JP5720337B2 - Incubator - Google Patents

Incubator Download PDF

Info

Publication number
JP5720337B2
JP5720337B2 JP2011058729A JP2011058729A JP5720337B2 JP 5720337 B2 JP5720337 B2 JP 5720337B2 JP 2011058729 A JP2011058729 A JP 2011058729A JP 2011058729 A JP2011058729 A JP 2011058729A JP 5720337 B2 JP5720337 B2 JP 5720337B2
Authority
JP
Japan
Prior art keywords
surface portion
light receiving
receiving surface
culture
tank body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011058729A
Other languages
Japanese (ja)
Other versions
JP2012191894A (en
Inventor
浩介 石井
浩介 石井
克明 松澤
克明 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011058729A priority Critical patent/JP5720337B2/en
Publication of JP2012191894A publication Critical patent/JP2012191894A/en
Application granted granted Critical
Publication of JP5720337B2 publication Critical patent/JP5720337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、藻類等を培養する培養装置に関する。   The present invention relates to a culture apparatus for culturing algae and the like.

近年、バイオ燃料(炭化水素やバイオディーゼル)や、アスタキサンチン等の生理活性物質を産生することができる藻類(特に、微細藻類)が注目されており、このような藻類を大量に培養し、石油に換わるエネルギーとして利用したり、薬や化粧品、食品等に利用したりすることが検討されている。   In recent years, algae (particularly microalgae) that can produce biofuels (hydrocarbons and biodiesel) and physiologically active substances such as astaxanthin have attracted attention. It is being studied to use it as energy to replace it, or to use it for medicines, cosmetics, foods, and the like.

藻類等の大量培養用の培養装置の例として、水面が開放されている培養装置であるオープンポンド(屋外池)型が挙げられる(例えば、非特許文献1)。藻類等の植物は、光合成を行って、増殖したり、炭化水素等を産生したりするため、培養槽内部まで光を到達させることが望ましいが、オープンポンド型は、水面からしか光が入射しないため、藻類の増殖に伴って、藻類自体が光を遮ってしまい、光の到達距離が短くなり、藻類の光合成の効率が低下してしまう。また、水面から他の微生物が混入してしまい藻類の培養効率が低下してしまうこともある。   As an example of a culture apparatus for mass culture of algae and the like, there is an open pond (outdoor pond) type which is a culture apparatus having an open water surface (for example, Non-Patent Document 1). For plants such as algae, it is desirable to allow light to reach the inside of the culture tank because it grows and produces hydrocarbons etc. by photosynthesis, but light is only incident from the water surface in the open pond type Therefore, with the growth of algae, the algae itself blocks light, the light reach distance is shortened, and the photosynthesis efficiency of the algae is reduced. Moreover, other microorganisms may mix from the surface of the water, and the culture efficiency of algae may decrease.

そこで、チューブ形状の培養槽で構成されるチューブ型の培養装置(例えば、非特許文献1)や、直方体形状の培養槽で構成されるパネル型の培養装置(例えば、特許文献1)が検討されている。なお、チューブ型やパネル型の培養装置を構成する培養槽は、光合成効率を向上させるために、光を透過する、例えば、ガラス、プラスチック等の部材で構成される。   Therefore, a tube-type culture apparatus (for example, Non-Patent Document 1) configured with a tube-shaped culture tank and a panel-type culture apparatus (for example, Patent Document 1) configured with a rectangular parallelepiped-shaped culture tank have been studied. ing. In addition, the culture tank which comprises a tube-type or panel-type culture apparatus is comprised with members, such as glass and a plastic, which permeate | transmit light, in order to improve photosynthesis efficiency.

Elsevier, Bioresource Technology 101, 2010:1406-1413Elsevier, Bioresource Technology 101, 2010: 1406-1413 特開2000−139444号公報JP 2000-139444 A

ところで、藻類を培養する際に、藻類が含まれる培養液を培養槽内で循環させなければ、培養液中で藻類が沈殿して藻類自体がクラスタを形成し、光合成効率や培養液の消費効率が低下して全体的な培養効率が低下するといった問題が生じ得る。   By the way, when culturing algae, if the culture solution containing algae is not circulated in the culture tank, the algae precipitate in the culture solution and the algae itself forms a cluster, and the photosynthesis efficiency and the consumption efficiency of the culture solution May decrease, resulting in a decrease in overall culture efficiency.

ここで、チューブ型の培養装置は、培養槽の一方の端部から他方の端部への培養液の移動によって発生する乱流を利用して培養液の循環を行っているものの、この乱流のみでは十分な循環が困難である。また、パネル型の培養装置は、培養槽の下部からの曝気によって培養液の循環を行っているが、培養槽の四隅まで十分に培養液を循環させることができず、培養槽の四隅で藻類が沈殿してしまう。したがって、チューブ型やパネル型の培養装置を利用して藻類を培養する場合、培養液を循環させるための専用の装置を用いて、培養液を循環させる必要があり、コスト高となったり、培養装置全体の占有体積が大きくなってしまったりしていた。   Here, the tube type culture apparatus circulates the culture solution using the turbulent flow generated by the movement of the culture solution from one end of the culture tank to the other end. It is difficult to circulate enough. In addition, the panel type culture apparatus circulates the culture solution by aeration from the lower part of the culture tank, but the culture solution cannot be sufficiently circulated to the four corners of the culture tank. Will precipitate. Therefore, when culturing algae using a tube-type or panel-type culture device, it is necessary to circulate the culture solution using a dedicated device for circulating the culture solution, which increases the cost or culture. The occupied volume of the entire device has become large.

そこで本発明は、このような課題に鑑み、培養液を循環させるための専用装置を利用せずとも、簡易な構成で培養液を効率よく循環させることができ、藻類が沈殿することによる、光合成効率の低下や培養液の消費効率の低下を抑制することが可能な培養装置を提供することを目的としている。   Therefore, in view of such problems, the present invention can efficiently circulate the culture solution with a simple configuration without using a dedicated device for circulating the culture solution, and the photosynthesis caused by the precipitation of algae. It aims at providing the culture apparatus which can suppress the fall of efficiency and the fall of the consumption efficiency of a culture solution.

