JP5720131B2 - Method for producing lignin and composition thereof - Google Patents

Method for producing lignin and composition thereof Download PDF

Info

Publication number
JP5720131B2
JP5720131B2 JP2010153741A JP2010153741A JP5720131B2 JP 5720131 B2 JP5720131 B2 JP 5720131B2 JP 2010153741 A JP2010153741 A JP 2010153741A JP 2010153741 A JP2010153741 A JP 2010153741A JP 5720131 B2 JP5720131 B2 JP 5720131B2
Authority
JP
Japan
Prior art keywords
lignin
lignin composition
producing
sugar
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010153741A
Other languages
Japanese (ja)
Other versions
JP2012016285A (en
Inventor
敦 古城
敦 古城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2010153741A priority Critical patent/JP5720131B2/en
Publication of JP2012016285A publication Critical patent/JP2012016285A/en
Application granted granted Critical
Publication of JP5720131B2 publication Critical patent/JP5720131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はリグニンの製造方法、特に天然リグニンに近く、反応性の高いリグニンの製造方法及びその組成物に関するものである。 The present invention relates to a method for producing lignin, and more particularly to a method for producing lignin that is close to natural lignin and has high reactivity, and a composition thereof.

植物バイオマス中に含まれる炭化水素化合物の主要な成分はセルロースとリグニンである。グルコースなどの糖を構成モノマーとするセルロースは紙パルプやセロハンをはじめとする素材産業で利用されているが、フェニルプロパノイドをモノマーとした三次元立体構造を有するリグニンは、構造が複雑であることから、燃焼によるエネルギー回収が主であり、化学的利用については現段階で採算性のあるものは少ない。特に紙パルプ工程から得られる黒液はリグノセルロース原料をアルカリによってリグニンのみを溶出した液であり、リグニン含有率が高いことで知られるが、リグニンポリマーがパルプ抽出工程において多大な化学変性を受けており、高度に縮重合しているという報告がある(文献1)。このため、黒液中に含まれるリグニンは化学反応性が低く、素材などへの利用は難しいとされている。
黒液以外のリグニンの製造方法としてはリグノセルロース原料を濃酸とフェノール誘導体によって分離方法(特許文献1)、金属イオンの存在下に破砕、圧搾等し、抽出する方法(特許文献2)、微粉砕して得られる粉末に高温高圧下に過酸化水素水を添加し、マイクロ波を照射することにより可溶化する方法(特許文献3)などが報告されている。しかし、いずれも製造法が困難であることやコストの問題などから実用化には至っていない。
The main components of hydrocarbon compounds contained in plant biomass are cellulose and lignin. Cellulose with sugar as a constituent monomer such as glucose is used in the material industry such as paper pulp and cellophane, but lignin having a three-dimensional structure with phenylpropanoid as a monomer has a complicated structure. Therefore, energy recovery by combustion is the main, and there are few profitable chemical uses at this stage. In particular, black liquor obtained from the paper pulp process is a lignocellulosic raw material that elutes only lignin with alkali and is known for its high lignin content, but the lignin polymer has undergone significant chemical modification in the pulp extraction process. There is a report that it is highly polycondensed (Reference 1). For this reason, lignin contained in black liquor has low chemical reactivity and is considered difficult to use as a raw material.
As a method for producing lignin other than black liquor, a method of separating lignocellulosic raw materials with concentrated acid and a phenol derivative (Patent Document 1), a method of extracting by crushing and pressing in the presence of metal ions (Patent Document 2), There has been reported a method of solubilization by adding hydrogen peroxide water to a powder obtained by pulverization under high temperature and high pressure and irradiating with microwaves (Patent Document 3). However, none of them have been put into practical use because of the difficulty of the production method and cost.

特開平2−233701号公報JP-A-2-233701 特開2010−030921号公報JP 2010-030921 A 特開2009−114181号公報JP 2009-114181 A

三重大学農学部演習林報告 12巻27−39頁(1983/12)Mie University Faculty of Agriculture Forestry Report Vol. 12, pp. 27-39 (1983/12)

本発明は、上記のように従来有効な利用法が十分に検討されていないリグニンの有用な用途を開発するためになされたものであり、特に反応性の高い新規なリグニンとそれを好適に得ることができるリグノセルロースの新規な処理方法を提供することである。 The present invention has been made in order to develop a useful application of lignin for which effective utilization methods have not been sufficiently studied as described above, and in particular, a highly reactive novel lignin and suitably obtained thereof. It is to provide a novel method for treating lignocellulose.

