JP5720359B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5720359B2
JP5720359B2 JP2011069781A JP2011069781A JP5720359B2 JP 5720359 B2 JP5720359 B2 JP 5720359B2 JP 2011069781 A JP2011069781 A JP 2011069781A JP 2011069781 A JP2011069781 A JP 2011069781A JP 5720359 B2 JP5720359 B2 JP 5720359B2
Authority
JP
Japan
Prior art keywords
particles
light emitting
conductive member
light
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011069781A
Other languages
Japanese (ja)
Other versions
JP2012204739A (en
Inventor
洋一 板東
洋一 板東
敦司 山本
敦司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2011069781A priority Critical patent/JP5720359B2/en
Publication of JP2012204739A publication Critical patent/JP2012204739A/en
Application granted granted Critical
Publication of JP5720359B2 publication Critical patent/JP5720359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Description

本発明は、発光装置に関し、より詳細には導電部材に接続された発光素子を備える発光装置に関するものである。   The present invention relates to a light emitting device, and more particularly to a light emitting device including a light emitting element connected to a conductive member.

従来、発光素子を光源とする発光装置において、光の取り出し効率を高めるため、リードフレーム等の導電部材に光反射率の高い鍍金が施されているが、この鍍金が空気中の硫黄含有ガスによって、変色する等、劣化する問題がある。   Conventionally, in a light-emitting device using a light-emitting element as a light source, a highly light-reflective plating is applied to a conductive member such as a lead frame in order to increase light extraction efficiency. This plating is caused by sulfur-containing gas in the air. There is a problem of deterioration such as discoloration.

このような問題を解決するため、例えば特許文献1には、一対の金属電極と、一対の金属電極に電気的に接続された光半導体チップと、光半導体チップと金属電極の一部を封止する透光性樹脂と、を備え、透光性樹脂は、ポリチオール系硬化剤で硬化したエポキシ樹脂であり、透光性樹脂と接する金属電極の表面の一部または全部に硫化物の生成を抑制する保護膜が設けられている発光ダイオードが記載されている。   In order to solve such a problem, for example, in Patent Document 1, a pair of metal electrodes, an optical semiconductor chip electrically connected to the pair of metal electrodes, and a part of the optical semiconductor chip and the metal electrode are sealed. A translucent resin, and the translucent resin is an epoxy resin cured with a polythiol-based curing agent, and suppresses the formation of sulfide on part or all of the surface of the metal electrode in contact with the translucent resin A light emitting diode provided with a protective film is described.

特開2007−109915号公報JP 2007-109915 A

しかしながら、特許文献1に記載された発光ダイオードであっても、保護膜を透過する硫黄含有ガスが存在するため、金属電極の劣化を完全に防止するのは困難である。   However, even in the light-emitting diode described in Patent Document 1, it is difficult to completely prevent the deterioration of the metal electrode because there is a sulfur-containing gas that permeates the protective film.

そこで、本発明は、かかる事情に鑑みてなされたものであり、従来の保護膜とは異なる手段により、硫黄含有ガスによる導電部材の劣化を抑制することができる発光装置を提供することを目的とする。   Then, this invention is made | formed in view of this situation, and it aims at providing the light-emitting device which can suppress deterioration of the electrically-conductive member by sulfur containing gas by means different from the conventional protective film. To do.

上記課題を解決するために、本発明に係る発光装置は、導電部材と、前記導電部材に接続された発光素子と、前記導電部材の一部及び前記発光素子を封止する封止部材と、を備え、前記封止部材は、その母材中に、第1粒子と、前記第1粒子に付着した、該第1粒子とは異なる物質の第2粒子と、を含み、前記第2粒子は、カリウム、カルシウム、ナトリウム、マグネシウム、マンガン、亜鉛、鉄、銅、ニッケル、銀、ジルコニウム、コバルト、クロム、鉛、バリウムから選択される少なくとも1種の元素の酸化物、水酸化物若しくは炭酸化物、又はこれらの化合物を含むことを特徴とする。   In order to solve the above problems, a light-emitting device according to the present invention includes a conductive member, a light-emitting element connected to the conductive member, a part of the conductive member and a sealing member that seals the light-emitting element, The sealing member includes, in its base material, first particles and second particles of a substance different from the first particles attached to the first particles, and the second particles are Oxide, hydroxide or carbonate of at least one element selected from potassium, calcium, sodium, magnesium, manganese, zinc, iron, copper, nickel, silver, zirconium, cobalt, chromium, lead, barium, Alternatively, these compounds are included.

また、本発明に係る別の発光装置は、導電部材と、前記導電部材に接続された発光素子と、前記導電部材の一部及び前記発光素子を封止する封止部材と、を備え、前記封止部材は、その母材中に、亜鉛の水酸化物若しくは炭酸化物、又はこれらの化合物を含む粒子を含有することを特徴とする。   Another light-emitting device according to the present invention includes a conductive member, a light-emitting element connected to the conductive member, a part of the conductive member and a sealing member that seals the light-emitting element, The sealing member contains zinc hydroxide or carbonate or particles containing these compounds in the base material.

本発明の発光装置によれば、封止部材に添加された、硫黄と反応しやすい物質の粒子(第2粒子)が、空気中の硫黄含有ガスと優先的に反応することによって、導電部材の劣化を抑制することができる。   According to the light emitting device of the present invention, the particles of the substance that easily reacts with sulfur (second particles) added to the sealing member react preferentially with the sulfur-containing gas in the air, so that the conductive member Deterioration can be suppressed.

本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのA−A断面における概略断面図(b)である。It is the schematic top view (a) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (b) in the AA cross section. 本発明の一実施の形態に係る発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device which concerns on one embodiment of this invention.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに限定しない。特に、以下に記載されている構成要素の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent elements described below are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.

<実施の形態1>
図1(a)は、実施の形態1に係る発光装置の概略上面図であり、図1(b)は、図1(a)におけるA−A断面を示す概略断面図である。図1に示す例の発光装置100は、導電部材10と、導電部材10に接続された発光素子20と、導電部材10の一部及び発光素子20を封止する封止部材30と、を備えている。
<Embodiment 1>
FIG. 1A is a schematic top view of the light-emitting device according to Embodiment 1, and FIG. 1B is a schematic cross-sectional view showing the AA cross section in FIG. The light emitting device 100 of the example illustrated in FIG. 1 includes a conductive member 10, a light emitting element 20 connected to the conductive member 10, and a sealing member 30 that seals a part of the conductive member 10 and the light emitting element 20. ing.

より詳細には、発光装置100の基体60は、上面が開口し内側壁と底面を有する凹部が形成されたパッケージである。導電部材10は、基体60に一体的に保持された正負一対のリードフレームであって、その表面の一部が基体60の凹部の底面の一部を構成している。導電部材10の表面には、発光素子からの出射光に対して光反射性の高い金属の鍍金が施されている。発光素子20は、基体60の凹部の底面に接着剤で接着され、導電部材10にワイヤ50で電気的に接続されている。封止部材30は、基体60の凹部内に充填され、発光素子20及びワイヤ50を被覆している。   More specifically, the base body 60 of the light emitting device 100 is a package in which a top surface is opened and a recess having an inner side wall and a bottom surface is formed. The conductive member 10 is a pair of positive and negative lead frames integrally held on the base body 60, and a part of the surface of the conductive member 10 constitutes a part of the bottom surface of the recess of the base body 60. The surface of the conductive member 10 is plated with a metal having a high light reflectivity with respect to the light emitted from the light emitting element. The light emitting element 20 is bonded to the bottom surface of the recess of the base body 60 with an adhesive, and is electrically connected to the conductive member 10 with a wire 50. The sealing member 30 is filled in the concave portion of the base body 60 and covers the light emitting element 20 and the wire 50.

