JP5720443B2 - Electronics - Google Patents

Electronics Download PDF

Info

Publication number
JP5720443B2
JP5720443B2 JP2011148114A JP2011148114A JP5720443B2 JP 5720443 B2 JP5720443 B2 JP 5720443B2 JP 2011148114 A JP2011148114 A JP 2011148114A JP 2011148114 A JP2011148114 A JP 2011148114A JP 5720443 B2 JP5720443 B2 JP 5720443B2
Authority
JP
Japan
Prior art keywords
housing
refrigerant
flow path
thermal conductivity
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011148114A
Other languages
Japanese (ja)
Other versions
JP2013016622A (en
Inventor
昌行 杉田
昌行 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011148114A priority Critical patent/JP5720443B2/en
Publication of JP2013016622A publication Critical patent/JP2013016622A/en
Application granted granted Critical
Publication of JP5720443B2 publication Critical patent/JP5720443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、内部に複数の電子部品を備えた電子機器に関する。本発明は、電子部品の冷却効率の優れた電子機器を提供する。   The present invention relates to an electronic device having a plurality of electronic components therein. The present invention provides an electronic device with excellent cooling efficiency of electronic components.

近年、様々な製品分野において、電子機器は多数の電子部品(典型的には半導体チップ)を搭載するようになってきている。特に、一般に「コントローラ」と呼ばれる、モータを制御する電子機器は、使用する半導体チップの数が多く、また、制御対象が大電力を必要とするモータであるため、電子分品群のトータルの発熱量が多い。そのため、筐体内に冷却構造を備える電子機器も多い。また、近年のコンピュータ(特にスーパーコンピュータ)も、CPUの高性能化に伴い発熱量が飛躍的に増大しており、冷却構造を備えるものが多くなってきている。   In recent years, in various product fields, electronic devices have been mounted with a large number of electronic components (typically semiconductor chips). In particular, an electronic device that controls a motor, generally called a “controller”, uses a large number of semiconductor chips and a motor that requires a large amount of power to be controlled. Large amount. Therefore, many electronic devices have a cooling structure in the housing. Also, recent computers (particularly supercomputers) have dramatically increased the amount of heat generated as the CPU performance has increased, and many computers have a cooling structure.

例えば特許文献1に、冷却構造を工夫した電子機器が開示されている。その技術は、冷媒の流路の容積をその上流から下流にかけて次第に小さく変化させるものである。そのような構造を採用することによって、下流では上流よりも冷媒の流速が早くなり、下流での冷却効果が向上する。   For example, Patent Document 1 discloses an electronic device with a devised cooling structure. This technique gradually changes the volume of the refrigerant flow path from upstream to downstream. By adopting such a structure, the flow rate of the refrigerant is faster in the downstream than in the upstream, and the downstream cooling effect is improved.

国際公開WO00/16397号公報International Publication WO 00/16397

通常、冷却機構を備える電子機器では、冷媒を循環させるポンプ、あるいはファン(冷媒がガスの場合)を備える。上記特許文献1に開示された技術も、ポンプによって冷媒を循環させている。本発明は、ポンプ(又はファン)を要することなく冷媒を循環させる技術を提供する。なお、本明細書が開示する技術は、ポンプ(又はファン)を使用することを除外するものではない。本明細書が開示する技術にポンプ(又はファン)を組み合わせると、ポンプ以外に冷媒を循環させる力が作用するので、従来の冷却構造よりも冷却効率を高めた電子機器を提供することができる。本発明は、冷媒循環能力を含む意味での冷却効率を向上させる技術を提供する。   Usually, an electronic device including a cooling mechanism includes a pump for circulating a refrigerant or a fan (when the refrigerant is a gas). The technique disclosed in Patent Document 1 also circulates the refrigerant using a pump. The present invention provides a technique for circulating a refrigerant without requiring a pump (or a fan). Note that the technology disclosed in this specification does not exclude the use of a pump (or fan). When a pump (or fan) is combined with the technology disclosed in this specification, a force for circulating a refrigerant acts in addition to the pump, so that an electronic device with higher cooling efficiency than a conventional cooling structure can be provided. The present invention provides a technique for improving the cooling efficiency in a sense including the refrigerant circulation capability.

