JP5721065B2 - Tempered glass plate - Google Patents

Tempered glass plate Download PDF

Info

Publication number
JP5721065B2
JP5721065B2 JP2014160236A JP2014160236A JP5721065B2 JP 5721065 B2 JP5721065 B2 JP 5721065B2 JP 2014160236 A JP2014160236 A JP 2014160236A JP 2014160236 A JP2014160236 A JP 2014160236A JP 5721065 B2 JP5721065 B2 JP 5721065B2
Authority
JP
Japan
Prior art keywords
glass
less
compressive stress
glass plate
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014160236A
Other languages
Japanese (ja)
Other versions
JP2015038021A (en
Inventor
隆 村田
隆 村田
誉子 東條
誉子 東條
佑輔 冨田
佑輔 冨田
浩佑 川本
浩佑 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014160236A priority Critical patent/JP5721065B2/en
Publication of JP2015038021A publication Critical patent/JP2015038021A/en
Application granted granted Critical
Publication of JP5721065B2 publication Critical patent/JP5721065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、強化ガラス及び強化ガラス板に関し、特に、携帯電話、デジタルカメラ、PDA(携帯端末)、太陽電池のカバーガラス、或いはディスプレイ、特にタッチパネルディスプレイのガラス基板に好適な強化ガラス及び強化ガラス板に関する。   The present invention relates to a tempered glass and a tempered glass plate, and in particular, a tempered glass and a tempered glass plate suitable for a mobile phone, a digital camera, a PDA (portable terminal), a solar cell cover glass, or a glass substrate of a display, particularly a touch panel display. About.

携帯電話、デジタルカメラ、PDA、タッチパネルディスプレイ、大型テレビ、非接触給電灯のデバイスは、益々普及する傾向にある。   Mobile phones, digital cameras, PDAs, touch panel displays, large televisions, and non-contact power supply devices are becoming increasingly popular.

これらの用途には、イオン交換処理等で強化処理した強化ガラスが用いられている(特許文献1、非特許文献1参照)。   For these uses, tempered glass tempered by ion exchange treatment or the like is used (see Patent Document 1 and Non-Patent Document 1).

特に、近年では大型テレビのディスプレイの保護部材として、強化ガラスが用いられている。これらの保護部材には、(1)高い機械的強度を有すること、(2)大型のガラス板を大量に成形するために、オーバーフローダウンドロー法、スロットダウンドロー法等のダウンドロー法、フロート法等に適した液相粘度を有すること、(3)成形に適した高温粘度を有すること、(4)強化処理を安価、且つ効率的に行えること等の特性が求められる。   In particular, recently, tempered glass has been used as a protective member for large television displays. These protective members include (1) high mechanical strength, (2) down-draw methods such as overflow down-draw method and slot-down draw method, float method, etc. in order to form large-sized glass plates in large quantities. Characteristics such as (3) having a high-temperature viscosity suitable for molding, (4) being able to perform the strengthening treatment inexpensively and efficiently, and the like are required.

特開2006−83045号公報JP 2006-83045 A

泉谷徹朗等、「新しいガラスとその物性」、初版、株式会社経営システム研究所、1984年8月20日、p.451−498Tetsuro Izumiya et al., “New Glass and its Properties”, first edition, Management System Research Institute, Inc., August 20, 1984, p. 451-498

強化ガラスの機械的強度を高めるためには、圧縮応力層の圧縮応力値を高める必要がある。圧縮応力値を高める成分として、Al等の成分が知られている。しかし、Alの含有量が多過ぎると、耐失透性が低下して、オーバーフローダウンドロー法、スリットダウンドロー法等のダウンドロー法、フロート法等に適した液相粘度を得難くなることに加えて、高温粘性が上昇して、フロート法等に適した成形温度を得難くなる。 In order to increase the mechanical strength of the tempered glass, it is necessary to increase the compressive stress value of the compressive stress layer. Components such as Al 2 O 3 are known as components that increase the compressive stress value. However, when the content of Al 2 O 3 is too large, the devitrification resistance is lowered, and it is difficult to obtain a liquid phase viscosity suitable for a down draw method such as an overflow down draw method or a slit down draw method, a float method, or the like. In addition to this, the high-temperature viscosity increases, making it difficult to obtain a molding temperature suitable for the float process or the like.

また、KNO溶融塩を用いると、大型のガラス板を継続的、且つ大量にイオン交換処理することができる。しかし、KNO溶融塩を用いると、経時的にKNO溶融塩が劣化して、KNO溶融塩を頻繁に交換しなければならないという問題がある。KNO溶融塩のバス交換は、時間と費用がかかるため、イオン交換処理の効率が低下して、強化ガラスの製造コストが高騰し易くなる。 In addition, when KNO 3 molten salt is used, a large glass plate can be subjected to ion exchange treatment continuously and in large quantities. However, the use of KNO 3 molten salt, over time KNO 3 molten salt is degraded, there is a problem that must be replaced frequently a KNO 3 molten salt. Since the KNO 3 molten salt bath replacement takes time and expense, the efficiency of the ion exchange treatment is lowered, and the manufacturing cost of the tempered glass is likely to increase.

更に、大型のガラス板を強化処理する場合、ガラス板の表裏面(相対する表面)の特性差によって、強化ガラス板に反りが発生するという問題があった。また、この場合、強化処理の際に、平面方向の残留応力により、一時的にガラス板が反り、これが原因で強化ガラス板に反りが発生するという問題があった。近年、強化ガラス板に対して薄型化の要求があるが、このような場合、上記問題は特に顕著になる。   Furthermore, when a large glass plate is tempered, there is a problem in that the tempered glass plate is warped due to a difference in characteristics between the front and back surfaces (opposite surfaces) of the glass plate. Further, in this case, there has been a problem that, during the tempering treatment, the glass plate is temporarily warped due to the residual stress in the plane direction, and this causes the warp of the tempered glass plate. In recent years, there is a demand for thinning the tempered glass plate. In such a case, the above problem becomes particularly significant.

そこで、本発明の技術的課題は、イオン交換性能と耐失透性が高いと共に、KNO 溶融塩の劣化に対して耐性を有し、しかも大型のガラス板を強化処理しても、反りが発生し難い強化ガラス及び強化ガラス板を創案することである。 Therefore, the technical problem of the present invention is that the ion exchange performance and devitrification resistance are high, and the KNO 3 molten salt is resistant to deterioration. The idea is to create a tempered glass and a tempered glass plate that are difficult to generate.

本発明者等は、種々の検討を行った結果、ガラス組成を厳密に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の強化用ガラスは、強化処理に供される強化用ガラスであって、ガラス組成として、モル%で、SiO 50〜75%、Al 3〜13%、B 0〜1.5%、LiO+NaO+KO 10〜25%、LiO 0〜4%、NaO 7〜20%、KO 0.5〜10%、MgO 0.5〜13%、CaO 0〜6%、SrO 0〜4.5%、As 0〜0.05%未満、Sb 0〜0.05%未満、PbO 0〜0.05%未満、F 0〜0.05%未満を含有し、板厚が1.5mm以下であり、強化用ガラス板の全平面部位に対する平面方向の残留応力の最大値Fmaxが0.5MPa以下であることを特徴とする。ここで、「Fmax」は、500mm×500mm以上の寸法を有するガラス板(特に1m×1mの寸法)において、ユニオプト社製複屈折測定機:ABR−10Aを用いて、10cmピッチの格子状交点位置及び4辺の外周部付近の複屈折(単位:nm)を計測し、平面方向の残留応力に換算した場合の最大値である。また、光学的な複屈折の測定、すなわち直交する直線偏光波の光路差の測定により、ガラス板中の残留応力値を見積ることが可能であり、残留応力により発生する偏差応力F(MPa)は、F=R/CLの式で表記される。なお、「R」は光路差(nm)であり、「L」は偏光波が通過した距離(cm)であり、「C」は光弾性定数(比例定数)であり、通常、20〜40(nm/cm)/(MPa)の値になる。なお、平面方向の残留応力には、引っ張り応力と圧縮応力が存在するが、上記では、両者の絶対値を評価するものとする。「実質的にAsを含有しない」とは、ガラス成分として積極的にAsを添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、Asの含有量が0.05モル%未満であることを指す。「実質的にSbを含有しない」とは、ガラス成分として積極的にSbを添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、Sbの含有量が0.05モル%未満であることを指す。「実質的にPbOを含有しない」とは、ガラス成分として積極的にPbOを添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、PbOの含有量が0.05モル%未満であることを指す。「実質的にFを含有しない」とは、ガラス成分として積極的にFを添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、Fの含有量が0.05モル%未満であることを指す。 As a result of various studies, the present inventors have found that the above technical problem can be solved by strictly regulating the glass composition, and propose the present invention. That is, the tempered glass of the present invention is a tempered glass that is subjected to a tempering treatment, and has a glass composition of mol%, SiO 2 50 to 75%, Al 2 O 3 3 to 13%, B 2 O. 3 0~1.5%, Li 2 O + Na 2 O + K 2 O 10~25%, Li 2 O 0~4%, Na 2 O 7~20%, K 2 O 0.5~10%, MgO 0.5 ~13%, CaO 0~6%, SrO 0~4.5%, As less than 2 O 3 0 to 0.05%, Sb less than 2 O 3 0 to 0.05%, PbO less than 0 to 0.05% F containing less than 0-0.05% , the plate thickness is 1.5 mm or less, and the maximum value Fmax of the residual stress in the plane direction with respect to all the plane portions of the reinforcing glass plate is 0.5 MPa or less. Features. Here, “Fmax” is a grid-like intersection position at a pitch of 10 cm using a birefringence measuring instrument: ABR-10A manufactured by UNIOPT on a glass plate having a dimension of 500 mm × 500 mm or more (particularly a dimension of 1 m × 1 m). And the birefringence (unit: nm) in the vicinity of the outer periphery of the four sides, and the maximum value when converted into the residual stress in the plane direction. In addition, the residual stress value in the glass plate can be estimated by measuring the optical birefringence, that is, by measuring the optical path difference between orthogonal linearly polarized waves, and the deviation stress F (MPa) generated by the residual stress is , F = R / CL. “R” is the optical path difference (nm), “L” is the distance (cm) through which the polarized wave has passed, and “C” is the photoelastic constant (proportional constant), usually 20 to 40 ( nm / cm) / (MPa). The residual stress in the plane direction includes tensile stress and compressive stress. In the above, the absolute values of both are evaluated. “Substantially not containing As 2 O 3 ” means that the glass component is not positively added with As 2 O 3 , but is allowed to be mixed as an impurity. Specifically, As 2 O 3 It indicates that the content of 3 is less than 0.05 mol%. By "substantially free of Sb 2 O 3", but not added actively Sb 2 O 3 as a glass component, a purpose to allow the case to be mixed as an impurity, specifically, Sb 2 O It indicates that the content of 3 is less than 0.05 mol%. “Substantially no PbO” means that PbO is not actively added as a glass component, but is allowed to be mixed as an impurity. Specifically, the PbO content is 0.05 mol. It means less than%. “Substantially no F” means that F is not actively added as a glass component but is allowed to be mixed as an impurity. Specifically, the F content is 0.05 mol. It means less than%.

本発明者等は、種々の検討を行った結果、以下の知見を得るに至った。AlとMgOの含有量(又は含有比)を同時に規制すると、イオン交換性能と耐失透性を高めることができる。Alとアルカリ金属酸化物の含有量(又は含有比)を同時に規制すると、耐失透性を高めることができる。 Oを所定量添加すると、圧縮応力層の厚みを大きくすることができる。K OとNa Oの含有量(又は含有比)を同時に規制すると、圧縮応力層の圧縮応力値を低下させずに、圧縮応力層の厚みを大きくすることができる。 As a result of various studies, the present inventors have obtained the following knowledge. When the content (or content ratio) of Al 2 O 3 and MgO is regulated at the same time, the ion exchange performance and devitrification resistance can be improved. When the content (or content ratio) of Al 2 O 3 and the alkali metal oxide is simultaneously controlled, devitrification resistance can be improved. When a predetermined amount of K 2 O is added, the thickness of the compressive stress layer can be increased. When the contents (or content ratio) of K 2 O and Na 2 O are simultaneously controlled, the thickness of the compressive stress layer can be increased without reducing the compressive stress value of the compressive stress layer.

更に、ガラス組成を上記範囲に規制すると、劣化したKNO溶融塩を用いた場合であっても、圧縮応力層の圧縮応力値や厚みが極端に低下しないため、KNO溶融塩の交換頻度を低下させることが可能になる。 Further, when the glass composition is regulated within the above range, even when using a KNO 3 molten salt deteriorated, the compression stress value and thickness of the compression stress layer is not extremely lowered, the frequency of replacement of KNO 3 molten salt It can be reduced.

発明に係る強化ガラスは、圧縮応力層の圧縮応力値が300MPa以上、且つ圧縮応力層の厚み(深さ)が10μm以上であることが好ましい。ここで、「圧縮応力層の圧縮応力値」および「圧縮応力層の厚み」は、表面応力計(例えば、株式会社東芝製FSM−6000)を用いて、試料を観察した際に、観察される干渉縞の本数とその間隔から算出される値を指す。 In the tempered glass according to the present invention , it is preferable that the compressive stress value of the compressive stress layer is 300 MPa or more and the thickness (depth) of the compressive stress layer is 10 μm or more. Here, the “compressive stress value of the compressive stress layer” and the “thickness of the compressive stress layer” are observed when the sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Toshiba Corporation). A value calculated from the number of interference fringes and their intervals.

発明に係る強化ガラスは、劣化係数Dが0.01〜0.6であることが好ましい。ここで、劣化係数Dは、(圧縮応力値(新品KNO溶融塩)−圧縮応力値(劣化KNO溶融塩))/圧縮応力値(新品KNO溶融塩)の式で算出した値を指す。ここで、「劣化KNO溶融塩」は、NaOを約1500ppm、LiOを約20ppm含むKNO溶融塩を指し、例えば、以下の方法で作製可能である。SiO 58.7質量%、Al 12.8質量%、LiO 0.1質量%、NaO 14.0質量%、KO 6.3質量%、MgO 2.0質量%、CaO 2.0質量%、ZrO 4.1質量%のガラス組成を有するガラスを粉砕し、篩目開き300μmを通過し、篩目開き150μmを通過しないガラス粉末を採取し、平均粒子径225μmのガラス粉末を得る。次に、このガラス粉末95gを篩目開き100μmの金属メッシュで作製した籠の中に入れる。続いて、440℃に保持したKNO 400ml中に上記のガラス粉末を60時間浸漬(24時間毎に籠を上下に10回振盪)する。一方、「新品KNO溶融塩」は、過去にイオン交換処理に供されていないKNO溶融塩を指し、NaOの含有量が200ppm以下、LiO含有量が3ppm以下のKNO溶融塩を指す。 The tempered glass according to the present invention preferably has a deterioration coefficient D of 0.01 to 0.6. Here, the deterioration coefficient D indicates a value calculated by the equation of (compressive stress value (new KNO 3 molten salt) −compressive stress value (deteriorated KNO 3 molten salt)) / compressive stress value (new KNO 3 molten salt). . Here, “degraded KNO 3 molten salt” refers to a KNO 3 molten salt containing about 1500 ppm of Na 2 O and about 20 ppm of Li 2 O, and can be prepared by the following method, for example. SiO 2 58.7 mass%, Al 2 O 3 12.8 mass%, Li 2 O 0.1 mass%, Na 2 O 14.0 mass%, K 2 O 6.3 mass%, MgO 2.0 mass %, CaO 2.0% by mass, ZrO 2 4.1% by mass of glass composition is crushed, glass powder passing through a sieve opening of 300 μm and not passing through a sieve opening of 150 μm is collected, and the average particle diameter A glass powder of 225 μm is obtained. Next, 95 g of this glass powder is put into a basket made of a metal mesh having a sieve opening of 100 μm. Subsequently, the glass powder is immersed in 400 ml of KNO 3 maintained at 440 ° C. for 60 hours (the jar is shaken up and down 10 times every 24 hours). On the other hand, "new KNO 3 molten salt" refers to a KNO 3 molten salt that has not been subjected to ion exchange treatment in the past, Na 2 O content 200ppm or less, Li 2 O content is 3ppm or less of KNO 3 molten Refers to salt.