そして、封止部材30は、その母材中に、第1粒子41と、この第1粒子に付着した、第1粒子とは異なる物質の第2粒子42と、を含んでいる。第2粒子42は、カリウム、カルシウム、ナトリウム、マグネシウム、マンガン、亜鉛、鉄、銅、ニッケル、銀、ジルコニウム、コバルト、クロム、鉛、バリウム(以下、これらの元素をまとめて「元素群G」と称する。)から選択される少なくとも1種の元素の酸化物、水酸化物若しくは炭酸化物、又はこれらの化合物を含むものである。具体的には、例えば、塩基性炭酸亜鉛(ZnCO3・Zn(OH)2)などの塩基性炭酸塩が挙げられる。 And the sealing member 30 contains in the base material the 1st particle | grains 41 and the 2nd particle | grains 42 of the substance different from the 1st particle | grains adhering to this 1st particle | grain. The second particles 42 are potassium, calcium, sodium, magnesium, manganese, zinc, iron, copper, nickel, silver, zirconium, cobalt, chromium, lead, barium (hereinafter, these elements are collectively referred to as “element group G”). An oxide, hydroxide or carbonate of at least one element selected from the above, or a compound thereof. Specifically, for example, basic zinc carbonate (ZnCO 3 · Zn (OH) 2) include basic carbonates such.

ここで、導電部材の表層に形成される鍍金や光反射膜に好適な材料として、銀、アルミニウム、ロジウムなどが挙げられる。なかでも、銀は、可視波長域の広い範囲において、95%以上の高い光反射率を有する。しかし、銀は、硫黄と比較的反応しやすく、硫化すると黒く変色する欠点がある。例えば、鉄や銅を母材とし、それに銀の鍍金が施されたリードフレームを考えると、銀は、硫黄含有ガスの中でも、特に硫化水素を含む雰囲気下で硫化しやすく、鉄や銅は、硫黄酸化物(特に二酸化硫黄)を含む雰囲気下で硫化しやすい。空気中など、硫化水素と硫黄酸化物が含まれるガス雰囲気下においては、まず表層の銀の鍍金が硫化し、次いで、或いは並行して、より深層の母材への硫化反応が進行する。   Here, silver, aluminum, rhodium, etc. are mentioned as a material suitable for the plating formed in the surface layer of an electrically-conductive member, or a light reflection film. Among them, silver has a high light reflectance of 95% or more in a wide range of visible wavelength region. However, silver has a drawback that it is relatively easy to react with sulfur and turns black when sulfurized. For example, considering a lead frame in which iron or copper is used as a base material and silver plating is applied to it, silver is easy to sulfidize in an atmosphere containing hydrogen sulfide, among other sulfur-containing gases. Sulfidation is likely in an atmosphere containing sulfur oxides (especially sulfur dioxide). In a gas atmosphere containing hydrogen sulfide and sulfur oxide, such as in the air, the silver plating on the surface layer is first sulfided, and then, or in parallel, the sulfurization reaction to a deeper base material proceeds.

そこで、導電部材上にガスバリア性の高い保護膜を別途設けることで、硫黄含有ガスの導電部材への到達を抑制するのが、上記従来の手段である。これに対して、本発明では、導電部材の一部及び発光素子を封止する封止部材に、上記のような第2粒子を予め添加しておく。これにより、封止部材中の第2粒子が、硫黄含有ガスと優先的に反応するため、硫黄含有ガスの導電部材への到達を抑制することができる。また、これは、封止部材に粒子を添加することで済む、比較的容易且つ安価な手段である。さらに、保護膜を別途設ける従来の手段とは全く異なるため、従来の手段と組み合わせることができ、それにより導電部材の劣化を更に抑制することもできる。   Therefore, the conventional means described above suppresses the sulfur-containing gas from reaching the conductive member by separately providing a protective film having a high gas barrier property on the conductive member. On the other hand, in the present invention, the second particles as described above are added in advance to a part of the conductive member and a sealing member for sealing the light emitting element. Thereby, since the 2nd particle in a sealing member reacts preferentially with sulfur content gas, arrival of a sulfur content gas to a conductive member can be controlled. In addition, this is a relatively easy and inexpensive means that can be achieved by adding particles to the sealing member. Furthermore, since it is completely different from the conventional means for providing a protective film separately, it can be combined with the conventional means, thereby further suppressing the deterioration of the conductive member.

特に、図1(b)に示すように、第2粒子42は、第1粒子41に付着した状態で封止部材30中に存在していることが好ましい。このような第2粒子42は、後述するような第1粒子41の表面処理により形成され、その後封止部材30に添加されることで設けられる。第2粒子42が第1粒子41に付着した状態で封止部材30に添加されることで、第2粒子42の凝集が抑制され、第2粒子42単体で添加される場合に比べて、第2粒子42が封止部材30中で小さく分かれて設けられやすい。したがって、添加量が同等であっても、第2粒子42の表面積を大きくすることができ、硫黄含有ガスと効率良く反応させることができる。ひいては、より少ない添加量で導電部材10の劣化を抑制できるため、高い光取り出し効率を維持することができる。   In particular, as shown in FIG. 1B, the second particles 42 are preferably present in the sealing member 30 in a state of being attached to the first particles 41. Such second particles 42 are formed by surface treatment of the first particles 41 as will be described later, and are then added to the sealing member 30. By adding the second particle 42 to the sealing member 30 in a state of adhering to the first particle 41, the aggregation of the second particle 42 is suppressed, and compared with the case where the second particle 42 is added alone. The two particles 42 are easily provided in small portions in the sealing member 30. Therefore, even if the addition amount is equal, the surface area of the second particles 42 can be increased, and the sulfur-containing gas can be reacted efficiently. As a result, since deterioration of the conductive member 10 can be suppressed with a smaller addition amount, high light extraction efficiency can be maintained.

第2粒子42の第1粒子41への付着形態は、第1粒子41の表面の略全域を被包してもよいが、図1(b)に示すように、第1粒子41の表面の一部に付着していることが好ましい。これにより、第2粒子42の表面積を大きくしやすく、硫黄含有ガスと効率良く反応させやすい。また、第1粒子41の表面の一部が第2粒子42から露出され、第1粒子41に光が入射しやすく、第1粒子41が持つ光学的機能を活かしやすい。なお、封止部材30中に存在する第2粒子42の全てが第1粒子41に付着していてもよいし、第1粒子41に付着した第2粒子42と、単体で存在する第2粒子42と、が混ざっていてもよい。   Although the adhesion form of the second particles 42 to the first particles 41 may enclose substantially the entire surface of the first particles 41, as shown in FIG. It is preferable that it adheres to a part. Thereby, it is easy to enlarge the surface area of the 2nd particle | grains 42, and to make it react easily with sulfur containing gas. In addition, a part of the surface of the first particle 41 is exposed from the second particle 42, and light is easily incident on the first particle 41, and the optical function of the first particle 41 is easily utilized. Note that all of the second particles 42 present in the sealing member 30 may be attached to the first particles 41, or the second particles 42 attached to the first particles 41 and the second particles existing alone. 42 may be mixed.