本明細書が開示する技術の一態様は、次の電子機器に具現化することができる。その電子機器は、筐体の上方に配置された放熱板と、筐体上方に配置されており放熱板に隣接する冷媒冷却部と、冷媒を冷媒冷却部から筐体下方へと導く下降流路と、下降流路を通じて筐体下方へ移動した冷媒を再び冷媒冷却部へ導く上昇流路を備える。冷媒冷却部にて冷媒は、放熱板からの放熱によってその温度が低くなる(冷却される)。この電子機器は、上昇流路の内壁に冷却対象の電子部品(典型的には半導体チップ)が配置されており、下降流路を形成する壁部材の熱伝導率が、電子部品が取り付けられた上昇流路壁部材の熱伝導率よりも小さい別言すれば、上昇流路の側壁は、下降流路を構成する部材(板材)よりも熱伝導率の高い部材(板材)で構成されている。そして、この電子機器は、筐体が上昇流路と下降流路の内壁の一部を形成しており、筐体の上側を構成する板材の熱伝導率が、筐体の下側を構成する板材の熱伝導率よりも高い。 One embodiment of the technology disclosed in this specification can be embodied in the following electronic device. The electronic device includes a heat radiating plate disposed above the housing, a refrigerant cooling unit disposed above the housing and adjacent to the heat radiating plate, and a downflow path that guides the refrigerant from the refrigerant cooling unit to the lower portion of the housing. And an ascending channel that guides the refrigerant that has moved downward through the descending channel to the refrigerant cooling unit. In the refrigerant cooling section, the temperature of the refrigerant is lowered (cooled) by the heat radiation from the heat sink. In this electronic device, an electronic component (typically a semiconductor chip) to be cooled is arranged on the inner wall of the ascending channel, and the thermal conductivity of the wall member forming the descending channel is attached to the electronic component. It is smaller than the thermal conductivity of the rising channel wall member . In other words, the side wall of the ascending flow path is composed of a member (plate material) having a higher thermal conductivity than the member (plate material) constituting the descending flow path. In this electronic device, the casing forms part of the inner walls of the ascending flow path and the descending flow path, and the thermal conductivity of the plate material that forms the upper side of the casing forms the lower side of the casing. It is higher than the thermal conductivity of the plate material.

ここで、「筐体上方」、「筐体下方」とは、鉛直上方に位置する筐体内部部位、鉛直下方に位置する筐体内部部位を意味する。また、上昇流路を構成する全ての部材が上記関係(即ち、下降流路を構成する部材よりも熱伝導率が高いこと)を満たす必要はない。下降流路の一部と上昇流路の一部が上記関係を満たしていればよい。好ましくは、下降流路の50%と上昇流路の50%が上記関係を満たすとよい。さらに、一つの部材が下降流路と上昇流路を隔てる場合、そのような部材は下降流路を構成する部材として扱う。上昇流路を通過する冷媒と下降流路を通過する冷媒の間で熱交換が生じることを防止するためである。   Here, “upper case” and “lower case” mean a case internal part located vertically above and a case internal part located vertically below. Moreover, it is not necessary for all the members constituting the ascending flow path to satisfy the above relationship (that is, having a higher thermal conductivity than the members constituting the descending flow path). It is only necessary that a part of the descending channel and a part of the ascending channel satisfy the above relationship. Preferably, 50% of the descending channel and 50% of the ascending channel satisfy the above relationship. Further, when one member separates the descending channel and the ascending channel, such a member is handled as a member constituting the descending channel. This is to prevent heat exchange between the refrigerant passing through the ascending channel and the refrigerant passing through the descending channel.

この電子機器では、上昇流路内の冷媒は電子部品より熱を奪い、自身の温度が上昇する。温度が上昇した冷媒は熱膨張により密度が下がり、上方へと移動する。筐体上方の冷媒冷却部に達した冷媒は放熱板によって冷却され、上昇流路を上がってきた温度の高い冷媒に押し出されるように下降流路へと向かい、筐体下方へと移動する。即ち、この電気機器では、熱対流の原理によって冷媒を循環させる。熱対流を利用することによって、ポンプ(ファン)を要することなく冷媒を循環させることができる。また、上側は熱伝導率が高く下側は熱伝導率が低いという構造により、筐体内部の上方では冷媒の冷却が促進され、下方では冷媒の昇温が促進される。よって、熱対流の原理による冷媒の循環が促進される。あるいは、本明細書が開示する技術をポンプ(又はファン)付きの冷却機構に適用すれば、同等のポンプを備える従来の電子機器よりも冷却効率を高めることができる。 In this electronic device, the refrigerant in the ascending channel takes heat away from the electronic component, and its own temperature rises. The refrigerant whose temperature has risen decreases in density due to thermal expansion and moves upward. The refrigerant that has reached the refrigerant cooling section above the casing is cooled by the heat radiating plate, moves toward the lower flow path so as to be pushed out by the high-temperature refrigerant that has gone up the upper flow path, and moves downward. That is, in this electric device, the refrigerant is circulated by the principle of thermal convection. By utilizing thermal convection, the refrigerant can be circulated without requiring a pump (fan). Further, the structure in which the upper side has a high thermal conductivity and the lower side has a low thermal conductivity promotes cooling of the refrigerant above the inside of the housing, and promotes the temperature rise of the refrigerant below. Therefore, the circulation of the refrigerant according to the principle of thermal convection is promoted. Or if the technique which this specification discloses is applied to a cooling mechanism with a pump (or fan), cooling efficiency can be improved rather than the conventional electronic device provided with an equivalent pump.

さらに上記の電子機器では、上昇流路の内壁には電子部品が配置されている。電子部品の熱は高熱伝導率の壁部材により上昇流路壁面に速やかに広がる。そのため、上昇流路では、冷媒と電子部品との間の熱交換が促進され、電子部品が効率よく冷却されるとともに、冷媒の温度がより上昇する。他方、下降流路を形成する壁部材は、上昇流路を形成する壁部材よりも熱伝導率が低いので、下降流路では冷媒の温度上昇が抑えられる。この電子機器は、上昇流路を構成する部材と下降流路を構成する部材について、前者に後者よりも相対的に熱伝導率の高い材料を用いることによって、熱対流を促進し、もって電子部品の冷却能力を向上させる。   Furthermore, in the above electronic device, electronic components are arranged on the inner wall of the ascending flow path. The heat of the electronic component spreads quickly on the wall surface of the ascending channel by the wall member having high thermal conductivity. Therefore, in the ascending flow path, heat exchange between the refrigerant and the electronic component is promoted, the electronic component is efficiently cooled, and the temperature of the refrigerant rises more. On the other hand, the wall member that forms the descending channel has a lower thermal conductivity than the wall member that forms the ascending channel, so that the temperature rise of the refrigerant is suppressed in the descending channel. This electronic device promotes thermal convection by using a material having a higher thermal conductivity than the latter for the member constituting the ascending flow path and the member constituting the descending flow path. Improve the cooling capacity.