本発明者らは、上記の課題を解決するために鋭意検討した結果、第一糖化工程から得られる残渣を摩砕処理を行った後、酵素糖化することで、反応性の高いリグニンが得られることを見出し、下記発明を完成した。
即ち、上記課題を解決するため、本発明は以下の(1)〜(9)の方法を採用する。
(1)粗破砕および又は磨砕処理を行ったリグノセルロースを多糖分解酵素により、糖を除去する第一糖化工程から得られる残渣に、磨砕処理を行った後、多糖分解酵素により糖を除去する第二糖化工程によって得られることを特徴とするリグニンの製造方法。
(2) 第二糖化工程によって得られるリグニン組成物に対し、更に磨砕処理を行った後、多糖分解酵素により糖を除去する措置を繰り返すことを特徴とするリグニンの製造方法。
(3)前記記載の磨砕処理がニーダー、レファイナーなどを用いることを特徴とする請求項1〜2のいずれかに記載のリグニンの製造方法。
(4)前記記載の少なくとも第一糖化工程、第二工程のいずれかもしくは両方の工程において、工程前に化学処理を行うことを特徴とする請求項1〜3のいずれかに記載のリグニンの製造方法。
(5)前記記載の化学処理が水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ薬品もしくはそれらの混合物に接触させることを特徴とする請求項4記載のリグニンの製造方法。
(6)前記記載の化学処理におけるアルカリ濃度が対リグノセルロース原料25%以下、望ましくは15%以下であることを特徴とする請求項4〜5のいずれかに記載のリグニンの製造方法。
(7)前記記載の化学処理における処理温度が170℃以下、望ましくは90〜110℃であり、処理時間が3時間以下、望ましくは15〜60分であることを特徴とする請求項4〜6のいずれかに記載のリグニンの製造方法。
(8)得られるリグニンの糖含有率が30%以下であることを特徴とする請求項1〜7のいずれかに記載のリグニンの製造方法。
(9)得られるリグニンの水酸基価5mmol/g以上であることを特徴とする請求項1〜8のいずれかに記載のリグニンの製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a highly reactive lignin by performing enzymatic saccharification after grinding the residue obtained from the first saccharification step. As a result, the following invention was completed.
That is, in order to solve the above problems, the present invention employs the following methods (1) to (9).
(1) Crushed and / or ground lignocellulose is subjected to grinding with the polysaccharide-degrading enzyme, and then the residue obtained from the first saccharification step is removed, and then the sugar is removed with the polysaccharide-degrading enzyme. A process for producing lignin characterized by being obtained by a second saccharification step.
(2) A method for producing lignin, characterized in that the lignin composition obtained by the second saccharification step is further subjected to grinding treatment, and thereafter the step of removing the sugar with a polysaccharide-degrading enzyme is repeated.
(3) The method for producing lignin according to any one of claims 1 to 2, wherein the grinding treatment described above uses a kneader, a refiner or the like.
(4) The production of lignin according to any one of claims 1 to 3, wherein a chemical treatment is performed before the process in at least one or both of the first saccharification process and the second process. Method.
(5) The lignin according to claim 4, wherein the chemical treatment is brought into contact with an alkaline chemical such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium hydrogen carbonate or a mixture thereof. Production method.
(6) The method for producing lignin according to any one of claims 4 to 5, wherein the alkali concentration in the chemical treatment is 25% or less, preferably 15% or less, relative to the lignocellulose raw material.
(7) The treatment temperature in the chemical treatment described above is 170 ° C. or less, desirably 90 to 110 ° C., and the treatment time is 3 hours or less, desirably 15 to 60 minutes. The manufacturing method of the lignin in any one of.
(8) The method for producing lignin according to any one of claims 1 to 7, wherein the sugar content of the obtained lignin is 30% or less.
(9) The method for producing lignin according to any one of claims 1 to 8, wherein the obtained lignin has a hydroxyl value of 5 mmol / g or more.

本発明者は化学変性を受けることが比較的少なく、かつ、リグノセルロースに賦存するリグニンから天然リグニンの構造に近く、反応性の高いリグニンポリマーの製造方法について検討した結果、リグノセルロースから酵素によって効率よく糖を除去することによって、目的とする反応性の高いリグニンが製造可能である。   As a result of studying a method for producing a highly reactive lignin polymer having a relatively low chemical modification and having a structure similar to that of natural lignin from lignin existing in lignocellulose, the present inventors By efficiently removing sugar, the desired highly reactive lignin can be produced.

