JPS6022662B2 - Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength - Google Patents

Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength

Info

Publication number
JPS6022662B2
JPS6022662B2 JP12979678A JP12979678A JPS6022662B2 JP S6022662 B2 JPS6022662 B2 JP S6022662B2 JP 12979678 A JP12979678 A JP 12979678A JP 12979678 A JP12979678 A JP 12979678A JP S6022662 B2 JPS6022662 B2 JP S6022662B2
Authority
JP
Japan
Prior art keywords
bottle
glass
mechanical strength
chemical durability
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12979678A
Other languages
Japanese (ja)
Other versions
JPS5556042A (en
Inventor
智彦 野々垣
卓明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP12979678A priority Critical patent/JPS6022662B2/en
Publication of JPS5556042A publication Critical patent/JPS5556042A/en
Publication of JPS6022662B2 publication Critical patent/JPS6022662B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は安定した化学的・機械的強度を有する軽量ぴん
の製造方法に関する。 更に詳述すれば、ガラスびんの保有熱の熱履歴を有効に
生かした安定した化学的耐耐久性並びに機械的強度を有
する軽量びんの製造方法に関する。従来、化学的耐久性
を増大せしめたガラスぴん、機械的強度を増大せしめた
ガラスびんについて、個々には良く知られているが、そ
れらを効果的に組合せたうえに更に軽量効果をも絹合せ
て、特定の用途に合致させるべくそれらの効果を効率よ
く相乗的に加味させたガラスびんは未だ知られていない
。 特に最近になり、“/ゞィャルビン”と称せられて、b
iolo奴calな用途への使用について、機械的強度
並びにイb学的耐久性を安定して保有し且つ軽量である
ガラスびんの供聯合に対する要求が急に高まってきた。
本発明者は、先に提案された本出願人による特顔昭53
一14554号(特開昭54−10792ぴ号)「均一
・薄肉強化ガラス容器及びその製造法」の発明による軽
量強化ガラスぴんに基づいて、前記要求に応えるべく鋭
意研究を重ねた結果、前記発明の有効利用及び合理的な
組合せに基づく、化学的耐久性を併有する軽量強化ガラ
スぴんの新規製造工程として、本発明を完成するに至っ
た。 すなわち、本発明は、平均・胴部実質肉厚Xが1.5〜
3.0肌であり、最小・胴部実質肉厚X(1−0.3)
肋以上、最大・胴部実質肉厚が×(1十0.3)肌以下
の関係にあるガラスびんに対し、その高温状態下におい
て、そのガラスびん内面に低濃度アルカリ層を形成すべ
く脱アルカリ処理を施す工程とガラス表面に圧縮応力層
を形成すべくイオン交換処理を施す工程とを組合せるこ
とを第1の要旨とする。 そして、第2の要旨として前記特定ガラスびんに対し、
その高温状態下において、そのガラスびん内面に低濃度
アルカリ層を形成すべく脱アルカリ処理を施す工程と前
記低濃度アルカリ層を越えて、その内部のアルカリを他
のァルカリと置換して、ガラス表面に圧縮応用層を形成
すべくイオン交換処理を施す工程との組合せであること
である。本発明において、平均・胴部実質肉厚×が1.
5〜3.0柵であり、最小・8同部実質肉厚がX(1−
0.3)肋以上、最大・8同部実質肉厚がX(1十0.
3)側以下の関係にあるガラスびんは、従来のガラスび
ん成形方式で形成される「ハカマ」と称する極端なびん
内面凹部をもたないびんを構成し且つびんの軽量化と強
度特に機械的強度における均一化に寄与するもので、主
に、H−1プロセスと称する本出願人独自のガラスびん
成形技術をもって効率よく製造される。 この特定のびんに対する処理において、イオン交換処理
を施す前工程で、硫酸アンモニウム、二酸化ィオウガス
或はフロンガス等の使用による脱アルカリ処理を縫合せ
ることが本発明の大きな特徴とする点である。硫酸アン
モニウム、二酸化ィオウガス或はフロンガス等による加
熱ガラス表面での化学的反応は公知であるので、詳しく
は記載しないが、斯る反応によってガラス表面に低濃度
アルカリ層が形成され、すなわち、化学的に安定な高濃
度のシリカ層が形成されて、接触する内容物等に対する
化学的安定性が向上する。本発明において、ガラスびん
表面における低濃度アルカリ層を越えた厚さのガラス表
層に対し、イオン交換による圧縮応力層を形成せしめる
ことによって、更に詳述すれば、ガラスびん内表面の化
学的耐久性の向上とガラスびん内外面に釣り合った圧縮
応力層の形成による機械的強度の向上との組合せによっ
て、安定した機械的強度と化学的耐久性をガラスびんに
付与するものである。 イオン交換処理後の脱アルカリ処理の組合せは行なわれ
るべきでない。何んとなれば、イオン交換処理によって
形成された圧縮応力が、その後の脱アルカリ処理の温度
によって緩和され、所望の強度が得られ難くなるからで
ある。よって、脱アルカリ処理後のイオン交換処理の組
合せが必須である。イオン交換処理方法は公知の方法、
例えば、熔融アルカリ塩浴浸債法あるいはアルカリ塩水
溶液曙霧・熱処理方法等によって行ない得るが、本出願
人が先に提案した特糠昭52−13049び号(特開昭
54−63117号)のガラス製品の強化方法を極めて
都合よく採用することができる。持願昭52−1304
9び号のガラス製品の強化方法とは、イオン交換のため
のアルカリ金属無機塩の水溶液または懸濁液に、熱処理
時に消失する有機増粘剤を添加してペースト状流動体と
なし、該流動体をガラス製品に塗布して熱処理すること
を特徴とするものである。 更に、前記ガラスびんの製造工程において、脱アルカリ
処理の前工程にSnC14ペーパー、SnC12(C比
)2べーパ−、SnC14水溶液等を高温ガラス表面殊
に外表面に贋霧或はスプレーして該表面に硬度の大きい
酸化錫被膜を形成する(そのほか同様にして、チタン、
ジルコニウム等の有機化合物を作用させて金属酸化物被
膜を付与することもできる。 )第1被膜処理工程と、イオン交換処理工程の後工程(
更に詳細に述べれば、イオン交換処理後、冷却し、残余
のカリウム塩を洗浄し、乾燥した後)に、オレィン酸等
の脂肪酸、ポリオキシヱチレンソルビタンモノオレェー
ト等の界面滑性剤、オレフィン重合体、エチレンーメタ
アクリル酸重合体等の合成樹脂等の有機質ガラス表面保
護剤を被覆する第2被覆処理工程との2重被覆処理工程
を粗合せることによって、耐加傷強度を向上させて機械
的強度の低下防止につなげることができる。本発明にお
いて、ガラスびんが平均・胴部実質肉厚Xが1.5〜3
.仇奴であり、最小・胸部実質肉厚が×(1一0.3)
側以上、最大・胸部実質肉厚が×(1十0.3)肋以下
の関係にあることを必須としたのは、ガラス面にイオン
交換圧縮応力層を付与したときの機械的強度とそれに添
う軽量化度のバランスからによるもので、データに基づ
いて定められたものである。 それによると、平均・胴部実質肉厚×の大4・は、ガラ
ス器自体による強度増と逆比例的に作用する軽量化効果
に影響し、平均・胸部実質肉厚と最小・胴部実質肉厚と
の差の大小は機械的強度の安定性(均一化)に影響を及
ぼす。平均・腕部実質肉厚Xが1.5肋禾満であるとき
、軽量化効果は充分図れ得るものの、ガラスぴん強度と
のバランスがくずれ、実用に添い難くなる。よって、X
=1.5肌以上が必要となる。又、Xが3.仇岬を越え
ると軽量化という本発明の一目的を達成し得なくなる。
よってX=1.5〜3.0肋の範囲が軽量効果と強度の
バランスが使用態様に添り、最も好ましい。最小・胴部
実質肉厚X(1一0.3)側以下となるときは、いわゆ
る「ハカマ」の存在を意味し、強度低下及び強度不均一
の一因となり、望ましくない。又、最大・胴部実質肉厚
が×(1十0.3)肋を越えると、強度増に寄与するよ
り重量増につながる要因が大となり、本発明の一目的達
成に添わない。なお、前記フロンガスとは、CC13F
,CC12F2,C2CI4F2,C2CI3F3等の
フッ化塩化炭化水素ガスを指す。 以下、実施例に基づいて、本発明を更に詳細に説明する