冷媒はガスでもよいが液体であることが好ましい。液体の方がガスよりも冷却能力が高く、また、対流も生じ易い。冷媒としては、例えば、フッ素系不活性液体が好ましい。   The refrigerant may be a gas but is preferably a liquid. Liquid has a higher cooling capacity than gas, and convection tends to occur. As the refrigerant, for example, a fluorine-based inert liquid is preferable.

本明細書が開示する技術の別の態様では、電子部品を搭載した複数の板材が鉛直方向に重なるように配置されており、上下に隣接する板材が上昇流路の上下壁を構成して複数段の上昇流路が形成されており、冷媒が上昇流路を蛇行して流れるように、上下に隣接する上昇流路の連絡口が、下段から上段へ向かって互い違いに配置されているとよい。さらに、下降流路は、筐体上方から下方へ向けて直線状であるとよい。長い上昇流路を確保することによって多くの電子部品を冷却できる一方で、短い下降流路によって低温の冷媒を速やかに筐体下方へ供給できる。   In another aspect of the technology disclosed in this specification, a plurality of plate members on which electronic components are mounted are arranged so as to overlap in the vertical direction, and a plurality of plate members adjacent in the vertical direction constitute upper and lower walls of the ascending flow path. The rising channel of the stage is formed, and the connection ports of the rising channel adjacent to the upper and lower sides may be alternately arranged from the lower stage to the upper stage so that the refrigerant meanders and flows in the upward path. . Furthermore, the descending flow path may be linear from the top to the bottom of the housing. By securing a long ascending channel, many electronic components can be cooled, and a low temperature coolant can be quickly supplied to the lower part of the housing by a short descending channel.

第1実施例の電子機器の模式的断面を示す。The typical cross section of the electronic device of 1st Example is shown. 第2実施例の電子機器の模式的断面を示す。The typical cross section of the electronic device of 2nd Example is shown.

図1に、第1実施例の電子機器100の模式的断面図を示す。図に記した座標系は、X、Y軸が水平方向を示し、Z軸が鉛直方向を示している。電子機器100は、自動車やロボットのコントローラであり、多種多数の電子部品22を有している。電子部品22の多くは半導体チップであり、それらの電子部品22は、電子基板24に搭載されている。図1では、3枚の電子基板24が描かれているが、最上段の電子基板22にのみ、符号22を付し、中段と下段の電子基板24に搭載された電子部品については符号を省略している。電子機器100が有する多種の電子部品は様々な形状・大きさを取り得るが、図1では、多種多数の部品群を表す複数の電子部品22を、全て同一の単純な矩形で模式的に表していることに留意されたい。   FIG. 1 is a schematic cross-sectional view of an electronic device 100 according to the first embodiment. In the coordinate system shown in the figure, the X and Y axes indicate the horizontal direction, and the Z axis indicates the vertical direction. The electronic device 100 is a controller for an automobile or a robot, and has a large number of electronic components 22. Many of the electronic components 22 are semiconductor chips, and these electronic components 22 are mounted on an electronic substrate 24. In FIG. 1, three electronic boards 24 are depicted, but the reference numeral 22 is given only to the uppermost electronic board 22, and the reference numerals are omitted for the electronic components mounted on the middle and lower electronic boards 24. doing. Various electronic components included in the electronic device 100 can take various shapes and sizes. In FIG. 1, a plurality of electronic components 22 representing a large number of component groups are all schematically represented by the same simple rectangle. Please note that.