第2粒子42の第1粒子41への付着は、次のような方法で実現できる。まず、純水に第1粒子41を分散させ、上記元素群Gの酸化物、硫酸化物、硝酸化物から選択される少なくとも1種類の水溶性化合物を添加して攪拌する。次に、この懸濁液に、水酸化ナトリウム、炭酸水素アンモニウムから選択される塩基を滴下することで、pHを7.0以上11.5以下の範囲に調整する。最後に、生成される沈殿物に対して、十分に洗浄、脱液、乾燥、篩などを行えばよい。このような方法によれば、第2粒子42の粒径を制御しやすく、第2粒子42を小さく分かれさせて第1粒子41に付着させることができる。このほか、噴霧装置で第2粒子42を第1粒子41に噴きつけて付着させてもよい。   Adhesion of the second particles 42 to the first particles 41 can be realized by the following method. First, the first particles 41 are dispersed in pure water, and at least one water-soluble compound selected from the oxides, sulfates and nitrates of the element group G is added and stirred. Next, a base selected from sodium hydroxide and ammonium hydrogen carbonate is added dropwise to the suspension to adjust the pH to a range of 7.0 to 11.5. Finally, the generated precipitate may be sufficiently washed, drained, dried, sieved, and the like. According to such a method, the particle size of the second particles 42 can be easily controlled, and the second particles 42 can be divided into small pieces and attached to the first particles 41. In addition, the second particles 42 may be sprayed and adhered to the first particles 41 with a spraying device.

第2粒子42は、その粒径が小さいほど、添加量に対する表面積の比が大きくなり、硫黄含有ガスと効率良く反応させることができる。また、第2粒子42の粒径は、第1粒子41の粒径より小さいほうが良い。具体的には、第2粒子42の粒径は、第1粒子41の粒径に依存するが、例えば2.5nm以上100μm以下、好ましくは0.05μm以上3μm以下であることが好ましい。なお、第1粒子41の粒径は、例えば5nm以上200μm以下、好ましくは0.5μm以上20μm以下とする。   The smaller the particle size of the second particles 42, the larger the ratio of the surface area to the added amount, and the second particles 42 can be efficiently reacted with the sulfur-containing gas. The particle size of the second particles 42 is preferably smaller than the particle size of the first particles 41. Specifically, the particle size of the second particles 42 depends on the particle size of the first particles 41, but is, for example, 2.5 nm to 100 μm, preferably 0.05 μm to 3 μm. The particle size of the first particles 41 is, for example, 5 nm to 200 μm, preferably 0.5 μm to 20 μm.

また、第2粒子42は、その添加量が多いほど、硫黄含有ガスによる導電部材10の劣化抑制効果を高められる。但し、第2粒子42の添加量は、粒子の添加による封止部材30の粘度や光取り出し効率の変化を考慮して決めるとよい。具体的には、第2粒子42が付着した第1粒子41、若しくは第2粒子42単体の添加量は、封止部材30の母材の重量に対して、例えば1wt%以上100wt%以下、好ましくは5wt%以上30wt%以下とする。   Moreover, the 2nd particle | grains 42 can raise the deterioration inhibitory effect of the electrically-conductive member 10 by sulfur containing gas, so that the addition amount is large. However, the addition amount of the second particles 42 may be determined in consideration of changes in the viscosity of the sealing member 30 and the light extraction efficiency due to the addition of the particles. Specifically, the added amount of the first particles 41 to which the second particles 42 adhere or the second particles 42 alone is, for example, 1 wt% or more and 100 wt% or less, preferably with respect to the weight of the base material of the sealing member 30. Is 5 wt% or more and 30 wt% or less.

第2粒子42は、封止部材30中に添加されても光の取り出し効率を維持しやすい、白色の物質であることが好ましい。また、第2粒子42は、硫化した後も封止部材30中に残存する。このため、第2粒子42は、硫黄含有ガスと反応して白色の硫化物を生成する物質が、光の取り出し効率を維持しやすく、好ましい。特に、上記元素群Gの中で、亜鉛は、白色の化合物を生成しやすく、また硫化後も白色である。このため、第2粒子42は、亜鉛の酸化物、水酸化物若しくは炭酸化物、又はこれらの化合物を含むことが好ましい。   The second particles 42 are preferably a white substance that can easily maintain light extraction efficiency even when added to the sealing member 30. Further, the second particles 42 remain in the sealing member 30 even after being sulfided. For this reason, the 2nd particle | grains 42 react with a sulfur containing gas, and the substance which produces | generates a white sulfide is preferable because it is easy to maintain the light extraction efficiency. In particular, in the element group G, zinc tends to produce a white compound and is white after sulfidation. For this reason, it is preferable that the 2nd particle | grains 42 contain the oxide, hydroxide, or carbonate of zinc, or these compounds.

第2粒子42は、上記元素群Gの酸化物、水酸化物若しくは炭酸化物、又はこれらの化合物を複数種類含んでいてもよい。例えば、第2粒子42が、硫化後に白色になる第1物質と、硫化後に黒色又は有色になるが第1物質よりも硫黄との反応性が高い第2物質と、を含むものであることで、導電部材10の劣化抑制と光取り出し効率の維持との均衡を図ることができる。この場合、第1物質の粒子が第2物質の粒子の後に設けられる等して、第1物質の粒子が、第2物質の粒子の上に付着若しくは第2物質の粒子の表面を被包して設けられていると、なお良い。   The second particles 42 may contain a plurality of oxides, hydroxides or carbonates of the element group G, or these compounds. For example, the second particles 42 include a first substance that becomes white after sulfiding and a second substance that becomes black or colored after sulfiding but has a higher reactivity with sulfur than the first substance. It is possible to achieve a balance between suppression of deterioration of the member 10 and maintenance of light extraction efficiency. In this case, the particles of the first substance adhere to the particles of the second substance or encapsulate the surface of the particles of the second substance, for example, the particles of the first substance are provided after the particles of the second substance. It is even better if it is provided.

また、図1(b)に示す例では、第2粒子42が、基体60の凹部底面側に沈降する等して、封止部材30中の導電部材10側に偏在している。言い換えれば、封止部材30中の表面側に、該封止部材の母材がその殆どを占める層状の母材領域が存在する。この場合、まずその母材領域の母材自体が有するガスバリア性を活かして硫黄含有ガスの深層への透過を抑制しながら、更に導電部材10側に偏在する第2粒子42によって、母材領域を透過してきた硫黄含有ガスの導電部材10への到達を抑制できる。したがって、硫黄含有ガスによる導電部材10の劣化を効率良く抑制することができる。また逆に、第2粒子42が封止部材30中の表面側に偏在している場合は、その表面側に偏在する第2粒子42によって、硫黄含有ガスの深層への透過を抑制しやすく、また第2粒子42による遮光を低減して導電部材10の鍍金や光反射膜の光学的機能を活かしやすい。さらに、第2粒子42が封止部材30中の略全域に亘って分散している場合は、前述の2つの偏在形態の中間的で均衡の取れた特性を得ることができる。   In the example shown in FIG. 1B, the second particles 42 are unevenly distributed on the conductive member 10 side in the sealing member 30, for example, by sinking to the bottom surface side of the recess of the base body 60. In other words, on the surface side in the sealing member 30, there is a layered base material region in which the base material of the sealing member occupies most. In this case, the base material region is first formed by the second particles 42 that are further unevenly distributed on the conductive member 10 side while suppressing the permeation of the sulfur-containing gas to the deep layer by utilizing the gas barrier property of the base material itself of the base material region. The sulfur-containing gas that has permeated can be prevented from reaching the conductive member 10. Therefore, deterioration of the conductive member 10 due to the sulfur-containing gas can be efficiently suppressed. Conversely, when the second particles 42 are unevenly distributed on the surface side in the sealing member 30, the second particles 42 unevenly distributed on the surface side easily suppress the permeation of the sulfur-containing gas to the deep layer, Further, the light shielding by the second particles 42 is reduced, and it is easy to utilize the plating of the conductive member 10 and the optical function of the light reflecting film. Furthermore, when the second particles 42 are dispersed over substantially the entire region of the sealing member 30, it is possible to obtain an intermediate and balanced characteristic between the two uneven distribution forms described above.