上記課題を解決するために、本発明の培養装置は、培養液が満たされる槽本体と、槽本体に設けられ、培養液中に被培養体が消費する消費ガスを導入するガス導入部と、を備えた培養装置であって、槽本体は、受光した光を槽本体内に透過させる受光面部と、受光面部より、当該受光面部から透過される光の透過方向前方に位置し、受光面部と対向する位置に配置される背面部と、背面部の下端と受光面部の下端とを連続するとともに、当該連続過程の一部または全部が、背面部側から受光面部側に向かうに従って鉛直下方に傾斜する底面部とを備え、受光面部と背面部との距離は、受光面部と背面部との最上端側の距離が最下端側よりも短くなることを特徴とする。 In order to solve the above problems, the culture apparatus of the present invention is a tank body filled with a culture solution, a gas introduction unit that is provided in the tank body and introduces a consumption gas consumed by the object to be cultured in the culture solution, A tank body, a light receiving surface portion that transmits received light into the tank body, and a light receiving surface portion that is located forward of the light receiving surface portion in the transmission direction of light transmitted from the light receiving surface portion; The back surface portion arranged at the opposite position, the lower end of the back surface portion, and the lower end of the light receiving surface portion are continuous, and part or all of the continuous process is inclined downward vertically from the back surface side toward the light receiving surface portion side. The distance between the light receiving surface portion and the back surface portion is such that the distance on the uppermost end side between the light receiving surface portion and the back surface portion is shorter than that on the lowermost end side .

受光面部と背面部との距離は、鉛直上方に向かうに従って漸減してもよい。   The distance between the light receiving surface portion and the back surface portion may be gradually reduced as it goes vertically upward.

ガス導入部は、受光面部と底面部との連続部に設けられていてもよい。   The gas introduction part may be provided in a continuous part of the light receiving surface part and the bottom surface part.

背面部および底面部のうちいずれか一方または両方は、受光面部よりも熱伝導度または放熱効率が高くてもよい。   Either one or both of the back surface portion and the bottom surface portion may have higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion.

背面部および底面部のうちいずれか一方または両方を冷却する冷却手段をさらに備えてもよい。   You may further provide the cooling means which cools any one or both of a back surface part and a bottom face part.

槽本体内の培養液が所定水位となったときに、槽本体内の培養液を槽本体外に越流させるとともに、当該越流した培養液を背面部の外面に沿って流下させる越流部をさらに備えてもよい。   When the culture solution in the tank body reaches a predetermined water level, the overflow solution causes the culture solution in the tank body to overflow outside the tank body and the overflowed culture solution flows down along the outer surface of the back part. May be further provided.

上記槽本体における越流部の下方位置には、新たな培養液を供給する培養液供給部をさらに備えてもよい。   You may further provide the culture solution supply part which supplies a new culture solution in the downward position of the overflow part in the said tank main body.

本発明によれば、培養液を循環させるための専用装置を利用せずとも、簡易な構成で培養液を効率よく循環させることができ、藻類が沈殿することによる、光合成効率の低下や培養液の消費効率の低下を抑制することが可能となる。   According to the present invention, it is possible to efficiently circulate the culture solution with a simple configuration without using a dedicated device for circulating the culture solution. It is possible to suppress a decrease in consumption efficiency.

培養装置の外観斜視図である。It is an external appearance perspective view of a culture apparatus. 図1におけるX−Y断面図である。It is XY sectional drawing in FIG. 槽本体内の培養液Mの循環過程を説明するための説明図である。It is explanatory drawing for demonstrating the circulation process of the culture solution M in a tank main body. 越流部を越流する培養液Mの流動過程を説明するための説明図である。It is explanatory drawing for demonstrating the flow process of the culture solution M which overflows an overflow part. 培養装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of a culture apparatus. 培養装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of a culture apparatus. 培養装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of a culture apparatus. 培養装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of a culture apparatus.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(培養装置100)
図1は、培養装置100の外観斜視図であり、図2は、図1におけるX−Y断面図である。図1および図2に示すように、培養装置100は、槽本体110と、培養液回収部150とを備えて構成されている。
(Culture apparatus 100)
1 is an external perspective view of the culture apparatus 100, and FIG. 2 is an XY cross-sectional view in FIG. As shown in FIGS. 1 and 2, the culture apparatus 100 includes a tank body 110 and a culture solution recovery unit 150.

(槽本体110の構成)
槽本体110は、図1中X方向に対向配置された受光面部112および背面部114と、図1中Z方向に対面配置された右側面部116aおよび左側面部116bと、背面部114の下端と受光面部112の下端とを連続する底面部118とを備えている。
(Configuration of tank body 110)
The tank main body 110 includes a light receiving surface portion 112 and a back surface portion 114 that are disposed to face each other in the X direction in FIG. 1, a right side surface portion 116a and a left side surface portion 116b that are disposed to face each other in the Z direction in FIG. A bottom surface portion 118 that is continuous with the lower end of the surface portion 112 is provided.

受光面部112は、ガラスや樹脂(例えば、アクリル、ポリエチレンテレフタレート等)等の光を透過させる部材で構成され、主に、太陽や照明から照射される直接光(直射光)Lを受光し、受光した光を槽本体110内に透過させる。   The light receiving surface portion 112 is configured by a member that transmits light such as glass or resin (for example, acrylic, polyethylene terephthalate, etc.), and mainly receives direct light (direct light) L emitted from the sun or illumination. The transmitted light is transmitted into the tank body 110.

背面部114は、受光面部112よりも熱伝導度または放熱効率が高い部材(例えば、金属等)で構成され、受光面部112よりも透過方向T(図2参照)の前方に位置し、受光面部112と対向する位置に配置される。ここで、透過方向Tは、受光面部112から透過される光の方向である。   The back surface portion 114 is made of a member (for example, metal) having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112, and is positioned in front of the light receiving surface portion 112 in the transmission direction T (see FIG. 2). 112 is disposed at a position opposite to 112. Here, the transmission direction T is the direction of light transmitted from the light receiving surface portion 112.

右側面部116aおよび左側面部116bは、受光面部112と同様に、光を透過させる部材で構成され、主に散乱光や反射光を受光して、受光した光を槽本体110内に透過させる。   Like the light receiving surface portion 112, the right side surface portion 116a and the left side surface portion 116b are configured by a member that transmits light, mainly receive scattered light and reflected light, and transmit the received light into the tank body 110.

