JPS6127337B2 - - Google Patents

Info

Publication number
JPS6127337B2
JPS6127337B2 JP14026880A JP14026880A JPS6127337B2 JP S6127337 B2 JPS6127337 B2 JP S6127337B2 JP 14026880 A JP14026880 A JP 14026880A JP 14026880 A JP14026880 A JP 14026880A JP S6127337 B2 JPS6127337 B2 JP S6127337B2
Authority
JP
Japan
Prior art keywords
container
glass
compressive stress
strength
glass container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14026880A
Other languages
Japanese (ja)
Other versions
JPS5767036A (en
Inventor
Tomohiko Nonogaki
Taketoshi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP14026880A priority Critical patent/JPS5767036A/en
Publication of JPS5767036A publication Critical patent/JPS5767036A/en
Publication of JPS6127337B2 publication Critical patent/JPS6127337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な強化ガラス容器に関する。すな
わち急冷強化処理による圧縮応力層とイオン交換
率の異なる圧縮応力層との重複層をその内外表面
に個々に併持する新規な強化ガラス容器に関す
る。更に詳述すれば、殊に容器外表面に受ける外
力 例えば接触、衝撃等の外力に対し殊に耐衝撃
強度を高効率に増大せしめた強化ガラス容器に関
する。 従来の強化ガラス容器は ガラス容器外表面に
金属酸化物或は合成樹脂等の有機物若しくはそれ
らの組合せによるコーテイングをしてなるもの、
或は又 ガラス容器表面にイオン交換処理による
圧縮応力層を付与してなるもの及びそれに合成樹
脂被膜を付与してなるものなどがある。それらは
各々の諸強度のアツプにおいて、それなりの効果
が得られており、そして一部市場において使用さ
れている。例えば コーテイングによる強化ガラ
ス容器は、耐加傷強度の向上による相対的な耐内
圧強度の劣化防止を図り、イオン交換強化ガラス
容器は若干の耐加傷強度の向上及び若干の耐内圧
強度、耐衝撃強度の増大を図ろうとするものであ
る。 しかしながら、これらの強化ガラス容器は、コ
ーテイングによる強化ガラス容器においては相対
的に諸強度の劣化防止を図るのみのものであり、
イオン交換強化ガラス容器においては圧縮応力層
が薄いということから殊に耐加傷強度、耐内圧強
度、耐衝撃強度のアツプは十分とはいえない。 一方、ガラスの強化方法には ガラス表面を急
冷して圧縮応力層を付与することによつてガラス
を強化するいわゆる急冷強化方法が知られている
が、この方法が適用されるガラスは 板ガラス等
比較的形状単純な且つ厚さが均一なものに限られ
る。ガラス容器等の形状の複雑な又は肉厚の不均
一なものに対しては 均一な圧縮応力層を付与す
ることはほとんど不可能であり、その不均一性が
起因して、少々の外力の付加等により自爆を誘起
する危険性が強いため 実用性にまだ問題点を残
している。 なお、特公昭41−20096号公報において 急冷
強化及びイオン交換強化とを組合せたガラス製品
及びその製造方法の技術が開示されているが、実
質的に板ガラスを対象としているものであり、ガ
ラス容器への応用可能の記載はあるものの、実質
的にガラス容器の強度向上のための技術の開示と
はなつていない。 本発明者は 従来技術の実態を鑑み、又当業者
の飽くなき要望に応えるべく 鋭意研究を重ねた
結果、従来の強化ガラス容器に比して 諸強度を
更に増大せしめた 新規な強化ガラス容器を開発
した。 通常炭酸飲料等に使用され、リターナブル壜と
称されるガラス容器は ブローアンドブロー方
式、プレスアンドブロー方式という一般的なガラ
ス容器成形技術によつて製造されるが、そのガラ
ス容器は最終的に容器外表面とモールドとの接触
を最後として完成される。以下、コンベアーでの
搬送、内容物の充填時等 その後のリサイクル使
用においてもガラス容器の外表面は常に他物体と
の接触にさらされ 外力を受ける頻度が多くかつ
その外力も大きい。したがつて、容器外表面にお
いて生ずる傷は相対的に多くかつ大きい。それに
比して、容器内表面は内容物の充填時又はリサイ
クル使用間の洗浄工程等において作用を受ける
が、外表面のそれに比して その頻度は少なくか
つ外力も小さい。したがつて、内表面に生ずる傷
は少なくかつ小さい。 しかしながら、殊に軽量リターナブル壜と称さ
れる比較的ガラス肉厚の薄いガラス容器において
は 外表面からの衝撃等の外力が働いた時、容器
内表面に特に大きな引張応力(FLEXURE
STRESS)が発生し、その発生個所において、
ガラスがその応力に抗し切れない場合、その個所
を破壊起点として ガラス容器は破壊する。それ
に比して、ガラス肉厚が比較的大であるリターナ
ブル壜においては、外表面からの衝撃外力が作用
した時は 容器内表面のFLEXURE STRESSの
発生より、外表面の衝撃作用点の周囲に引張応力
(HINGE STRESS)が主に発生し、ガラスがそ
の個所でその応力に抗し切れない場合、ガラス容
器は破壊されるが、肉厚が比較的大であることに
もより、いわゆる耐衝撃強度は比較的大きい。 本発明者は 前記リターナブル壜についてその
使用実態を詳細に分析し、そのリターナブル壜の
内外表面が受ける外力の大きさとそれによる加傷
の程度及び発生する応力の大きさとその肉厚の大
きさとの相関関係の中で、効果的な実用強度の増
大とその強度維持の因果関係を、前記研究の結果
見い出したのである。 本発明の目的は、殊に容器外表面への衝撃外力
にあるFLEXURE STRESSの発生を抑え、耐衝
撃強度の増大を有利とした強化ガラス容器を提供
することにある。 本発明の他の目的は、耐衝撃強度の増大に耐加
傷強度の増大を重ねて有利とした強化ガラス容器
を提供することにある。 そして本発明のその他の目的は 前記諸強度を
有効に付与し、軽量 リターナブル壜としての実
用強度を充分に具備した強化ガラス容器を提供す
ることにある。 前記目的を十分に達成せしめる本発明の構成
は、急速冷却により付与された第1圧縮応力層と
イオン交換率の高い第2圧縮応力層との重複層を
その内表面に、急速冷却により付与された第1圧
縮応力層とイオン交換率の低い第3圧縮応力層と
の重複層をその外表面にそれぞれ保有してなるガ
ラス容器にある。 本発明の強化ガラス容器において、急速冷却法
により付与される第1圧縮応力層は ガラス容器
という形状の特殊性若しくは複雑性から ある一
定以上の圧縮応力値を保有せしめることができな
い。すなわち、第1圧縮応力層はその応力値が大
きくなればなるほど、ガラス目体の強度増大には
寄与するものの、ガラス容器の如く形状複雑な物
品に対しては 容器としての実用強度を向上せし
めることができず、例えば、一定以上の応力値を
越えると自爆の危険が生じかつその危険性が急速
に高まり 又少々の外力負荷により容易に破壊し
やすくなる。これらは、前記した如く、容器とし
てのガラスの形状の複雑さ、肉厚の不均一に基因
する圧縮応力のアンバランス付与によるものであ
る。したがつて、ガラス容器に対する第1圧縮応
力層の応力値は、先に本出願人がガラス容器の急
冷強化技術について 特願昭55−57181号として
提案した如く、750Kg/cm2とすることは避けるべき
である。一方、その応力値が100Kg/cm2を下廻ると
きは所望する相乗的な強度増につながりにくいの
で避けたほうがよい。 第1圧縮応力層の層厚さは最大でガラス厚さの
1/4迄で、ガラス表面から一定の深さに迄達す
る。通常は 各ガラス表面において、第1圧縮応
力層の厚さは 少なくとも100μを下廻らない。
イオン交換処理による圧縮応力層の厚さより 実
質的に3倍以上の厚さであるので、容器強度殊に
耐内圧強度の劣化に影響を及ぼす傷の伸張を効果
的に防止するものである。 一方イオン交換により付与される圧縮応力層は
その層厚さが100μを越えることはほとんどな
く、実質的に30μ以下である。しかしながら、そ
の圧縮応力層をほぼ5000Kg/cm2迄の高い値に付与
することができるので、殊に容器内表面にこの高
応力値圧縮層を付与することにより、肉薄ガラス
容器におけるFLEXURE STRESSの発生を効果
的に抑制することができる。したがつて、肉薄ガ
ラス容器において、ガラス厚さとは相対的に、大
きな耐衝撃強度を得ることができる。 本発明において、容器胴部の平均ガラス肉厚が
殊に2.5mm以下であるガラス容器を対象とする場
合、耐衝撃強度の増強において、相対的に有利と
なる。すなわち、衝撃等の外力により容器内表面
に発生する引張応力(FLEXURE STRESS)
は、ガラス容器の胴部平均肉厚が薄ければ薄いほ
ど大となり、殊にその値が2.5mm以下のものにお
いて、特に顕著に作用する。このFLEXURE
STRESSの発生を抑制することはそれを因とす
る。壊を防止することとなり、換言すれば耐衝撃
強度が効率的に増大することになる。なお、胴部
平均肉厚が1.0mm未満となると肉薄による強度低
下を充分に補い切れず、充分な強度増はもとよ
り、所望の強度維持が困難となる。これらの数値
限定は FLEXURE STRESSの発生に基づく実
用強度、殊に耐衝撃強度の充分な維持が可能か否
かの実測データから算出されたものである。 本発明の強化ガラス容器について、更に詳述す
れば、急速冷却により付与された第1圧縮応力層
とイオン交換により付与された第2、第3圧縮応
力層とがそれぞれ重なつて容器内外表面に存在す
ることにより成るが、内表面におけるイオン交換
による高応力値圧縮層は、イオン交換率を大とす
ることにより得られ、外表面における比較的低応
力値圧縮層はイオン交換率を比較的小とすること
により得られる。 本発明に適用されるガラス容器は 通常ソーダ
石灰シリカガラス製であり、このガラスの軟化点
は約725〜730℃、変形点は約635〜640℃、徐冷点
は約550〜555℃、そして歪点は約510〜515℃の範
囲に納められる。急速冷却により得られる第1圧
縮応力層において、その応力値を前記の100〜750
Kg/cm2の範囲内に納めるには、ガラス容器の形状
特殊性を考慮すれば ガラスの変形点以下0〜
200℃の温度範囲の中で、約10〜30℃/secの急速
冷却そして10〜60m/secのガラス表面速度で 常
温(約20℃)のエアを噴射して ガラス表面を冷
却することにより有効に得られる。一般に、急速
冷却による圧縮応力層の応力値は、ガラスの粘性
係数と粘性変化率とによつて決められ、これらは
共に急冷処理前・処理後のガラスの温度、熱伝達
率そして冷却流体の温度・速度及び動粘性係数等
の相関関係によつて定められ、処理前・処理後の
ガラス温度と冷却流体の温度・速度による冷却速
度要因が最も顕著に影響するということが経験的
に明らかにされている。 一方、ソーダ石灰シリカガラスのイオン交換の
ためのアルカリ塩には一般にカリウム塩が使用さ
れる。通常、硝酸カリウム、塩化カリウム、硫酸
カリウム等の1種又は2種以上の組合せを採用す
ることができる。カリウム塩のガラス容器への塗
着方法は、熔融塩浸漬法又はスプレー法、水溶液
浸漬法又はスプレー法等が採用でき、特に限定さ
れない。ガラス容器は カリウム塩と接触した状
態で 通常のガラスの歪点以下0〜100℃の範囲
内の温度でイオン交換のための熱処理に付され
る。イオン交換による圧縮応力層は カリウム塩
のガラス面への付着量、熱処理温度及び熱処理時
間によつて大きく影響を受け、殊に応力値に対す
る影響度が大きい。熱処理温度、熱処理時間をガ
ラス容器の内外表面を区別して、個々に制御する