<実施の形態2>
図2は、実施の形態2に係る発光装置の概略断面図である。図2に示す例の発光装置200の基体60は、その上面に配線電極である導電部材10を備える配線基板である。基体60の上面には、枠体が設けられている。発光素子20は、その枠体内において、基体60の導電部材10に導電性接着剤55で接着されている。枠体内の導電部材10は、その最上層に、発光素子20からの出射光に対して光反射性の高い金属の光反射膜を有している。封止部材30は、枠体内に充填されて発光素子20を封止し、その外表面が凸曲面に成形されている。
<Embodiment 2>
FIG. 2 is a schematic cross-sectional view of the light emitting device according to the second embodiment. The base 60 of the light emitting device 200 of the example shown in FIG. 2 is a wiring board including the conductive member 10 that is a wiring electrode on the upper surface thereof. A frame body is provided on the upper surface of the base body 60. The light emitting element 20 is bonded to the conductive member 10 of the base body 60 with a conductive adhesive 55 in the frame. The conductive member 10 in the frame has a metal light reflecting film having high light reflectivity with respect to the light emitted from the light emitting element 20 on the uppermost layer. The sealing member 30 is filled in the frame to seal the light emitting element 20, and the outer surface thereof is formed into a convex curved surface.

そして、封止部材30は、その母材中に、第2粒子42を含有している。第2粒子42は、上記元素群Gから選択される少なくとも1種の元素の酸化物、水酸化物若しくは炭酸化物、又はこれらの化合物を含むものである。特に、第2粒子42は、上記塩基性炭酸亜鉛のように、亜鉛の水酸化物若しくは炭酸化物、又はこれらの化合物を含む粒子とすることが好ましい。当然ながら、第2粒子42は、それ単体で封止部材に添加されても、硫黄含有ガスの導電部材への到達を抑制する効果を奏する。また、図2に示すように、本実施形態の第2粒子42は、封止部材30中で略均等に分散している。   And the sealing member 30 contains the 2nd particle | grains 42 in the base material. The second particles 42 include an oxide, hydroxide or carbonate of at least one element selected from the element group G, or a compound thereof. In particular, the second particles 42 are preferably particles containing zinc hydroxide or carbonate, or a compound thereof, like the basic zinc carbonate. Of course, even if the second particle 42 is added to the sealing member alone, the second particle 42 has an effect of suppressing the arrival of the sulfur-containing gas to the conductive member. Further, as shown in FIG. 2, the second particles 42 of the present embodiment are dispersed substantially uniformly in the sealing member 30.

第2粒子42の単体は、次のような方法で得られる。まず、上記元素群Gの酸化物、硫酸化物、硝酸化物から選択される少なくとも1種類の水溶性化合物を純水に添加して攪拌する。次に、この懸濁液に、水酸化ナトリウム、炭酸水素アンモニウムから選択される塩基を滴下することでpHを7.0以上11.5以下の範囲に調整する。最後に、生成される沈殿物に対して、十分に洗浄、脱液、乾燥、篩などを行えばよい。   The simple substance of the second particle 42 is obtained by the following method. First, at least one water-soluble compound selected from the oxides, sulfates and nitrates of the element group G is added to pure water and stirred. Next, a pH selected from 7.0 to 11.5 is adjusted by dropping a base selected from sodium hydroxide and ammonium hydrogen carbonate into the suspension. Finally, the generated precipitate may be sufficiently washed, drained, dried, sieved, and the like.

以下、本発明の発光装置の各構成要素について説明する。   Hereinafter, each component of the light emitting device of the present invention will be described.

(導電部材10)
導電部材は、発光素子に接続されて導電可能な金属部材を用いることができる。具体的には、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル、又はこれらの合金、燐青銅、鉄入り銅などで形成されたリードフレームや配線電極が挙げられる。また、その表層に、銀、アルミニウム、ロジウム、金、銅、又はこれらの合金などの鍍金や光反射膜が設けられていてもよい。
(Conductive member 10)
As the conductive member, a metal member that is electrically connected to the light emitting element can be used. Specific examples include lead frames and wiring electrodes formed of copper, aluminum, gold, silver, tungsten, iron, nickel, or alloys thereof, phosphor bronze, iron-containing copper, and the like. Further, a plating such as silver, aluminum, rhodium, gold, copper, or an alloy thereof, or a light reflecting film may be provided on the surface layer.

(発光素子20)
発光素子は、発光ダイオードや半導体レーザ等の半導体発光素子を用いることができる。発光素子は、種々の半導体で構成される素子構造に正負一対の電極が設けられているものであればよい。特に、蛍光体を効率良く励起可能な窒化物半導体(InAlGa1−x−yN、0≦x、0≦y、x+y≦1)の発光素子が好ましい。このほか、緑色〜赤色発光のガリウム砒素系、ガリウム燐系半導体の発光素子でもよい。正負一対の電極が同一面側に設けられている発光素子の場合、その実装形態は、各電極がワイヤで導電部材と接続されるフェイスアップ実装でもよいし、各電極が導電性接着剤で導電部材と接続されるフェイスダウン(フリップチップ)実装でもよい。このほか、正負一対の電極が互いに反対の面に各々設けられている対向電極構造の発光素子でもよい。1つの発光装置に搭載される発光素子の個数は、1つでも複数でもよい。
(Light emitting element 20)
As the light emitting element, a semiconductor light emitting element such as a light emitting diode or a semiconductor laser can be used. The light emitting element may be any element in which a pair of positive and negative electrodes is provided in an element structure composed of various semiconductors. In particular, a light-emitting element of a nitride semiconductor (In x Al y Ga 1-xy N, 0 ≦ x, 0 ≦ y, x + y ≦ 1) that can excite the phosphor efficiently is preferable. In addition, a gallium arsenide-based or gallium phosphorus-based semiconductor light emitting element emitting green to red light may be used. In the case of a light-emitting element in which a pair of positive and negative electrodes are provided on the same surface side, the mounting form may be face-up mounting in which each electrode is connected to a conductive member with a wire, or each electrode is conductive with a conductive adhesive. Face-down (flip chip) mounting connected to the member may be used. In addition, a light emitting element having a counter electrode structure in which a pair of positive and negative electrodes are provided on opposite surfaces may be used. The number of light emitting elements mounted on one light emitting device may be one or plural.