。 本出願人における独自のプレスアンドブロー方式による
細□ガラスびん成形技術(H−1プロセス)で成形した
細□ガラスびんに対し、成形後の高温度(約600qo
)下で、びん外表面にジメチル錫ジクロラィド(SnC
12(CH3)2)ガスを頃霧・接触させ、そしてびん
内部へS02を噴霧。 導入して加熱炉(徐冷炉)にて熱処理し、びん外表面に
酸化錫被膜を被覆し、びん内表面を脱アルカリ処理した
。しかる後、当該びんを硝酸カリウム主成分(KN03
:K2S04=9:1)の熔融塩浴中に約10分間浸潰
しイオン交換強化処理を施した。この間、びんの初期強
度を低下させることなく、強化処理する意味からびん同
士等の接触を極力避けることは当然である。前記塩熔融
浴槽は塩の熔融点以上の温度(460〜49000)に
なるように制御した。熔融塩格から取り出した処理びん
は、冷却後洗浄、乾燥される。そして、最後にエチレン
ーメタアクリル酸重合体のェマルジョンをびん外表面へ
贋霧し、前記重合体の薄膜を施して最終製品とした。次
に、本実施例製品における各々の特性の測定値を、比較
例製品(従来のガラスびんに対し、前記実施例と全く同
一の強化処理を施したもの)及び参考例〔1〕製品(前
記実施例の工程から脱アルカリ処理工程を除去した工程
から得られた軽量ガラスびん)、参考例〔D〕製品(実
施例の工程における脱アルカリ処理工程とイオン交換強
化処理工程の順序を入れ替えた工程から得られた軽量ガ
ラスびん)の各々の測定値と対比して表一1に示す。 (なお、本実施例製品、比較例製品、参考例〔1〕,〔
0〕製品共に外形状は同一である。)表−1表−1から
明らかな如く、本発明製品は、その比較例、参考例〔1
〕,
The present invention relates to a method for producing a lightweight pin having stable chemical and mechanical strength. More specifically, the present invention relates to a method for producing a lightweight bottle that effectively utilizes the thermal history of heat retained in the glass bottle and has stable chemical resistance and mechanical strength. Conventionally, glass pins with increased chemical durability and glass bottles with increased mechanical strength are well known individually, but in addition to effectively combining them, we have created a silk-based product that also has a lightweight effect. However, there is still no known glass bottle that efficiently and synergistically combines these effects to meet specific uses. Especially recently, b
There has been a sudden increase in demand for lightweight glass bottles that stably maintain mechanical strength and chemical durability for use in industrial applications.
The present inventor has previously proposed the special face proposed by the present applicant in 1973.
Based on the lightweight reinforced glass pin invented in No. 114554 (Japanese Unexamined Patent Publication No. 54-10792) entitled "Uniform and Thin-walled Tempered Glass Container and Method for Manufacturing the Same", as a result of intensive research to meet the above requirements, the invention The present invention has been completed as a new manufacturing process for lightweight reinforced glass pins with chemical durability based on the effective use and rational combination of. That is, in the present invention, the average actual body thickness X is 1.5 to
3.0 skin, minimum actual wall thickness of the torso X (1-0.3)
For glass bottles with a relationship of more than the ribs and a maximum actual wall thickness of the body less than the skin, dehydration is performed under high temperature conditions to form a low-concentration alkaline layer on the inner surface of the glass bottle. The first gist is to combine the step of performing alkali treatment and the step of performing ion exchange treatment to form a compressive stress layer on the glass surface. And, as a second gist, for the specific glass bottle,
Under the high temperature condition, a dealkalization process is performed to form a low concentration alkali layer on the inner surface of the glass bottle, and the alkali inside is replaced with another alkali beyond the low concentration alkali layer, and the glass surface is This method is combined with a step of performing ion exchange treatment to form a compressed layer. In the present invention, the average actual body wall thickness x is 1.
5 to 3.0 fence, and the minimum actual wall thickness of the same part of 8 is X(1-
0.3) Above the ribs, the maximum actual wall thickness at the same part of 8 is X (100.