発明に係る強化ガラスは、液相温度が1075℃以下であることが好ましい。ここで、「液相温度」とは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。 The tempered glass according to the present invention preferably has a liquidus temperature of 1075 ° C. or lower. Here, the “liquid phase temperature” means that the glass powder that passes through the standard sieve 30 mesh (sieve opening 500 μm) and remains on the 50 mesh (mesh opening 300 μm) is placed in a platinum boat and placed in a temperature gradient furnace. It refers to the temperature at which crystals precipitate after holding for a period of time.

発明に係る強化ガラスは、液相粘度が104.0dPa・s以上であることが好ましい。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。 The tempered glass according to the present invention preferably has a liquidus viscosity of 10 4.0 dPa · s or more. Here, “liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.

発明に係る強化ガラスは、104.0dPa・sにおける温度が1250℃以下であることが好ましい。ここで、「104.0dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。 The tempered glass according to the present invention preferably has a temperature at 10 4.0 dPa · s of 1250 ° C. or lower. Here, “temperature at 10 4.0 dPa · s” refers to a value measured by a platinum ball pulling method.

発明に係る強化ガラスは、密度が2.6g/cm以下であることが好ましい。ここで、「密度」とは、周知のアルキメデス法で測定可能である。 The tempered glass according to the present invention preferably has a density of 2.6 g / cm 3 or less. Here, the “density” can be measured by a known Archimedes method.

発明に係る強化ガラスは、ヤング率が65GPa以上であることが好ましい。ここで、「ヤング率」は、周知の共振法等で測定可能である。 The tempered glass according to the present invention preferably has a Young's modulus of 65 GPa or more. Here, the “Young's modulus” can be measured by a known resonance method or the like.

発明に係る強化ガラス板は、上記のいずれかに記載の強化ガラスからなることが好ましいTempered glass plate according to the present invention is preferably made of tempered glass according to any one of the above.

発明に係る強化ガラス板は、フロート法で成形されてなることが好ましい。 The tempered glass sheet according to the present invention is preferably formed by a float process.

発明に係る強化ガラス板は、厚み方向に0.5μm以上研磨されてなる表面を有することが好ましい。 The tempered glass sheet according to the present invention preferably has a surface polished by 0.5 μm or more in the thickness direction.

発明に係る強化ガラス板は、相対する表面の圧縮応力層の圧縮応力値の差ΔCSが50MPa以下であることが好ましい。フロート法でガラス板を成形する場合、溶融錫に接触した面と接触していない面では、同様にイオン交換処理を行ったとしても、形成される圧縮応力層の圧縮応力値に差が生じて、特に大型、且つ薄い強化ガラス板の場合に反りが発生し易くなる。そこで、ΔCSを上記範囲とすれば、このような不具合を防止し易くなる。 In the tempered glass sheet according to the present invention , the difference ΔCS between the compressive stress values of the compressive stress layers on the opposing surfaces is preferably 50 MPa or less. When the glass plate is formed by the float process, even if the ion exchange treatment is performed on the surface that is not in contact with the surface that is in contact with the molten tin, there is a difference in the compressive stress value of the formed compressive stress layer. In particular, warping tends to occur in the case of a large and thin tempered glass plate. Therefore, if ΔCS is within the above range, such a problem can be easily prevented.

発明に係る強化ガラス板は、表面に圧縮応力を有する強化ガラス板であって、長さが500mm以上、幅が500mm以上、厚みが0.5〜1.5mm、ヤング率が65GPa以上、圧縮応力層の圧縮応力値が200MPa以上、圧縮応力層の厚みが20μm以上、劣化係数Dが0.6以下、相対する表面の圧縮応力層の圧縮応力値の差ΔCSが50MPa以下であることが好ましい The tempered glass plate according to the present invention is a tempered glass plate having a compressive stress on the surface, and has a length of 500 mm or more, a width of 500 mm or more, a thickness of 0.5 to 1.5 mm, a Young's modulus of 65 GPa or more, and a compression. compressive stress value of the stress layer is more than 200 MPa, the thickness of the compressive stress layer is 20μm or more, the deterioration coefficient D is 0.6 or less, and the difference ΔCS compressive stress value of the compressive stress layer in the opposing surface is less than 50MPa .

発明に係る強化ガラス板は、タッチパネルディスプレイに用いることが好ましい。 The tempered glass plate according to the present invention is preferably used for a touch panel display.

発明に係る強化ガラス板は、携帯電話のカバーガラスに用いることが好ましい。 The tempered glass plate according to the present invention is preferably used for a cover glass of a mobile phone.

発明に係る強化ガラス板は、太陽電池のカバーガラスに用いることが好ましい。 The tempered glass plate according to the present invention is preferably used for a cover glass of a solar cell.

発明に係る強化ガラス板は、ディスプレイの保護部材に用いることが好ましい。 The tempered glass plate according to the present invention is preferably used as a protective member for a display.

発明に係る強化ガラス板は、表面に圧縮応力を有する強化ガラス板であって、ガラス組成として、モル%で、SiO 50〜75%、Al 4〜12%、B 0〜1%、LiO 0〜1%、NaO 10〜17%、KO 2〜7%、MgO 1.5〜12%、CaO 0〜3%、SrO 0〜1%、TiO 0〜0.5%を含有し、モル比MgO/(MgO+CaO)が0.5以上、長さが500mm以上、幅が500mm以上、厚みが0.5〜1.5mm、ヤング率が65GPa以上、圧縮応力層の圧縮応力値が400MPa以上、圧縮応力層の厚みが30μm以上、劣化係数Dが0.4以下であることが好ましい The tempered glass plate according to the present invention is a tempered glass plate having a compressive stress on the surface, and has a glass composition of mol%, SiO 2 50 to 75%, Al 2 O 3 4 to 12%, B 2 O 3. 0~1%, Li 2 O 0~1% , Na 2 O 10~17%, K 2 O 2~7%, MgO 1.5~12%, CaO 0~3%, SrO 0~1%, TiO 20 to 0.5%, molar ratio MgO / (MgO + CaO) is 0.5 or more, length is 500 mm or more, width is 500 mm or more, thickness is 0.5 to 1.5 mm, Young's modulus is 65 GPa or more , compression stress value of the compressive stress layer is more than 400 MPa, the thickness of the compressive stress layer is 30μm or more, and a degradation coefficient D is 0.4 or less.

本発明に係る強化ガラスは、イオン交換性能が高いため、短時間のイオン交換処理であっても、圧縮応力層の圧縮応力値が高まり、且つ圧縮応力値が深くまで形成される。このため、機械的強度が高くなり、また機械的強度のばらつきが小さくなる。 Since the tempered glass according to the present invention has high ion exchange performance, the compressive stress value of the compressive stress layer is increased and the compressive stress value is deeply formed even in a short time ion exchange treatment. For this reason, mechanical strength becomes high and the dispersion | variation in mechanical strength becomes small.

また、本発明に係る強化ガラスは、耐失透性に優れるため、オーバーフローダウンドロー法、フロート法等で効率良く成形することが可能である。なお、オーバーフローダウンドロー法、フロート法等であれば、大型、且つ薄いガラス板を大量に成形することができる。 Moreover, since the tempered glass according to the present invention is excellent in devitrification resistance, it can be efficiently formed by an overflow down draw method, a float method or the like. In addition, if it is an overflow downdraw method, a float method, etc., a large sized and thin glass plate can be shape | molded in large quantities.

更に、本発明に係る強化ガラスは、劣化係数Dが小さいため、長期に亘ってイオン交換処理しても、形成される圧縮応力層の圧縮応力値や厚みが低下し難いため、KNO溶融塩の交換頻度を低下させることが可能である。 Further, tempered glass according to the present invention, since deterioration coefficient D is small, even if the ion-exchange treatment for a long time, the compression stress value and thickness of the compression stress layer to be formed since it is difficult to decrease, KNO 3 molten salt It is possible to reduce the replacement frequency.

[実施例3]に係る強化用ガラス板の平面方向の残留応力を示すデータである。It is data which show the residual stress of the planar direction of the glass plate for a tempering concerning [Example 3]. [実施例4]に係る強化用ガラス板の平面方向の残留応力を示すデータである。It is data which show the residual stress of the plane direction of the glass plate for reinforcement | strengthening which concerns on [Example 4].

表面に圧縮応力層を形成する方法としては、物理強化法と化学強化法がある。本実施形態の強化ガラスは、化学強化法で作製されてなることが好ましい。   As a method for forming a compressive stress layer on the surface, there are a physical strengthening method and a chemical strengthening method. It is preferable that the tempered glass of this embodiment is produced by a chemical strengthening method.

化学強化法は、ガラスの歪点以下の温度でイオン交換処理によりガラスの表面にイオン半径が大きいアルカリイオンを導入する方法である。化学強化法で圧縮応力層を形成すれば、ガラスの厚みが薄い場合でも、圧縮応力層を適正に形成できると共に、圧縮応力層を形成した後に、強化ガラスを切断しても、風冷強化法等の物理強化法のように、強化ガラスが容易に破壊しない。   The chemical strengthening method is a method in which alkali ions having a large ion radius are introduced to the surface of the glass by ion exchange treatment at a temperature below the strain point of the glass. If the compressive stress layer is formed by the chemical strengthening method, the compressive stress layer can be properly formed even when the glass is thin, and even if the tempered glass is cut after forming the compressive stress layer, the air cooling strengthening method is used. The tempered glass does not break easily like the physical tempering method.

本実施形態の強化ガラス(強化用ガラス)において、上記のように各成分の含有範囲を限定した理由を下記に示す。なお、以下では、特に断りのない限り、各成分の含有範囲の説明において、%表示はモル%を指すものとする。 In the tempered glass (tempered glass) of the present embodiment, the reason why the content range of each component is limited as described above will be described below. In the following description, unless otherwise specified, in the description of the content range of each component, “%” indicates mol%.

SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は50〜75%であり、好ましくは55〜75%、55〜72%、55〜69%、特に58〜67%である。SiOの含有量が少な過ぎると、ガラス化し難くなる。また熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。更には劣化係数Dが大きくなり易い。一方、SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなる。また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなる。 SiO 2 is a component that forms a network of glass. The content of SiO 2 is 50 to 75%, preferably 55 to 75%, 55 to 72%, 55 to 69%, particularly 58 to 67%. When the content of SiO 2 is too small, it becomes difficult to vitrify. In addition, the thermal expansion coefficient becomes too high, and the thermal shock resistance tends to decrease. Furthermore, the degradation coefficient D tends to increase. On the other hand, if the content of SiO 2 is too large, the meltability and the formability tends to decrease. In addition, the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the surrounding material.

Alは、イオン交換性能を高める成分であると共に、劣化係数Dを低減する効果が最も高い成分である。また歪点やヤング率を高める成分である。Alの含有量は3〜13%である。Alの含有量が少な過ぎると、劣化係数Dが大きくなる傾向があり、またイオン交換性能を十分に発揮できない虞が生じる。よって、Alの好適な下限範囲は4%以上、4.5%以上、5%以上、5.5%以上、6%以上、7%以上、8.5%以上、10%以上、特に10.5%以上である。一方、Alの含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、フロート法やオーバーフローダウンドロー法等でガラス板を成形し難くなる。また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなる。更には高温粘性が高くなり、溶融性が低下し易くなる。よって、Alの好適な上限範囲は12.5%以下、特に12%以下である。 Al 2 O 3 is a component that enhances the ion exchange performance and is the component that has the highest effect of reducing the degradation coefficient D. It is also a component that increases the strain point and Young's modulus. The content of Al 2 O 3 is 3 to 13%. When the content of Al 2 O 3 is too small, the deterioration coefficient D tends to increase, and there is a possibility that the ion exchange performance cannot be exhibited sufficiently. Therefore, the preferable lower limit range of Al 2 O 3 is 4% or more, 4.5% or more, 5% or more, 5.5% or more, 6% or more, 7% or more, 8.5% or more, 10% or more, In particular, it is 10.5% or more. On the other hand, if the content of Al 2 O 3 is too large, devitrified crystals are likely to precipitate on the glass, and it becomes difficult to form a glass plate by a float method, an overflow downdraw method, or the like. In addition, the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the surrounding material. Furthermore, the high-temperature viscosity becomes high and the meltability tends to be lowered. Therefore, a suitable upper limit range of Al 2 O 3 is 12.5% or less, particularly 12% or less.

は、高温粘度や密度を低下させると共に、ガラスを安定化させて結晶を析出させ難くし、また液相温度を低下させる成分である。しかし、Bの含有量が多過ぎると、イオン交換によって、ヤケと呼ばれるガラス表面の着色が発生したり、耐水性が低下したり、圧縮応力層の厚みが小さくなり易い。よって、Bの含有量は、好ましくは0〜1.50〜1.3%、0〜1.1%、0〜1%、0〜0.8%、0〜0.5%、特に0〜0.1%である。 B 2 O 3 is a component that lowers the high temperature viscosity and density, stabilizes the glass, makes it difficult to precipitate crystals, and lowers the liquidus temperature. However, if the content of B 2 O 3 is too large, coloring of the glass surface called burnt occurs due to ion exchange, water resistance is lowered, and the thickness of the compressive stress layer tends to be reduced. Thus, the content of B 2 O 3 is preferably 0 to 1.5, 0 to 1.3%, from 0 to 1.1%, 0 to 1%, 0 to 0.8%, 0 to 0.5 %, In particular from 0 to 0.1%.

LiOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分であると共に、ヤング率を高める成分である。更にLiOは、アルカリ金属酸化物の中では圧縮応力値を高める効果が大きいが、NaOを7%以上含むガラス系において、LiOの含有量が極端に多くなると、かえって圧縮応力値が低下する傾向がある。また、LiOの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。更に、低温粘性が低下し過ぎて、応力緩和が起こり易くなり、かえって圧縮応力値が低下する場合がある。また劣化係数Dが大きくなる傾向がある。よって、LiOの含有量は、好ましくは0〜4%0〜2.5%、0〜2%、0〜1.5%、0〜1%、0〜0.5%、特に0〜0.3%である。 Li 2 O is an ion exchange component, and is a component that lowers the high-temperature viscosity to increase the meltability and moldability, and also increases the Young's modulus. Furthermore, Li 2 O has a large effect of increasing the compressive stress value among alkali metal oxides. However, in a glass system containing 7% or more of Na 2 O, if the Li 2 O content is extremely increased, the compressive stress is rather increased. The value tends to decrease. Further, when the content of Li 2 O is too large, and decreases the liquidus viscosity, in addition to the glass tends to be devitrified, the thermal expansion coefficient becomes too high, the thermal shock resistance may decrease, It becomes difficult to match the thermal expansion coefficient of the surrounding material. Furthermore, the low-temperature viscosity decreases too much, and stress relaxation is likely to occur, and the compressive stress value may decrease instead. Further, the deterioration coefficient D tends to increase. Therefore, the content of Li 2 O is preferably 0 to 4% , 0 to 2.5%, 0 to 2%, 0 to 1.5%, 0 to 1%, 0 to 0.5%, particularly 0. ~ 0.3%.

NaOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaOは、耐失透性を改善する成分でもある。NaOの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下したり、イオン交換性能が低下し易くなる。よって、NaOの含有量は7%以上であり、好適な下限範囲は8%以上、9%以上、10%以上、11%以上、12%以上、特に13%以上である。一方、NaOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する場合がある。更に劣化係数Dが大きくなる傾向がある。よって、NaOの含有量は20%以下であり、好適な上限範囲は19%以下、17%以下、特に16%以下である。 Na 2 O is an ion exchange component, and is a component that lowers the high temperature viscosity and improves the meltability and moldability. Na 2 O is also a component that improves devitrification resistance. When Na 2 O content is too small, or reduced meltability, lowered coefficient of thermal expansion tends to decrease the ion exchange performance. Therefore, the content of Na 2 O is 7% or more, and the preferable lower limit range is 8% or more, 9% or more, 10% or more, 11% or more, 12% or more, particularly 13% or more. On the other hand, when the content of Na 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it becomes difficult to match the thermal expansion coefficient of the surrounding materials. In addition, the strain point may be excessively lowered or the component balance of the glass composition may be lost, and the devitrification resistance may be deteriorated. Furthermore, the degradation coefficient D tends to increase. Therefore, the content of Na 2 O is 20% or less, and the preferable upper limit range is 19% or less, 17% or less, and particularly 16% or less.

Oは、イオン交換を促進する成分であり、アルカリ金属酸化物の中では圧縮応力層の厚みを大きくし易い成分である。また高温粘度を低下させて、溶融性や成形性を高める成分である。更には、耐失透性を改善する成分でもある。よって、KOの含有量は、好ましくは0.5%以上1%以上、1.5%以上、特に2%以上である。しかし、KOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する傾向がある。よって、KOの含有量は、好ましくは10%以下9%以下、8%以下、7%以下、特に6%以下である。 K 2 O is a component that promotes ion exchange, and among alkali metal oxides, it is a component that tends to increase the thickness of the compressive stress layer. Moreover, it is a component which reduces high temperature viscosity and improves a meltability and a moldability. Furthermore, it is also a component that improves devitrification resistance. Therefore, the content of K 2 O is preferably 0.5% or more , 1% or more, 1.5% or more, particularly 2% or more. However, if the content of K 2 O is too large, the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding materials. Moreover, there is a tendency that the strain point is excessively lowered, the component balance of the glass composition is lacking, and the devitrification resistance is lowered. Therefore, the content of K 2 O is preferably 10% or less , 9% or less, 8% or less, 7% or less, particularly 6% or less.

LiO+NaO+KOの好適な含有量は10〜25%、13〜22%、15〜20%、16〜20%、16.5〜20%、特に18〜20%である。LiO+NaO+KOの含有量が少な過ぎると、イオン交換性能や溶融性が低下し易くなる。一方、LiO+NaO+KOの含有量が多過ぎると、劣化係数Dが大きくなり過ぎる。またガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎて、高い圧縮応力値が得られ難くなる場合がある。更に液相温度付近の粘性が低下して、高い液相粘度を確保し難くなる場合がある。なお、「LiO+NaO+KO」は、LiO、NaO、及びKOの合量である。 Suitable content of Li 2 O + Na 2 O + K 2 O 10 to 25% 13 to 22%, 15-20%, 16-20%, 16.5 to 20%, in particular 18 to 20%. When Li 2 O + Na 2 O + K content of 2 O is too small, the ion exchange performance and meltability is liable to decrease. On the other hand, when the content of Li 2 O + Na 2 O + K 2 O is too large, the deterioration coefficient D becomes too large. Further, in addition to the glass being easily devitrified, the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding material. In addition, the strain point may be excessively lowered, making it difficult to obtain a high compressive stress value. Furthermore, the viscosity near the liquidus temperature may decrease, making it difficult to ensure a high liquidus viscosity. “Li 2 O + Na 2 O + K 2 O” is the total amount of Li 2 O, Na 2 O, and K 2 O.

本実施形態に係るガラス組成系において、LiO+NaO+KOの含有量が劣化係数Dに影響を与える要因を説明する。本実施形態では、主にNaイオンとKイオンのイオン交換により、ガラス表面に圧縮応力層が形成される。LiO+NaO+KOの含有量が少なくなると、イオン交換される成分の含有量が少なくなるため、圧縮応力値が小さくなるが、逆にLiO+NaO+KOの含有量が多過ぎると、NaイオンとKイオンのイオン交換(圧縮応力層の形成)が促進されると同時に、KNO中に含まれるLiイオンとNaイオンのイオン交換が、NaイオンとKイオンのイオン交換よりも優先して生じ易くなる。LiイオンとNaイオンのイオン交換が生じると、引っ張り応力が形成されるため、圧縮応力値が低下するものと考えられる。 In the glass composition system according to the present embodiment, a factor that the content of Li 2 O + Na 2 O + K 2 O affects the deterioration coefficient D will be described. In this embodiment, a compressive stress layer is formed on the glass surface mainly by ion exchange of Na ions and K ions. When the content of Li 2 O + Na 2 O + K 2 O decreases, the content of components to be ion-exchanged decreases, so the compressive stress value decreases, but conversely, the content of Li 2 O + Na 2 O + K 2 O is too large. And, the ion exchange between Na ions and K ions (formation of compressive stress layer) is promoted, and at the same time, the ion exchange between Li ions and Na ions contained in KNO 3 is more than the ion exchange between Na ions and K ions. Priority is likely to occur. When ion exchange between Li ions and Na ions occurs, tensile stress is formed, and it is considered that the compressive stress value decreases.

モル比(LiO+NaO+KO)/Alの好適な範囲は1〜3である。モル比(LiO+NaO+KO)/Alが大き過ぎると、歪点が低下して、かえってイオン交換性能が低下し易くなったり、ガラス組成の成分バランスを欠いて、耐失透性が低下し易くなる。また劣化係数Dが大きくなる虞がある。しかし、モル比(LiO+NaO+KO)/Alが小さ過ぎると、ガラスの粘性が高くなり過ぎて、泡品位が低下したり、ガラス組成の成分バランスを欠いて、耐失透性が低下し易くなる。モル比(LiO+NaO+KO)/Alの好適な下限範囲は1以上、1.2以上、1.4以上、1.5以上、1.7以上、特に1.8以上であり、モル比(LiO+NaO+KO)/Alの好適な上限範囲は3以下、2.8以下、2.6以下、2.5以下、特に2.3以下である。また劣化係数Dを重視する場合、モル比(LiO+NaO+KO)/Alの好適な下限範囲は1以上、特に1.2以上であり、モル比(LiO+NaO+KO)/Alの好適な上限範囲は3以下、2.5以下、2以下、1.8以下、1.5以下、特に1.4以下である。また、モル比(LiO+NaO+KO)/Alの好適な範囲は1〜3、1.2〜3、特に1.2〜2.5である。モル比(LiO+NaO+KO)/Al、モル比NaO/Alを上記範囲に規制すると、耐失透性や劣化係数Dを顕著に改善することができる。 A preferred range of the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is 1-3. If the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is too large, the strain point is lowered, and the ion exchange performance tends to be lowered. Permeability tends to decrease. Further, there is a possibility that the deterioration coefficient D becomes large. However, if the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is too small, the viscosity of the glass becomes too high, the bubble quality is lowered, the component balance of the glass composition is lacking, and loss resistance is lost. Permeability tends to decrease. The preferred lower limit range of the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is 1 or more, 1.2 or more, 1.4 or more, 1.5 or more, 1.7 or more, particularly 1.8 or more. The preferable upper limit range of the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is 3 or less, 2.8 or less, 2.6 or less, 2.5 or less, particularly 2.3 or less. . When importance is attached to the degradation coefficient D, the preferred lower limit range of the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is 1 or more, particularly 1.2 or more, and the molar ratio (Li 2 O + Na 2 O + K). 2 O) / preferred upper range of Al 2 O 3 is 3 or less, 2.5 or less, 2 or less, 1.8 or less, 1.5 or less, especially 1.4 or less. Further, preferred ranges of the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 is 1~3,1.2~3, in particular 1.2 to 2.5. When the molar ratio (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 and the molar ratio Na 2 O / Al 2 O 3 are regulated within the above ranges, the devitrification resistance and the degradation coefficient D can be remarkably improved. .

モル比KO/NaOの好適な範囲は0.1〜0.8、0.2〜0.8、0.2〜0.5、特に0.2〜0.4である。モル比KO/NaOが小さくなると、圧縮応力層の厚みが小さくなり易く、モル比KO/NaOが大きくなると、圧縮応力値が低下したり、ガラス組成の成分バランスを欠いて、ガラスが失透し易くなる。 Suitable ranges for the molar ratio K 2 O / Na 2 O are 0.1-0.8, 0.2-0.8, 0.2-0.5, in particular 0.2-0.4. When the molar ratio K 2 O / Na 2 O decreases, the thickness of the compressive stress layer tends to decrease, and when the molar ratio K 2 O / Na 2 O increases, the compressive stress value decreases or the glass composition component balance is reduced. The lack of glass makes it easy to devitrify the glass.

MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。よって、MgOの含有量は0.5%以上であり、好適な下限範囲は1%以上、1.5以上、2%以上、3%以上、5%以上、特に6%以上である。しかし、MgOの含有量が多過ぎると、密度や熱膨張係数が高くなり、またガラスが失透し易くなる傾向がある。よって、MgOの含有量は13%以下であり、好適な上限範囲は12%以下、11%以下、9%以下、8%以下、7%以下、特に6.5%以下である。   MgO is a component that lowers the viscosity at high temperature, increases meltability and moldability, and increases the strain point and Young's modulus. Among alkaline earth metal oxides, MgO is a component that has a large effect of improving ion exchange performance. is there. Therefore, the content of MgO is 0.5% or more, and a preferable lower limit range is 1% or more, 1.5 or more, 2% or more, 3% or more, 5% or more, particularly 6% or more. However, when there is too much content of MgO, a density and a thermal expansion coefficient will become high and there exists a tendency for glass to devitrify easily. Therefore, the content of MgO is 13% or less, and a preferable upper limit range is 12% or less, 11% or less, 9% or less, 8% or less, 7% or less, particularly 6.5% or less.

モル比MgO/(MgO+Al)が小さくなると、イオン交換性能やヤング率が低下し易くなる。また劣化係数Dが大きくなる傾向にある。モル比MgO/(MgO+Al)の好適な下限範囲は0.05以上、0.1以上、0.15以上、0.2以上、0.25以上、特に0.3以上である。一方、モル比MgO/(MgO+Al)が大きくなると、耐失透性が低下したり、密度が高くなったり、熱膨張係数が高くなり過ぎる。モル比MgO/(MgO+Al)の好適な上限範囲は0.95以下、0.9以下、0.85以下、0.8以下、0.7以下、0.6以下、特に0.5以下である。なお、「MgO+Al」は、MgOとAlの合量である。 When the molar ratio MgO / (MgO + Al 2 O 3 ) decreases, the ion exchange performance and Young's modulus are likely to decrease. Further, the degradation coefficient D tends to increase. A suitable lower limit range of the molar ratio MgO / (MgO + Al 2 O 3 ) is 0.05 or more, 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, particularly 0.3 or more. On the other hand, when the molar ratio MgO / (MgO + Al 2 O 3 ) increases, the devitrification resistance decreases, the density increases, and the thermal expansion coefficient becomes too high. The preferable upper limit range of the molar ratio MgO / (MgO + Al 2 O 3 ) is 0.95 or less, 0.9 or less, 0.85 or less, 0.8 or less, 0.7 or less, 0.6 or less, particularly 0.5. It is as follows. “MgO + Al 2 O 3 ” is the total amount of MgO and Al 2 O 3 .

CaOは、他の成分と比較して、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める効果が大きい。CaOの含有量は0〜6%である。しかし、CaOの含有量が多過ぎると、密度や熱膨張係数が高くなり、またガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなったり、イオン交換性能が低下したり、劣化係数Dが大きくなる傾向がある。よって、CaOの好適な含有量は0〜5%、0〜4%、0〜3.5%、0〜3%、0〜2%、特に0〜1%である。   Compared with other components, CaO has a large effect of lowering the high temperature viscosity and improving the meltability and moldability, and increasing the strain point and Young's modulus without deteriorating devitrification resistance. The content of CaO is 0 to 6%. However, if the content of CaO is too large, the density and thermal expansion coefficient become high, and the balance of the composition of the glass composition is lacking. On the contrary, the glass is liable to devitrify, the ion exchange performance is lowered, and the deterioration coefficient. D tends to increase. Therefore, the preferable content of CaO is 0 to 5%, 0 to 4%, 0 to 3.5%, 0 to 3%, 0 to 2%, particularly 0 to 1%.

MgO含有量を上記の範囲に規制した上で、モル比MgO/(MgO+CaO)を0.5以上、0.55以上、0.6以上、0.7以上、0.8以上、特に0.9以上に規制することが好ましい。モル比MgO/(MgO+CaO)が小さくなると、劣化係数Dが大きくなる傾向があると共に、イオン交換性能が低下する傾向がある。なお、MgO含有量が上記の範囲外になると、ガラス組成の成分バランスを欠いて、耐失透性が低下し易くなることに加えて、モル比MgO/(MgO+CaO)を規制することによる効果を享受し難くなる。なお、「MgO+CaO」は、MgOとCaOの合量である。   After limiting the MgO content to the above range, the molar ratio MgO / (MgO + CaO) is 0.5 or more, 0.55 or more, 0.6 or more, 0.7 or more, 0.8 or more, particularly 0.9. It is preferable to restrict to the above. When the molar ratio MgO / (MgO + CaO) decreases, the deterioration coefficient D tends to increase and the ion exchange performance tends to decrease. In addition, when the MgO content is outside the above range, the effect of regulating the molar ratio MgO / (MgO + CaO) in addition to the lack of the component balance of the glass composition, which tends to decrease the devitrification resistance. It becomes difficult to enjoy. “MgO + CaO” is the total amount of MgO and CaO.

SrOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。SrOの含有量は0〜6%が好ましい。SrOの含有量が多過ぎると、イオン交換反応が阻害され易くなることに加えて、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。SrOの好適な含有量は0〜4.5%、0〜3%、0〜2%、0〜1.5%、0〜1%、0〜0.5%、特に0〜0.1%である。 SrO is a component that lowers the high-temperature viscosity to increase the meltability and moldability, and increases the strain point and Young's modulus. The content of SrO is preferably 0 to 6%. When there is too much content of SrO, in addition to becoming easy to inhibit an ion exchange reaction, a density and a thermal expansion coefficient will become high, or it will become easy to devitrify glass. Suitable content of SrO is 0-4.5%, 0-3%, 0-2%, 0-1.5%, 0-1%, 0-0.5%, especially 0-0.1%. It is.

本実施形態の強化ガラスは、環境的配慮から、ガラス組成として、実質的にAs、Sb、PbO、及びFを含有しない。 The tempered glass of the present embodiment contains substantially no As 2 O 3 , Sb 2 O 3 , PbO, and F as a glass composition from the environmental consideration.

上記成分以外にも、例えば以下の成分を添加してもよい。   In addition to the above components, for example, the following components may be added.

BaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。BaOの含有量が多過ぎると、イオン交換反応が阻害され易くなること加えて、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。BaOの好適な含有量は0〜6%、0〜3%、0〜1.5%、0〜1%、0〜0.5%、特に0〜0.1%である。   BaO is a component that lowers the high-temperature viscosity to increase the meltability and moldability, and increases the strain point and Young's modulus. When the content of BaO is too large, the ion exchange reaction is likely to be inhibited, and in addition, the density and the thermal expansion coefficient are increased, and the glass is easily devitrified. The preferred content of BaO is 0-6%, 0-3%, 0-1.5%, 0-1%, 0-0.5%, especially 0-0.1%.

SrO+BaOの含有量を規制すれば、イオン交換性能を顕著に高めることができる。SrO+BaOの好適な含有量は0〜6%、0〜3%、0〜2.5%、0〜2%、0〜1%、特に0〜0.2%である。なお、「SrO+BaO」は、SrOとBaOの合量である。   If the content of SrO + BaO is regulated, the ion exchange performance can be significantly improved. The suitable content of SrO + BaO is 0-6%, 0-3%, 0-2.5%, 0-2%, 0-1%, especially 0-0.2%. “SrO + BaO” is the total amount of SrO and BaO.

モル比(CaO+SrO+BaO)/MgOの好適な範囲は0〜1、0〜0.9、0〜0.8、0〜0.75、特に0〜0.5である。モル比(CaO+SrO+BaO)/MgOが大きくなると、耐失透性が低下したり、イオン交換性能が低下したり、劣化係数Dが大きくなったり、密度や熱膨張係数が高くなり過ぎる。なお、「CaO+SrO+BaO」は、CaO、SrO、及びBaOの合量である。   The preferred range of molar ratio (CaO + SrO + BaO) / MgO is 0-1, 0-0.9, 0-0.8, 0-0.75, especially 0-0.5. When the molar ratio (CaO + SrO + BaO) / MgO increases, the devitrification resistance decreases, the ion exchange performance decreases, the deterioration coefficient D increases, and the density and thermal expansion coefficient increase too much. “CaO + SrO + BaO” is the total amount of CaO, SrO and BaO.

MgO+CaO+SrO+BaOの含有量は0.5〜10%、0.5〜8%、0.5〜7%、0.5〜6%、特に0.5〜4%が好ましい。MgO+CaO+SrO+BaOの含有量が少な過ぎると、溶融性や成形性を高め難くなる。一方、MgO+CaO+SrO+BaOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、耐失透性が低下し易くなることに加えて、イオン交換性能が低下する傾向がある。なお、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO、及びBaOの合量である。   The content of MgO + CaO + SrO + BaO is preferably 0.5 to 10%, 0.5 to 8%, 0.5 to 7%, 0.5 to 6%, particularly preferably 0.5 to 4%. When there is too little content of MgO + CaO + SrO + BaO, it will become difficult to improve a meltability and a moldability. On the other hand, if the content of MgO + CaO + SrO + BaO is too large, the density and thermal expansion coefficient increase and the devitrification resistance tends to decrease, and the ion exchange performance tends to decrease. “MgO + CaO + SrO + BaO” is the total amount of MgO, CaO, SrO, and BaO.

質量比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)は0.5以下、0.3以下、特に0.2以下が好ましい。質量比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)が大きくなると、耐失透性が低下する傾向が現れる。 The mass ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is preferably 0.5 or less, 0.3 or less, particularly preferably 0.2 or less. When the mass ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) increases, the tendency of devitrification resistance to decrease appears.

TiOは、イオン交換性能を高める成分であり、また高温粘度を低下させる成分であるが、その含有量が多過ぎると、ガラスが着色したり、失透し易くなる。よって、TiOの含有量は0〜3%、0〜1%、0〜0.8%、0〜0.5%、特に0〜0.1%が好ましい。 TiO 2 is a component that enhances ion exchange performance and a component that lowers the high-temperature viscosity. However, if its content is too large, the glass tends to be colored or devitrified. Therefore, the content of TiO 2 is preferably 0 to 3%, 0 to 1%, 0 to 0.8%, 0 to 0.5%, particularly preferably 0 to 0.1%.

ZrOは、イオン交換性能を顕著に高める成分であると共に、液相粘度付近の粘性や歪点を高める成分であるが、その含有量が多過ぎると、耐失透性が著しく低下する虞があり、また密度が高くなり過ぎる虞がある。よって、ZrOの好適な上限範囲は10%以下、8%以下、6%以下、4%以下、3%以下、特に1%以下である。なお、イオン交換性能を高めたい場合、ZrOの好適な下限範囲は0.01%以上、0.1%以上、0.5%以上、1%以上、特に2%以上である。 ZrO 2 is a component that remarkably improves the ion exchange performance, and is a component that increases the viscosity and strain point near the liquid phase viscosity. However, if its content is too large, the devitrification resistance may be significantly reduced. There is also a possibility that the density becomes too high. Therefore, a suitable upper limit range of ZrO 2 is 10% or less, 8% or less, 6% or less, 4% or less, 3% or less, particularly 1% or less. In addition, when it is desired to improve the ion exchange performance, a preferable lower limit range of ZrO 2 is 0.01% or more, 0.1% or more, 0.5% or more, 1% or more, particularly 2% or more.

ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を高める効果が大きい成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、圧縮応力層の厚みが小さくなる傾向がある。よって、ZnOの含有量は0〜6%、0〜5%、0〜3%、特に0〜1%が好ましい。   ZnO is a component that enhances the ion exchange performance, and is a component that is particularly effective in increasing the compressive stress value. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity. However, when the content of ZnO is too large, the glass tends to undergo phase separation, the devitrification resistance decreases, the density increases, or the thickness of the compressive stress layer decreases. Therefore, the content of ZnO is preferably 0 to 6%, 0 to 5%, 0 to 3%, particularly preferably 0 to 1%.

は、イオン交換性能を高める成分であり、特に圧縮応力層の厚みを大きくする成分である。しかし、Pの含有量が多過ぎると、ガラスが分相したり、耐水性が低下し易くなる。よって、Pの含有量は0〜10%、0〜3%、0〜1%、特に0〜0.5%が好ましい。 P 2 O 5 is a component that enhances ion exchange performance, and in particular, a component that increases the thickness of the compressive stress layer. However, when the content of P 2 O 5 is too large, or glass phase separation, the water resistance tends to decrease. Therefore, the content of P 2 O 5 is preferably 0 to 10%, 0 to 3%, 0 to 1%, particularly preferably 0 to 0.5%.

清澄剤として、CeO、SnO、Cl、SOの群(好ましくはSnO、Cl、SOの群)から選択された一種又は二種以上を0〜3%添加してもよい。SnO+SO+Clの含有量は0〜1%、0.001〜1%、0.01〜0.5%、特に0.03〜0.2%が好ましい。なお、「SnO+SO+Cl」は、SnO、Cl、及びSOの合量である。 As a fining agent, 0 to 3% of one or two or more selected from the group of CeO 2 , SnO 2 , Cl, and SO 3 (preferably a group of SnO 2 , Cl, and SO 3 ) may be added. The content of SnO 2 + SO 3 + Cl is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, particularly preferably 0.03 to 0.2%. “SnO 2 + SO 3 + Cl” is the total amount of SnO 2 , Cl, and SO 3 .

SnOは、清澄効果に加えて、イオン交換性能を高める効果も有する。このため、SnOを添加すると、清澄効果とイオン交換性能を高める効果を同時に享受することができる。SnOの含有量は0〜3%、0.01〜3%、0.01〜3%、特に0.1〜1%が好ましい。一方、SnOを添加すると、ガラスが着色する場合があるため、ガラスの着色を抑制しつつ、清澄効果を得る必要がある場合は、SOを添加することが好ましい。SOの含有量は0〜3%、特に0.001〜3%が好ましい。なお、SnOとSOを共存させると、イオン交換性能を高めつつ、着色を抑えることが可能になる。 SnO 2 has an effect of improving ion exchange performance in addition to the clarification effect. Therefore, the addition of SnO 2, it is possible to receive the effect of increasing the clarifying effect and ion exchange performance simultaneously. The SnO 2 content is preferably 0 to 3%, 0.01 to 3%, 0.01 to 3%, particularly preferably 0.1 to 1%. On the other hand, when SnO 2 is added, the glass may be colored. Therefore, when it is necessary to obtain a clarification effect while suppressing the coloring of the glass, it is preferable to add SO 3 . The SO 3 content is preferably 0 to 3%, particularly preferably 0.001 to 3%. When SnO 2 and SO 3 coexist, coloring can be suppressed while improving ion exchange performance.

Feの含有量は1000ppm未満(0.1%未満)、800ppm未満、600ppm未満、400ppm未満、特に300ppm未満が好ましい。更にFeの含有量を上記範囲に規制した上で、モル比Fe/(Fe+SnO)を0.8以上、0.9以上、特に0.95以上に規制することが好ましい。このようにすれば、板厚1mmにおけるガラスの透過率(400nm〜770nm)が向上し易くなる(例えば90%以上)。 The Fe 2 O 3 content is preferably less than 1000 ppm (less than 0.1%), less than 800 ppm, less than 600 ppm, less than 400 ppm, and particularly preferably less than 300 ppm. Further, the Fe 2 O 3 content is regulated within the above range, and the molar ratio Fe 2 O 3 / (Fe 2 O 3 + SnO 2 ) is regulated to 0.8 or more, 0.9 or more, particularly 0.95 or more. It is preferable to do. If it does in this way, the transmittance | permeability (400 nm-770 nm) of the glass in plate | board thickness 1mm will become easy to improve (for example, 90% or more).

NbやLa等の希土類酸化物は、ヤング率を高める成分である。しかし、原料自体のコストが高く、また多量に添加すると、耐失透性が低下し易くなる。よって、希土類酸化物の含有量は3%以下、2%以下、1%以下、0.5%以下、特に0.1%以下が好ましい。 Rare earth oxides such as Nb 2 O 5 and La 2 O 3 are components that increase the Young's modulus. However, the cost of the raw material itself is high, and when it is added in a large amount, the devitrification resistance tends to be lowered. Therefore, the rare earth oxide content is preferably 3% or less, 2% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.

ガラスを強く着色させるような遷移金属元素(Co、Ni等)は、ガラスの透過率を低下させる虞がある。特に、タッチパネルディスプレイに用いる場合、遷移金属元素の含有量が多過ぎると、タッチパネルディスプレイの視認性が低下し易くなる。よって、遷移金属酸化物の含有量が0.5%以下、0.1%以下、特に0.05%以下になるように、ガラス原料(カレットを含む)を選択することが好ましい。   Transition metal elements (Co, Ni, etc.) that strongly color the glass may reduce the transmittance of the glass. In particular, when used for a touch panel display, if the content of the transition metal element is too large, the visibility of the touch panel display tends to be lowered. Therefore, it is preferable to select the glass raw material (including cullet) so that the content of the transition metal oxide is 0.5% or less, 0.1% or less, particularly 0.05% or less.

本実施形態の強化ガラスは、環境的配慮から、実質的にBiを含有しないことが好ましい。「実質的にBiを含有しない」とは、ガラス成分として積極的にBiを添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、Biの含有量が0.05モル%未満であることを指す。 The tempered glass of this embodiment preferably contains substantially no Bi 2 O 3 from the environmental consideration. By "substantially free of Bi 2 O 3", but not added actively Bi 2 O 3 as a glass component, a purpose to allow the case to be mixed as an impurity, specifically, Bi 2 O It indicates that the content of 3 is less than 0.05 mol%.

本実施形態の強化ガラスは、例えば、下記の特性を有することが好ましい。   For example, the tempered glass of the present embodiment preferably has the following characteristics.

本実施形態の強化ガラスは、表面に圧縮応力層を有している。圧縮応力層の圧縮応力値は、好ましくは300MPa以上、400MPa以上、500MPa以上、600MPa以上、特に900MPa以上である。圧縮応力値が大きい程、強化ガラスの機械的強度が高くなる。一方、表面に極端に大きな圧縮応力が形成されると、表面にマイクロクラックが発生して、かえって強化ガラスの機械的強度が低下する虞がある。また、強化ガラスに内在する引っ張り応力が極端に高くなる虞がある。このため、圧縮応力層の圧縮応力値は2000MPa以下が好ましい。なお、ガラス組成中のAl、TiO、ZrO、MgO、ZnOの含有量を増加させたり、SrO、BaOの含有量を低減すれば、圧縮応力値が大きくなる傾向がある。また、イオン交換時間を短くしたり、イオン交換溶液の温度を下げれば、圧縮応力値が大きくなる傾向がある。 The tempered glass of this embodiment has a compressive stress layer on the surface. The compressive stress value of the compressive stress layer is preferably 300 MPa or more, 400 MPa or more, 500 MPa or more, 600 MPa or more, particularly 900 MPa or more. The greater the compressive stress value, the higher the mechanical strength of the tempered glass. On the other hand, when an extremely large compressive stress is formed on the surface, microcracks may be generated on the surface, which may reduce the mechanical strength of the tempered glass. Moreover, there exists a possibility that the tensile stress inherent in tempered glass may become extremely high. For this reason, the compressive stress value of the compressive stress layer is preferably 2000 MPa or less. If the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO in the glass composition is increased or the content of SrO, BaO is decreased, the compressive stress value tends to increase. Further, if the ion exchange time is shortened or the temperature of the ion exchange solution is lowered, the compressive stress value tends to increase.