(封止部材30)
封止部材は、発光素子やワイヤ、導電部材の一部を、封止して、塵芥や水分、外力などから保護する部材である。封止部材の母材は、発光素子から出射される光を透過可能な材料(好ましくは透過率70%以上)で形成されていればよい。具体的には、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、ABS樹脂、ポリブチレンテレフタレート樹脂、ポリフタルアミド樹脂、ポリフェニレンサルファイド樹脂、液晶ポリマー、又はこれらの樹脂を1種以上含むハイブリッド樹脂が挙げられる。ガラスでもよい。なかでも、シリコーン樹脂は、エポキシ樹脂などに比べ、耐熱性や耐光性に優れる反面、ガスバリア性が低い。したがって、そのガスバリア性を第2粒子の添加により補填することで、より好適に利用することができる。封止部材の外表面は、凸、凹レンズなどの各種レンズ形状や、光を散乱させる凹凸面に成形することで、配光特性を調整することができる。
(Sealing member 30)
The sealing member is a member that seals a part of the light emitting element, the wire, and the conductive member to protect them from dust, moisture, external force, and the like. The base material of the sealing member may be formed of a material that can transmit light emitted from the light-emitting element (preferably a transmittance of 70% or more). Specifically, silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, ABS resin, polybutylene terephthalate resin, polyphthalamide resin, polyphenylene sulfide resin, liquid crystal polymer, or a hybrid containing one or more of these resins Resin. Glass may be used. Among these, silicone resins are superior in heat resistance and light resistance to epoxy resins and the like, but have low gas barrier properties. Therefore, the gas barrier property can be more preferably used by supplementing the gas barrier properties by adding the second particles. Light distribution characteristics can be adjusted by molding the outer surface of the sealing member into various lens shapes such as convex and concave lenses, and uneven surfaces that scatter light.

(第1粒子41)
封止部材は、その母材中に、種々の機能を持つ粒子が添加されていてもよい。第1粒子は、充填剤又は蛍光体の粒子を用いることができる。特に、充填剤は、発光装置の発光波長への影響が小さいため、好ましい。充填剤は、光拡散剤や着色剤などを用いることができる。具体的には、シリカ、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、酸化亜鉛、チタン酸バリウム、酸化アルミニウム、酸化鉄、酸化クロム、酸化マンガン、カーボンブラックなどが挙げられる。充填剤の粒子の形状は、破砕状でも球状でもよい。また、中空又は多孔質のものでもよい。蛍光体は、発光素子から出射される一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を出射する。具体的には、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)や、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)などが挙げられる。これにより、可視波長の一次光及び二次光の混色光(例えば白色系)を出射する発光装置や、紫外光の一次光に励起されて可視波長の二次光を出射する発光装置とすることができる。
(First particle 41)
The sealing member may have particles having various functions added to its base material. As the first particles, filler particles or phosphor particles can be used. In particular, the filler is preferable because it has a small influence on the emission wavelength of the light-emitting device. As the filler, a light diffusing agent or a coloring agent can be used. Specifically, silica, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, zinc oxide, barium titanate, aluminum oxide, iron oxide, chromium oxide, manganese oxide, carbon black, etc. Can be mentioned. The shape of the filler particles may be crushed or spherical. Further, it may be hollow or porous. The phosphor absorbs at least part of the primary light emitted from the light emitting element, and emits secondary light having a wavelength different from that of the primary light. Specific examples include yttrium aluminum garnet (YAG) activated with cerium and nitrogen-containing calcium aluminosilicate (CaO—Al 2 O 3 —SiO 2 ) activated with europium and / or chromium. Thus, a light emitting device that emits mixed light (for example, white light) of primary light and secondary light having a visible wavelength, or a light emitting device that emits visible light secondary light when excited by the primary light of ultraviolet light is used. Can do.

(ワイヤ50、導電性接着剤55)
ワイヤは、金、銅、白金、アルミニウム又はこれらの合金の金属線を用いることができる。特に、熱抵抗などに優れる金線が好ましい。導電性接着剤は、銀、金、金−錫などのバンプやペーストを用いることができる。封止部材への第2粒子の添加によって、このようなワイヤや導電性接着剤の硫黄含有ガスによる劣化を抑制することもできる。
(Wire 50, conductive adhesive 55)
As the wire, a metal wire of gold, copper, platinum, aluminum, or an alloy thereof can be used. In particular, a gold wire having excellent thermal resistance is preferable. As the conductive adhesive, bumps or pastes such as silver, gold, and gold-tin can be used. By adding the second particles to the sealing member, it is possible to suppress the deterioration of the wire or the conductive adhesive due to the sulfur-containing gas.

(基体60)
基体は、発光素子が載置される台座となる部材である。基体は、導電部材の一部を底面に含む凹部を備えたパッケージの形態、凹部(側壁)を備えない基板の形態、又は枠体が設けられた基板の形態であってよい。封止部材の一部が基体の凹部や枠体に被覆されることで、封止部材への硫黄含有ガスの侵入を抑制しやすくすることができる。パッケージや枠体の材料は、ポリフタルアミド樹脂、ポリブチレンテレフタレート樹脂、ビスマレイミドトリアジン樹脂、液晶ポリマー、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂などの母材中に、上述と同様の充填剤が添加されたものが挙げられる。第2粒子は、このようなパッケージや枠体に添加されてもよい。基板は、ガラスエポキシ、ガラス、セラミックス、アルミニウムなどで形成することができる。このほか、砲弾型LEDのように、リードフレームなどの導電部材が基体を兼ねてもよい。
(Substrate 60)
The base is a member serving as a base on which the light emitting element is placed. The base may be in the form of a package having a recess including a part of the conductive member on the bottom surface, in the form of a substrate not having a recess (side wall), or in the form of a substrate provided with a frame. When a part of the sealing member is covered with the concave portion or the frame of the base body, it is possible to easily suppress the intrusion of the sulfur-containing gas into the sealing member. The packaging and frame materials are made by adding the same fillers as described above to base materials such as polyphthalamide resin, polybutylene terephthalate resin, bismaleimide triazine resin, liquid crystal polymer, epoxy resin, silicone resin, and polyimide resin. Can be mentioned. The second particles may be added to such a package or frame. The substrate can be formed of glass epoxy, glass, ceramics, aluminum, or the like. In addition, a conductive member such as a lead frame may also serve as a base, like a bullet-type LED.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
実施例1の発光装置は、実施の形態1に係る発光装置100の一例であって、外形が縦1.0mm、横2.8mm、奥行き(高さ)0.8mmの側面発光(サイドビュー)式の表面実装型LEDである。基体60は、その略中央に深さ0.3mmの凹部を備えたパッケージであって、弾性率が6000MPa、常温(25℃)での線膨張係数が60×10−6/K程度のポリフタルアミド樹脂により形成されている。導電部材10は、表面に銀の鍍金が施された銅合金製のリードフレームであって、その一部がパッケージの凹部底面に露出し且つパッケージの外側面に延出している。このような基体60は、金型内に、導電部材10を設置して、パッケージの構成材料を注入し硬化させることで形成される。発光素子20は、サファイア基板上に、窒化物半導体のn型層、活性層、p型層が順次積層された、青色(中心波長約460nm)発光可能な、縦290μm×横500μmの発光ダイオードチップである。この発光素子20は、基体60の凹部内において、一方(負極側)の導電部材10上に透光性エポキシ樹脂である接着剤で接着され、その各電極が金のワイヤ50により正負両極の導電部材10と各々接続されている。封止部材30は、基体60の凹部内に、発光素子20及びワイヤ50を被覆するように充填されている。このような封止部材30は、該封止部材の構成材料をポッティングにより基体60の凹部内に注入し硬化させることで形成される。封止部材30の母材は、粘度が4Pa・s、常温(25℃)での線膨張係数が300×10−6/K程度、水蒸気透過性が150g/m・day(0.9mm厚、試験環境 40℃/90%RH)のシリコーン樹脂である。
<Example 1>
The light-emitting device of Example 1 is an example of the light-emitting device 100 according to Embodiment 1, and the side light emission (side view) has an outer shape of 1.0 mm in length, 2.8 mm in width, and 0.8 mm in depth (height). This is a surface mount LED of the formula. The base body 60 is a package having a recess having a depth of 0.3 mm at the approximate center thereof, and has a modulus of elasticity of 6000 MPa and a linear expansion coefficient at room temperature (25 ° C.) of about 60 × 10 −6 / K. It is formed of an amide resin. The conductive member 10 is a lead frame made of a copper alloy having a surface plated with silver, a part of which is exposed on the bottom surface of the recess of the package and extends to the outer surface of the package. Such a base body 60 is formed by installing the conductive member 10 in a mold and injecting and curing the constituent material of the package. The light-emitting element 20 is a light-emitting diode chip having a vertical length of 290 μm and a horizontal width of 500 μm that can emit blue light (center wavelength of about 460 nm), in which an n-type layer, an active layer, and a p-type layer of nitride semiconductor are sequentially stacked on a sapphire substrate. It is. The light emitting element 20 is bonded to one (negative electrode side) conductive member 10 with an adhesive, which is a translucent epoxy resin, in the concave portion of the base body 60, and each electrode is electrically connected to positive and negative electrodes by a gold wire 50. Each is connected to the member 10. The sealing member 30 is filled in the concave portion of the base body 60 so as to cover the light emitting element 20 and the wire 50. Such a sealing member 30 is formed by pouring the constituent material of the sealing member into the concave portion of the base body 60 by potting and curing. The base material of the sealing member 30 has a viscosity of 4 Pa · s, a linear expansion coefficient of about 300 × 10 −6 / K at room temperature (25 ° C.), and a water vapor permeability of 150 g / m 2 · day (0.9 mm thickness). , Test environment 40 ° C./90% RH) silicone resin.