まず、電子機器100の構造を概説する。電子機器100は、筐体4の内部が冷媒で満たされ、その冷媒が流路12を循環することによって、電子部品22を冷却する。流路12は、冷媒を筐体の上側と下側の間で移動させるように構成されている。筐体4の上部壁の上面には放熱板2が設けられ、筐体4の上方を流れる冷媒は、この放熱板2の作用によって冷却される。冷却された冷媒は密度が上がるので重くなり、下降流路12aを通って筐体の最下部の流路12bへと移動する。その反対に、上昇流路12c、12dを流れる冷媒は、電子部品22から熱を奪い、温度が上昇する。温度が高くなった冷媒は密度が下がり、上昇流路12c、12dを通って筐体最上部の流路12eへと移動する。筐体最上部の流路12eは、放熱板2に隣接しており、ここで冷媒が冷却される。以下、筐体最上部の流路12eを冷媒冷却部12eと称する場合がある。上記の構造により電子機器100では、熱対流により、駆動力を要することなく、冷媒が循環する。図1(及び図2)における白抜きの矢印が冷媒の流れを示している。以下、電子機器100の内部の構造を詳しく説明する。   First, the structure of the electronic device 100 will be outlined. In the electronic device 100, the interior of the housing 4 is filled with the refrigerant, and the refrigerant circulates through the flow path 12, thereby cooling the electronic component 22. The flow path 12 is configured to move the refrigerant between the upper side and the lower side of the housing. The heat sink 2 is provided on the upper surface of the upper wall of the housing 4, and the refrigerant flowing above the housing 4 is cooled by the action of the heat sink 2. Since the density of the cooled refrigerant increases, the refrigerant becomes heavier and moves through the descending flow path 12a to the lowermost flow path 12b of the housing. On the contrary, the refrigerant flowing through the rising channels 12c and 12d takes heat from the electronic component 22 and the temperature rises. The refrigerant whose temperature has increased decreases in density and moves to the flow path 12e at the top of the housing through the rising flow paths 12c and 12d. The flow path 12e at the top of the housing is adjacent to the heat radiating plate 2, where the refrigerant is cooled. Hereinafter, the flow path 12e at the top of the housing may be referred to as a refrigerant cooling unit 12e. With the above structure, in the electronic device 100, the refrigerant circulates due to thermal convection without requiring a driving force. The white arrows in FIG. 1 (and FIG. 2) indicate the flow of the refrigerant. Hereinafter, the internal structure of the electronic device 100 will be described in detail.

電子部品22を搭載した電子基板24は、水平方向に広がっている隔壁(板材)8a〜8cに載せられ、その水平隔壁8a〜8cが、筐体4内に固定されている。水平隔壁8a〜8c、及び垂直隔壁6は、筐体4内の空間を仕切る壁である。それらの隔壁によって、筐体4内に冷媒の流路が形成される。水平隔壁8a〜8c、及び、垂直隔壁6は、筐体4の内壁に直接固定されたり(水平隔壁8b)、支持スペーサ28a、28bを介して筐体4に固定される(水平隔壁8a、垂直隔壁6)。水平隔壁8aは、垂直隔壁6に固定されている。水平隔壁8cは、垂直隔壁6と支持スペーサ28bに固定されている。   The electronic board 24 on which the electronic component 22 is mounted is placed on partition walls (plate members) 8 a to 8 c that spread in the horizontal direction, and the horizontal partition walls 8 a to 8 c are fixed in the housing 4. The horizontal partition walls 8 a to 8 c and the vertical partition wall 6 are walls that partition the space in the housing 4. A refrigerant flow path is formed in the housing 4 by the partition walls. The horizontal partition walls 8a to 8c and the vertical partition wall 6 are directly fixed to the inner wall of the housing 4 (horizontal partition wall 8b), or fixed to the housing 4 via support spacers 28a and 28b (horizontal partition wall 8a, vertical). Septum 6). The horizontal partition wall 8 a is fixed to the vertical partition wall 6. The horizontal partition 8c is fixed to the vertical partition 6 and the support spacer 28b.

3枚の水平隔壁8a〜8cは鉛直方向に重なるように配置され、夫々の水平隔壁の上側と下側に冷媒の流路が形成される。即ち、上下に隣接する水平隔壁が上昇流路の上下壁を構成して複数段の流路が形成される。最下段の水平隔壁8aと筐体4の下部壁によって、最下部の流路12bが形成される。最下段の水平隔壁8aと中段の水平隔壁8bによって、2段目の流路12cが形成される。中段の水平隔壁8bと最上段の水平隔壁8cによって、3段目の流路12dが形成される。最上段の水平隔壁8cと筐体4の上部壁によって、冷媒冷却部12e(最上部の流路12e)が形成される。   The three horizontal partition walls 8a to 8c are arranged so as to overlap in the vertical direction, and a refrigerant flow path is formed above and below each horizontal partition wall. That is, the upper and lower horizontal partition walls constitute the upper and lower walls of the ascending channel to form a plurality of stages of channels. The lowermost flow path 12 b is formed by the lowermost horizontal partition wall 8 a and the lower wall of the housing 4. The lowermost horizontal partition wall 8a and the middle horizontal partition wall 8b form a second-stage flow path 12c. A third-stage flow path 12d is formed by the middle horizontal partition wall 8b and the uppermost horizontal partition wall 8c. The uppermost horizontal partition wall 8c and the upper wall of the housing 4 form a refrigerant cooling unit 12e (uppermost channel 12e).

最下部の流路12bと2段目の流路12cとの連絡口14aは、図1において筐体左側に設けられている。2段目の流路12cと3段目の流路12dとの連絡口14bは、図1において筐体右側に設けられている。3段目の流路12dと冷媒冷却部12eとの連絡口14cは、図1において筐体左側に設けられている。即ち、上下に隣接する流路の連絡口14a〜14cが、筐体4の内部で下段から上段に向けて、水平方向からみて、流路端部の左端−右端−左端というように、互い違いに配置されている。   A communication port 14a between the lowermost flow channel 12b and the second-stage flow channel 12c is provided on the left side of the housing in FIG. A communication port 14b between the second-stage flow path 12c and the third-stage flow path 12d is provided on the right side of the housing in FIG. A communication port 14c between the third-stage flow path 12d and the refrigerant cooling section 12e is provided on the left side of the housing in FIG. That is, the communication ports 14a to 14c of the upper and lower adjacent flow paths are staggered from the bottom to the top in the housing 4 as viewed from the horizontal direction, such as the left end-right end-left end of the flow path end. Has been placed.