圧縮応力層の厚みは、好ましくは10μm以上、15μm以上、20μm以上、30μm以上、特に40μm以上である。圧縮応力層の厚みが大きい程、強化ガラスに深い傷が付いても、強化ガラスが割れ難くなると共に、機械的強度のばらつきが小さくなる。一方、圧縮応力層の厚みが大きい程、強化ガラスを切断し難くなる。このため、圧縮応力層の厚みは500μm以下が好ましい。なお、ガラス組成中のKO、Pの含有量を増加させたり、SrO、BaOの含有量を低減すれば、圧縮応力層の厚みが大きくなる傾向がある。また、イオン交換時間を長くしたり、イオン交換溶液の温度を上げれば、圧縮応力層の厚みが大きくなる傾向がある。 The thickness of the compressive stress layer is preferably 10 μm or more, 15 μm or more, 20 μm or more, 30 μm or more, particularly 40 μm or more. As the thickness of the compressive stress layer increases, even if the tempered glass is deeply scratched, the tempered glass becomes difficult to break and the variation in mechanical strength becomes smaller. On the other hand, the larger the compressive stress layer is, the more difficult it is to cut the tempered glass. For this reason, the thickness of the compressive stress layer is preferably 500 μm or less. If the content of K 2 O or P 2 O 5 in the glass composition is increased or the content of SrO or BaO is decreased, the thickness of the compressive stress layer tends to increase. Moreover, if the ion exchange time is lengthened or the temperature of the ion exchange solution is increased, the thickness of the compressive stress layer tends to increase.

本実施形態の強化ガラスにおいて、密度は2.6g/cm以下、2.55g/cm以下、2.50g/cm以下、特に2.48g/cm以下が好ましい。密度が小さい程、強化ガラスを軽量化することができる。なお、ガラス組成中のSiO、B、Pの含有量を増加させたり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO、TiOの含有量を低減すれば、密度が低下し易くなる。 The tempered glass of the present embodiment, the density is 2.6 g / cm 3 or less, 2.55 g / cm 3 or less, 2.50 g / cm 3 or less, particularly preferably 2.48 g / cm 3 or less. The smaller the density, the lighter the tempered glass. In addition, the content of SiO 2 , B 2 O 3 , P 2 O 5 in the glass composition is increased, or the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 is decreased. As a result, the density tends to decrease.

本実施形態の強化ガラスにおいて、30〜380℃の温度範囲における熱膨張係数は80〜120×10−7/℃、85〜110×10−7/℃、90〜110×10−7/℃、特に90〜105×10−7/℃が好ましい。熱膨張係数を上記範囲に規制すれば、金属、有機系接着剤等の部材の熱膨張係数に整合し易くなり、金属、有機系接着剤等の部材の剥離を防止し易くなる。ここで、「30〜380℃の温度範囲における熱膨張係数」は、ディラトメーターを用いて、平均熱膨張係数を測定した値を指す。なお、ガラス組成中のアルカリ金属酸化物、アルカリ土類金属酸化物の含有量を増加すれば、熱膨張係数が高くなり易く、逆にアルカリ金属酸化物、アルカリ土類金属酸化物の含有量を低減すれば、熱膨張係数が低下し易くなる。 The tempered glass of the present embodiment, the thermal expansion coefficient in a temperature range of 30 to 380 ° C. is 80~120 × 10 -7 / ℃, 85~110 × 10 -7 / ℃, 90~110 × 10 -7 / ℃, 90-105 * 10 < -7 > / degreeC is especially preferable. If the thermal expansion coefficient is regulated within the above range, it becomes easy to match the thermal expansion coefficient of a member such as a metal or an organic adhesive, and it becomes easy to prevent peeling of a member such as a metal or an organic adhesive. Here, “thermal expansion coefficient in a temperature range of 30 to 380 ° C.” refers to a value obtained by measuring an average thermal expansion coefficient using a dilatometer. If the content of alkali metal oxides and alkaline earth metal oxides in the glass composition is increased, the coefficient of thermal expansion tends to increase, and conversely the content of alkali metal oxides and alkaline earth metal oxides is reduced. If it decreases, the thermal expansion coefficient tends to decrease.

本実施形態の強化ガラスにおいて、歪点は500℃以上、520℃以上、530℃以上、特に540℃以上が好ましい。歪点が高い程、耐熱性が向上し、強化ガラスを熱処理する場合、圧縮応力層が消失し難くなる。また、歪点が高い程、イオン交換処理の際に応力緩和が生じ難くなるため、圧縮応力値を維持し易くなる。なお、ガラス組成中のアルカリ土類金属酸化物、Al、ZrO、Pの含有量を増加させたり、アルカリ金属酸化物の含有量を低減すれば、歪点が高くなり易い。 In the tempered glass of the present embodiment, the strain point is preferably 500 ° C. or higher, 520 ° C. or higher, 530 ° C. or higher, particularly 540 ° C. or higher. The higher the strain point, the better the heat resistance. When heat-treating tempered glass, the compressive stress layer is less likely to disappear. In addition, the higher the strain point, the less the stress relaxation occurs during the ion exchange treatment, and the easier it is to maintain the compressive stress value. If the content of alkaline earth metal oxide, Al 2 O 3 , ZrO 2 , P 2 O 5 in the glass composition is increased or the content of alkali metal oxide is reduced, the strain point becomes higher. easy.

本実施形態の強化ガラスにおいて、104.0dPa・sにおける温度は1250℃以下、1230℃以下、1200℃以下、1180℃以下、特に1160℃以下が好ましい。104.0dPa・sにおける温度が低い程、成形設備への負担が軽減されて、成形設備が長寿命化し、結果として、強化ガラスの製造コストを低廉化し易くなる。アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B、TiOの含有量を増加させたり、SiO、Alの含有量を低減すれば、104.0dPa・sにおける温度が低下し易くなる。 In the tempered glass of the present embodiment, the temperature at 10 4.0 dPa · s is preferably 1250 ° C. or lower, 1230 ° C. or lower, 1200 ° C. or lower, 1180 ° C. or lower, particularly 1160 ° C. or lower. The lower the temperature at 10 4.0 dPa · s, the less the burden on the forming equipment, the longer the life of the forming equipment, and as a result, the manufacturing cost of tempered glass is likely to be reduced. If the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 is increased or the content of SiO 2 , Al 2 O 3 is decreased, 10 4.0 dPa · The temperature at s tends to decrease.

本実施形態の強化ガラスにおいて、102.5dPa・sにおける温度は1600℃以下、1550℃以下、1530℃以下、1500℃以下、特に1450℃以下が好ましい。102.5dPa・sにおける温度が低い程、低温溶融が可能になり、溶融窯等のガラス製造設備への負担が軽減されると共に、泡品位を高め易くなる。すなわち、102.5dPa・sにおける温度が低い程、強化ガラスの製造コストを低廉化し易くなる。なお、102.5dPa・sにおける温度は、溶融温度に相当する。また、ガラス組成中のアルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B、TiOの含有量を増加させたり、SiO、Alの含有量を低減すれば、102.5dPa・sにおける温度が低下し易くなる。 In the tempered glass of the present embodiment, the temperature at 10 2.5 dPa · s is preferably 1600 ° C. or lower, 1550 ° C. or lower, 1530 ° C. or lower, 1500 ° C. or lower, particularly 1450 ° C. or lower. The lower the temperature at 10 2.5 dPa · s, the lower the temperature melting becomes possible, and the burden on glass production equipment such as a melting kiln is reduced, and the bubble quality is easily improved. That is, the lower the temperature at 10 2.5 dPa · s, the easier it is to reduce the manufacturing cost of tempered glass. The temperature at 10 2.5 dPa · s corresponds to the melting temperature. Also, if the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 in the glass composition is increased or the content of SiO 2 , Al 2 O 3 is reduced, The temperature at 10 2.5 dPa · s tends to decrease.

本実施形態の強化ガラスにおいて、液相温度は1075℃以下、1050℃以下、1030℃以下、1010℃以下、1000℃以下、950℃以下、900℃以下、特に870℃以下が好ましい。なお、液相温度が低い程、耐失透性や成形性が向上する。また、ガラス組成中のNaO、KO、Bの含有量を増加させたり、Al、LiO、MgO、ZnO、TiO、ZrOの含有量を低減すれば、液相温度が低下し易くなる。 In the tempered glass of the present embodiment, the liquidus temperature is preferably 1075 ° C. or lower, 1050 ° C. or lower, 1030 ° C. or lower, 1010 ° C. or lower, 1000 ° C. or lower, 950 ° C. or lower, 900 ° C. or lower, particularly 870 ° C. or lower. In addition, devitrification resistance and a moldability improve, so that liquidus temperature is low. Also, increase the content of Na 2 O, K 2 O, B 2 O 3 in the glass composition or reduce the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2. In this case, the liquidus temperature tends to decrease.

本実施形態の強化ガラスにおいて、液相粘度は104.0dPa・s以上、104.4dPa・s以上、104.8dPa・s以上、105.0dPa・s以上、105.3dPa・s以上、105.5dPa・s以上、105.7dPa・s以上、105.8dPa・s以上、特に106.0dPa・s以上が好ましい。なお、液相粘度が高い程、耐失透性や成形性が向上する。また、ガラス組成中のNaO、KOの含有量を増加させたり、Al、LiO、MgO、ZnO、TiO、ZrOの含有量を低減すれば、液相粘度が高くなり易い。 In the tempered glass of this embodiment, the liquid phase viscosity is 10 4.0 dPa · s or more, 10 4.4 dPa · s or more, 10 4.8 dPa · s or more, 10 5.0 dPa · s or more, 10 5 3 dPa · s or more, 10 5.5 dPa · s or more, 10 5.7 dPa · s or more, 10 5.8 dPa · s or more, and particularly preferably 10 6.0 dPa · s or more. In addition, devitrification resistance and a moldability improve, so that liquid phase viscosity is high. Also, if the content of Na 2 O, K 2 O in the glass composition is increased or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 is reduced, the liquidus viscosity Tends to be high.

本実施形態の強化ガラスにおいて、ヤング率は65GPa以上、69GPa以上、71GPa以上、75GPa以上、特に77GPa以上が好ましい。ヤング率が高い程、強化ガラスが撓み難くなり、タッチパネルディスプレイ等に用いる際、ペン等で強化ガラスの表面を強く押しても、強化ガラスの変形量が小さくなり、結果として、背面に位置する液晶素子に接触して、表示不良が生じる事態を防止し易くなる。   In the tempered glass of the present embodiment, the Young's modulus is preferably 65 GPa or more, 69 GPa or more, 71 GPa or more, 75 GPa or more, particularly 77 GPa or more. The higher the Young's modulus, the harder the tempered glass bends. When used for a touch panel display, etc., even if the surface of the tempered glass is strongly pressed with a pen or the like, the amount of deformation of the tempered glass is reduced, and as a result, the liquid crystal element located on the back surface It becomes easy to prevent a situation in which a display defect occurs due to contact with.

本実施形態の強化ガラスにおいて、劣化係数Dは0.6以下、0.5以下、0.4以下、0.3以下、0.2以下、0.1以下、特に0.05以下が好ましい。劣化係数Dが小さい程、経年劣化したKNO溶融塩内でイオン交換処理した場合でも、得られる圧縮応力値が低下し難くなるため、結果として、強化ガラスの製造コストを低廉化し易くなる。 In the tempered glass of the present embodiment, the deterioration coefficient D is preferably 0.6 or less, 0.5 or less, 0.4 or less, 0.3 or less, 0.2 or less, 0.1 or less, particularly 0.05 or less. The smaller the degradation coefficient D, the lower the compression stress value obtained even when ion exchange treatment is performed in an aged KNO 3 molten salt. As a result, the production cost of tempered glass can be easily reduced.

本発明の実施形態に係る強化ガラス板は、上記の実施形態の強化ガラスからなることを特徴とする。よって、本実施形態の強化ガラス板の技術的特徴及び好適な範囲は、本実施形態の強化ガラスの技術的特徴と同様になる。ここでは、便宜上、その記載を省略する。   The tempered glass board which concerns on embodiment of this invention consists of tempered glass of said embodiment, It is characterized by the above-mentioned. Therefore, the technical characteristics and suitable range of the tempered glass sheet of the present embodiment are the same as the technical characteristics of the tempered glass of the present embodiment. Here, the description is omitted for convenience.

本実施形態の強化ガラス板において、相対する表面の圧縮応力層の圧縮応力値の差ΔCSは、好ましくは50MPa以下、30MPa以下、20MPa以下、10MPa以下、特に5MPa以下である。ΔCSが大きくなると、大型のガラス板のイオン交換処理後に、強化ガラス板に反りが発生し易くなる。ΔCSを上記範囲にするために、ガラス板の相対する表面を0.2μm以上、0.3μm以上、0.4μm以上、0.5μm以上、1μm以上、3μm以上、特に5μm以上研磨することが好ましい。   In the tempered glass sheet of the present embodiment, the difference ΔCS between the compressive stress values of the compressive stress layers on the opposing surfaces is preferably 50 MPa or less, 30 MPa or less, 20 MPa or less, 10 MPa or less, and particularly 5 MPa or less. When ΔCS becomes large, the tempered glass plate is likely to warp after the ion exchange treatment of the large glass plate. In order to make ΔCS within the above range, it is preferable to polish the opposite surfaces of the glass plate by 0.2 μm or more, 0.3 μm or more, 0.4 μm or more, 0.5 μm or more, 1 μm or more, 3 μm or more, particularly 5 μm or more. .

本実施形態の強化ガラス板において、表面の平均表面粗さ(Ra)は、好ましくは10Å以下、8Å以下、6Å以下、4Å以下、3Å以下、特に2Å以下である。平均表面粗さ(Ra)が大きい程、強化ガラス板の機械的強度が低下する傾向がある。ここで、平均表面粗さ(Ra)は、SEMI D7−97「FPDガラス基板の表面粗さの測定方法」に準拠した方法により測定した値を指す。   In the tempered glass sheet of the present embodiment, the average surface roughness (Ra) of the surface is preferably 10 mm or less, 8 mm or less, 6 mm or less, 4 mm or less, 3 mm or less, particularly 2 mm or less. There exists a tendency for the mechanical strength of a tempered glass board to fall, so that average surface roughness (Ra) is large. Here, the average surface roughness (Ra) indicates a value measured by a method based on SEMI D7-97 “Measurement method of surface roughness of FPD glass substrate”.

本実施形態の強化ガラス板において、長さは500mm以上、700mm以上、特に1000mm以上が好ましく、幅は500mm以上、700mm以上、特に1000mm以上が好ましい。強化ガラス板を大型化すると、大型TV等の表示部のカバーガラスとして好適に使用可能になる。   In the tempered glass plate of the present embodiment, the length is preferably 500 mm or more, 700 mm or more, particularly 1000 mm or more, and the width is preferably 500 mm or more, 700 mm or more, particularly 1000 mm or more. When the tempered glass plate is enlarged, it can be suitably used as a cover glass for a display unit of a large TV or the like.

本実施形態の強化ガラス板において、板厚は3.0mm以下、2.0mm以下、1.5mm以下、1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、特に.7mm以下が好ましい。一方、板厚が薄過ぎると、所望の機械的強度を得難くなる。よって、板厚は0.1mm以上、0.2mm以上、0.3mm以上、0.4mm以上、特に0.5mm以上が好ましい。   In the tempered glass plate of this embodiment, the plate thickness is 3.0 mm or less, 2.0 mm or less, 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less. 7 mm or less is preferable. On the other hand, if the plate thickness is too thin, it is difficult to obtain a desired mechanical strength. Therefore, the plate thickness is preferably 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, particularly 0.5 mm or more.