そして、実施例1の発光装置は、封止部材30内に、平均粒径6.8μmのシリカの第1粒子41の表面に、粒径0.1μm〜2μm程度の塩基性炭酸亜鉛の第2粒子42が付着した粒子を含んでいる。この粒子は、純水にシリカを分散させ、硝酸亜鉛六水和物を、それに由来する亜鉛がシリカの重量に対して2wt%となるように添加して攪拌し、その懸濁液に炭酸水素アンモニウムを滴下してpHを7.8に調整した後、十分に洗浄、脱液、乾燥、篩を行うことにより得られるものである。なお、この粒子は、封止部材30の母材の重量に対して10wt%添加され、封止部材30中の略全域に亘って分散している。   In the light emitting device of Example 1, the second basic zinc carbonate having a particle size of about 0.1 μm to 2 μm is formed on the surface of the first particle 41 of silica having an average particle size of 6.8 μm in the sealing member 30. The particle | grains 42 to which the particle | grains adhered are included. The particles are obtained by dispersing silica in pure water, adding zinc nitrate hexahydrate so that zinc derived therefrom is 2 wt% with respect to the weight of the silica, and stirring the suspension. After ammonium is added dropwise to adjust the pH to 7.8, it is obtained by thoroughly washing, draining, drying and sieving. The particles are added in an amount of 10 wt% with respect to the weight of the base material of the sealing member 30, and are dispersed over substantially the entire area in the sealing member 30.

以下、実施例2〜9及び比較例1,2の発光装置における、封止部材に添加される粒子を除く構成は、実施例1の発光装置と同様であるため、説明を省略する。なお、以下全ての実施例、比較例において、封止部材30への粒子の添加量は、封止部材30の母材の重量に対して10wt%である。   Hereinafter, in the light emitting devices of Examples 2 to 9 and Comparative Examples 1 and 2, the configuration excluding the particles added to the sealing member is the same as that of the light emitting device of Example 1, and thus the description thereof is omitted. In all of the following examples and comparative examples, the amount of particles added to the sealing member 30 is 10 wt% with respect to the weight of the base material of the sealing member 30.

<実施例2,3>
実施例2,3の発光装置は、封止部材への塩基性炭酸亜鉛の第2粒子42の添加量を実施例1より増やしたものである。実施例2,3の発光装置では、それぞれ、硝酸亜鉛六水和物を、それに由来する亜鉛がシリカの重量に対して5wt%、10wt%となるように添加している。
<Examples 2 and 3>
In the light-emitting devices of Examples 2 and 3, the amount of the basic zinc carbonate second particles 42 added to the sealing member is increased from that of Example 1. In the light-emitting devices of Examples 2 and 3, zinc nitrate hexahydrate was added so that the zinc derived from it was 5 wt% and 10 wt% based on the weight of silica.

<実施例4>
実施例4の発光装置の封止部材は、実施例1の第2粒子42が付着した第1粒子41に替えて、塩基性炭酸亜鉛の単体の第2粒子42が添加されたものである。この粒子は、硝酸亜鉛六水和物を、それに由来する亜鉛が純水の重量に対して2wt%となるように添加した水溶液に、炭酸水素アンモニウムを滴下してpHを6.8に調整した後、十分に洗浄、脱液、乾燥、篩を行うことにより得られるものである。
<Example 4>
The sealing member of the light emitting device of Example 4 is obtained by adding the basic second particles 42 of basic zinc carbonate instead of the first particles 41 to which the second particles 42 of Example 1 are attached. The particles were adjusted to pH 6.8 by adding ammonium hydrogen carbonate dropwise to an aqueous solution in which zinc nitrate hexahydrate was added so that zinc derived therefrom was 2 wt% based on the weight of pure water. Thereafter, it is obtained by sufficiently washing, draining, drying and sieving.

<比較例1>
比較例1の発光装置の封止部材は、実施例1と同様のシリカの第1粒子41のみが添加されたものである。
<Comparative Example 1>
The sealing member of the light emitting device of Comparative Example 1 is obtained by adding only the first silica particles 41 as in Example 1.

次に、実施例1乃至4の発光装置における導電部材の劣化抑制効果を硫化試験により検証する。この硫化試験は、発光装置を硫化水素と二酸化硫黄の混合ガス雰囲気内に放置することで行われる。より具体的には、オートクレーブ中に、発光装置と硫化ナトリウム六水和物を入れて、100℃に加熱し、24時間放置する。   Next, the effect of suppressing deterioration of the conductive member in the light emitting devices of Examples 1 to 4 is verified by a sulfidation test. This sulfurization test is performed by leaving the light-emitting device in a mixed gas atmosphere of hydrogen sulfide and sulfur dioxide. More specifically, a light emitting device and sodium sulfide hexahydrate are put in an autoclave, heated to 100 ° C., and left for 24 hours.

硫化試験の結果を、以下の表1に示す。なお、相対光束維持率は、比較例の発光装置における硫化試験前後の光束維持率を1.000として、それと各実施例の発光装置における硫化試験前後の光束維持率を対比したときの相対値である。この相対光束維持率が高いほど、導電部材の劣化抑制効果が高いことを示す。   The results of the sulfidation test are shown in Table 1 below. The relative luminous flux maintenance factor is a relative value when the luminous flux maintenance factor before and after the sulfidation test in the light emitting device of the comparative example is 1.000 and the luminous flux maintenance factor before and after the sulfidation test in each example is compared. is there. A higher relative luminous flux maintenance factor indicates a higher effect of suppressing deterioration of the conductive member.