ことは極めて困難であるので、ガラス容器の内外
表面に異なる応力値をもつ第2、第3圧縮応力層
を付与するには、カリウム塩の付着量により制御
するのが現実的である。すなわち、カリウム塩の
付着量をガラス容器内表面には多く、外表面には
比較的少なく、塗布して後、イオン交換熱処理す
ることにより、ガラス容器内表面に外表面におけ
る圧縮応力層より大なる応力値を有する第2圧縮
応力層を付与することができる。更に具体的に記
述すれば、ガラス容器内表面には濃厚カリウム塩
溶液例えば飽和溶液を、外表面には希釈溶液を付
着せしめて後 熱処理することにより、効率よく
応力層を付与することができる。なお、外表面に
対するカリウム塩付着量が極めて少ない場合も、
本発明の範囲に含まれる。 本発明に適用される被処理ガラス容器としては
無処理のものが一般的であるが、容器としての実
用強度殊に耐加傷強度を増大さるために、金属酸
化物被膜を付与したものを採用するのが好都合で
ある。殊に本発明の強化ガラス容器において、外
表面は 比較的低応力値圧縮層であるため、耐加
傷強度が低いからである。なお、金属酸化物被膜
は 通常次の如くして付与される。すなわち、成
形機から出てきた直後の高温のガラス容器外表面
に対しSnCl4ガス、SnCl2(CH32ガス等を作用さ
る。他に同様に、チタン、ジルコニウム等の有機
化合物を作用させても、金属酸化物被膜を付与す
ることができる。 更に、本発明のガラス容器に対して、その外表
面に別の保護手段を付与し、耐加傷強度を一般と
向上せしめて、最終製品の実用強度特性を更に大
きく改善することができる。別の保護手段とは、
ガラス容器外表面に滑性、弾性等を保有する有機
物の保護被膜形成であつてオレイン酸等の脂肪
酸、ポリオキシエチレンソルビタンモノオレエー
ト等の界面活性剤、ポリエチレン、ポリウレタ
ン、アイオノマー樹脂等或はその他の樹脂の有機
物質を被覆することである。 以下、本発明を実施例に基づいて 更に詳細に
説明する。 実施例 ガラス容器成形機から出てきた直後の高温度
(約680℃)のガラス容器(容量250ml)重量98
g、胴部平均肉厚1.7mm)にSnCl2(CH32ガスを
作用させて、その外面にSnO2を被膜を形成し
た。その後 引続いてオンライン上で、胴中央部
外表面で約580℃、同内表面で約640℃に各々調温
した当該容器に対し、容器内表面には容器口部か
ら棒状ノズルを挿入し、1.5Kg/cm2の圧縮空気(温
度約20℃)を、容器外表面には容器外形状に大略
沿つた形状のノズルから、1.0Kg/cm2の圧縮空気
を、それぞれ、容器を約120RPMで回転させなが
ら約10秒間噴射し、急速冷却した。この急冷処理
によつて、容器外表面は約250℃、内表面は約300
℃まで降温した。この段階でそのガラス容器の数
本を室温まで徐々に冷却し、その胴部破断面をベ
レツクコンペンセーターで測定したところ、その
内外表面にほぼ 平均360Kg/cm2の圧縮応力値が認
められた。そして、応力層の厚さは約170μであ
つた。なお、断面中央部では約160Kg/cm2の引張応
力値が確認された。 この急冷工程を経て 前記温度に下つたガラス
容器に対し、その内表面にKNO3、KCl
(KNO3:KCl=6.2:3.8重量比)の混合飽和水溶
液を、その外表面には約30%のKNO3水溶液を、
それぞれ約5秒間、容器内外に設置したソニミス
トノズルからスプレーして塗布した。そして、乾
燥後電気炉にて約480℃30分間のイオン交換処理
を施し、室温迄冷却後 残存アルカリ塩を洗浄除
去し、強化ガラス容器を得た。この強化ガラス容
器の外表面圧縮層の応力値を表面応力計で測定し
たところ、平均1050Kg/cm2であり、そしてイオン
交換による応力層の厚さは約11μであることが認
められた。又同じく容器内表面においては平均
1650Kg/cm2の応力値であり、層厚さは平均16μで
あつた。なお、ベレツクコンペンセーターによる
断面中央部の引張応力は約133Kg/cm2であつた。 なお、ガラス容器のガラス組成等は次の如くで
ある。 ●ガラス組成 SiO2 71.5重量% Al2O3 2.5 CaO 10.9 Na2O 12.7 K2O 1.4 その他 1.0 合計 100.0 ●軟化点 727℃ ●変形点 637℃ ●徐冷点 554℃ ●歪 点 515℃ 本実施例において、その工程中に破損したガラ
ス容器は1本もなかつた。本実施例により得られ
た強化ガラス容器の実用強度特性を未処理容器及
び比較容器のそれと対比して、第1表に掲載す
る。なお、各々のデータはn=30本によるもので
ある。
The present invention relates to a novel tempered glass container. In other words, the present invention relates to a novel tempered glass container having overlapping layers of a compressive stress layer formed by rapid cooling strengthening treatment and a compressive stress layer having a different ion exchange rate on its inner and outer surfaces. More specifically, the present invention relates to a tempered glass container whose impact resistance is particularly effectively increased against external forces such as contact and impact applied to the outer surface of the container. Conventional tempered glass containers are made by coating the outer surface of the glass container with organic substances such as metal oxides or synthetic resins, or a combination thereof.
Alternatively, there are those in which a compressive stress layer is applied to the surface of the glass container by ion exchange treatment, and there are those in which a synthetic resin coating is applied to the surface of the glass container. They have achieved certain effects in increasing their respective strengths, and are used in some markets. For example, tempered glass containers with a coating are designed to improve scratch resistance to prevent relative deterioration of internal pressure resistance, while ion-exchange tempered glass containers have slightly improved scratch resistance, some internal pressure resistance, and impact resistance. This is an attempt to increase the strength. However, these tempered glass containers are only intended to relatively prevent deterioration of various strengths of the tempered glass containers by coating.
In ion-exchange tempered glass containers, the compressive stress layer is thin, so that the scratch resistance, internal pressure resistance, and impact resistance are not sufficiently increased. On the other hand, a known glass strengthening method is the so-called rapid cooling strengthening method, which strengthens glass by rapidly cooling the glass surface and imparting a compressive stress layer, but the glass to which this method is applied is compared to flat glass etc. It is limited to simple shapes and uniform thickness. It is almost impossible to apply a uniform compressive stress layer to objects with complicated shapes or uneven wall thickness, such as glass containers, and due to the non-uniformity, it is difficult to apply a small amount of external force. There are still problems with its practicality, as there is a strong risk of inducing a self-destruction. Note that although Japanese Patent Publication No. 41-20096 discloses a glass product that combines rapid cooling strengthening and ion exchange strengthening, and a technology for manufacturing the same, it is essentially intended for plate glass, and is not applicable to glass containers. Although there is a description of the applicability of the method, it does not substantially disclose a technique for improving the strength of glass containers. In view of the current state of the prior art and in response to the insatiable demands of those skilled in the art, the inventors of the present invention have conducted extensive research to develop a new tempered glass container that has further increased strength compared to conventional tempered glass containers. developed. Glass containers, which are usually used for carbonated drinks and are called returnable