垂直隔壁6は、図1にて筐体4の内部右側に位置し、上昇流路12c、12dと、下降流路12aを隔てている。垂直隔壁6と、筐体4の右側壁によって、下降流路12aが形成される。下降流路12aは、筐体内部上方から下方へ直線的に伸びている。   The vertical partition wall 6 is positioned on the right side inside the housing 4 in FIG. 1 and separates the ascending flow paths 12c and 12d from the descending flow path 12a. A descending flow path 12 a is formed by the vertical partition wall 6 and the right side wall of the housing 4. The downward flow path 12a extends linearly from the upper part to the lower part inside the housing.

電子部品22を含めた電子基板24の全体が絶縁膜で覆われている。前述したように筐体4の内部は冷媒液(フッ素系不活性液体)で満たされているが、絶縁膜の存在により、冷媒で電子部品22の絶縁が破壊されることはない。   The entire electronic substrate 24 including the electronic component 22 is covered with an insulating film. As described above, the inside of the housing 4 is filled with the refrigerant liquid (fluorine-based inert liquid). However, the insulation of the electronic component 22 is not broken by the refrigerant due to the presence of the insulating film.

前述したように、冷媒は、熱対流によって筐体内を自然対流する。電子機器100では、熱対流を促進するため、上昇流路12cを形成する水平隔壁8a、8bの材質と、下降流路を形成する隔壁6及び最上部の流路12eを形成する隔壁8cの材質が異なる。下降流路12aを形成する隔壁6の熱伝導率は、電子部品22が取り付けられた上昇流路12cを形成する水平隔壁8a、8bの熱伝導率よりも小さい。具体的には、隔壁6は、炭素繊維強化プラスチック(CFRP)で作られており、水平隔壁8a、8bは、アルミニウムで作られている。炭素繊維強化プラスチックの熱伝導率は、概ね50[W/mK]であり、アルミニウムの熱伝導率(熱伝導度)は、概ね200[W/mK]である。   As described above, the refrigerant naturally convects inside the housing by thermal convection. In the electronic device 100, in order to promote thermal convection, the material of the horizontal partition walls 8a and 8b that form the ascending flow path 12c, the material of the partition wall 6 that forms the descending flow path, and the partition wall 8c that forms the uppermost flow path 12e. Is different. The thermal conductivity of the partition wall 6 forming the descending flow path 12a is smaller than the thermal conductivity of the horizontal partition walls 8a and 8b forming the ascending flow path 12c to which the electronic component 22 is attached. Specifically, the partition walls 6 are made of carbon fiber reinforced plastic (CFRP), and the horizontal partition walls 8a and 8b are made of aluminum. The thermal conductivity of the carbon fiber reinforced plastic is approximately 50 [W / mK], and the thermal conductivity (thermal conductivity) of aluminum is approximately 200 [W / mK].

水平隔壁8a、8bは熱伝導率が高いので、それらの隔壁に固定された電子基板24上の電子部品22の熱が水平隔壁8a、8bに伝わり易い。そのため、水平隔壁8a、8bに固定された電子部品は早く冷え、その分、冷媒の温度が早く上昇する。上昇流路中の冷媒の温度が早く上昇すれば、冷媒温度の上昇速度が増す。他方、下降流路12aを構成する垂直隔壁6は熱伝導率が低い。放熱板2に隣接する冷媒冷却部12e内の冷媒は、放熱板の作用により冷やされる。温度が下がった冷媒は、上昇流路12c、12dを上がってくる冷媒に押し出されるように下降流路12aへと向かう。下降流路12aの側壁(垂直隔壁)は熱伝導率が低いので、低温状態の冷媒はその温度を保ったまま筐体最下部の流路12bへと向かう。そして低温状態の冷媒は上昇流路へと向かい、再び電子部品を冷却する。なお、電子部品を搭載する電子基板24も、熱伝導率の高い材料で作られている。   Since the horizontal barrier ribs 8a and 8b have high thermal conductivity, the heat of the electronic component 22 on the electronic substrate 24 fixed to the barrier ribs is easily transmitted to the horizontal barrier ribs 8a and 8b. Therefore, the electronic components fixed to the horizontal partition walls 8a and 8b are quickly cooled, and the temperature of the refrigerant rises faster accordingly. If the temperature of the refrigerant in the ascending channel rises quickly, the rising speed of the refrigerant temperature increases. On the other hand, the vertical partition 6 constituting the descending flow path 12a has a low thermal conductivity. The refrigerant in the refrigerant cooling part 12e adjacent to the heat sink 2 is cooled by the action of the heat sink. The refrigerant whose temperature has decreased is directed to the descending flow path 12a so as to be pushed out by the refrigerant flowing up the ascending flow paths 12c and 12d. Since the side wall (vertical partition wall) of the descending flow path 12a has low thermal conductivity, the refrigerant in the low temperature state moves toward the flow path 12b at the bottom of the casing while maintaining the temperature. Then, the low-temperature refrigerant goes to the ascending flow path and cools the electronic component again. The electronic substrate 24 on which electronic components are mounted is also made of a material having high thermal conductivity.