Figure 0005720359
Figure 0005720359

表1に示すように、実施例1〜4の発光装置の相対光束維持率は1.000より大きくなっており、第2粒子42の添加により硫黄含有ガスによる導電部材の劣化を抑制できることがわかる。なお、実施例1〜4の発光装置は第2粒子42が添加されても高い初期光束値を維持しており、特に実施例1〜3の発光装置の初期光束値は実施例4の発光装置のそれより更に高い。このように、第2粒子42が第1粒子41に付着した状態で添加される場合には、硫黄含有ガスによる導電部材の劣化を抑制し且つ高い光束値を維持しやすい。   As shown in Table 1, the relative luminous flux maintenance factors of the light emitting devices of Examples 1 to 4 are larger than 1.000, and it can be seen that the addition of the second particles 42 can suppress the deterioration of the conductive member due to the sulfur-containing gas. . Note that the light emitting devices of Examples 1 to 4 maintain a high initial luminous flux value even when the second particles 42 are added. In particular, the initial luminous flux values of the light emitting devices of Examples 1 to 3 are the light emitting device of Example 4. Even higher than that. Thus, when the 2nd particle 42 is added in the state adhering to the 1st particle 41, it is easy to suppress deterioration of the electrically-conductive member by sulfur containing gas, and to maintain a high luminous flux value.

<実施例5>
実施例5の発光装置は、実施例1の第1粒子41を平均粒径8.0μmのYAGの蛍光体に替え、また第2粒子42を水酸化亜鉛に替えたものである。この粒子は、純水にYAGの蛍光体を分散させ、硫酸亜鉛を、それに由来する亜鉛がYAGの重量に対して2wt%となるように添加して攪拌し、その懸濁液に水酸化ナトリウムを滴下してpHを7.7に調整した後、十分に洗浄、脱液、乾燥、篩を行うことにより得られるものである。
<Example 5>
In the light emitting device of Example 5, the first particles 41 of Example 1 are replaced with YAG phosphors having an average particle size of 8.0 μm, and the second particles 42 are replaced with zinc hydroxide. These particles are prepared by dispersing a YAG phosphor in pure water, adding zinc sulfate so that the zinc derived from it is 2 wt% with respect to the weight of YAG, stirring, and adding sodium hydroxide to the suspension. Is added dropwise to adjust the pH to 7.7, followed by thorough washing, draining, drying and sieving.

<実施例6>
実施例6の発光装置は、実施例5の発光装置における第2粒子42を酸化亜鉛と水酸化亜鉛の混合物に替えたものである。この粒子は、純水にYAGの蛍光体を分散させ、酸化亜鉛をそれに由来する亜鉛がYAGの重量に対して2wt%、硫酸亜鉛をそれに由来する亜鉛がYAGの重量に対して0.5wt%となるように添加して攪拌し、その懸濁液に水酸化ナトリウムを滴下してpHを7.7に調整した後、十分に洗浄、脱液、乾燥、篩を行うことにより得られるものである。
<Example 6>
The light emitting device of Example 6 is obtained by replacing the second particles 42 in the light emitting device of Example 5 with a mixture of zinc oxide and zinc hydroxide. In this particle, a YAG phosphor is dispersed in pure water, zinc oxide derived from zinc is 2 wt% based on the weight of YAG, and zinc sulfate derived from zinc is 0.5 wt% based on the weight of YAG. It is obtained by adding sodium hydroxide dropwise to the suspension and adjusting the pH to 7.7, followed by thorough washing, draining, drying and sieving. is there.

<実施例7>
実施例7の発光装置は、実施例5の発光装置における第2粒子42を水酸化鉄に替えたものである。この粒子は、純水にYAGの蛍光体を分散させ、硝酸鉄九水和物をそれに由来する鉄がYAGの重量に対して2wt%となるように添加して攪拌し、その懸濁液に水酸化ナトリウムを滴下してpHを7.7に調整した後、十分に洗浄、脱液、乾燥、篩を行うことにより得られるものである。
<Example 7>
In the light emitting device of Example 7, the second particles 42 in the light emitting device of Example 5 are replaced with iron hydroxide. These particles were prepared by dispersing a YAG phosphor in pure water, adding iron nitrate nonahydrate so that the iron derived from it was 2 wt% based on the weight of YAG, and stirring the suspension. After adjusting the pH to 7.7 by dropping sodium hydroxide, it is obtained by thoroughly washing, draining, drying and sieving.

<実施例8>
実施例8の発光装置は、実施例5の発光装置における第2粒子42を酸化亜鉛と水酸化鉄の混合物に替えたものである。この粒子は、純水にYAGの蛍光体を分散させ、酸化亜鉛をそれに由来する亜鉛がYAGの重量に対して2wt%、硝酸鉄九水和物をそれに由来する鉄がYAGの重量に対して0.5wt%となるように添加して攪拌し、その懸濁液に水酸化ナトリウムを滴下してpHを7.5に調整した後、十分に洗浄、脱液、乾燥、篩を行うことにより得られるものである。
<Example 8>
In the light emitting device of Example 8, the second particles 42 in the light emitting device of Example 5 are replaced with a mixture of zinc oxide and iron hydroxide. This particle is obtained by dispersing a YAG phosphor in pure water, zinc oxide derived from the zinc of 2 wt% based on the weight of the YAG, and iron nitrate nonahydrate based on the iron derived from the weight of the YAG. After adding and stirring to 0.5 wt%, sodium hydroxide was added dropwise to the suspension to adjust the pH to 7.5, and then thoroughly washed, drained, dried, and sieved. It is obtained.

<実施例9>
実施例9の発光装置は、実施例5の発光装置における第2粒子42を酸化亜鉛と水酸化マグネシウムの混合物に替えたものである。この粒子は、純水にYAGの蛍光体を分散させ、酸化亜鉛をそれに由来する亜鉛がYAGの重量に対して2wt%、硝酸マグネシウムをそれに由来するマグネシウムがYAGの重量に対して0.5wt%となるように添加して攪拌し、その懸濁液に水酸化ナトリウムを滴下してpHを11.5に調整した後、十分に洗浄、脱液、乾燥、篩を行うことにより得られるものである。
<Example 9>
In the light emitting device of Example 9, the second particles 42 in the light emitting device of Example 5 are replaced with a mixture of zinc oxide and magnesium hydroxide. In this particle, a YAG phosphor is dispersed in pure water, zinc oxide derived from zinc is 2 wt% based on the weight of YAG, and magnesium nitrate derived from magnesium is 0.5 wt% based on the weight of YAG. After adding sodium hydroxide dropwise to the suspension and adjusting the pH to 11.5, the suspension is sufficiently washed, drained, dried and sieved. is there.

<比較例2>
比較例2の発光装置の封止部材は、実施例5と同様のYAGの蛍光体の第1粒子41のみが添加されたものである。
<Comparative Example 2>
The sealing member of the light emitting device of Comparative Example 2 is obtained by adding only the first particles 41 of the YAG phosphor similar to Example 5.

次に、実施例5乃至9の発光装置における導電部材の劣化抑制効果を上記と同様の硫化試験により検証する。硫化試験の結果を、以下の表2に示す。   Next, the effect of suppressing deterioration of the conductive member in the light emitting devices of Examples 5 to 9 is verified by the same sulfurization test as described above. The results of the sulfidation test are shown in Table 2 below.

Figure 0005720359
Figure 0005720359

表2に示すように、第1粒子41を蛍光体とした実施例5〜9の発光装置においても、相対光束維持率が1.000より大きくなっており、第2粒子42の添加により硫黄含有ガスによる導電部材の劣化を抑制できることがわかる。   As shown in Table 2, also in the light emitting devices of Examples 5 to 9 in which the first particles 41 are phosphors, the relative luminous flux maintenance factor is larger than 1.000, and the addition of the second particles 42 contains sulfur. It can be seen that deterioration of the conductive member due to gas can be suppressed.