本発明の実施形態に係る強化用ガラスは、イオン交換処理に供される強化用ガラスであって、ガラス組成として、モル%で、SiO 50〜75%、Al 3〜13%、B 0〜1.5%、Li O+Na O+K O 10〜25%、NaO 7〜20%、MgO 0.5〜13%、CaO 0〜6%を含有することを特徴とする。本実施形態の強化用ガラスの技術的特徴は、上記の本実施形態の強化ガラス、強化ガラス板の技術的特徴と同様になる。ここでは、便宜上、その記載を省略する。 Reinforcing glass according to an embodiment of the present invention is a reinforced glass to be subjected to ion exchange treatment, as a glass composition, in mol%, SiO 2 50~75%, Al 2 O 3 3~13%, B 2 O 3 0~1.5%, Li 2 O + Na 2 O + K 2 O 10~25%, Na 2 O 7~20%, M gO 0.5~13%, that it contains Less than six% CaO Features. The technical features of the tempered glass of the present embodiment are the same as the technical features of the tempered glass and tempered glass plate of the present embodiment. Here, the description is omitted for convenience.

本実施形態の強化用ガラスは、430℃のKNO溶融塩中でイオン交換処理した場合、表面の圧縮応力層の圧縮応力値が300MPa以上、且つ圧縮応力層の厚みが10μm以上になることが好ましく、また表面の圧縮応力が600MPa以上、且つ圧縮応力層の厚みが50μm以上になることが好ましく、さらに表面の圧縮応力が700MPa以上、且つ圧縮応力層の厚みが50μm以上になることが好ましい。 When the glass for strengthening of this embodiment is ion-exchanged in KNO 3 molten salt at 430 ° C., the compressive stress value of the surface compressive stress layer may be 300 MPa or more and the thickness of the compressive stress layer may be 10 μm or more. Preferably, the surface compressive stress is 600 MPa or more and the thickness of the compressive stress layer is 50 μm or more, and the surface compressive stress is 700 MPa or more and the thickness of the compressive stress layer is preferably 50 μm or more.

イオン交換処理の際、KNO溶融塩の温度は360〜550℃が好ましく、イオン交換時間は2〜10時間、特に4〜8時間が好ましい。このようにすれば、圧縮応力層を適正に形成し易くなる。なお、本実施形態の強化用ガラスは、上記のガラス組成を有するため、KNO溶融塩とNaNO溶融塩の混合物等を使用しなくても、圧縮応力層の圧縮応力値や厚みを大きくすることが可能になる。また劣化したKNO溶融塩を用いた場合であっても、圧縮応力層の圧縮応力値や厚みが極端に低下することがない。 In the ion exchange treatment, the temperature of the KNO 3 molten salt is preferably 360 to 550 ° C., and the ion exchange time is preferably 2 to 10 hours, particularly 4 to 8 hours. If it does in this way, it will become easy to form a compressive stress layer appropriately. Incidentally, the reinforcing glass of the present embodiment has a glass composition described above, without using a mixture of KNO 3 molten salt and NaNO 3 molten salt, to increase the compressive stress value and thickness of the compression stress layer It becomes possible. Further, even when a deteriorated KNO 3 molten salt is used, the compressive stress value and thickness of the compressive stress layer are not extremely reduced.

本実施形態の強化用ガラス板において、ガラス板の全平面部位に対する平面方向の残留応力の最大値Fmaxは、5MPa以下、3MPa以下、1MPa以下、0.5MPa以下、特に0.1MPa以下が好ましい。残留応力の最大値Fmaxが大きいと、大型のガラス板を強化処理した際に、強化ガラス板の反りが大きくなる場合がある。   In the tempered glass plate of the present embodiment, the maximum value Fmax of the residual stress in the plane direction with respect to the entire plane portion of the glass plate is preferably 5 MPa or less, 3 MPa or less, 1 MPa or less, 0.5 MPa or less, particularly preferably 0.1 MPa or less. When the maximum value Fmax of the residual stress is large, the warp of the tempered glass plate may increase when the large glass plate is tempered.

本実施形態の強化用ガラス板は、表面にSiO、TiO、ネサ、ITO、AR等の膜を成膜してなることが好ましい。このようにすれば、研磨処理しなくても、強化ガラス板の反りを低減することができる。成膜の方法として、CVD、スパッタ、スピンコート等が挙げられる。スパッタで成膜する場合、膜厚は1nm以上、5nm以上、10nm以上、30nm以上、特に50nm以上が好ましい。一方、膜厚が厚過ぎると、膜面における圧縮応力層の圧縮応力値が低下し過ぎる虞がある。よって、膜厚の好適な上限範囲は1000nm以下、800nm以下、500nm以下、特に300nm以下である。なお、強化処理後に、反りが発生し易い部分に成膜することが好ましい。なお、本実施形態の強化ガラス板は、強化処理前に、表面にSiO、TiO、ネサ、ITO、AR等の膜を成膜してなることが好ましい。 Reinforcing glass plate of the present embodiment, SiO 2, TiO 2 on the surface, NESA, ITO, it is preferable formed by forming a film of the AR and the like. If it does in this way, even if it does not grind | polish, the curvature of a tempered glass board can be reduced. Examples of the film forming method include CVD, sputtering, and spin coating. When the film is formed by sputtering, the film thickness is preferably 1 nm or more, 5 nm or more, 10 nm or more, 30 nm or more, particularly 50 nm or more. On the other hand, if the film thickness is too thick, the compressive stress value of the compressive stress layer on the film surface may be too low. Therefore, a preferable upper limit range of the film thickness is 1000 nm or less, 800 nm or less, 500 nm or less, and particularly 300 nm or less. Note that it is preferable to form a film in a portion where warpage is likely to occur after the strengthening treatment. The tempered glass plate of the present embodiment is preferably formed by forming a film of SiO 2 , TiO 2 , Nesa, ITO, AR, etc. on the surface before the tempering treatment.

以下のようにして、本実施形態の強化用ガラス、強化ガラス、及び強化ガラス板を作製することができる。   In the following manner, the tempering glass, tempered glass, and tempered glass plate of this embodiment can be produced.

まず上記のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1500〜1600℃で加熱溶融し、清澄した後、成形装置に供給した上で板状等に成形し、徐冷することにより、板状等のガラスを作製することができる。   First, the glass raw material prepared so as to have the above glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1600 ° C., clarified, then supplied to a forming apparatus, formed into a plate shape, etc. By cooling, a plate-like glass can be produced.

板状に成形する方法として、フロート法を採用することが好ましい。フロート法は、安価で大量にガラス板を作製し得る方法であり、大型のガラス板も容易に作製し得る方法である。   As a method for forming a plate, it is preferable to employ a float method. The float method is a method that can produce a glass plate in a large amount at a low cost, and is a method that can easily produce a large glass plate.

フロート法以外にも、種々の成形方法を採用することができる。例えば、オーバーフローダウンドロー法、ダウンドロー法(スロットダウン法、リドロー法等)、ロールアウト法、プレス法等の成形方法を採用することができる。   In addition to the float process, various molding methods can be employed. For example, an overflow downdraw method, a downdraw method (slot down method, redraw method, etc.), a rollout method, a press method, or the like can be employed.

次に、得られたガラスを強化処理することにより、強化ガラスを作製することができる。強化ガラスを所定寸法に切断する時期は、強化処理の前でもよいが、強化処理の後に行う方がコスト面から有利である。   Next, the tempered glass can be produced by tempering the obtained glass. The time when the tempered glass is cut into a predetermined dimension may be before the tempering treatment, but it is advantageous from the viewpoint of cost to carry out after the tempering treatment.

強化処理として、イオン交換処理が好ましい。イオン交換処理の条件は、特に限定されず、ガラスの粘度特性、用途、厚み、内部の引っ張り応力等を考慮して最適な条件を選択すればよい。例えば、イオン交換処理は、400〜550℃のKNO溶融塩中に、ガラスを1〜8時間浸漬することで行うことができる。特に、KNO溶融塩中のKイオンをガラス中のNa成分とイオン交換すると、ガラスの表面に圧縮応力層を効率良く形成することが可能になる。 As the reinforcing treatment, an ion exchange treatment is preferable. The conditions for the ion exchange treatment are not particularly limited, and the optimum conditions may be selected in consideration of the viscosity characteristics, application, thickness, internal tensile stress, and the like of the glass. For example, the ion exchange treatment can be performed by immersing glass in KNO 3 molten salt at 400 to 550 ° C. for 1 to 8 hours. In particular, when K ions in the KNO 3 molten salt are ion-exchanged with Na components in the glass, a compressive stress layer can be efficiently formed on the surface of the glass.

以下、本発明の実施例を説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。   Examples of the present invention will be described below. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1〜5は、試料No.1〜24を示している。なお、表中の「未」は、未測定を意味している。 Table 1-5, specimen No. 1 to 24 are shown. In the table, “not yet” means unmeasured.

次のようにして表中の各試料を作製した。まず表中のガラス組成になるように、ガラス原料を調合し、白金ポットを用いて1580℃で8時間溶融した。その後、得られた溶融ガラスをカーボン板の上に流し出して、板状に成形した。得られたガラス板について、種々の特性を評価した。   Each sample in the table was prepared as follows. First, glass raw materials were prepared so as to have the glass composition in the table, and were melted at 1580 ° C. for 8 hours using a platinum pot. Thereafter, the obtained molten glass was poured out on a carbon plate and formed into a plate shape. Various characteristics were evaluated about the obtained glass plate.

密度ρは、周知のアルキメデス法によって測定した値である。   The density ρ is a value measured by the well-known Archimedes method.

熱膨張係数αは、ディラトメーターを用いて、30〜380℃の温度範囲における平均熱膨張係数を測定した値である。   The thermal expansion coefficient α is a value obtained by measuring an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. using a dilatometer.

歪点Ps、徐冷点Taは、ASTM C336の方法に基づいて測定した値である。   The strain point Ps and the annealing point Ta are values measured based on the method of ASTM C336.

軟化点Tsは、ASTM C338の方法に基づいて測定した値である。   The softening point Ts is a value measured based on the method of ASTM C338.

高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperature at a high temperature viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s is a value measured by a platinum ball pulling method.

液相温度TLは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。   The liquid phase temperature TL passes through a standard sieve 30 mesh (a sieve opening of 500 μm), and glass powder remaining in a 50 mesh (a sieve opening of 300 μm) is put in a platinum boat, and then held in a temperature gradient furnace for 24 hours. This is a value obtained by measuring the temperature at which crystals are deposited.

液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。   The liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.

表1〜5から明らかなように、試料No.1〜24は、密度が2.54g/cm以下、熱膨張係数が87〜107×10−7/℃であり、強化ガラスの素材、つまり強化用ガラスとして好適であった。また液相粘度が104.5dPa・s以上であるため、フロート法で板状に成形可能であり、しかも102.5dPa・sにおける温度が1622℃以下であるため、生産性が高く、安価に大量のガラス板を作製し得るものと考えられる。なお、強化処理の前後で、ガラスの表層におけるガラス組成が微視的に異なるものの、ガラス全体として見た場合は、ガラス組成が実質的に相違しない。 As is apparent from Tables 1 to 5, sample No. Nos. 1 to 24 had a density of 2.54 g / cm 3 or less and a thermal expansion coefficient of 87 to 107 × 10 −7 / ° C., and were suitable as a tempered glass material, that is, a tempered glass. Further, since the liquid phase viscosity is 10 4.5 dPa · s or more, it can be formed into a plate shape by a float process, and the temperature at 10 2.5 dPa · s is 1622 ° C. or less, so that productivity is high. It is considered that a large amount of glass plates can be produced at low cost. In addition, although the glass composition in the surface layer of glass differs microscopically before and after the tempering treatment, the glass composition is not substantially different when viewed as the whole glass.

次に、各試料の両表面に光学研磨を施した後、440℃のKNO溶融塩(新品KNO溶融塩)中に6時間浸漬することにより、イオン交換処理を行った。イオン交換処理後に各試料の表面を洗浄した。続いて、表面応力計(株式会社東芝製FSM−6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値と厚みを算出した。算出に当たり、各試料の屈折率を1.52、光学弾性定数を28[(nm/cm)/MPa]とした。 Next, after both surfaces of each sample were subjected to optical polishing, ion exchange treatment was performed by immersing in KNO 3 molten salt (new KNO 3 molten salt) at 440 ° C. for 6 hours. The surface of each sample was washed after the ion exchange treatment. Subsequently, the compressive stress value and thickness of the compressive stress layer on the surface were calculated from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the interval therebetween. In the calculation, the refractive index of each sample was 1.52, and the optical elastic constant was 28 [(nm / cm) / MPa].

以下のようにして、劣化係数Dを算出した。まずSiO 58.7質量%、Al 12.8質量%、LiO 0.1質量%、NaO 14.0質量%、KO 6.3質量%、MgO 2.0質量%、CaO 2.0質量%、ZrO 4.1質量%のガラス組成を有するガラスを作製した。次に、このガラスを粉砕し、篩目開き300μmを通過し、篩目開き150μmを通過しないガラス粉末を採取し、平均粒子径225μmのガラス粉末を得た。続いて、440℃に保持したKNO 400ml中に上記のガラス粉末を60時間浸漬(24時間毎に籠を上下に10回振盪)して、劣化したKNO溶融塩を擬似的に再現した。なお、この条件で作製した劣化KNO溶融塩に含まれるNaOは1000ppm(モル)以上であった。 The deterioration coefficient D was calculated as follows. First, SiO 2 58.7 mass%, Al 2 O 3 12.8 mass%, Li 2 O 0.1 mass%, Na 2 O 14.0 mass%, K 2 O 6.3 mass%, MgO 2.0 A glass having a glass composition of mass%, CaO 2.0 mass%, and ZrO 2 4.1 mass% was produced. Next, this glass was pulverized, and glass powder that passed through a sieve opening of 300 μm and did not pass through a sieve opening of 150 μm was collected to obtain a glass powder having an average particle diameter of 225 μm. Subsequently, the glass powder was immersed in 400 ml of KNO 3 maintained at 440 ° C. for 60 hours (the jar was shaken up and down 10 times every 24 hours) to simulate the deteriorated KNO 3 molten salt. Incidentally, Na 2 O contained in the deterioration KNO 3 molten salt prepared in this condition was 1000 ppm (mol) or more.

この条件で作製した劣化KNO溶融塩中に、各試料を440℃で6時間浸漬することにより、イオン交換処理を行った。その後、上記の方法と同様にして、表面の圧縮応力層の圧縮応力値と厚みを求めた。このようにして得られた圧縮応力値(新品KNO溶融塩、劣化KNO溶融塩)から、劣化係数D=(圧縮応力値(新品KNO溶融塩)−圧縮応力値(劣化KNO溶融塩))/圧縮応力値(新品KNO溶融塩)を算出した。 Ion exchange treatment was performed by immersing each sample in a deteriorated KNO 3 molten salt produced under these conditions at 440 ° C. for 6 hours. Thereafter, the compressive stress value and thickness of the compressive stress layer on the surface were determined in the same manner as described above. From the compression stress values (new KNO 3 molten salt, deteriorated KNO 3 molten salt) thus obtained, the deterioration coefficient D = (compressive stress value (new KNO 3 molten salt) −compressive stress value (deteriorated KNO 3 molten salt). )) / Compressive stress value (new KNO 3 molten salt) was calculated.