底面部118は、受光面部112よりも熱伝導度または放熱効率が高い部材(例えば、金属等)で構成され、図2に示すように、背面部114の下端と受光面部112の下端とを連続するとともに、背面部114側から受光面部112側に向かうに従って連続的に鉛直下方に傾斜している。   The bottom surface portion 118 is made of a member (for example, metal) having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112, and continuously connects the lower end of the back surface portion 114 and the lower end of the light receiving surface portion 112 as shown in FIG. In addition, it is continuously inclined downward in the vertical direction from the back surface portion 114 side toward the light receiving surface portion 112 side.

このように、受光面部112、背面部114、右側面部116a、左側面部116b、底面部118で囲まれた槽本体110の内部空間は、図2に示すように、鉛直断面(図1におけるX−Y断面)の形状が三角形であり、この内部空間には藻類が分散された培養液Mが満たされることになる。   Thus, as shown in FIG. 2, the internal space of the tank body 110 surrounded by the light receiving surface portion 112, the back surface portion 114, the right side surface portion 116a, the left side surface portion 116b, and the bottom surface portion 118 has a vertical cross section (X− in FIG. The shape of the (Y cross section) is a triangle, and this internal space is filled with the culture solution M in which algae are dispersed.

また、図1および図2に示すように、槽本体110には、ガス導入部120と、越流部130と、培養液供給部140と、ガス取出部142とが設けられている。   As shown in FIGS. 1 and 2, the tank body 110 is provided with a gas introduction part 120, an overflow part 130, a culture solution supply part 140, and a gas extraction part 142.

ガス導入部120は、例えば、受光面部112と底面部116との連続部122に設けられており、培養液M中に被培養体(藻類等)が消費する消費ガス(例えば、光合成時には二酸化炭素、呼吸時には酸素)を導入する。   The gas introduction unit 120 is provided, for example, in a continuous portion 122 of the light receiving surface portion 112 and the bottom surface portion 116, and consumes gas (for example, carbon dioxide at the time of photosynthesis) consumed by an object to be cultured (algae, etc.) Introduce oxygen when breathing).

越流部130は、背面部114に設けられ、槽本体110内の培養液Mが所定水位となったときに、槽本体110内の培養液Mを槽本体110外に越流させる。なお、本実施形態において越流部130は、背面部114および底面部118を冷却する冷却手段に該当する。越流部130による冷却処理については後に詳述する。   The overflow part 130 is provided in the back surface part 114, and makes the culture solution M in the tank main body 110 overflow outside the tank main body 110 when the culture medium M in the tank main body 110 reaches a predetermined water level. In this embodiment, the overflow part 130 corresponds to a cooling unit that cools the back part 114 and the bottom part 118. The cooling process by the overflow section 130 will be described in detail later.

培養液供給部140は、越流部130の下方位置に設けられ、新たな培養液Mを供給する。   The culture solution supply unit 140 is provided below the overflow unit 130 and supplies a new culture solution M.

ガス取出部142は、例えば、背面部114における喫水面よりも上方位置に設けられ、藻類が光合成を行うことによって生じる酸素や、藻類が呼吸を行うことによって生じる二酸化炭素を取り出す。これにより、藻類が光合成を行う際に培養液Mに酸素が供給されてしまい光合成効率が低下したり、藻類が呼吸を行う際に培養液Mに二酸化炭素が供給されてしまい呼吸効率が低下したりする事態を回避することが可能となる。   The gas extraction unit 142 is provided, for example, at a position higher than the draft surface in the back surface 114, and extracts oxygen generated by algae photosynthesis and carbon dioxide generated by algae respiration. As a result, oxygen is supplied to the culture medium M when the algae performs photosynthesis, and the photosynthesis efficiency is reduced, or carbon dioxide is supplied to the culture medium M when the algae respires, resulting in a decrease in respiratory efficiency. Can be avoided.

以下に、培養液Mの循環過程について説明する。   Below, the circulation process of the culture solution M is demonstrated.

(槽本体110における培養液Mの循環過程)
図3は、槽本体110内の培養液Mの循環過程を説明するための説明図である。上述したように受光面部112は、主に直接光Lを受光し、受光した光を槽本体110内に透過させる。ここで、槽本体110は、藻類が分散された培養液Mで満たされているため、培養液M中の藻類によって、受光した光が受光面部112から槽本体110の内部に向かうに従って徐々に減衰する。その結果、槽本体110内の領域ごとに、受光によって生じる培養液Mの温度上昇に差が生じる。
(Circulating process of the culture medium M in the tank body 110)
FIG. 3 is an explanatory diagram for explaining the circulation process of the culture solution M in the tank main body 110. As described above, the light receiving surface portion 112 mainly receives the light L directly and transmits the received light into the tank body 110. Here, since the tank body 110 is filled with the culture solution M in which algae are dispersed, the received light is gradually attenuated by the algae in the culture solution M from the light receiving surface portion 112 toward the inside of the tank body 110. To do. As a result, a difference occurs in the temperature rise of the culture medium M generated by light reception for each region in the tank body 110.

具体的に説明すると、図3に示す、受光面部112の近傍の領域Aに位置する培養液Mは、受光した光によって、背面部114の近傍の領域Bや、底面部118の近傍の領域Cに位置する培養液Mと比較して高温になる。   Specifically, the culture medium M located in the region A in the vicinity of the light receiving surface portion 112 shown in FIG. 3 is subjected to the received light by the region B in the vicinity of the back surface portion 114 and the region C in the vicinity of the bottom surface portion 118. Compared with the culture medium M located in the area, the temperature becomes high.