bottles, are manufactured using common glass container forming techniques such as the blow-and-blow method and the press-and-blow method. The final contact between the outer surface and the mold is the final contact. In the following, the outer surface of the glass container is constantly exposed to contact with other objects during transportation on a conveyor, filling, and subsequent recycling, and is frequently subjected to external forces, and the external forces are large. Therefore, the scratches that occur on the outer surface of the container are relatively numerous and large. In comparison, the inner surface of the container is subjected to action during the cleaning process during filling or recycling, but this occurs less frequently and the external force is smaller than that on the outer surface. Therefore, there are fewer and smaller scratches on the inner surface. However, especially in glass containers with relatively thin glass walls called lightweight returnable bottles, when an external force such as an impact from the outside surface is applied, a particularly large tensile stress (FLEXURE) is applied to the inside surface of the container.
STRESS) occurs, and at the location where it occurs,
If the glass cannot withstand the stress, the glass container will break at that point. In contrast, for returnable bottles with a relatively large glass wall thickness, when an external impact force is applied from the outside surface, a FLEXURE STRESS is generated on the inside surface of the container, causing tension around the point of impact on the outside surface. If stress (HINGE STRESS) is mainly generated and the glass cannot withstand the stress at that point, the glass container will be destroyed, but due to the relatively large wall thickness, the so-called impact resistance strength is relatively large. The present inventor conducted a detailed analysis of the use of the returnable bottle, and determined the correlation between the magnitude of the external force applied to the inner and outer surfaces of the returnable bottle, the degree of damage caused by it, and the magnitude of the generated stress and its wall thickness. As a result of the above research, we found a causal relationship between increasing effective practical strength and maintaining that strength. An object of the present invention is to provide a tempered glass container which suppresses the occurrence of FLEXURE STRESS, which is caused by an external impact force particularly on the outer surface of the container, and advantageously increases impact resistance strength. Another object of the present invention is to provide a tempered glass container that has an advantageous combination of increased impact resistance and scratch resistance. Another object of the present invention is to provide a tempered glass container that effectively imparts the above-mentioned strengths and has sufficient strength for practical use as a lightweight returnable bottle. The configuration of the present invention that satisfactorily achieves the above object includes an overlapping layer of a first compressive stress layer applied by rapid cooling and a second compressive stress layer having a high ion exchange rate on its inner surface, and a layer formed by rapid cooling. The glass container has an overlapping layer of a first compressive stress layer having a low ion exchange rate and a third compressive stress layer having a low ion exchange rate on its outer surface. In the tempered glass container of the present invention, the first compressive stress layer imparted by the rapid cooling method cannot have a compressive stress value above a certain level due to the peculiarity or complexity of the shape of the glass container. In other words, the larger the stress value of the first compressive stress layer, the more it contributes to increasing the strength of the glass body, but for articles with complex shapes such as glass containers, the practical strength of the container is improved. For example, if the stress value exceeds a certain level, there is a risk of self-destruction, and this risk increases rapidly, and it becomes easily destroyed by a small amount of external force. As mentioned above, these problems are caused by unbalanced compressive stress due to the complexity of the shape of the glass used as a container and the non-uniformity of the wall thickness. Therefore, the stress value of the first compressive stress layer for the glass container cannot be set to 750 Kg/cm 2 as previously proposed by the applicant in Japanese Patent Application No. 57181/1981 regarding the rapid cooling strengthening technology for glass containers. Should be avoided. On the other hand, when the stress value is less than 100 Kg/cm 2 , it is difficult to achieve the desired synergistic increase in strength, so it is better to avoid it. The layer thickness of the first compressive stress layer is up to the glass thickness.
Up to 1/4 of the way, it reaches a certain depth from the glass surface. Normally, on each glass surface, the thickness of the first compressive stress layer is at least not less than 100 microns.