上記のとおり、電子機器100では、上昇流路12c、12dを画定する板材(水平隔壁8a、8b)を、下降流路12aを画定する板材(垂直隔壁6)よりも熱伝導率の高い材料で作ることで、熱対流を促進させている。電子機器100は、ポンプ等の動力を要することなく冷媒を効率よく循環させ、電子部品を冷却することができる。   As described above, in the electronic device 100, the plate material (horizontal partition walls 8a and 8b) that defines the ascending flow paths 12c and 12d is made of a material having higher thermal conductivity than the plate material (vertical partition wall 6) that defines the descending flow path 12a. Making it promotes thermal convection. The electronic device 100 can cool the electronic component by efficiently circulating the refrigerant without requiring power from a pump or the like.

図2を参照して第2実施例の電子機器200について説明する。図2の電子機器200は、筐体204の形態が図1の電子機器100と異なるが、他は図1の電子機器100と同じ構造である。図2では、図1に記した部品と同じ部品には一部符号を省略していることに留意されたい。   An electronic apparatus 200 according to the second embodiment will be described with reference to FIG. The electronic device 200 in FIG. 2 has the same structure as the electronic device 100 in FIG. 1 except that the form of the housing 204 is different from the electronic device 100 in FIG. It should be noted that in FIG. 2, some of the same parts as those shown in FIG. 1 are omitted.

電子機器200の筐体204は、筐体上部204aと筐体下部204bの2つのパーツで構成される。筐体上部204aと筐体下部204bの境界は、筐体全体の高さの半分よりも上である。より正確には、筐体上部204aと筐体下部204bの境界は、最上段の水平隔壁8cの位置よりも高い位置である。筐体上部203aには、放熱板2が設けられている。従って別言すれば、冷媒冷却部12eに対応する筐体部分が筐体上部204aに相当する。筐体上部204aを構成する板材は、その熱伝導率が筐体下部204bを構成する板材の熱伝導率よりも高い材料で作られている。本実施例では、筐体上部204aは、水平隔壁8a、8bと同じくアルミニウムで作られており、筐体下部204bは、垂直隔壁8cと同じく炭素繊維強化プラスチックで作られている。   The housing 204 of the electronic device 200 is composed of two parts, a housing upper part 204a and a housing lower part 204b. The boundary between the case upper part 204a and the case lower part 204b is above half the height of the entire case. More precisely, the boundary between the case upper part 204a and the case lower part 204b is higher than the position of the uppermost horizontal partition wall 8c. The heat sink 2 is provided in the housing | casing upper part 203a. Therefore, in other words, the housing part corresponding to the coolant cooling unit 12e corresponds to the housing upper part 204a. The plate material constituting the housing upper portion 204a is made of a material whose thermal conductivity is higher than the thermal conductivity of the plate material constituting the housing lower portion 204b. In the present embodiment, the housing upper part 204a is made of aluminum, like the horizontal partition walls 8a, 8b, and the housing lower part 204b is made of carbon fiber reinforced plastic, like the vertical partition walls 8c.

筐体上部204aの熱伝導率が高いので、放熱板2による放熱が促進され、冷媒冷却部12eにおける冷媒の冷却が促進される。他方、筐体下部204bの熱伝導率は低いので、電子部品22が放出する熱は、筐体外部へ散逸せず、その多くは冷媒の温度を上げることに寄与する。即ち、上部は熱伝導率が高く下部は熱伝導率が低いという筐体204の構造によって、筐体内部の上方では冷媒の冷却が促進され、下方では冷媒の昇温が促進される。電子機器200では、上記構造の筐体204が冷媒の自然対流を促進する。これによって、電子部品の冷却効率が向上する。   Since the heat conductivity of the housing upper part 204a is high, heat radiation by the heat radiating plate 2 is promoted, and cooling of the refrigerant in the refrigerant cooling unit 12e is promoted. On the other hand, since the heat conductivity of the housing lower portion 204b is low, the heat released by the electronic component 22 is not dissipated outside the housing, and most of it contributes to raising the temperature of the refrigerant. That is, due to the structure of the housing 204 in which the upper portion has high thermal conductivity and the lower portion has low thermal conductivity, cooling of the refrigerant is promoted above the inside of the housing, and temperature rise of the refrigerant is promoted below. In the electronic device 200, the housing 204 having the above structure promotes natural convection of the refrigerant. This improves the cooling efficiency of the electronic component.

別言すれば、筐体下部204bにおいては、筐体外部へ散逸する熱を少なくし、電子部品22が放出する熱をできるだけ冷媒で吸収することで、冷媒の温度を上げ、熱対流を促進する。他方、筐体上部204aでは、できるだけ多くの熱量が筐体外部へ放出されるようにしている。   In other words, in the case lower part 204b, the heat dissipated to the outside of the case is reduced, and the heat released by the electronic component 22 is absorbed by the refrigerant as much as possible, thereby raising the temperature of the refrigerant and promoting thermal convection. . On the other hand, the housing upper part 204a is designed to release as much heat as possible to the outside of the housing.