そうすると、領域Aに位置する培養液Mは、図3に示すように、受光面部112に沿って鉛直上方に上昇し(図3中、矢印aで示す)、喫水面に到達する。喫水面に到達した培養液Mは、背面部114に沿って、鉛直下方に下降し(図3中、矢印bで示す)、領域Bに位置していた培養液Mは押し出されて底面部118に到達する。ここで、上述したように、底面部118は、背面部114側から受光面部112側に向かうに従って鉛直下方に傾斜しているため、底面部118に到達した培養液Mは、底面部118に沿って(図3中矢印cで示す)、受光面部112に向かって流動する。そうすると、領域Cに位置していた培養液Mは、押し出されて、受光面部112の下端に到達する。   Then, as shown in FIG. 3, the culture medium M located in the region A rises vertically upward along the light receiving surface portion 112 (indicated by an arrow a in FIG. 3) and reaches the draft surface. The culture medium M that has reached the draft surface descends vertically downward (indicated by an arrow b in FIG. 3) along the back surface portion 114, and the culture medium M located in the region B is pushed out to be the bottom surface portion 118. To reach. Here, as described above, the bottom surface portion 118 is inclined vertically downward from the back surface portion 114 side toward the light receiving surface portion 112 side. (Indicated by an arrow c in FIG. 3) and flows toward the light receiving surface portion 112. Then, the culture medium M located in the region C is pushed out and reaches the lower end of the light receiving surface portion 112.

したがって、培養装置100は、図3中、矢印a、b、cで示す順で、培養液Mを循環させることができ、培養液M中で、藻類が沈殿する事態を回避することが可能となる。これにより、藻類の光合成効率の低下や培養液Mの消費効率の低下を抑制することができる。   Therefore, the culture apparatus 100 can circulate the culture medium M in the order indicated by arrows a, b, and c in FIG. 3, and can avoid a situation where algae precipitate in the culture medium M. Become. Thereby, the fall of the photosynthesis efficiency of algae and the fall of the consumption efficiency of the culture solution M can be suppressed.

また、ガス導入部120が連続部122に設けられる構成により、培養液Mに満遍なく消費ガスを供給するとともに、領域Aにおける培養液Mの上昇を補助することができる。   In addition, with the configuration in which the gas introduction part 120 is provided in the continuous part 122, the consumption gas can be uniformly supplied to the culture medium M, and the rise of the culture medium M in the region A can be assisted.

さらに、上述したように、本実施形態にかかる背面部114および底面部118は、受光面部112よりも熱伝導度または放熱効率が高い部材で構成されるため、背面部114の近傍の領域Bおよび底面部118の近傍の領域Cに位置する培養液Mをより低温にすることができる。したがって、領域Bおよび領域Cに位置する培養液Mを、効率よく受光面部112の近傍(領域A)に流動させることが可能となる。   Furthermore, as described above, the back surface portion 114 and the bottom surface portion 118 according to the present embodiment are composed of members having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112. The culture medium M located in the region C in the vicinity of the bottom surface part 118 can be made to have a lower temperature. Therefore, the culture medium M located in the region B and the region C can be efficiently flowed to the vicinity (region A) of the light receiving surface portion 112.

また、本実施形態において、槽本体110は、受光面部112と背面部114との距離が、鉛直上方に向かうに従って漸減するように形成される。このように、喫水面において、受光面部112側から背面部114側への培養液Mの流動距離を短くすることにより、光によって加温され喫水面に到達した培養液Mが背面部114に到達する途中で下降してしまい、循環の流れを乱してしまう事態を回避することが可能となる。したがって、培養液Mの循環効率を向上させることができる。   Moreover, in this embodiment, the tank main body 110 is formed so that the distance between the light receiving surface portion 112 and the back surface portion 114 gradually decreases as it goes vertically upward. In this way, by reducing the flow distance of the culture medium M from the light receiving surface 112 side to the back surface 114 side on the draft surface, the culture medium M that has been heated by light and reaches the draft surface reaches the back surface 114. It is possible to avoid a situation in which the flow descends in the middle of the process and disturbs the circulation flow. Therefore, the circulation efficiency of the culture solution M can be improved.

また、受光面部112を傾斜させることにより、受光面積を大きくすることが可能となり、藻類の光合成効率を向上させることが可能となる。   In addition, by tilting the light receiving surface portion 112, the light receiving area can be increased, and the photosynthesis efficiency of algae can be improved.

ここで、藻類の循環について説明すると、藻類は、培養液Mに分散されているため、上述した培養液Mの循環に伴って、図3中、矢印a、b、cで示す順で循環する。このような培養液Mの循環に加えて、上述したように、底面部118が、背面部114側から受光面部112側に向かうに従って鉛直下方に傾斜しているため、重力によって、背面部114の端側に位置する藻類を受光面部112の下端側に流動させることができる。そして、受光面部112の下端側に移動した藻類は、ガス導入部120による消費ガスの供給に伴って、喫水面まで到達し、その後、重力によって底面部118に向かって下降する。   Here, the circulation of the algae will be described. Since the algae are dispersed in the culture medium M, the algae circulate in the order indicated by arrows a, b, and c in FIG. . In addition to the circulation of the culture medium M, as described above, the bottom surface portion 118 is inclined vertically downward from the back surface portion 114 side toward the light receiving surface portion 112 side. The algae located on the end side can flow to the lower end side of the light receiving surface portion 112. And the algae which moved to the lower end side of the light-receiving surface part 112 reach | attain to a draft surface with supply of the consumption gas by the gas introduction part 120, and descend | fall toward the bottom face part 118 by gravity after that.

ところで、藻類には、光が当たる期間と当たらない期間とが交互になるように培養することで、光合成効率が向上するという特徴がある(ライトダークエフェクト)。しかし、上述したように、チューブ型や、パネル型の培養装置は、培養槽内部まで光を到達させるために、光を透過する部材で構成されているため、太陽光の照射量が多い日中等は、培養槽全体に光が当たり、培養槽内の明るさが均一になってしまい、ライトダークエフェクトが得られず、却って光合成効率が抑制されたり、強光阻害が引き起こされたりするという問題があった。   By the way, algae has a feature that the photosynthetic efficiency is improved by culturing so that the periods in which light is applied and the periods in which light is not applied are alternated (light dark effect). However, as described above, the tube-type and panel-type culture apparatuses are composed of a member that transmits light so that the light reaches the inside of the culture tank. However, there is a problem that light is applied to the entire culture tank, the brightness in the culture tank becomes uniform, the light dark effect cannot be obtained, and photosynthesis efficiency is suppressed or strong light inhibition is caused. there were.

