of the human power wave and the reflected wave, the results are as shown in FIG. In the same figure, the -dotted chain line is 8
Insertion loss characteristics at GHz to 18 GH2 are 0.4 to 0.6 cE for each example.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、モード変換部の管
内同軸芯の径を2段階に変化させ、かつ、管内′眉界壁
に近接しで設けることにより、同軸線路部とリッジ導波
管部とのインピーダンス整合を容易に、かつ、より良好
に行ない得、又、1オクタ一ブ以上の広帯域において使
用できると共に、小形に構成できる。
As explained above, according to the present invention, the diameter of the coaxial core in the tube of the mode conversion section is changed in two steps, and the coaxial line section and the ridge waveguide are The impedance matching with the other parts can be easily and better performed, and it can be used in a wide band of one octave or more, and can be constructed in a small size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の一実施例の構成図、 第3図は本発明の他の実施例の構成図、第4図は挿入損
失を測定する方法を示す図、第5図は本発明における挿
入損失特性図、第6図は一般のりフジ導波管/同軸線路
変換器の構成図である。 図において、 10.20.40aはダブルリッジ、 11.21,40bはシングルリッジ、12.22はテ
ーバ部、 13.23は同軸コネクタ、 15.25.26は同軸コネクタの同軸芯、16.17
.27,28.43,44はモード変換部の管内同軸芯
、 18.29.45は管内電界壁、 40はリッジ導波管部、 41は同軸線路部、 42はモード変換部 を示す。 特許出願人 富° 士 通 株式会社 真亀図
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a block diagram of one embodiment of the present invention, Fig. 3 is a block diagram of another embodiment of the present invention, and Fig. 4 is a method for measuring insertion loss. 5 is an insertion loss characteristic diagram of the present invention, and FIG. 6 is a configuration diagram of a general Norifuji waveguide/coaxial line converter. In the figure, 10.20.40a is a double ridge, 11.21 and 40b are single ridges, 12.22 is a taper part, 13.23 is a coaxial connector, 15.25.26 is a coaxial core of a coaxial connector, and 16.17
.. 27, 28, 43, and 44 are coaxial cores in the tube of the mode conversion section, 18, 29, and 45 are electric field walls in the tube, 40 is a ridge waveguide section, 41 is a coaxial line section, and 42 is a mode conversion section. Patent applicant Fujitsu Fujitsu Makamezu Co., Ltd.

Claims (1)

【特許請求の範囲】  一端がダブルリッジ(40a)、他端がシングルリッ
ジ(40b)にて構成されるリッジ導波管部(40)の
軸と、該シングルリッジ(40b)側に設けられた同軸
線路部(41)の軸とが平行に構成される磁界結合形の
リッジ導波管/同軸線路変換器において、 上記シングルリッジ(40b)と上記同軸線路部(41
)との間に設けられて上記リッジ導波管部(40)と上
記同軸線路部(41)とのインピーダンス整合をとるモ
ード変換部(42)を、径の異なる複数の同軸芯(43
)(44)を軸方向に並べて構成し、かつ、管内電界壁
(45)に当接しないように該管内電界壁(45)に近
接して設けてなることを特徴とする小形リッジ導波管/
同軸線路変換器。
[Claims] An axis of a ridge waveguide section (40) consisting of a double ridge (40a) at one end and a single ridge (40b) at the other end, and a ridge provided on the side of the single ridge (40b). In a magnetic field coupling type ridge waveguide/coaxial line converter configured in parallel with the axis of the coaxial line section (41), the single ridge (40b) and the coaxial line section (41)
) for impedance matching between the ridge waveguide section (40) and the coaxial line section (41).
) (44) arranged in the axial direction, and provided close to the internal electric field wall (45) so as not to come into contact with the internal electric field wall (45). /
Coaxial line converter.
JP18607288A 1988-07-26 1988-07-26 Small ridge waveguide and coaxial line converter Pending JPH0235801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18607288A JPH0235801A (en) 1988-07-26 1988-07-26 Small ridge waveguide and coaxial line converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18607288A JPH0235801A (en) 1988-07-26 1988-07-26 Small ridge waveguide and coaxial line converter

Publications (1)

Publication Number Publication Date
JPH0235801A true JPH0235801A (en) 1990-02-06

Family

ID=16181896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18607288A Pending JPH0235801A (en) 1988-07-26 1988-07-26 Small ridge waveguide and coaxial line converter

Country Status (1)

Country Link
JP (1) JPH0235801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035327A (en) * 2009-08-05 2011-02-17 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus
JP2012036451A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus and plasma processing method
CN103311628A (en) * 2012-03-15 2013-09-18 成都赛纳赛德科技有限公司 Adapter
EP2669993A1 (en) * 2011-01-25 2013-12-04 Nec Corporation Coaxial waveguide tube converter, and ridge waveguide tube
JP2019106664A (en) * 2017-12-14 2019-06-27 富士通株式会社 Probe antenna and measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035327A (en) * 2009-08-05 2011-02-17 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus
JP2012036451A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus and plasma processing method
EP2669993A1 (en) * 2011-01-25 2013-12-04 Nec Corporation Coaxial waveguide tube converter, and ridge waveguide tube
EP2669993A4 (en) * 2011-01-25 2014-06-25 Nec Corp Coaxial waveguide tube converter, and ridge waveguide tube
US9118098B2 (en) 2011-01-25 2015-08-25 Nec Corporation Coaxial waveguide converter and ridge waveguide
CN103311628A (en) * 2012-03-15 2013-09-18 成都赛纳赛德科技有限公司 Adapter
JP2019106664A (en) * 2017-12-14 2019-06-27 富士通株式会社 Probe antenna and measuring apparatus

Similar Documents

Publication Publication Date Title
Lier A dielectric hybrid mode antenna feed: A simple alternative to the corrugated horn
US4772891A (en) Broadband dual polarized radiator for surface wave transmission line
US4783665A (en) Hybrid mode horn antennas
US5684495A (en) Microwave transition using dielectric waveguides
US5565875A (en) Thin broadband microstrip antenna
CA1084620A (en) Dual mode feed horn
US9431715B1 (en) Compact wide band, flared horn antenna with launchers for generating circular polarized sum and difference patterns
JP2000505991A (en) Antenna feeding architecture for use with a continuous transverse stub antenna array
Emadeddin et al. A compact ultra-wideband multibeam antenna system
Chung et al. Two-layer dielectric rod antenna
US5406298A (en) Small wideband passive/active antenna
KR102125949B1 (en) Horn antenna apparatus
Satoh Dielectric-loaded horn antenna
US4890117A (en) Antenna and waveguide mode converter
JPH0235801A (en) Small ridge waveguide and coaxial line converter
Saffold et al. Dielectric rod antenna array with planar folded slot antenna excitation
JPH1041737A (en) Dual mode horn antenna
US4040061A (en) Broadband corrugated horn antenna
US20020163401A1 (en) Wideband coaxial orthogonal-mode junction coupler
JP3188174B2 (en) Folded waveguide
US4419671A (en) Small dual frequency band hybrid mode feed
JP2546034B2 (en) Small antenna space matching method
US20020190911A1 (en) Multimode horn antenna
Kotzé et al. Wideband coaxial to qrwg transition for the ngvla band 2 horn feed, using a quadraxial transition
US4396921A (en) Matching section for multi-arm spiral antenna