表1〜5から明らかなように、試料No.1〜24について、新品KNO溶融塩でイオン交換処理を行ったところ、その表面の圧縮応力層の圧縮応力値は730MPa以上、厚みは43μm以上であった。また、劣化KNO溶融塩でイオン交換処理を行ったところ、その表面の圧縮応力層の圧縮応力値は625MPa以上、厚みは43μm以上であり、劣化係数Dは0.22以下であった。 As is apparent from Tables 1 to 5, sample No. About 1-24, when the ion exchange process was performed with new KNO 3 molten salt, the compressive stress value of the compressive stress layer on the surface was 730 MPa or more, and the thickness was 43 μm or more. Further, when ion exchange treatment was performed with the deteriorated KNO 3 molten salt, the compressive stress value of the compressive stress layer on the surface was 625 MPa or more, the thickness was 43 μm or more, and the deterioration coefficient D was 0.22 or less.

試料No.1に記載のガラス組成になるようにガラス原料を調合した上で、得られたガラスバッチを溶融した後、フロート法により、ガラス板を成形した。次に、得られたガラス板を440℃のKNO溶融塩(新品KNO溶融塩)中に6時間浸漬することにより、イオン交換処理を行った。続いて、ガラス板について、表面応力計(株式会社東芝製FSM−6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値と厚みを算出した。また、ガラス板の両表面を0.2μm研磨した後、表面応力計(株式会社東芝製FSM−6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値と厚みを算出した。更に、ガラス板の両表面を10μm研磨した後、表面応力計(株式会社東芝製FSM−6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値と厚みを算出した。算出に当たり、ガラス板の屈折率を1.52、光学弾性定数を28[(nm/cm)/MPa]とした。その結果、未研磨の場合、表面(おもて面)と裏面の圧縮応力層の圧縮応力値の差ΔCSは40MPaであり、両表面を0.2μm研磨した場合、表面(おもて面)と裏面の圧縮応力層の圧縮応力値の差ΔCSは20MPaであり、両表面を10μm研磨した場合、表面(おもて面)と裏面の圧縮応力層の圧縮応力値の差ΔCSは認められなかった。 Sample No. After preparing the glass raw material so that it might become the glass composition of 1, it melt | dissolved the obtained glass batch, Then, the glass plate was shape | molded by the float glass process. Next, ion exchange treatment was performed by immersing the obtained glass plate in KNO 3 molten salt (new KNO 3 molten salt) at 440 ° C. for 6 hours. Then, about the glass plate, the compressive stress value and thickness of the surface compressive stress layer were computed from the number and the space | interval of the interference fringe observed using a surface stress meter (FSM-6000 by Toshiba Corporation). Further, after polishing both surfaces of the glass plate by 0.2 μm, the compressive stress value of the compressive stress layer on the surface is determined from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the distance between the interference fringes. And the thickness was calculated. Furthermore, after polishing both surfaces of the glass plate by 10 μm, the compressive stress value and thickness of the compressive stress layer on the surface are determined from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the distance between them. Was calculated. In the calculation, the refractive index of the glass plate was 1.52, and the optical elastic constant was 28 [(nm / cm) / MPa]. As a result, when unpolished, the difference ΔCS between the compressive stress values of the compressive stress layer on the front surface (front surface) and the back surface is 40 MPa, and when both surfaces are polished by 0.2 μm, the surface (front surface) The difference ΔCS between the compression stress values of the compression stress layer on the back surface and the back surface is 20 MPa. When both surfaces are polished by 10 μm, the difference ΔCS between the compression stress values on the surface (front surface) and the compression stress layer on the back surface is not recognized. It was.

次に、試料No.1に記載のガラス組成になるようにガラス原料を調合した上で、得られたガラスバッチを溶融した後、フロート法により、板厚1mmのガラス板を成形した。その際、スズ浴槽入り口付近の温度が1200℃、出口付近の温度が700℃程度となるように、温度設定を行った。続いて、スズ浴槽を出たガラス板を徐冷炉内を通過させた。徐冷炉入り口付近の温度が約700℃、出口付近の温度が100℃程度となるように温度設定を行い、板幅方向の温度分布が±2%以下、徐冷炉内のガラス板の表裏面の温度差が±1%以下となるように、温度制御しながら徐冷を行った。得られたガラス板から1m×1mのガラス板を切り出し、同ガラス板について、ユニオプト社製複屈折測定機:ABR−10Aを用い、10cmピッチの格子状交点位置、更に4辺の外周部付近における残留応力値を測定した。そのデータを図1に示す。その結果、ガラス板の平面方向の残留応力の最大値Fmaxは0.25MPaであった。更に、440℃のKNO溶融塩(新品KNO溶融塩)中に、このガラス板を6時間浸漬することにより、イオン交換処理を行ったところ、強化ガラス板の反り量は0.1%であった。この結果から、平面方向の残留応力の分布を規制すれば、研磨処理しなくても、強化ガラス板の反り量を低減し得ることが分かる。なお、強化ガラス板の反り量は、レーザー干渉計を用いて、長辺寸法当たりの真直度を測定した値である。 Next, sample No. A glass raw material was prepared so that the glass composition described in 1 was obtained. After the obtained glass batch was melted, a glass plate having a thickness of 1 mm was formed by a float process. At that time, the temperature was set so that the temperature near the entrance of the tin bath was 1200 ° C and the temperature near the exit was about 700 ° C. Subsequently, the glass plate exiting the tin bath was passed through the slow cooling furnace. The temperature is set so that the temperature near the inlet of the slow cooling furnace is about 700 ° C and the temperature near the outlet is about 100 ° C. The temperature distribution in the plate width direction is ± 2% or less, and the temperature difference between the front and back surfaces of the glass plate in the slow cooling furnace Was gradually cooled while controlling the temperature so that the value became ± 1% or less. A 1 m × 1 m glass plate was cut out from the obtained glass plate, and about the same glass plate, a birefringence measuring machine manufactured by UNIOPT Co., Ltd .: ABR-10A was used. Residual stress values were measured. The data is shown in FIG. As a result, the maximum value Fmax of the residual stress in the plane direction of the glass plate was 0.25 MPa. Furthermore, when this glass plate was immersed in 440 ° C. KNO 3 molten salt (new KNO 3 molten salt) for 6 hours to perform ion exchange treatment, the warped amount of the tempered glass plate was 0.1%. there were. From this result, it can be seen that if the distribution of residual stress in the plane direction is regulated, the amount of warpage of the tempered glass plate can be reduced without polishing. In addition, the curvature amount of a tempered glass board is the value which measured the straightness per long side dimension using the laser interferometer.

また、試料No.1に記載のガラス組成になるようにガラス原料を調合した上で、得られたガラスバッチを溶融した後、フロート法により、板厚1mmのガラス板を成形した。その際、スズ浴槽入り口付近の温度が1200℃、出口付近の温度が700℃程度となるように、温度設定を行った。続いて、スズ浴槽を出たガラス板を徐冷炉内を通過させた。徐冷炉入り口付近の温度が約700℃、出口付近の温度が100℃程度となるように温度設定を行い、板幅方向の温度分布が±2%以下、徐冷炉内のガラス板の表裏面の温度差が±1%以下となるように、温度制御しながら徐冷を行った。なお、[実施例3]と[実施例4]は徐冷速度が相違している。得られたガラス板から1m×1mのガラス板を切り出し、同ガラス板について、ユニオプト社製複屈折測定機:ABR−10Aを用い、10cmピッチの格子状交点位置、更に4辺の外周部付近における残留応力値を測定した。そのデータを図2に示す。その結果、ガラス板の平面方向の残留応力の最大値Fmaxは0.80MPaであった。更に、440℃のKNO溶融塩(新品KNO溶融塩)中に、このガラス板を6時間浸漬することにより、イオン交換処理を行ったところ、強化ガラス板の反り量は0.1%であった。この結果から、平面方向の残留応力の分布を規制すれば、研磨処理しなくても、強化ガラス板の反り量を低減し得ることが分かる。なお、強化ガラス板の反り量は、レーザー干渉計を用いて、長辺寸法当たりの真直度を測定した値である。 Sample No. A glass raw material was prepared so that the glass composition described in 1 was obtained. After the obtained glass batch was melted, a glass plate having a thickness of 1 mm was formed by a float process. At that time, the temperature was set so that the temperature near the entrance of the tin bath was 1200 ° C and the temperature near the exit was about 700 ° C. Subsequently, the glass plate exiting the tin bath was passed through the slow cooling furnace. The temperature is set so that the temperature near the inlet of the slow cooling furnace is about 700 ° C and the temperature near the outlet is about 100 ° C. The temperature distribution in the plate width direction is ± 2% or less, and the temperature difference between the front and back surfaces of the glass plate in the slow cooling furnace Was gradually cooled while controlling the temperature so that the value became ± 1% or less. [Example 3] and [Example 4] have different slow cooling rates. A 1 m × 1 m glass plate was cut out from the obtained glass plate, and about the same glass plate, a birefringence measuring machine manufactured by UNIOPT Co., Ltd .: ABR-10A was used. Residual stress values were measured. The data is shown in FIG. As a result, the maximum value Fmax of the residual stress in the plane direction of the glass plate was 0.80 MPa. Furthermore, when this glass plate was immersed in 440 ° C. KNO 3 molten salt (new KNO 3 molten salt) for 6 hours to perform ion exchange treatment, the warped amount of the tempered glass plate was 0.1%. there were. From this result, it can be seen that if the distribution of residual stress in the plane direction is regulated, the amount of warpage of the tempered glass plate can be reduced without polishing. In addition, the curvature amount of a tempered glass board is the value which measured the straightness per long side dimension using the laser interferometer.

ここで、スズ浴槽を出たガラスがその後のローラー搬送で傷が付かないように、スズ浴槽の出口付近において、上下からSOガスを吹き付けることが好ましい。SOガスはガラスに付着すると、ガラス中のNaを溶出させる効果がある。一方、ガラスの上下面に組成的な不均衡が生じると、反りの原因となり得る。このため、SOガスが、ガラスの上下で一定になり、且つ、上下それぞれの幅方向においても一定となるようにすることが好ましい。そこで、ガラスの上下それぞれにおいて、幅方向に延びるスリット状のガス噴出口を設けるとともに、そのガス噴出口のすぐ後方に、幅方向に延びるスリット状のガス排気口を設け、SOガスを供給することが好ましい。SOガスの流速は、例えば、1リットル/minに設定する。 Here, as the glass exiting the tin bath is not damage by subsequent roller conveyor, near the exit of the tin bath, preferably by blowing SO 2 gas from above and below. When SO 2 gas adheres to the glass, it has an effect of eluting Na in the glass. On the other hand, if a compositional imbalance occurs on the upper and lower surfaces of the glass, it can cause warping. Thus, SO 2 gas, becomes constant at the upper and lower glass, and it is preferred to be constant even in the upper and lower respectively in the width direction. Therefore, a slit-like gas outlet extending in the width direction is provided on each of the upper and lower sides of the glass, and a slit-like gas exhaust outlet extending in the width direction is provided immediately behind the gas outlet to supply SO 2 gas. It is preferable. The flow rate of the SO 2 gas is set to 1 liter / min, for example.

次に、試料No.1に記載のガラス組成になるようにガラス原料を調合した上で、得られたガラスバッチを溶融した後、フロート法により、板厚1mmのガラス板を成形した。その際、スズ浴槽入り口付近の温度が1200℃、出口付近の温度が700℃程度となるように、温度設定を行った。続いて、スズ浴槽を出たガラス板を徐冷炉内を通過させた。徐冷炉入り口付近の温度が約700℃、出口付近の温度が100℃程度となるように温度設定を行い、板幅方向の温度分布を±2%以下に温度制御すると共に、徐冷炉内でのガラス板の表裏面の温度差(±2%超±10%以下)が大きくなるように、温度制御しながら徐冷を行った。得られたガラス板を440℃のKNO(新品KNO溶融塩)中に6時間浸漬すると、強化ガラス板がトップ面方向(スズ浴槽に接触していない方向)に1%程度凸に反る。その際、トップ面側の圧縮応力層の圧縮応力値は、ボトム面(スズ浴槽接触面)側よりも15MPa高かった。なお、圧縮応力層の厚みは、トップ面とボトム面で同等であった。そこで、得られたガラス板について、スパッタ法によりトップ面側に膜厚100nmのSiO膜を成膜した後、440℃のKNO(新品KNO溶融塩)中に6時間浸漬したところ、トップ面とボトム面の圧縮応力値の差は約1MPa以下となり、反り量も0.1%まで低減した。 Next, sample No. A glass raw material was prepared so that the glass composition described in 1 was obtained. After the obtained glass batch was melted, a glass plate having a thickness of 1 mm was formed by a float process. At that time, the temperature was set so that the temperature near the entrance of the tin bath was 1200 ° C and the temperature near the exit was about 700 ° C. Subsequently, the glass plate exiting the tin bath was passed through the slow cooling furnace. The temperature is set so that the temperature near the inlet of the slow cooling furnace is about 700 ° C. and the temperature near the outlet is about 100 ° C., the temperature distribution in the width direction of the plate is controlled to ± 2% or less, and the glass plate in the slow cooling furnace Was slowly cooled while controlling the temperature so that the temperature difference between the front and back surfaces (over ± 2% ± 10% or less) was large. When the obtained glass plate is immersed in KNO 3 (new KNO 3 molten salt) at 440 ° C. for 6 hours, the tempered glass plate warps convexly by about 1% in the top surface direction (direction not in contact with the tin bath). . At that time, the compressive stress value of the compressive stress layer on the top surface side was 15 MPa higher than the bottom surface (tin bath contact surface) side. The thickness of the compressive stress layer was the same on the top surface and the bottom surface. Therefore, the obtained glass plate where, after forming a SiO 2 film having a thickness of 100nm on top surface by sputtering, was immersed for 6 hours in 440 ° C. KNO 3 (new KNO 3 molten salt), top The difference in compressive stress value between the surface and the bottom surface was about 1 MPa or less, and the amount of warpage was reduced to 0.1%.

本発明に係る強化ガラス及び強化ガラス板は、携帯電話、デジタルカメラ、PDA等のカバーガラス、或いはタッチパネルディスプレイ等のガラス基板として好適である。また、本発明に係る強化ガラス及び強化ガラス板は、これらの用途以外にも、高い機械的強度が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラス、食器への応用が期待できる。 The tempered glass and the tempered glass plate according to the present invention are suitable as a glass substrate for a mobile phone, a digital camera, a cover glass such as a PDA, or a touch panel display. Moreover, the tempered glass and the tempered glass plate according to the present invention are used for applications requiring high mechanical strength in addition to these uses, such as window glass, magnetic disk substrates, flat panel display substrates, and solar cell covers. Application to glass, cover glass for solid-state image sensors, and tableware can be expected.