本実施形態にかかる培養装置100は、受光面部112と背面部114との距離が鉛直上方に向かうに従って短くなる構成、すなわち、受光面部112と背面部114との距離が鉛直下方に向かうに従って長くなる構成により、受光面部112から透過される光の透過方向に、培養液Mが厚い領域Dを形成することができる(図2参照)。ここで、培養装置100は、槽本体110内部において培養液Mを連続して循環させることができるため、藻類を培養液Mに均一に分散させることが可能となる。これにより、領域Dにおいて、光の透過率が低い藻類の層が形成されることになり、受光面部112から背面部114に向かうに従って、光を徐々に減衰させることができる。したがって、太陽光の照射量が多い日中等であっても、槽本体110の内部に明るい領域Aと暗い領域Dとを並行して形成することができ、藻類の光合成効率を向上させるとともに、藻類に対する強光阻害を抑制することが可能となる。   The culture apparatus 100 according to the present embodiment has a configuration in which the distance between the light receiving surface portion 112 and the back surface portion 114 becomes shorter as it goes vertically upward, that is, the distance between the light receiving surface portion 112 and the back surface portion 114 becomes longer as it goes vertically downward. According to the configuration, a region D where the culture medium M is thick can be formed in the transmission direction of the light transmitted from the light receiving surface portion 112 (see FIG. 2). Here, since the culture apparatus 100 can continuously circulate the culture solution M inside the tank body 110, the algae can be uniformly dispersed in the culture solution M. Thereby, in the area | region D, the layer of algae with low light transmittance will be formed, and light can be attenuate | damped gradually as it goes to the back surface part 114 from the light-receiving surface part 112. FIG. Therefore, even during the daytime when the amount of sunlight is high, the bright region A and the dark region D can be formed in the tank body 110 in parallel, improving the photosynthetic efficiency of the algae and the algae. It is possible to suppress the strong light inhibition against the light.

(越流部130による冷却処理)
図4は、越流部130を越流する培養液Mの流動過程を説明するための説明図である。図4に示すように、槽本体110内の培養液Mが所定水位となったときに、槽本体110内の培養液Mは、越流部130を越流して槽本体110外に流動する。すなわち、槽本体110内で培養された藻類は、培養液Mとともに、越流部130を越流して外部に排出されることになる。
(Cooling process by overflow section 130)
FIG. 4 is an explanatory diagram for explaining the flow process of the culture medium M that overflows the overflow section 130. As shown in FIG. 4, when the culture medium M in the tank body 110 reaches a predetermined water level, the culture medium M in the tank body 110 flows over the overflow part 130 and flows out of the tank body 110. That is, the algae cultured in the tank main body 110 will overflow the overflow section 130 together with the culture medium M and be discharged to the outside.

そして、図4中矢印で示すように、越流部130は、越流した培養液Mを背面部114の外面に沿って流下させる。ここで、背面部114の外面は大気に曝されているため、越流部130を越流した培養液Mは、背面部114の外面に沿って流下している間に気化することになる。そうすると、背面部114は、培養液Mの気化熱によって冷却される。また、本実施形態において、背面部114の外面に沿って流下した培養液Mの少なくとも一部は、続いて底面部118の外面に沿って流下する。そうすると、培養液Mは、底面部118の外面に沿って流下している間でも気化することになるため、底面部118は、培養液Mの気化熱によって冷却される。   Then, as shown by an arrow in FIG. 4, the overflow part 130 causes the culture medium M that has overflowed to flow down along the outer surface of the back part 114. Here, since the outer surface of the back surface portion 114 is exposed to the atmosphere, the culture medium M that has overflowed the overflow portion 130 is vaporized while flowing down along the outer surface of the back surface portion 114. Then, the back surface portion 114 is cooled by the heat of vaporization of the culture medium M. Further, in the present embodiment, at least a part of the culture medium M that has flowed down along the outer surface of the back surface portion 114 subsequently flows down along the outer surface of the bottom surface portion 118. As a result, the culture medium M is vaporized even while it flows down along the outer surface of the bottom surface part 118, so that the bottom surface part 118 is cooled by the heat of vaporization of the culture medium M.

ここで、上述したように背面部114および底面部118は、受光面部112よりも熱伝導度または放熱効率が高い部材で構成されることによる、領域Bおよび領域Cに位置する培養液Mの冷却効果に加えて、越流部130を備えることによって、領域Bおよび領域Cに位置する培養液Mの温度をさらに低くすることができ、槽本体110内の培養液Mの循環効率を向上させることが可能となる。   Here, as described above, the back surface portion 114 and the bottom surface portion 118 are made of a member having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112, so that the culture medium M located in the region B and the region C is cooled. In addition to the effect, by providing the overflow section 130, the temperature of the culture solution M located in the region B and the region C can be further lowered, and the circulation efficiency of the culture solution M in the tank body 110 is improved. Is possible.

ところで、藻類には培養に適した温度範囲があり、この温度範囲を大きく逸脱すると、藻類の培養効率が低下してしまう。例えば、培養液の温度が高すぎると、藻類を構成するタンパク質等が変性してしまうといった問題が生じる。しかし、上述したように、チューブ型や、パネル型の培養装置は、培養槽内部まで光を到達させるために、光を透過する部材で構成されているため、太陽光の照射量が多い日中等は、培養槽全体に光が当たり、培養槽内の培養液の温度が上昇してしまい、藻類を構成するタンパク質や核酸等が変性してしまうといった問題があった。   By the way, algae has a temperature range suitable for culturing, and if it deviates greatly from this temperature range, the culturing efficiency of algae will decrease. For example, if the temperature of the culture solution is too high, there arises a problem that the proteins constituting the algae are denatured. However, as described above, the tube-type and panel-type culture apparatuses are composed of a member that transmits light so that the light reaches the inside of the culture tank. However, there is a problem in that light is applied to the entire culture tank, the temperature of the culture solution in the culture tank is increased, and proteins, nucleic acids, and the like constituting the algae are denatured.