Since the thickness is substantially three times or more than the thickness of the compressive stress layer formed by the ion exchange treatment, it effectively prevents the elongation of scratches that would affect the deterioration of the container strength, especially the internal pressure resistance strength. On the other hand, the thickness of the compressive stress layer imparted by ion exchange rarely exceeds 100μ, and is substantially less than 30μ. However, since the compressive stress layer can be applied to a high value of approximately 5000 Kg/cm 2 , it is possible to create FLEXURE STRESS in thin glass containers by applying this high stress compressive layer to the inner surface of the container. can be effectively suppressed. Therefore, in a thin glass container, it is possible to obtain high impact strength relative to the glass thickness. In the present invention, when the glass container whose average glass wall thickness in the container body is 2.5 mm or less is targeted, it is relatively advantageous in increasing the impact strength. In other words, the tensile stress (FLEXURE STRESS) generated on the inner surface of the container due to external forces such as impact
The thinner the average wall thickness of the body of the glass container, the greater the effect, and it acts particularly markedly in cases where the value is 2.5 mm or less. This FLEXURE
Suppressing the occurrence of STRESS is due to it. This will prevent breakage, or in other words, the impact strength will be effectively increased. Note that if the average wall thickness of the body is less than 1.0 mm, it will not be possible to sufficiently compensate for the decrease in strength due to the thin wall, and it will be difficult not only to increase the strength sufficiently but also to maintain the desired strength. These numerical limits were calculated from actual measurement data to determine whether or not it is possible to maintain sufficient practical strength, especially impact strength, based on the occurrence of FLEXURE STRESS. To be more specific about the tempered glass container of the present invention, the first compressive stress layer imparted by rapid cooling and the second and third compressive stress layers imparted by ion exchange overlap each other on the inner and outer surfaces of the container. A high stress value compression layer due to ion exchange on the inner surface is obtained by increasing the ion exchange rate, and a relatively low stress value compression layer on the outer surface is obtained by increasing the ion exchange rate. It can be obtained by The glass container applied to the present invention is usually made of soda lime silica glass, which has a softening point of about 725-730°C, a deformation point of about 635-640°C, an annealing point of about 550-555°C, and The strain point is within the range of approximately 510-515°C. In the first compressive stress layer obtained by rapid cooling, the stress value is set to 100 to 750 as described above.
In order to keep it within the range of Kg/cm 2 , it is necessary to take into consideration the special shape of the glass container.
Effective in a temperature range of 200℃ by rapidly cooling the glass surface at approximately 10 to 30℃/sec and injecting air at room temperature (approximately 20℃) at a glass surface velocity of 10 to 60m/sec to cool the glass surface. can be obtained. Generally, the stress value of the compressive stress layer due to rapid cooling is determined by the viscosity coefficient and viscosity change rate of the glass, and these are all determined by the temperature of the glass before and after the rapid cooling process, the heat transfer coefficient, and the temperature of the cooling fluid.・It is determined by the correlation between speed and kinematic viscosity coefficient, and it has been empirically revealed that the cooling rate factor, which is determined by the glass temperature before and after treatment and the temperature and speed of the cooling fluid, has the most significant effect. ing. On the other hand, potassium salts are generally used as alkali salts for ion exchange of soda lime silica glass. Typically, one or a combination of two or more of potassium nitrate, potassium chloride, potassium sulfate, etc. can be employed. The method for applying the potassium salt to the glass container is not particularly limited, and may be a molten salt immersion method, a spray method, an aqueous solution immersion method, a spray method, or the like. The glass container is subjected to a heat treatment for ion exchange at a temperature within the range of 0 to 100°C below the strain point of ordinary glass while in contact with potassium salt. The compressive stress layer created by ion exchange is greatly affected by the amount of potassium salt attached to the glass surface, the heat treatment temperature, and the heat treatment time, and the stress value is particularly affected. Since it is extremely difficult to distinguish the heat treatment temperature and heat treatment time between the inner and outer surfaces of a glass container and control them individually, it is necessary to apply second and third compressive stress layers with different stress values to the inner and outer surfaces of the glass container. is realistically controlled by the amount of potassium salt deposited. In other words, the amount of potassium salt deposited is large on the inner surface of the glass container and comparatively less on the outer surface, and by applying ion exchange heat treatment after coating, the compressive stress layer on the inner surface of the glass container is larger than that on the outer surface. A second compressive stress layer having a stress value can be applied. More specifically, a stress layer can be efficiently applied by applying a concentrated potassium salt solution, such as a saturated solution, to the inner surface of the glass container and a diluted solution to the outer surface, followed by heat treatment. In addition, even if the amount of potassium salt attached to the outer surface is extremely small,