3) A glass bottle with the following relationship is a bottle that does not have the extreme concavity on the inner surface of the bottle called a "hakama" formed by the conventional glass bottle molding method, and is designed to reduce the weight and strength of the bottle, especially mechanically. It contributes to uniformity in strength, and is mainly efficiently manufactured using the applicant's proprietary glass bottle forming technology called the H-1 process. In the treatment of this particular bottle, a major feature of the present invention is that a dealkalization treatment using ammonium sulfate, sulfur dioxide gas, chlorofluorocarbon gas, etc. is performed in a step prior to the ion exchange treatment. The chemical reaction on the heated glass surface caused by ammonium sulfate, sulfur dioxide gas, chlorofluorocarbon gas, etc. is well known, so it will not be described in detail, but this reaction forms a low-concentration alkaline layer on the glass surface, which means that it is chemically stable. A highly concentrated silica layer is formed, which improves chemical stability against the contents it comes into contact with. In the present invention, by forming a compressive stress layer by ion exchange on the glass surface layer with a thickness exceeding the low concentration alkali layer on the glass bottle surface, the chemical durability of the inner surface of the glass bottle can be improved. The combination of improved mechanical strength and improved mechanical strength due to the formation of balanced compressive stress layers on the inner and outer surfaces of the glass bottle provides glass bottles with stable mechanical strength and chemical durability. A combination of ion exchange treatment followed by dealkalization treatment should not be performed. This is because the compressive stress formed by the ion exchange treatment is relaxed by the temperature of the subsequent dealkalization treatment, making it difficult to obtain the desired strength. Therefore, a combination of ion exchange treatment after dealkalization treatment is essential. The ion exchange treatment method is a known method,
For example, it can be carried out by the molten alkali salt bath immersion method or the alkaline salt aqueous solution spray/heat treatment method, but the method described in Tokushu No. 52-13049 (Japanese Unexamined Patent Publication No. 54-63117) proposed earlier by the present applicant. A method of strengthening glass products can be employed very conveniently. Mochigan Showa 52-1304
The method for strengthening glass products No. 9 is to add an organic thickener that disappears during heat treatment to an aqueous solution or suspension of an alkali metal inorganic salt for ion exchange to form a paste-like fluid. It is characterized by applying the body to glass products and heat-treating them. Furthermore, in the manufacturing process of the glass bottle, SnC14 paper, SnC12 (C ratio) 2 vapor, SnC14 aqueous solution, etc. are misted or sprayed on the high temperature glass surface, especially the outer surface, before the dealkalization treatment. A highly hard tin oxide film is formed on the surface (other than that, titanium,
A metal oxide film can also be applied by applying an organic compound such as zirconium. ) The first film treatment step and the subsequent step of the ion exchange treatment step (
More specifically, after ion exchange treatment, cooling, washing residual potassium salt, and drying), fatty acids such as oleic acid, surfactants such as polyoxyethylene sorbitan monooleate, and olefins are added. By roughly combining the double coating treatment process with the second coating treatment process of coating an organic glass surface protective agent such as a synthetic resin such as a polymer or ethylene-methacrylic acid polymer, the scratch resistance strength can be improved. This can lead to prevention of decrease in mechanical strength. In the present invention, the glass bottle has an average actual body wall thickness X of 1.5 to 3.
.. He is an enemy, and the minimum actual chest thickness is × (1-0.3)