本実施形態にかかる培養装置100は、越流部130を設けるだけといった簡易な構成で、背面部114および底面部118を冷却することができ、領域Bおよび領域Cの温度をさらに低くすることが可能となる。したがって、太陽光の照射量が多い日中等であっても、冷却装置を利用せずに培養液Mの温度を藻類の培養に適した温度範囲内に維持することができ、藻類の光合成効率を向上させ、藻類を構成するタンパク質や核酸等が変性して増殖が困難になる事態を回避することが可能となる。   The culture device 100 according to the present embodiment can cool the back surface portion 114 and the bottom surface portion 118 with a simple configuration in which only the overflow portion 130 is provided, and can further reduce the temperatures of the region B and the region C. It becomes possible. Therefore, even during the daytime when the amount of sunlight is high, the temperature of the culture medium M can be maintained within a temperature range suitable for algae culture without using a cooling device, and the photosynthesis efficiency of algae can be improved. Thus, it is possible to avoid a situation in which the protein, nucleic acid, or the like constituting the algae is denatured and difficult to grow.

また、背面部114の外面および底面部118の外面を流下する間に、培養液Mの一部が気化することにより、培養液Mに含まれる藻類の濃度を向上させることができる。   In addition, a part of the culture solution M is vaporized while flowing down the outer surface of the back surface portion 114 and the outer surface of the bottom surface portion 118, whereby the concentration of algae contained in the culture solution M can be improved.

さらに、越流部130を越流した培養液Mは、重力によって、越流部130と案内部132との間を流下することになる。すなわち、越流部130から外部に越流した培養液Mが、槽本体110内部に逆流するという事態は発生しないため、外部から槽本体110内へのコンタミネーションを防止することもできる。   Furthermore, the culture medium M that has overflowed the overflow part 130 flows down between the overflow part 130 and the guide part 132 by gravity. That is, there is no situation in which the culture medium M that has overflowed to the outside from the overflow section 130 flows back into the tank body 110, so that contamination from the outside into the tank body 110 can also be prevented.

また、上述したように、本実施形態では越流部130の下方位置に培養液供給部140を設けているため、藻類の濃度が低い(0に等しい)新たな培養液Mが越流部130から排出されてしまうことを防止することができ、また、藻類の濃度が高い培養液Mを越流部130から排出することが可能となる。   Further, as described above, in the present embodiment, since the culture solution supply unit 140 is provided at a position below the overflow unit 130, a new culture solution M having a low algal concentration (equal to 0) is introduced into the overflow unit 130. It is possible to prevent the culture medium M having a high algae concentration from being discharged from the overflow section 130.

図1および図2に戻って説明すると、培養液回収部150は、越流部130を越流し、背面部114の外面を流下した培養液Mを回収する。培養液回収部150で回収された、藻類を含む培養液Mは培養回収口152を通じて、後段のバイオ燃料生成工程等に利用される。   Returning to FIG. 1 and FIG. 2, the culture medium recovery unit 150 recovers the culture medium M that has overflowed the overflow part 130 and has flowed down the outer surface of the back part 114. The culture solution M containing algae recovered by the culture solution recovery unit 150 is used for the subsequent biofuel production process and the like through the culture recovery port 152.

以上説明したように、本実施形態にかかる培養装置100によれば、培養液を循環させるための専用装置を利用せずとも、簡易な構成で培養液Mおよび藻類を効率よく循環させることができ、藻類が沈殿することによる、光合成効率の低下や培養液の消費効率の低下を抑制することが可能となる。したがって、全体的な藻類の培養効率を向上させることができる。   As described above, according to the culture device 100 according to the present embodiment, the culture solution M and the algae can be efficiently circulated with a simple configuration without using a dedicated device for circulating the culture solution. It is possible to suppress a decrease in photosynthetic efficiency and a decrease in the consumption efficiency of the culture solution due to the precipitation of algae. Therefore, the overall culture efficiency of algae can be improved.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、上述した実施形態において、受光面部112と背面部114との距離が、鉛直上方に向かうに従って漸減するように槽本体110が形成される例について説明したが、例えば、図5(a)に示すように、受光面部112が槽本体110の外部に向かって凸形状であっても、受光面部112と背面部114との距離が、鉛直上方に向かうに従って短くなるように、すなわち、受光面部112と背面部114との最上端側の距離が最下端側の距離より短くなるように槽本体110が形成されてもよい。また、図5(b)に示すように、受光面部112の下端から所定の高さまでは受光面部112と背面部114との距離が一定であり、所定の高さ以上から鉛直上方に向かうに従って漸減する形状であっても、図5(c)に示すように、受光面部112と背面部114との距離が鉛直上方に向かうに従って段階的に短くなる形状であってもよい。さらに、受光面部112の近傍の領域で培養液Mおよび藻類が上昇できる構成であれば、図5(d)に示すように、受光面部112と背面部114との距離が所定(一定)の距離(受光面部112と背面部114が平行に配される構成)であってもよい。   For example, in the embodiment described above, the example in which the tank body 110 is formed so that the distance between the light receiving surface portion 112 and the back surface portion 114 gradually decreases in the vertical direction has been described. For example, FIG. As shown, even if the light receiving surface portion 112 is convex toward the outside of the tank body 110, the distance between the light receiving surface portion 112 and the back surface portion 114 becomes shorter as it goes vertically upward, that is, the light receiving surface portion 112. The tank main body 110 may be formed such that the distance between the uppermost end side of the back surface portion 114 and the rear surface portion 114 is shorter than the distance between the lowermost end side. In addition, as shown in FIG. 5B, the distance between the light receiving surface 112 and the back surface 114 is constant at a predetermined height from the lower end of the light receiving surface 112, and gradually decreases from a predetermined height or higher toward the vertically upward direction. Even if it is the shape to perform, as shown in FIG.5 (c), the shape which becomes short in steps as the distance of the light-receiving surface part 112 and the back surface part 114 goes vertically upwards may be sufficient. Further, if the culture medium M and the algae can rise in the region in the vicinity of the light receiving surface portion 112, the distance between the light receiving surface portion 112 and the back surface portion 114 is a predetermined (constant) distance as shown in FIG. (The structure in which the light receiving surface portion 112 and the back surface portion 114 are arranged in parallel) may be used.