Within the scope of the present invention. The glass containers to be treated that are applied to the present invention are generally untreated, but in order to increase the practical strength of the container, especially the scratch resistance, a metal oxide coating is used. It is convenient to do so. In particular, in the tempered glass container of the present invention, the outer surface is a compressed layer with a relatively low stress value, so the scratch resistance is low. Note that the metal oxide film is usually applied as follows. That is, SnCl 4 gas, SnCl 2 (CH 3 ) 2 gas, etc. are applied to the high temperature outer surface of the glass container immediately after it comes out of the molding machine. Similarly, a metal oxide film can also be applied by using an organic compound such as titanium or zirconium. Furthermore, the glass container of the present invention can be provided with additional protection means on its outer surface to improve its scratch resistance compared to the general level, thereby further improving the practical strength properties of the final product. Another safeguard is
Formation of a protective film of an organic material having lubricity, elasticity, etc. on the outer surface of a glass container, such as fatty acids such as oleic acid, surfactants such as polyoxyethylene sorbitan monooleate, polyethylene, polyurethane, ionomer resins, etc. It is to coat the resin with an organic substance. Hereinafter, the present invention will be explained in more detail based on examples. Example: Glass container (capacity 250ml) at high temperature (approximately 680℃) immediately after coming out of the glass container molding machine (capacity 250ml) weight 98
g, body average wall thickness 1.7 mm) was treated with SnCl 2 (CH 3 ) 2 gas to form a SnO 2 film on its outer surface. Subsequently, online, the temperature of the container was adjusted to approximately 580°C on the outer surface of the center part of the body, and approximately 640°C on the inner surface of the body, and a rod-shaped nozzle was inserted into the inner surface of the container from the container mouth. 1.5Kg/cm 2 of compressed air (temperature of approximately 20°C) was applied to the outer surface of the container through a nozzle roughly following the outer shape of the container, and 1.0Kg/cm 2 of compressed air was applied to the container at approximately 120 RPM. It was sprayed for about 10 seconds while rotating to rapidly cool it down. Through this rapid cooling process, the outer surface of the container is heated to approximately 250°C and the inner surface to approximately 300°C.
The temperature dropped to ℃. At this stage, several of the glass containers were gradually cooled to room temperature, and the fractured surfaces of their bodies were measured using a Beretsk compensator, and a compressive stress value of approximately 360 kg/cm 2 on average was observed on the inner and outer surfaces. . The thickness of the stress layer was approximately 170μ. In addition, a tensile stress value of approximately 160 Kg/cm 2 was confirmed at the center of the cross section. After this rapid cooling process, the glass container was cooled to the above temperature, and then KNO 3 and KCl were added to the inner surface of the glass container.
(KNO 3 :KCl=6.2:3.8 weight ratio) mixed saturated aqueous solution, about 30% KNO 3 aqueous solution on the outer surface,
The coating was applied by spraying for about 5 seconds each from Sonimist nozzles installed inside and outside the container. After drying, it was subjected to ion exchange treatment at about 480°C for 30 minutes in an electric furnace, cooled to room temperature, and residual alkali salts were washed away to obtain a tempered glass container. When the stress value of the outer surface compressed layer of this tempered glass container was measured using a surface stress meter, it was found that the average value was 1050 Kg/cm 2 , and the thickness of the stress layer due to ion exchange was about 11 μm. Similarly, on the inner surface of the container, the average
The stress value was 1650 Kg/cm 2 and the average layer thickness was 16 μ. The tensile stress at the center of the cross section due to the Beretsk compensator was approximately 133 Kg/cm 2 . The glass composition of the glass container is as follows. ●Glass composition SiO 2 71.5% by weight Al 2 O 3 2.5 CaO 10.9 Na 2 O 12.7 K 2 O 1.4 Others 1.0 Total 100.0 ●Softening point 727℃ ●Deformation point 637℃ ●Annealing point 554℃ ●Strain point 515℃ This implementation In the example, not a single glass container was broken during the process. The practical strength characteristics of the tempered glass container obtained in this example are compared with those of the untreated container and the comparative container, and are listed in Table 1. Note that each data is based on n=30 pieces.