本発明の第一実施形態を示すフロー図。The flowchart which shows 1st embodiment of this invention.

以下、本発明をさらに詳しく説明する。
本発明が対象とするリグノセルロースとしては、製紙原料樹木、樹木の伐採や造材のときに発生する林地残材、間伐材等のチップ、また製材工場等から発生する樹皮、のこ屑、木材チップ、おがくず、更に街路樹の剪定枝、建築廃材等である。なお、本発明においては、木材由来の紙、古紙、パルプ、パルプスラッジ等も木質バイオマスに含まれるものとする。
Hereinafter, the present invention will be described in more detail.
The lignocellulose targeted by the present invention is a papermaking raw material tree, woodland residual material generated when cutting or timbering trees, chips such as thinned wood, bark, sawdust, wood generated from a sawmill, etc. Chips, sawdust, pruned branches of street trees, construction waste, etc. In the present invention, wood-derived paper, waste paper, pulp, pulp sludge and the like are also included in the woody biomass.

前述のリグノセルロースの中でも、木材の樹皮は、現在ほとんど有効利用されておらず、製材工場やチップ工場で均一な品質のものが大量に入手可能であり、木材の木部部分より柔軟かつ可溶性成分が多く、本発明の原料として好適なリグノセルロースである。
リグノセルロースから効率的に糖を除去するためには、まず、第一糖化工程の前処理としてリグノセルロース原料を粗破砕処理し、さらに原料表面積を増大させ、酵素による糖化を促進させるために、微細化もしくは繊維化を行う。粗破砕処理には二軸破砕機、ハンマークラッシャーなどの機械によって行うことが可能であり、これらによって5〜50mm程度の木材チップを得る。その後、微一軸破砕機、カッターミル、ボールミル、ニーダー、レファイナーなどの機械によって2〜20mm程度の微細化もしくは繊維化を行う。第一糖化工程の前処理としては粗破砕処理だけでも良い。
Among the lignocelluloses mentioned above, the bark of wood is rarely used at present and is available in large quantities in a lumber mill and chip factory, which is more flexible and soluble than the wood part of the wood. Therefore, it is lignocellulose suitable as a raw material of the present invention.
In order to efficiently remove sugar from lignocellulose, first, the lignocellulose raw material is roughly crushed as a pretreatment in the first saccharification step, and the surface area of the raw material is further increased to promote saccharification by an enzyme. Or fiberizing. The rough crushing treatment can be performed by a machine such as a biaxial crusher or a hammer crusher, and a wood chip of about 5 to 50 mm is obtained by these. Then, refinement | miniaturization or fiberization of about 2-20 mm is performed with machines, such as a fine uniaxial crusher, a cutter mill, a ball mill, a kneader, and a refiner. As a pretreatment for the first saccharification step, only rough crushing treatment may be used.

糖を除去するために使用する多糖分解酵素は、使用するリグノセルロースに含まれるセルロース成分によって様々な酵素を選択することが可能である。酵素の種類としてはセルラーゼ、キシラナーゼ、リグニナーゼ、アミラーゼ、グルクロニダーゼなどが使用可能で、このうち主成分としてセルラーゼとキシラナーゼが含まれているものが、糖を除去する効率が高い。 As the polysaccharide degrading enzyme used for removing sugar, various enzymes can be selected depending on the cellulose component contained in the lignocellulose to be used. Cellulases, xylanases, ligninases, amylases, glucuronidases and the like can be used as the types of enzymes. Among them, those containing cellulase and xylanase as main components have high efficiency in removing sugar.

特に市販のセルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム属(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス属(Trametes)、フーミコラ(Humicola)属、バチルス(Bacillus)属などに由来するセルラーゼ製剤がある。このようなセルラーゼ製剤の市販品としては、全て商品名で、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、GC220(ジェネンコア社製)等が挙げられる。
原料固形分100質量部に対するセルラーゼ製剤の使用量は、0.5〜100質量部が好ましく、1〜50質量部が特に好ましい。
In particular, commercially available cellulase preparations include the genus Trichoderma, the genus Acremonium, the genus Aspergillus, the genus Phanerochaete, the genus Trametes, the genus Bumil, There are cellulase preparations derived from genera and the like. Commercially available products of such cellulase preparations are all trade names, for example, cellulosin T2 (manufactured by HIPI), mecerase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme), multifect CX10L (manufactured by Genencor) ), GC220 (manufactured by Genencor).
0.5-100 mass parts is preferable and, as for the usage-amount of the cellulase formulation with respect to 100 mass parts of raw material solid content, 1-50 mass parts is especially preferable.