さらに、上述した実施形態では、底面部118全体が背面部114側から受光面部112側に向かうに従って連続的に鉛直下方に傾斜している構成について説明したが、例えば、図6(a)に示すように、底面部118が槽本体110の内部に向かって凸形状であってもよい。また、図6(b)に示すように、底面部118の一部が鉛直下方に傾斜する形状であっても、図6(c)に示すように、底面部118が段階的に鉛直下方に傾斜する形状であってもよい。   Furthermore, in the above-described embodiment, the configuration has been described in which the entire bottom surface portion 118 is continuously inclined vertically downward from the back surface portion 114 side toward the light receiving surface portion 112 side. For example, FIG. As described above, the bottom surface portion 118 may be convex toward the inside of the tank body 110. Further, as shown in FIG. 6B, even if a part of the bottom surface portion 118 is inclined vertically downward, the bottom surface portion 118 is gradually lowered vertically as shown in FIG. 6C. The shape may be inclined.

なお、図6(d)に示すように、受光面部112と背面部114との距離が、鉛直上方に向かうに従って短くなるように形成すれば、受光面部112の近傍の領域において培養液および藻類を鉛直上方に上昇させることができるため、底面部118を水平に形成しても、図6中、矢印a、b、cで示す順で、培養液および藻類を循環させることが可能となる。   As shown in FIG. 6 (d), if the distance between the light receiving surface portion 112 and the back surface portion 114 is formed so as to decrease vertically upward, the culture solution and the algae are removed in the region near the light receiving surface portion 112. Since the bottom portion 118 can be formed horizontally, the culture solution and the algae can be circulated in the order indicated by arrows a, b, and c in FIG.

また、上述した実施形態においてガス導入部120は、連続部122に設けられているが、藻類に消費ガスを供給できれば、槽本体110のどの位置に配されてもよい。   Moreover, although the gas introduction part 120 is provided in the continuous part 122 in embodiment mentioned above, as long as consumption gas can be supplied to algae, you may distribute | arrange to any position of the tank main body 110. FIG.

さらに、上述した実施形態において、越流部130を設けることで、越流部130を越流した培養液M自体を背面部114および底面部118を冷却する冷却手段としているが、背面部114または底面部118を別途の冷却水で冷却してもよい。   Furthermore, in the embodiment described above, by providing the overflow part 130, the culture medium M that has overflowed the overflow part 130 is used as a cooling means for cooling the back part 114 and the bottom part 118. The bottom surface portion 118 may be cooled with separate cooling water.

例えば、図7に示すように、培養液回収部150とは別に、底面部118、底部160、背面部114で形成される冷却水循環路162を設けておき、冷却水循環路162に冷却水Nを循環させることもできる。この場合、背面部114は越流部130から越流した培養液Mによって冷却され、底面部118は、冷却水循環路162を循環する冷却水Nによって冷却される。   For example, as shown in FIG. 7, a cooling water circulation path 162 formed by a bottom surface portion 118, a bottom portion 160, and a back surface portion 114 is provided separately from the culture medium recovery unit 150, and cooling water N is supplied to the cooling water circulation path 162. It can also be circulated. In this case, the back surface portion 114 is cooled by the culture medium M that has overflowed from the overflow portion 130, and the bottom surface portion 118 is cooled by the cooling water N that circulates in the cooling water circulation path 162.

このように冷却水循環路162を設け、この冷却水循環路162に冷却水Nを循環させることで、気温の高い地域や太陽光が強い時期であっても、底面部118を効率的に冷却することが可能となる。また、冷却水循環路162は、冷却水Nを供給する供給部および冷却水Nを取り出す取出部以外は、閉鎖された空間となっているため、冷却水循環路162を循環させた冷却水Nを回収することができる。これにより、少ない水で効率よく底面部118を冷却することが可能となる。   By providing the cooling water circulation path 162 in this way and circulating the cooling water N through the cooling water circulation path 162, the bottom surface portion 118 can be efficiently cooled even in a region where the temperature is high or when the sunlight is strong. Is possible. Moreover, since the cooling water circulation path 162 is a closed space except for the supply section that supplies the cooling water N and the extraction section that extracts the cooling water N, the cooling water N that is circulated through the cooling water circulation path 162 is recovered. can do. As a result, the bottom surface portion 118 can be efficiently cooled with a small amount of water.

また、上述した実施形態では、受光面部112、背面部114、底面部118、右側面部116a、左側面部116bを板状の部材で形成する例を挙げて説明したが、図8に示すような、受光面部112、背面部114、底面部118、右側面部116a、左側面部116bを軟質な樹脂で形成し、受光面部112と背面部114との境界と、背面部114と底面部118の境界と、受光面部112と底面部118との境界をケーブル(図8中、170a、b、cで示す)等で帳架して槽本体110を形成することもできる。   In the above-described embodiment, the light receiving surface portion 112, the back surface portion 114, the bottom surface portion 118, the right side surface portion 116a, and the left side surface portion 116b are described as examples formed by plate-like members, but as shown in FIG. The light receiving surface portion 112, the back surface portion 114, the bottom surface portion 118, the right side surface portion 116a, and the left side surface portion 116b are formed of a soft resin, the boundary between the light receiving surface portion 112 and the back surface portion 114, the boundary between the back surface portion 114 and the bottom surface portion 118, The tank body 110 can also be formed by bridging the boundary between the light receiving surface portion 112 and the bottom surface portion 118 with a cable (indicated by 170a, b, c in FIG. 8) or the like.

本発明は、藻類等を培養する培養装置に利用することができる。   The present invention can be used for a culture apparatus for culturing algae and the like.