【表】 第1表から 明らかなように、本発明の強化ガ
ラス容器は未処理容器、比較容器との対比におい
て、優れた実用強度を保有していることがわか
る。例えば、殊に耐衝撃強度において、“実施
例”容器は“比較容器1”に比して、1トリツプ
で約69%の強度高及び10トリツプで約127%の強
度高が、認められる。又、“比較容器2”に比し
て、1トリツプで約10%の強度高及び10トリツプ
で約23%の強度高が、認められる。その他、耐内
圧強度においても、“実施例”容器は“比較容
器”に比して、相対的に強度増となつている。
又、未処理容器との比較においても、トリツプ後
の耐衝撃強度はトリツプ数が増加するに従い、約
3倍程度、耐内圧強度においても約2倍の増加が
認められる。なお、第1表における“比較容器
1”とは、“実施例”容器と同一形状で、かつ
“実施例”と同一条件の急冷処理のみを施した、
金属酸化物被覆と急冷処理とを組合せた強化ガラ
ス容器である。“比較容器2”とは前記と同じ容
器形状で、かつ“実施例”と同一条件のイオン交
換処理を施した いわゆる金属酸化物被覆とイオ
ン交換処理とを組合せた強化ガラス容器である。
“比較容器1”、“比較容器2”、“実施例”共に
同一条件のアイオノマー樹脂をコーテイングした
有機物被覆容器である。 なお、第1表の諸事項及びデータは 次の方法
でテストし、測定したものである。 耐内圧強度:JIS S2302に準じて、AGR社製の内
圧試験機にて、当該容器の破損に至るまでの内
圧値を測定し、それを耐内圧強度とした。 耐衝撃強度:JIS S2302に準じて、AGR社製の衝
撃試験機にて、当該容器の破損に至るまでの衝
撃値を測定し、それを耐衝撃強度とした。 トリツプ:充填時等のガラス容器取扱いによる強
度劣化の度合を調べるために、AGR社製のラ
インシミユレーターにて、当該容器の1分間の
加傷を付与し、これを1トリツプとした。 以上、詳述した如く、本発明は従来の量産性の
ガラス容器に対し容易に応用し得て、殊に軽量リ
ターナブル壜としての用途に応じた実用強度殊に
耐衝撃強度の増強を一段と高く図ることができ、
更に トリツプ数が増えても、当該耐衝撃強度の
劣化がほとんどない等、特筆すべき点を有し、当
業界に寄与するところ著しい。
[Table] As is clear from Table 1, the tempered glass container of the present invention has excellent practical strength in comparison with the untreated container and the comparative container. For example, especially in terms of impact strength, the "Example" container is found to have approximately 69% higher strength at 1 trip and approximately 127% higher strength at 10 trips compared to "Comparative Container 1." Moreover, compared to "Comparative Container 2", an increase in strength of about 10% after 1 trip and an increase of about 23% after 10 trips is observed. In addition, in terms of internal pressure resistance, the "Example" container has a relatively higher strength than the "Comparative container".
Also, in comparison with untreated containers, as the number of trips increases, the impact strength after tripping increases by about three times, and the internal pressure resistance strength also increases by about two times. In addition, "Comparison container 1" in Table 1 refers to a container that has the same shape as the "Example" container and was subjected to only the rapid cooling treatment under the same conditions as the "Example".
This is a tempered glass container that combines metal oxide coating and rapid cooling treatment. "Comparative Container 2" is a tempered glass container having the same shape as above and subjected to ion exchange treatment under the same conditions as in "Example", which is a combination of so-called metal oxide coating and ion exchange treatment.
Both "Comparison container 1", "Comparison container 2" and "Example"
This is an organic substance coated container coated with ionomer resin under the same conditions. The items and data in Table 1 were tested and measured using the following method. Internal pressure strength: In accordance with JIS S2302, the internal pressure value until the container breaks was measured using an internal pressure tester manufactured by AGR, and this was defined as the internal pressure strength. Impact strength: In accordance with JIS S2302, the impact value of the container up to breakage was measured using an impact tester manufactured by AGR, and this value was defined as the impact strength. Trip: In order to examine the degree of strength deterioration due to handling of the glass container during filling, etc., the container was damaged for 1 minute using a line simulator manufactured by AGR, and this was defined as 1 trip. As described in detail above, the present invention can be easily applied to conventional mass-produced glass containers, and aims to further increase practical strength, especially impact resistance, particularly for use as lightweight returnable bottles. It is possible,
Furthermore, even if the number of trips increases, there is almost no deterioration in the impact strength, which is noteworthy, and it is a significant contribution to this industry.