反応条件はpHが4〜7が好ましい。温度は25〜50℃が好ましく、30〜40℃がさらに好ましい。酵素糖化反応は、連続式が好ましいが、バッチ方式でも良い。酵素糖化反応時間は、酵素濃度によっても異なるが、バッチ式の場合は10〜240時間、さらに好ましくは15〜160時間である。連続式の場合も、平均滞留時間が、10〜150時間、さらに好ましくは15〜100時間である。   The reaction conditions are preferably pH 4-7. The temperature is preferably 25 to 50 ° C, more preferably 30 to 40 ° C. The enzyme saccharification reaction is preferably a continuous method, but may be a batch method. The enzyme saccharification reaction time varies depending on the enzyme concentration, but in the case of a batch system, it is 10 to 240 hours, more preferably 15 to 160 hours. Also in the case of a continuous type, the average residence time is 10 to 150 hours, more preferably 15 to 100 hours.

しかし、多糖分解酵素による一度の処理では糖を完全に除去することは難しい。そこで本発明では一度、酵素糖化処理を行って得られる残渣に対し、微細化もしくは繊維化処理を行うことにより、一度の処理では除去されなかったセルロースの結晶性を下げ、更に酵素糖化処理を行うことにより効率的に糖を除去することが可能であることを見出した。この微細化、繊維化処理は複数回行うことにより、糖の除去率を下げることは可能であるが、リグニン分子量の低下を招くため、2〜3回が経済的にも好ましいといえる。
さらに、酵素糖化工程前に、リグニンが変性しない程度の化学処理を行うことにより、セルロース繊維間の結合を緩めることが可能となる。これにより、酵素による糖の除去はさらに効率的となる。薬品としては水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ薬品もしくはそれらの混合物を使用した場合に効果が高く、特に、水酸化カルシウムや水酸化ナトリウムが望ましい。使用するアルカリ濃度は、対リグノセルロース原料25%以下、望ましくは15%以下で行うことにより、酵素による糖の除去効率を高め、かつリグニンの変成が少ない。処理温度についても、同様の理由から180℃以下、望ましくは90〜110℃であり、処理時間は3時間以下、望ましくは15〜60分が最適な条件である。
However, it is difficult to completely remove sugar by a single treatment with a polysaccharide-degrading enzyme. Therefore, in the present invention, the residue obtained by performing the enzymatic saccharification treatment once is refined or fiberized, thereby reducing the crystallinity of cellulose that was not removed by the single treatment, and further performing the enzymatic saccharification treatment. It was found that it is possible to remove sugar efficiently. It is possible to reduce the sugar removal rate by performing this micronization and fiberization treatment a plurality of times, but since it leads to a decrease in the lignin molecular weight, it can be said that 2 to 3 times is preferable economically.
Furthermore, it is possible to loosen the bonds between the cellulose fibers by performing chemical treatment to such an extent that lignin is not denatured before the enzymatic saccharification step. This makes the sugar removal by the enzyme more efficient. The chemical is highly effective when alkaline chemicals such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium hydrogen carbonate or a mixture thereof is used, and calcium hydroxide and sodium hydroxide are particularly desirable. The alkali concentration to be used is 25% or less, preferably 15% or less of the lignocellulose raw material, so that the sugar removal efficiency by the enzyme is increased and the lignin is not denatured. For the same reason, the treatment temperature is 180 ° C. or less, preferably 90 to 110 ° C., and the treatment time is 3 hours or less, preferably 15 to 60 minutes.