100 …培養装置
110 …槽本体
112 …受光面部
114 …背面部
118 …底面部
120 …ガス導入部
130 …越流部(冷却手段)
140 …培養液供給部
DESCRIPTION OF SYMBOLS 100 ... Culture apparatus 110 ... Tank main body 112 ... Light-receiving surface part 114 ... Back surface part 118 ... Bottom part 120 ... Gas introduction part 130 ... Overflow part (cooling means)
140 ... culture solution supply unit

Claims (7)

培養液が満たされる槽本体と、
前記槽本体に設けられ、前記培養液中に被培養体が消費する消費ガスを導入するガス導入部と、を備えた培養装置であって、
前記槽本体は、
受光した光を槽本体内に透過させる受光面部と、
前記受光面部より、当該受光面部から透過される光の透過方向前方に位置し、前記受光面部と対向する位置に配置される背面部と、
前記背面部の下端と前記受光面部の下端とを連続するとともに、当該連続過程の一部または全部が、前記背面部側から前記受光面部側に向かうに従って鉛直下方に傾斜する底面部と、
を備え
前記受光面部と前記背面部との距離は、該受光面部と該背面部との最上端側の距離が最下端側よりも短くなることを特徴とする培養装置。
A tank body filled with a culture solution;
A gas introduction unit that is provided in the tank body and introduces a consumption gas that is consumed by the subject to be cultured in the culture medium,
The tank body is
A light receiving surface that transmits the received light into the tank body;
A rear portion located in front of the light receiving surface portion in the transmission direction of the light transmitted from the light receiving surface portion and disposed at a position facing the light receiving surface portion;
A bottom surface portion that is continuous with the lower end of the back surface portion and the lower end of the light receiving surface portion, and that part or all of the continuous process is inclined vertically downward from the back surface portion side toward the light receiving surface portion side;
Equipped with a,
The distance between the light receiving surface portion and the back surface portion is such that the distance between the uppermost end side of the light receiving surface portion and the back surface portion is shorter than the lowermost end side .
前記受光面部と前記背面部との距離は、鉛直上方に向かうに従って漸減することを特徴とする請求項1に記載の培養装置。 The culture apparatus according to claim 1, wherein the distance between the light receiving surface portion and the back surface portion gradually decreases as it goes vertically upward. 前記ガス導入部は、前記受光面部と前記底面部との連続部に設けられていることを特徴とする請求項1または2に記載の培養装置。 The culture apparatus according to claim 1 or 2 , wherein the gas introduction part is provided in a continuous part of the light receiving surface part and the bottom surface part. 前記背面部および前記底面部のうちいずれか一方または両方は、前記受光面部よりも熱伝導度または放熱効率が高いことを特徴とする請求項1からのいずれか1項に記載の培養装置。 The culture apparatus according to any one of claims 1 to 3 , wherein one or both of the back surface portion and the bottom surface portion has higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion. 前記背面部および前記底面部のうちいずれか一方または両方を冷却する冷却手段をさらに備えたことを特徴とする請求項1からのいずれか1項に記載の培養装置。 The culture apparatus according to any one of claims 1 to 4 , further comprising a cooling unit that cools one or both of the back surface portion and the bottom surface portion. 前記槽本体内の培養液が所定水位となったときに、該槽本体内の該培養液を該槽本体外に越流させるとともに、当該越流した培養液を前記背面部の外面に沿って流下させる越流部をさらに備えたことを特徴とする請求項1からのいずれか1項に記載の培養装置。 When the culture medium in the tank body reaches a predetermined water level, the culture medium in the tank body overflows outside the tank body, and the overflowed culture medium flows along the outer surface of the back surface portion. The culture apparatus according to any one of claims 1 to 5 , further comprising an overflow section for flowing down. 前記槽本体における前記越流部の下方位置には、新たな培養液を供給する培養液供給部をさらに備えたことを特徴とする請求項に記載の培養装置。 The culture apparatus according to claim 6 , further comprising a culture solution supply unit for supplying a new culture solution at a position below the overflow section in the tank body.
JP2011058729A 2011-03-17 2011-03-17 Incubator Expired - Fee Related JP5720337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058729A JP5720337B2 (en) 2011-03-17 2011-03-17 Incubator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058729A JP5720337B2 (en) 2011-03-17 2011-03-17 Incubator

Publications (2)

Publication Number Publication Date
JP2012191894A JP2012191894A (en) 2012-10-11
JP5720337B2 true JP5720337B2 (en) 2015-05-20

Family

ID=47084436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058729A Expired - Fee Related JP5720337B2 (en) 2011-03-17 2011-03-17 Incubator

Country Status (1)

Country Link
JP (1) JP5720337B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160130546A1 (en) * 2013-07-12 2016-05-12 Nexgen Algae, Llc Photobioreactor system and method
WO2016184394A2 (en) * 2015-05-19 2016-11-24 何忠志 Photobioreactor used for algae cultivation, and algae cultivation system
CN104928152B (en) * 2015-06-24 2017-06-09 新奥科技发展有限公司 A kind of bioreactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099032A1 (en) * 2001-06-01 2002-12-12 Yamaha Hatsudoki Kabushiki Kaisha Device and method for cultivating micro algae

Also Published As

Publication number Publication date
JP2012191894A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP6570736B2 (en) Algal aquaculture photobioreactor and algae culture system
AU2012215362B2 (en) Method and bioreactor for the cultivation of microorganisms
Yang et al. An experimental investigation on the multiphase flows and turbulent mixing in a flat-panel photobioreactor for algae cultivation
CN104640970B (en) A kind of new internal component and bioreactor based on reinforcing direction of illumination mixing
Egbo et al. Photobioreactors for microalgae cultivation–an overview
JP6419861B2 (en) Reactor for mass production of photosynthetic microorganisms
Kochem et al. Characterization of a novel flat‐panel airlift photobioreactor with an internal heat exchanger
JP5720337B2 (en) Incubator
JP3240452U (en) A system for growing algae
KR20160000206A (en) Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
CN107828636A (en) A kind of microalgae culturing device adopting
US10407653B2 (en) Photobioreactor
CA3085888A1 (en) Photo bioreactor
JP5817159B2 (en) Incubator
KR101608214B1 (en) Photobioreactor capable of controlling media temperature
KR101663108B1 (en) Light Tube for Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
KR20150128551A (en) Photo-Bioreactor for Photosynthesis Autotrophic Organisms
CN105462816B (en) Realize that sunlight divides uniformly distributed raceway pond microalgae reactor using nanometer light guide plate
CN104928172B (en) Ventilation temperature control system and algal culture system for algal culture
CN110382680A (en) Module and relevant bioreactor for bioreactor
KR20150097296A (en) trapezoidal flat-shapedphotobioreactor
CN204644342U (en) For cultivating the microporous culture plate of photosynthetic microorganism
CN104789451B (en) A kind of photosynthetic organism culture apparatus
CN104962457A (en) Turbulence carbon supplementing device of microalgae raceway pond
Griffiths 5 Microalgal Cultivation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

LAPS Cancellation because of no payment of annual fees