The reason why it was necessary that the maximum and thorax parenchymal thickness be less than or equal to x (100.3) sides is because of the mechanical strength when an ion-exchange compressive stress layer is applied to the glass surface and the This is based on the balance of weight reduction and was determined based on data. According to this, the average real body wall thickness x large 4 affects the weight reduction effect, which is inversely proportional to the increase in strength due to the glassware itself, and the average real body wall thickness and the minimum real body wall thickness The size of the difference in wall thickness affects the stability (uniformity) of mechanical strength. When the average actual arm thickness X is 1.5 mm, the weight reduction effect can be sufficiently achieved, but the balance with the glass pin strength is lost, making it difficult to put it into practical use. Therefore, X
= 1.5 skin or more is required. Also, X is 3. If the distance is exceeded, the object of the present invention, which is weight reduction, cannot be achieved.
Therefore, the range of X=1.5 to 3.0 ribs is most preferable because it provides a balance between light weight effect and strength depending on the usage mode. When the actual wall thickness of the body is less than the X(1-0.3) side, it means the existence of so-called "hakama", which is undesirable because it causes a decrease in strength and non-uniformity of strength. Furthermore, if the maximum actual wall thickness of the body exceeds x (100.3) ribs, the factors that lead to an increase in weight will be greater than those that will contribute to an increase in strength, and one of the objectives of the present invention will not be achieved. Note that the fluorocarbon gas is CC13F
, CC12F2, C2CI4F2, C2CI3F3, etc. Hereinafter, the present invention will be explained in more detail based on Examples. For thin glass bottles molded using the applicant's original press-and-blow method for thin glass bottles (H-1 process), high temperatures after molding (approximately 600 qo) are used.
), dimethyltin dichloride (SnC
12(CH3)2) Atomize and contact the gas, and spray S02 inside the bottle. The bottle was introduced and heat treated in a heating furnace (slow cooling furnace) to coat the outer surface of the bottle with a tin oxide film and dealkalize the inner surface of the bottle. After that, the bottle was mixed with the main component of potassium nitrate (KN03).
:K2S04=9:1) for about 10 minutes to perform ion exchange strengthening treatment. During this time, it is natural to avoid contact between the bottles as much as possible in order to strengthen the bottles without reducing their initial strength. The temperature of the salt melting bath was controlled to be higher than the melting point of the salt (460-49000). The treated bottles taken out of the molten salt rack are cooled, then washed and dried. Finally, an emulsion of ethylene-methacrylic acid polymer was sprayed onto the outer surface of the bottle, and a thin film of the polymer was applied to form a final product. Next, the measured values of each characteristic of the product of this example are compared to the product of comparative example (a conventional glass bottle subjected to the exact same strengthening treatment as in the example above) and the product of reference example [1] (the glass bottle described above). A lightweight glass bottle obtained from a process in which the dealkalization process was removed from the process in the example), Reference Example [D] product (a process in which the order of the dealkalization process and ion exchange strengthening process in the process in the example was changed) The results are shown in Table 1 in comparison with the measured values for each of the lightweight glass bottles (obtained from lightweight glass bottles). (This example product, comparative example product, reference example [1], [
0] Both products have the same external shape. ) Table 1 As is clear from Table 1, the products of the present invention are compatible with comparative examples and reference examples [1
],