実施例の電子機器についての留意点を述べる。上昇流路を構成する壁部材の全てにおいて、熱伝導率が下降流路を構成する壁部材の熱伝導率よりも高い必要はない。上昇流路を構成する壁部材の一部、好ましく50%以上、或いは、筐体の下側半分の領域において、上昇流路を構成する壁部材の熱伝導率が下降流路を構成する壁部材の熱伝導率よりも高ければよい。上昇流路の上流において壁部材の熱伝導率を高くすることで効率よく対流を起こさせることができる。   Points to note about the electronic device of the embodiment will be described. In all the wall members constituting the ascending flow path, the thermal conductivity does not need to be higher than that of the wall member constituting the descending flow path. The wall member that constitutes the descending channel in the part of the wall member that constitutes the ascending channel, preferably 50% or more, or the wall member that constitutes the ascending channel in the lower half region of the casing It should be higher than the thermal conductivity of. By increasing the thermal conductivity of the wall member upstream of the ascending channel, convection can be caused efficiently.

本明細書が開示する技術は、多種の電子機器に適用できるが、発熱量の多い電子機器、例えば、複数のパワーIGBTを備えるモータコントローラやインバータ、あるいは、多数の高速CPUを備えるスーパーコンピュータに適用することが好適である。   The technology disclosed in this specification can be applied to various types of electronic devices, but can be applied to electronic devices that generate a large amount of heat, for example, motor controllers and inverters including a plurality of power IGBTs or supercomputers including a large number of high-speed CPUs. It is preferable to do.

低熱伝導率の板材は、炭素繊維強化プラスチックに限られない。炭素繊維強化プラスチックよりもさらに熱伝導率が低いセラミック系の材質のものであってもよい。同様に、高熱伝導率の板材は、アルミニウムに限られない。アルミニウムよりもさらに熱伝導率が高い銅で水平隔壁(上昇流路を形成する水平隔壁)や筐体上部、及び、放熱板を作るとなおよい。なお、本明細書における「熱伝導率が高い」、「熱伝導率が低い」という表現は、上昇流路を構成する板材と下降流路を構成する板材とを比較した際の相対的なものであることに留意されたい。「熱伝導率が高い」とは、下降流路を形成する板材よりも熱伝導率が高いこと、あるいは、筐体下部を構成する板材よりも熱伝導率が高いことを意味し、「熱伝導率が低い」とは、上昇流路を形成する板材よりも熱伝導率が低いこと、あるいは、筐体上部を構成する板材よりも熱伝導率が低いことを意味する。   The plate material with low thermal conductivity is not limited to carbon fiber reinforced plastic. A ceramic material having a lower thermal conductivity than carbon fiber reinforced plastic may be used. Similarly, the plate material having high thermal conductivity is not limited to aluminum. It is even better if the horizontal partition walls (horizontal partition walls forming the ascending flow path), the upper part of the housing, and the heat sink are made of copper having a higher thermal conductivity than aluminum. In this specification, the expressions “high thermal conductivity” and “low thermal conductivity” are relative when comparing the plate material constituting the upflow channel and the plate material constituting the downflow channel. Please note that. “High thermal conductivity” means that the thermal conductivity is higher than that of the plate material forming the descending flow path, or higher than that of the plate material constituting the lower part of the housing. “The rate is low” means that the thermal conductivity is lower than the plate material forming the ascending flow path, or the thermal conductivity is lower than the plate material forming the upper part of the housing.

本明細書が開示する技術は、電子機器に関するものであるが、より目的志向に表現すれば、電子機器の冷却構造に関するものであると表現することもできる。   The technology disclosed in this specification relates to an electronic device, but can be expressed as being related to a cooling structure of an electronic device if expressed more purpose-oriented.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

2:放熱板
4:筐体
204a:筐体上部
204b:筐体下部
6:垂直隔壁
8a、8b、8c:水平隔壁
12a:流路(下降流路)
12b:流路(最下部流路)
12c、12d:流路(上昇流路)
12e:流路(冷媒冷却部)
14a、14b、14c:連絡口
22:電子部品
24:電子基板
28a、28b:支持スペーサ
100、200:電子機器
204:筐体
204a:筐体上部
204b:筐体下部
2: Heat radiation plate 4: Housing 204a: Upper housing portion 204b: Lower housing portion 6: Vertical partition walls 8a, 8b, 8c: Horizontal partition walls 12a: Flow path (downward flow path)
12b: channel (lowermost channel)
12c, 12d: channel (ascending channel)
12e: Flow path (refrigerant cooling part)
14a, 14b, 14c: Contact port 22: Electronic component 24: Electronic board 28a, 28b: Support spacer 100, 200: Electronic device 204: Housing 204a: Upper housing 204b: Lower housing

Claims (2)