Claims (1)

【特許請求の範囲】 1 急速冷却により付与された第1圧縮応力層と
イオン交換率の高い第2圧縮応力層との重複層を
その内表面に、急速冷却により付与された第1圧
縮応力層とイオン交換率の低い第3圧縮応力層と
の重複層をその外表面に、それぞれ保有してなる
強化ガラス容器。 2 第1圧縮応力層の応力値が100〜750Kg/cm2
ある特許請求の範囲第1項記載の強化ガラス容
器。 3 胴部平均肉厚が1.0〜2.5mmである特許請求の
範囲第1項又は第2項記載の強化ガラス容器。 4 容器外表面に金属酸化物被膜及び有機物保護
被膜を付与した特許請求の範囲第3項記載の強化
ガラス容器。
[Claims] 1. An overlapping layer of a first compressive stress layer applied by rapid cooling and a second compressive stress layer with a high ion exchange rate on the inner surface, and a first compressive stress layer applied by rapid cooling. and a third compressive stress layer with a low ion exchange rate on its outer surface. 2. The tempered glass container according to claim 1, wherein the first compressive stress layer has a stress value of 100 to 750 Kg/cm 2 . 3. The tempered glass container according to claim 1 or 2, wherein the body has an average wall thickness of 1.0 to 2.5 mm. 4. The tempered glass container according to claim 3, wherein the outer surface of the container is provided with a metal oxide coating and an organic protective coating.
JP14026880A 1980-10-07 1980-10-07 Tempered glass container Granted JPS5767036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14026880A JPS5767036A (en) 1980-10-07 1980-10-07 Tempered glass container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14026880A JPS5767036A (en) 1980-10-07 1980-10-07 Tempered glass container