〔0〕と対比するに、同一形状、ほぼ同一容量であ
りながら、重量において著しく軽量化が図られており、
そして耐内圧強度、耐衝撃強度の各々の平均値が向上し
ており、特に各々の強度の最小値のアップと各々の強度
のバラツキが小さくなっていること(標準偏差:小)が
顕著な効果である。 又、工程の組合せについての重要性が麦一1のデータか
ら明らかであるつo以上の如く、本発明は、軽量で且つ
機械的、化学的に秀でた強度、耐久性を有する上に品質
安定性の優れた特性を有し、そして均一。
Compared to [0], although it has the same shape and almost the same capacity, it is significantly lighter in weight.
The average values of internal pressure resistance strength and impact resistance strength have improved, and the remarkable effect is that the minimum value of each strength has increased and the variation in each strength has become smaller (standard deviation: small). It is. Furthermore, the importance of the combination of processes is clear from Mugiichi's data. It has excellent characteristics of stability and uniformity.

Claims (1)

【特許請求の範囲】 1 平均・胴部実質肉厚Xが1.5〜3.0mmであつ
て、最小・胴部実質肉厚X(1−0.3)mm以上、最
大・胴部実質肉厚X(1+0.3)mm以下の関係にあ
るガラスびんに対し、その高温状態下においてそのびん
内面に低濃度アルカリ層を形成すべく脱アルカリ処理を
施す工程と、その後の前記低濃度アルカリ層を越えてそ
の内部のアルカリを他のアルカリと置換して、ガラス表
面に圧縮応力層を形成すべくイオン交換処理を施す工程
との組み合わせからなることを特徴とする安定した化学
的耐久性・機械的強度を有する軽量びんの製造方法。 2 脱アルカリ処理工程の前工程で金属酸化物被膜を付
与する第1被覆処理工程とイオン交換処理工程後に、有
機質ガラス表面保護剤を被覆する第2被覆処理工程とを
組み合わせた特許請求の範囲第1項記載の安定した化学
的耐久性・機械的強度を有する軽量びんの製造方法。
[Scope of Claims] 1. Average actual body thickness X is 1.5 to 3.0 mm, minimum actual body thickness X (1-0.3) mm or more, maximum actual body thickness X (1-0.3) mm or more; A step of subjecting a glass bottle having a wall thickness of X(1+0.3) mm or less to a dealkalization treatment under high temperature conditions to form a low concentration alkali layer on the inner surface of the bottle, and then performing a dealkalization treatment on the glass bottle having a wall thickness of X(1+0.3) mm or less, and then treating the glass bottle with the low concentration alkali layer. Stable chemical durability characterized by the combination of a process of ion exchange treatment to replace the alkali inside the layer with another alkali and form a compressive stress layer on the glass surface. A method for manufacturing a lightweight bottle with mechanical strength. 2. Claim 1 which combines a first coating treatment step in which a metal oxide film is applied in a step before the dealkalization treatment step and a second coating treatment step in which an organic glass surface protective agent is coated after the ion exchange treatment step. A method for producing a lightweight bottle having stable chemical durability and mechanical strength according to item 1.
JP12979678A 1978-10-20 1978-10-20 Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength Expired JPS6022662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12979678A JPS6022662B2 (en) 1978-10-20 1978-10-20 Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12979678A JPS6022662B2 (en) 1978-10-20 1978-10-20 Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength

Publications (2)

Publication Number Publication Date
JPS5556042A JPS5556042A (en) 1980-04-24
JPS6022662B2 true JPS6022662B2 (en) 1985-06-03

Family

ID=15018433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12979678A Expired JPS6022662B2 (en) 1978-10-20 1978-10-20 Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength

Country Status (1)

Country Link
JP (1) JPS6022662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729257U (en) * 1993-10-29 1995-06-02 ニチハ株式会社 Door hinge

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738346A (en) * 1980-08-11 1982-03-03 Ishizuka Glass Ltd Tempered glass container
JPS5738345A (en) * 1980-08-11 1982-03-03 Ishizuka Glass Ltd Tempered glass container
IT1223660B (en) * 1988-07-04 1990-09-29 Pirelli Cavi Spa PROCEDURE FOR THE MANUFACTURE OF INTEGRATED OPTICAL GUIDES IN FLUORIDE-BASED GLASS
JP5896338B2 (en) * 2011-01-18 2016-03-30 日本電気硝子株式会社 Method for producing tempered glass and method for producing tempered glass plate
JP2012236737A (en) * 2011-05-11 2012-12-06 Asahi Glass Co Ltd Glass manufacturing method, and glass
US9499434B1 (en) 2012-08-31 2016-11-22 Owens-Brockway Glass Container Inc. Strengthening glass containers
US20190161399A1 (en) * 2017-11-30 2019-05-30 Corning Incorporated Glass articles with low-friction coatings and methods for coating glass articles
FR3098512B1 (en) * 2019-07-11 2022-08-26 Sgd Sa METHOD AND PLANT FOR DESALKALIZING GLASS CONTAINERS BY LIQUID WAY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729257U (en) * 1993-10-29 1995-06-02 ニチハ株式会社 Door hinge

Also Published As

Publication number Publication date
JPS5556042A (en) 1980-04-24

Similar Documents

Publication Publication Date Title
US11548814B2 (en) Glass with reinforced layer and preparation method thereof
US4842630A (en) Manufacture of glassware articles of improved strength
US4164402A (en) Strengthening of thin-walled, light glass containers
US3607172A (en) Tripotassium phosphate treatment for strengthening glass
GB1459319A (en) Ion exchange
US4218230A (en) Method of glass strengthening by ion exchange
CA2522807A1 (en) Method and apparatus for strengthening glass
JPS6022662B2 (en) Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength
US3468745A (en) Method of coloring glass and said colored glass
US2101950A (en) Preparing metal for enameling
US4134746A (en) Method of strengthening glass articles
US2294760A (en) Process for coating metal surfaces
IL40403A (en) Process of forming a glass body from a vitrifiable batch and colouring or modifying the colour of such body by ion diffusion
US3711263A (en) Surface treatment of glass and similar materials
JPS6127336B2 (en)
IL35821A (en) Glass lasers of increased heat dissipation capability and process comprising an ion exchange for making the same
JPS6127337B2 (en)
US2099340A (en) Process of enameling
JPH0323494B2 (en)
US4273832A (en) Glass article strengthened by ion exchange substitution
JPS631256B2 (en)
US1779273A (en) Art of making enamel ware
US3161534A (en) Process for increasing the scratch resistance of glass
US2886463A (en) Method of enameling mild steel
US1080059A (en) Process for producing clean or deoxidized metal surfaces.