筐体内に複数の電子部品を有する電子機器であり、
筐体の上方に配置された放熱板と、
筐体上方に配置されており放熱板に隣接する冷媒冷却部と、
冷媒を冷媒冷却部から筐体下方へと導く下降流路と、
下降流路を通じて筐体下方へ移動した冷媒を再び冷媒冷却部へ導く上昇流路と、
を備えており、
上昇流路の内壁に冷却対象の電子部品が配置されており、
下降流路を形成する壁部材の熱伝導率が、電子部品が取り付けられた上昇流路を形成する壁部材の熱伝導率よりも小さくなっており、
筐体が上昇流路と下降流路の内壁の一部を形成しており、筐体の上側を構成する板材の熱伝導率が、筐体の下側を構成する板材の熱伝導率よりも高いことを特徴とする電子機器。
An electronic device having a plurality of electronic components in a housing,
A heat sink disposed above the housing;
A refrigerant cooling part disposed above the housing and adjacent to the heat sink;
A descending flow path for guiding the refrigerant from the refrigerant cooling part to the lower part of the housing;
An ascending channel that guides the refrigerant that has moved down the casing through the descending channel to the refrigerant cooling unit, and
With
Electronic components to be cooled are arranged on the inner wall of the ascending flow path,
The thermal conductivity of the wall members forming the downward flow path, and smaller Kuna' than the thermal conductivity of the wall member forming a rising flow path in which the electronic component is mounted,
The housing forms part of the inner walls of the ascending channel and the descending channel, and the thermal conductivity of the plate material constituting the upper side of the housing is higher than the thermal conductivity of the plate material constituting the lower side of the housing Electronic equipment characterized by high price.
電子部品を搭載した複数の板材が鉛直方向に重なるように配置されており、上下に隣接する板材が上昇流路の上下壁を構成して複数段の上昇流路が形成されており、冷媒が上昇流路を蛇行して流れるように、上下に隣接する上昇流路の連絡口が、下段から上段に向かって互い違いに配置されていることを特徴とする請求項1に記載の電子機器。   A plurality of plate members on which electronic components are mounted are arranged so as to overlap in the vertical direction, and the plate materials adjacent to each other in the vertical direction constitute the upper and lower walls of the ascending channel to form a plurality of rising channels, The electronic device according to claim 1, wherein communication ports of the upward and downward adjacent upward flow paths are alternately arranged from the lower stage toward the upper stage so as to meander and flow in the upward flow path.
JP2011148114A 2011-07-04 2011-07-04 Electronics Active JP5720443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148114A JP5720443B2 (en) 2011-07-04 2011-07-04 Electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148114A JP5720443B2 (en) 2011-07-04 2011-07-04 Electronics

Publications (2)

Publication Number Publication Date
JP2013016622A JP2013016622A (en) 2013-01-24
JP5720443B2 true JP5720443B2 (en) 2015-05-20

Family

ID=47689013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148114A Active JP5720443B2 (en) 2011-07-04 2011-07-04 Electronics

Country Status (1)

Country Link
JP (1) JP5720443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107239120A (en) * 2017-05-18 2017-10-10 北京嘉楠捷思信息技术有限公司 Electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642088B2 (en) * 2016-02-18 2020-02-05 株式会社オートネットワーク技術研究所 Electrical equipment
GB2602341B (en) * 2020-12-23 2023-11-08 Yasa Ltd Semiconductor cooling arrangement with improved baffle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128598A (en) * 1984-11-28 1986-06-16 富士通株式会社 Cooler
JPH0244347U (en) * 1988-09-20 1990-03-27
JPH0350897A (en) * 1989-07-19 1991-03-05 Fujitsu Ltd Cooling apparatus
US6144556A (en) * 1999-03-30 2000-11-07 Lanclos; Kenneth W. Heat dissipating housing for electronic components
JP2003298269A (en) * 2002-04-02 2003-10-17 Meidensha Corp Cooling structure of electronic unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107239120A (en) * 2017-05-18 2017-10-10 北京嘉楠捷思信息技术有限公司 Electronic equipment
US11425839B2 (en) 2017-05-18 2022-08-23 Canaan Creative Co., Ltd. Computational heat dissipation structure, computing device comprising same, mine
US11882669B2 (en) 2017-05-18 2024-01-23 Canaan Creative Co., Ltd. Computational heat dissipation structure, computing device comprising same, mine

Also Published As

Publication number Publication date
JP2013016622A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5565459B2 (en) Semiconductor module and cooler
US8933557B2 (en) Semiconductor module and cooling unit
US10537042B2 (en) Electronic device with heat-dissipating function and liquid-cooling radiator module thereof
US8605437B2 (en) Cooling apparatus and electronic equipment
US8767401B2 (en) Inverter stack
US10278306B2 (en) Method and device for cooling a heat generating component
KR20120074245A (en) Cooling apparatus and power converter having the same
JP6126149B2 (en) Air-cooled laser apparatus provided with a heat conducting member having a radiation fin
JP6358872B2 (en) Boiling cooler for heating element
JPWO2013054615A1 (en) Semiconductor module cooler and semiconductor module
JPWO2012147544A1 (en) Semiconductor module cooler and semiconductor module
CN101752356A (en) Cooling apparatus for semiconductor chips
JP5423625B2 (en) Cooling device using EHD fluid
KR20150025755A (en) Apparatus for cooling inverter
JP5720443B2 (en) Electronics
Shende et al. Cooling of electronic equipments with heat sink: A review of literature
CN105161470A (en) IGBT module heat-radiation apparatus
JP2008140831A (en) Heat-sink structure
KR101474616B1 (en) Cooling system of power semiconductor device
EP2819279B1 (en) Cooling apparatus
KR20100037421A (en) Heat sink, case and cooling plate having multi-stage structure
KR101411413B1 (en) Converter system including air cooling type single module cooler
JP5218306B2 (en) Cooling system
TWI671869B (en) Heat dissipation structure of electronic device
KR200364071Y1 (en) Water-cooled type computer cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R151 Written notification of patent or utility model registration

Ref document number: 5720443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151