また特に、第2粒子42が鉄を含む化合物である実施例7,8の発光装置は、相対光束維持率が非常に高くなっており、鉄の導電部材劣化抑制効果が高いことがわかる。   In particular, it can be seen that the light emitting devices of Examples 7 and 8 in which the second particles 42 are a compound containing iron have a very high relative luminous flux maintenance factor and a high effect of suppressing deterioration of the conductive member of iron.

本発明に係る発光装置は、液晶ディスプレイのバックライト光源、各種照明器具、大型ディスプレイ、広告や行き先案内等の各種表示装置、さらには、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナ等における画像読取装置、プロジェクタ装置などに利用することができる。   The light emitting device according to the present invention includes a backlight source of a liquid crystal display, various lighting devices, a large display, various display devices such as advertisements and destination guidance, and an image reading device in a digital video camera, a facsimile, a copier, a scanner, and the like. It can be used for projector devices.

10…導電部材、20…発光素子、30…封止部材、41…第1粒子、42…第2粒子、50…ワイヤ、55…導電性接着剤、60…基体、100,200…発光装置   DESCRIPTION OF SYMBOLS 10 ... Conductive member, 20 ... Light emitting element, 30 ... Sealing member, 41 ... 1st particle, 42 ... 2nd particle, 50 ... Wire, 55 ... Conductive adhesive, 60 ... Base | substrate, 100, 200 ... Light-emitting device

Claims (6)

導電部材と、前記導電部材に接続された発光素子と、前記導電部材の一部及び前記発光素子を封止する封止部材と、を備え、
前記封止部材は、その母材中に、第1粒子と、前記第1粒子に付着した、該第1粒子とは異なる物質の第2粒子と、を含み、
前記第1粒子は、シリカであって、
前記第2粒子は、カリウム、カルシウム、ナトリウム、マグネシウム、マンガン、亜鉛、鉄、銅、ニッケル、銀、ジルコニウム、コバルト、クロム、鉛、バリウムから選択される少なくとも1種の元素の酸化物、水酸化物若しくは炭酸化物、又はこれらの化合物を含むことを特徴とする発光装置。
A conductive member, a light emitting element connected to the conductive member, a part of the conductive member and a sealing member for sealing the light emitting element,
The sealing member includes, in the base material, first particles and second particles of a substance different from the first particles attached to the first particles,
The first particles are silica,
The second particles include an oxide of at least one element selected from potassium, calcium, sodium, magnesium, manganese, zinc, iron, copper, nickel, silver, zirconium, cobalt, chromium, lead, and barium, hydroxide A light emitting device comprising a product, a carbonate, or a compound thereof.
前記第2粒子は、亜鉛の酸化物、水酸化物若しくは炭酸化物、又はこれらの化合物を含む請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the second particles include zinc oxide, hydroxide, carbonate, or a compound thereof. 導電部材と、前記導電部材に接続された発光素子と、前記導電部材の一部及び前記発光素子を封止する封止部材と、を備え、A conductive member, a light emitting element connected to the conductive member, a part of the conductive member and a sealing member for sealing the light emitting element,
前記封止部材は、その母材中に、第1粒子と、前記第1粒子に付着した、該第1粒子とは異なる物質の第2粒子と、を含み、The sealing member includes, in the base material, first particles and second particles of a substance different from the first particles attached to the first particles,
前記第1粒子は、蛍光体であって、The first particle is a phosphor,
前記第2粒子は、カリウム、カルシウム、ナトリウム、マグネシウム、マンガン、亜鉛、鉄、銅、ニッケル、銀、ジルコニウム、コバルト、クロム、鉛、バリウムから選択される少なくとも1種の元素の炭酸化物、又はその化合物を含むことを特徴とする発光装置。The second particle is a carbonate of at least one element selected from potassium, calcium, sodium, magnesium, manganese, zinc, iron, copper, nickel, silver, zirconium, cobalt, chromium, lead, barium, or A light emitting device comprising a compound.
前記第2粒子は、前記第1粒子の表面の一部に付着している請求項1乃至3のいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the second particles are attached to a part of a surface of the first particles. 導電部材と、前記導電部材に接続された発光素子と、前記導電部材の一部及び前記発光素子を封止する封止部材と、を備え、
前記封止部材は、その母材中に、亜鉛の炭酸化物又はその化合物を含む粒子を単体で含有することを特徴とする発光装置。
A conductive member, a light emitting element connected to the conductive member, a part of the conductive member and a sealing member for sealing the light emitting element,
The sealing member, its base material, the light emitting apparatus characterized by comprising particles alone containing carbon oxides or a compound of zinc.
前記封止部材の母材は、シリコーン樹脂である請求項1乃至のいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 5 , wherein a base material of the sealing member is a silicone resin.
JP2011069781A 2011-03-28 2011-03-28 Light emitting device Active JP5720359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069781A JP5720359B2 (en) 2011-03-28 2011-03-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069781A JP5720359B2 (en) 2011-03-28 2011-03-28 Light emitting device

Publications (2)

Publication Number Publication Date
JP2012204739A JP2012204739A (en) 2012-10-22
JP5720359B2 true JP5720359B2 (en) 2015-05-20

Family

ID=47185339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069781A Active JP5720359B2 (en) 2011-03-28 2011-03-28 Light emitting device

Country Status (1)

Country Link
JP (1) JP5720359B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150362B2 (en) * 2004-07-21 2008-09-17 松下電器産業株式会社 Manufacturing method of phosphor for lamp
DE102007053770A1 (en) * 2007-11-12 2009-05-14 Merck Patent Gmbh Coated phosphor particles with refractive index matching
JP5428533B2 (en) * 2009-05-28 2014-02-26 セイコーエプソン株式会社 Liquid ejecting apparatus and inflow processing method
KR101482674B1 (en) * 2010-12-09 2015-01-14 미쓰이 긴조꾸 고교 가부시키가이샤 Sulfur-containing phosphor coated with zno compound

Also Published As

Publication number Publication date
JP2012204739A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP6274271B2 (en) Light emitting device and manufacturing method thereof
JP6107510B2 (en) Light emitting device and manufacturing method thereof
US10043954B2 (en) Lighting device with a phosphor layer on a peripheral side surface of a light-emitting element and a reflecting layer on an upper surface of the light-emitting element and on an upper surface of the phosphor layer
JP6648467B2 (en) Light emitting device
JP4962270B2 (en) Light emitting device and method of manufacturing the same
US20080303044A1 (en) Semiconductor light-emitting device
JP5975269B2 (en) Method for manufacturing light emitting device
KR20070084959A (en) Light emitting diode package
JP6048001B2 (en) Light emitting device
JP6493348B2 (en) Light emitting device
JP2007173408A (en) Light-emitting device
CN101034728A (en) Illumination device
JP4786886B2 (en) Semiconductor light emitting device
JP5493549B2 (en) Light emitting device and manufacturing method thereof
JP5482293B2 (en) Optical semiconductor device and manufacturing method thereof
US10424699B2 (en) Light emitting device
JP5720359B2 (en) Light emitting device
JP5515693B2 (en) Light emitting device
JP6308286B2 (en) Light emitting device
JP6741102B2 (en) Light emitting device
JP6607036B2 (en) Light emitting device
JP6520482B2 (en) Light emitting device
JP5229115B2 (en) Light emitting device
JP5402264B2 (en) Light emitting device
JP2010287584A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250