Claims (9)

強化処理に供される強化用ガラスであって、ガラス組成として、モル%で、SiO 50〜75%、Al 3〜13%、B 0〜1.5%、LiO+NaO+KO 10〜25%、LiO 0〜4%、NaO 7〜20%、KO 0.5〜10%、MgO 0.5〜13%、CaO 0〜6%、SrO 0〜4.5%、As 0〜0.05%未満、Sb 0〜0.05%未満、PbO 0〜0.05%未満、F 0〜0.05%未満を含有し、板厚が1.5mm以下であり、強化用ガラス板の全平面部位に対する平面方向の残留応力の最大値Fmaxが0.5MPa以下であることを特徴とする強化用ガラス板。 A reinforcing glass to be subjected to tempering treatment, as a glass composition, in mol%, SiO 2 50~75%, Al 2 O 3 3~13%, B 2 O 3 0~1.5%, Li 2 O + Na 2 O + K 2 O 10~25%, Li 2 O 0~4%, Na 2 O 7~20%, K 2 O 0.5~10%, MgO 0.5~13%, CaO 0~6%, SrO 0-4.5%, As 2 O 3 0-0.05%, Sb 2 O 3 0-0.05% , PbO 0-0.05%, F 0-0.05% A strengthening glass plate comprising: a plate thickness of 1.5 mm or less, and a maximum residual value Fmax in a planar direction with respect to all planar portions of the reinforcing glass plate being 0.5 MPa or less. 全平面部位に対する平面方向の残留応力の最大値Fmaxが0.1MPa以下であることを特徴とする請求項1に記載の強化用ガラス板。   The tempered glass sheet according to claim 1, wherein the maximum value Fmax of the residual stress in the plane direction with respect to all plane parts is 0.1 MPa or less. 長さが500mm以上、幅が500mm以上であることを特徴とする請求項1又は2に記載の強化用ガラス板。   The glass sheet for strengthening according to claim 1 or 2, wherein the length is 500 mm or more and the width is 500 mm or more. フロート法で成形されてなることを特徴とする請求項1〜3の何れかに記載の強化用ガラス板。   The glass sheet for strengthening according to any one of claims 1 to 3, wherein the glass sheet is formed by a float process. 液相温度が1075℃以下であることを特徴とする請求項1〜4の何れかに記載の強化用ガラス板。   Liquid phase temperature is 1075 degreeC or less, The glass plate for reinforcement | strengthening in any one of Claims 1-4 characterized by the above-mentioned. 液相粘度が104.0dPa・s以上であることを特徴とする請求項1〜5の何れかに記載の強化用ガラス板。 Reinforcing glass plate according to claim 1, liquidus viscosity, characterized in that of 10 4.0 dPa · s or more. 104.0dPa・sにおける温度が1250℃以下であることを特徴とする請求項1〜6の何れかに記載の強化用ガラス板。 The temperature at 10 4.0 dPa · s is 1250 ° C or lower, and the glass sheet for strengthening according to any one of claims 1 to 6. 携帯電話のカバーガラスに用いることを特徴とする請求項1〜7の何れかに記載の強化用ガラス板。   It uses for the cover glass of a mobile telephone, The glass plate for reinforcement | strengthening in any one of Claims 1-7 characterized by the above-mentioned. 太陽電池のカバーガラスに用いることを特徴とする請求項1〜7の何れかに記載の強化用ガラス板。   It uses for the cover glass of a solar cell, The glass plate for reinforcement | strengthening in any one of Claims 1-7 characterized by the above-mentioned.
JP2014160236A 2011-01-18 2014-08-06 Tempered glass plate Active JP5721065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160236A JP5721065B2 (en) 2011-01-18 2014-08-06 Tempered glass plate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011007516 2011-01-18
JP2011007516 2011-01-18
JP2011238630 2011-10-31
JP2011238630 2011-10-31
JP2014160236A JP5721065B2 (en) 2011-01-18 2014-08-06 Tempered glass plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012001812A Division JP5896338B2 (en) 2011-01-18 2012-01-10 Method for producing tempered glass and method for producing tempered glass plate

Publications (2)

Publication Number Publication Date
JP2015038021A JP2015038021A (en) 2015-02-26
JP5721065B2 true JP5721065B2 (en) 2015-05-20

Family

ID=46515630

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2012001812A Active JP5896338B2 (en) 2011-01-18 2012-01-10 Method for producing tempered glass and method for producing tempered glass plate
JP2014160239A Active JP5721066B2 (en) 2011-01-18 2014-08-06 Tempered glass and tempered glass plate
JP2014160236A Active JP5721065B2 (en) 2011-01-18 2014-08-06 Tempered glass plate
JP2015181466A Active JP6075661B2 (en) 2011-01-18 2015-09-15 Method for producing tempered glass plate and method for producing tempered glass plate

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012001812A Active JP5896338B2 (en) 2011-01-18 2012-01-10 Method for producing tempered glass and method for producing tempered glass plate
JP2014160239A Active JP5721066B2 (en) 2011-01-18 2014-08-06 Tempered glass and tempered glass plate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015181466A Active JP6075661B2 (en) 2011-01-18 2015-09-15 Method for producing tempered glass plate and method for producing tempered glass plate

Country Status (6)

Country Link
JP (4) JP5896338B2 (en)
KR (1) KR101544744B1 (en)
CN (1) CN103080029B (en)
DE (1) DE112012000047B4 (en)
TW (1) TWI522327B (en)
WO (1) WO2012099002A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896338B2 (en) * 2011-01-18 2016-03-30 日本電気硝子株式会社 Method for producing tempered glass and method for producing tempered glass plate
TWI591039B (en) * 2011-07-01 2017-07-11 康寧公司 Ion exchangeable glass with high compressive stress
KR101468669B1 (en) * 2012-05-15 2014-12-04 주식회사 엘지화학 Alkali glass and method for manufacturing the same
CN104487396A (en) * 2012-08-09 2015-04-01 日本电气硝子株式会社 Manufacturing method for reinforced glass substrate, and reinforced glass substrate
JP6187015B2 (en) * 2012-08-09 2017-08-30 日本電気硝子株式会社 Method for producing tempered glass and tempered glass substrate
US9308616B2 (en) 2013-01-21 2016-04-12 Innovative Finishes LLC Refurbished component, electronic device including the same, and method of refurbishing a component of an electronic device
US9187365B2 (en) 2013-02-25 2015-11-17 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
WO2014148046A1 (en) * 2013-03-19 2014-09-25 日本板硝子株式会社 Glass sheet and process for manufacturing glass sheet
JP6225652B2 (en) * 2013-03-26 2017-11-08 日本電気硝子株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6377053B2 (en) * 2013-04-08 2018-08-22 日本板硝子株式会社 Glass plate and method for producing glass plate
JP2014240346A (en) * 2013-05-15 2014-12-25 日本電気硝子株式会社 Glass plate for tempering and tempered glass plate
JP6597950B2 (en) * 2013-07-24 2019-10-30 日本電気硝子株式会社 Tempered glass and tempered glass
US10941071B2 (en) * 2013-08-02 2021-03-09 Corning Incorporated Hybrid soda-lime silicate and aluminosilicate glass articles
JP6131154B2 (en) * 2013-09-11 2017-05-17 Hoya株式会社 Glass for magnetic recording medium substrate and magnetic recording medium substrate
JP2015105195A (en) * 2013-11-29 2015-06-08 日本電気硝子株式会社 Tempered glass plate and method for manufacturing the same
US9902644B2 (en) * 2014-06-19 2018-02-27 Corning Incorporated Aluminosilicate glasses
JP6627388B2 (en) * 2014-12-16 2020-01-08 日本電気硝子株式会社 Supporting glass substrate and laminate using the same
KR102630404B1 (en) * 2014-12-16 2024-01-29 니폰 덴키 가라스 가부시키가이샤 Support glass substrate and laminate using same
US10315949B2 (en) * 2015-02-26 2019-06-11 Corning Incorporated Fast ion-exchangeable boron-free glasses with low softening point
JP6774614B2 (en) * 2015-07-01 2020-10-28 日本電気硝子株式会社 Tempered glass and tempered glass
CN109219583A (en) * 2016-06-03 2019-01-15 Agc株式会社 Chemical strengthening glass and chemically reinforced glass
CN106865982B (en) * 2017-03-03 2019-05-24 四川旭虹光电科技有限公司 Glass is used in capacitance touch control system protection
JP7280546B2 (en) * 2017-11-09 2023-05-24 日本電気硝子株式会社 Glass plate and wavelength conversion package using the same
CN107915890A (en) * 2017-12-21 2018-04-17 安徽省凯丽方化工有限公司 A kind of high-strength armoured-glass sticking film for mobile phone
CN109052934B (en) * 2018-10-16 2020-06-19 四川旭虹光电科技有限公司 Protective glass plate with impact stress resistance
JPWO2021171761A1 (en) * 2020-02-25 2021-09-02
JP6991416B1 (en) * 2020-06-26 2022-01-13 日本板硝子株式会社 Display device
CN213399371U (en) * 2020-11-20 2021-06-08 福建天泉教育科技有限公司 Double-screen tablet personal computer for students
JP2022139011A (en) * 2021-03-11 2022-09-26 日本電気硝子株式会社 Strengthened glass and method for manufacturing the same
CN114988698B (en) * 2022-05-30 2024-03-22 河北光兴半导体技术有限公司 Composition for preparing aluminosilicate glass, preparation method and application thereof

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022662B2 (en) * 1978-10-20 1985-06-03 石塚硝子株式会社 Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength
JPS58115043A (en) * 1981-12-28 1983-07-08 Konishiroku Photo Ind Co Ltd Ion exchange of plate glass
JPH0660038B2 (en) * 1986-05-23 1994-08-10 セントラル硝子株式会社 Method for chemically strengthening polished glass
JPH07223843A (en) * 1994-02-15 1995-08-22 Nippon Sheet Glass Co Ltd Production of chemically tempered glass
JPH10162354A (en) * 1996-11-27 1998-06-19 Nippon Sheet Glass Co Ltd Production of magnetic disk medium by using glass substrate
JP4006747B2 (en) * 1998-06-29 2007-11-14 日本電気硝子株式会社 Display substrate manufacturing method
JP4497591B2 (en) * 1998-09-11 2010-07-07 Hoya株式会社 Glass composition, substrate for information recording medium and information recording medium using the same
JP4785274B2 (en) 2001-05-29 2011-10-05 日本板硝子株式会社 Glass article and glass substrate for magnetic recording medium using the same
JP2003187424A (en) * 2001-12-17 2003-07-04 Nippon Sheet Glass Co Ltd Manufacturing method of glass substrate for information recording medium, and the glass substrate for information recording medium
JP4446683B2 (en) * 2002-05-24 2010-04-07 Hoya株式会社 Glass substrate for magnetic recording media
JP4656863B2 (en) * 2003-06-06 2011-03-23 Hoya株式会社 Zirconium-containing glass composition, chemically strengthened glass article, glass substrate for magnetic recording medium, and method for producing glass plate
JP4209316B2 (en) * 2003-12-12 2009-01-14 Hoya株式会社 Manufacturing method of glass substrate for information recording medium
JP2006083045A (en) 2004-09-17 2006-03-30 Hitachi Ltd Glass member
JP4670957B2 (en) * 2006-11-22 2011-04-13 コニカミノルタオプト株式会社 Glass substrate for information recording medium, method for producing glass substrate for information recording medium, and information recording medium
US20090070237A1 (en) * 2007-09-11 2009-03-12 Goldman Sachs& Co. Data reconciliation
JP5743125B2 (en) 2007-09-27 2015-07-01 日本電気硝子株式会社 Tempered glass and tempered glass substrate
JP4930336B2 (en) * 2007-11-09 2012-05-16 日本電気硝子株式会社 Warpage inspection method and manufacturing method of glass substrate
JPWO2009063756A1 (en) * 2007-11-12 2011-03-31 旭硝子株式会社 Method for producing glass plate and method for measuring residual stress in glass article
KR20100091228A (en) * 2007-11-29 2010-08-18 코닝 인코포레이티드 Glasses having improved toughness and scratch resistance
JP2009155148A (en) * 2007-12-26 2009-07-16 Central Glass Co Ltd Glass composition
DE202009018700U1 (en) * 2008-02-26 2012-11-20 Corning Incorporated Refining agent for silicate glasses
WO2010005578A1 (en) 2008-07-11 2010-01-14 Corning Incorporated Glass with compressive surface for consumer applications
JP5614607B2 (en) * 2008-08-04 2014-10-29 日本電気硝子株式会社 Tempered glass and method for producing the same
EP2334613A1 (en) * 2008-08-21 2011-06-22 Corning Inc. Durable glass housings/enclosures for electronic devices
CN102256908A (en) * 2008-12-25 2011-11-23 旭硝子株式会社 Glass substrate and process for producing same
JP5622069B2 (en) * 2009-01-21 2014-11-12 日本電気硝子株式会社 Tempered glass, tempered glass and method for producing tempered glass
JP5350853B2 (en) * 2009-03-26 2013-11-27 Hoya株式会社 Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP5115545B2 (en) * 2009-09-18 2013-01-09 旭硝子株式会社 Glass and chemically tempered glass
JP5689075B2 (en) * 2009-11-25 2015-03-25 旭硝子株式会社 Glass substrate for display cover glass and method for producing the same
TWI401219B (en) * 2009-12-24 2013-07-11 Avanstrate Inc Glass plate manufacturing method and glass plate manufacturing apparatus
JP2010202514A (en) * 2010-06-10 2010-09-16 Hoya Corp Glass substrate for mobile liquid crystal display and method for producing the same, and mobile liquid crystal display using the same
JP5459122B2 (en) * 2010-07-15 2014-04-02 旭硝子株式会社 Display device
JP2012126615A (en) * 2010-12-16 2012-07-05 Asahi Glass Co Ltd Cover glass for flat panel display
JP5896338B2 (en) * 2011-01-18 2016-03-30 日本電気硝子株式会社 Method for producing tempered glass and method for producing tempered glass plate

Also Published As

Publication number Publication date
TW201231428A (en) 2012-08-01
JP6075661B2 (en) 2017-02-08
DE112012000047T5 (en) 2013-05-16
DE112012000047B4 (en) 2018-08-23
JP2016026996A (en) 2016-02-18
JP2015024951A (en) 2015-02-05
TWI522327B (en) 2016-02-21
JP2015038021A (en) 2015-02-26
WO2012099002A1 (en) 2012-07-26
KR20130056289A (en) 2013-05-29
JP2013116846A (en) 2013-06-13
KR101544744B1 (en) 2015-08-17
CN103080029B (en) 2017-03-01
CN103080029A (en) 2013-05-01
JP5896338B2 (en) 2016-03-30
JP5721066B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5721065B2 (en) Tempered glass plate
US8835007B2 (en) Tempered glass and tempered glass sheet
JP5365974B2 (en) Tempered glass substrate and manufacturing method thereof
JP5867574B2 (en) Tempered glass substrate and manufacturing method thereof
JP6136599B2 (en) Tempered glass, tempered glass plate and tempered glass
JP5743125B2 (en) Tempered glass and tempered glass substrate
US20120196110A1 (en) Tempered glass and tempered glass sheet
JP5339173B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate
US20130045386A1 (en) Tempered glass and manufacturing method for the same
JP2016121067A (en) Method of producing tempered glass substrate
WO2012099055A1 (en) Tempered glass, and tempered glass plate
WO2013125507A1 (en) Strengthened glass
WO2013031855A1 (en) Toughened glass substrate and process for producing same
JP5796905B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5721065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150315