Publications (2)

Publication Number Publication Date
JPS5767036A JPS5767036A (en) 1982-04-23
JPS6127337B2 true JPS6127337B2 (en) 1986-06-25

Family

ID=15264815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14026880A Granted JPS5767036A (en) 1980-10-07 1980-10-07 Tempered glass container

Country Status (1)

Country Link
JP (1) JPS5767036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382961U (en) * 1986-11-17 1988-05-31
JPH0376131A (en) * 1989-08-18 1991-04-02 Toshiba Components Co Ltd Semiconductor pressure sensor device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273048B2 (en) * 2012-06-07 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US9975801B2 (en) 2014-07-31 2018-05-22 Corning Incorporated High strength glass having improved mechanical characteristics
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
KR102492060B1 (en) 2016-01-12 2023-01-26 코닝 인코포레이티드 Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
CN111065609A (en) 2017-08-24 2020-04-24 康宁股份有限公司 Glass with improved tempering capability
TWI785156B (en) 2017-11-30 2022-12-01 美商康寧公司 Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
CN114514115B (en) 2019-08-06 2023-09-01 康宁股份有限公司 Glass laminate with embedded stress spike for crack prevention and method of making same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382961U (en) * 1986-11-17 1988-05-31
JPH0376131A (en) * 1989-08-18 1991-04-02 Toshiba Components Co Ltd Semiconductor pressure sensor device

Also Published As

Publication number Publication date
JPS5767036A (en) 1982-04-23

Similar Documents

Publication Publication Date Title
AU2004232803B2 (en) Method and apparatus for strengthening glass
US4021218A (en) Chemical method of strengthening glass articles subjected to abrasion resistance treatment
US3743491A (en) Method of strengthening glass and increasing the scratch resistance of the surface thereof
JPS6127336B2 (en)
JPS6127337B2 (en)
US9045364B2 (en) Surface treatment process for glass containers
US4206253A (en) Method of strengthening chemically a glass container
US3827871A (en) Coating process for glass containers
US3507687A (en) Glass coated ferrous article and method of making the same
CA1041846A (en) Surface treatment of glass containers
US3352708A (en) Glass having dual protective coatings thereon and method for forming such coatings
US4134746A (en) Method of strengthening glass articles
ZA200508571B (en) Method and apparatus for strengthening glass
AU642025B2 (en) Method for enhancing the strength of a glass container and strength enhanced glass container
US3498825A (en) Method of rendering glass surfaces abrasion-resistant and glass articles produced thereby
GB2230260A (en) Strengthening of glass containers
JPS6022662B2 (en) Method for manufacturing lightweight bottles with stable chemical durability and mechanical strength
JPS631256B2 (en)
US3875763A (en) Method of strengthening glass containers
US20230087978A1 (en) Aqueous ion exchange strengthening of glass articles
JPS6127335B2 (en)
US3418154A (en) Method of rendering glass surfaces abrasion-resistant and glass articles produced thereby
CA1036823A (en) Method of strengthening glass containers
JPS632906B2 (en)
AU587091B2 (en) Process for forming structural coating on vitreous ceramic or porcelain substrate