糖を除去して得られたリグニンは水で洗浄することにより、使用した酵素や薬品の除去を行うことが可能となる。得られたリグニンは高度に縮重合して暗紫色となったクラフトリグニンとは異なり、薄い茶色の粉末であり、FT−IR分析からもセルロース由来のスペクトルピークは観察されず、リグニン由来のスペクトルピークが主に観察される。リグニン残基と共有結合している糖一分子は多糖分解酵素での切断は困難であるため、糖の完全な除去は困難であるが、本発明によりリグニン中の糖含有率は30%以下にすることは可能である。 The lignin obtained by removing sugar can be washed with water to remove used enzymes and chemicals. The obtained lignin is a light brown powder, unlike kraft lignin which has become highly purple due to highly polycondensation, and the spectrum peak derived from cellulose is not observed even from FT-IR analysis, and the spectrum peak derived from lignin is Observed mainly. Since a single sugar molecule covalently bonded to a lignin residue is difficult to cleave with a polysaccharide-degrading enzyme, complete removal of the sugar is difficult, but according to the present invention, the sugar content in lignin is reduced to 30% or less. It is possible to do.

得られるリグニンには縮重合していないため、反応性の高いフリーの水酸基が多く含まれている。得られたリグニンにおける水酸基価はJIS法(K 0070、K 1557-1)で測定すると5mmol/g以上であり、製造条件によっては10mmol/g以上の水酸基価であるサンプルを得ることが可能であった。
以下、本発明のリグニンとそれを好適に得ることができるリグノセルロースの新規な処理方法について詳細に説明する。本発明はこれにより限定されるものではない。
Since the obtained lignin is not polycondensed, it contains a lot of free hydroxyl groups with high reactivity. The hydroxyl value of the obtained lignin is 5 mmol / g or more as measured by the JIS method (K 0070, K 1557-1), and it is possible to obtain a sample having a hydroxyl value of 10 mmol / g or more depending on the production conditions. It was.
Hereinafter, the novel processing method of the lignin of this invention and the lignocellulose which can obtain it suitably is demonstrated in detail. The present invention is not limited thereby.

<比較例1>
二軸破砕機(近畿工業製、RRC−932E)によって50mm以下に破砕したユーカリチップを、一軸破砕機(西邦機工社製、SC-15)で2~20mm程度に繊維化を行った。この試料300gに50mM酢酸緩衝液(pH5)を10L加え、多糖分解酵素(ジェネンコア製、GC220) 300mLを添加し、50℃、150rpmで攪拌し18時間反応させた。反応液を40メッシュのろ布でろ過した後、ろ布上に残った固形物をイオン交換水10Lで洗浄し、酢酸緩衝液、多糖分解酵素と酵素によって可溶化した糖の除去を行った。
得られた固形物はJIS法(P 8211)に従ってカッパー価を測定してリグニン量を算出した。固形物中の糖含有率は、絶乾4gの固形物に対し、70%硫酸を50ml添加し、20℃、18時間の攪拌を行うことにより、糖を溶出し、反応後、反応液上清中の糖濃度をフェノール硫酸法で測定することによって算出した。固形物中の水酸基価はJIS法(K 0070、K 1557-1)に従って測定した。
<Comparative Example 1>
Eucalyptus chips crushed to 50 mm or less by a biaxial crusher (manufactured by Kinki Kogyo Co., Ltd., RRC-932E) were fiberized to about 2 to 20 mm using a uniaxial crusher (Seiho Kiko Co., Ltd., SC-15). To 300 g of this sample, 10 L of 50 mM acetate buffer (pH 5) was added, 300 mL of a polysaccharide-degrading enzyme (Genencor, GC220) was added, and the mixture was stirred at 50 ° C. and 150 rpm for 18 hours. After the reaction solution was filtered with a 40 mesh filter cloth, the solid matter remaining on the filter cloth was washed with 10 L of ion-exchanged water, and the sugar solubilized by the acetate buffer, the polysaccharide degrading enzyme and the enzyme was removed.
The solid matter obtained was measured for kappa number according to the JIS method (P 8211) to calculate the amount of lignin. The saccharide content in the solid was determined by adding 50 ml of 70% sulfuric acid to the absolutely dry 4 g of solid and stirring the mixture at 20 ° C for 18 hours to elute the sugar. The sugar concentration inside was calculated by measuring by the phenol sulfuric acid method. The hydroxyl value in the solid was measured according to the JIS method (K 0070, K 1557-1).

<比較例2>
比較例1と同様に繊維化、糖化工程を行って得られた固形物100gに対し、再度50mM酢酸緩衝液(pH5)を10L加え、多糖分解酵素(ジェネンコア製、GC220) 100mLを添加し、50℃、150rpmで攪拌し18時間反応させた。反応液を40メッシュのろ布でろ過した後、ろ布上に残った固形物をイオン交換水10Lで洗浄し、酢酸緩衝液、多糖分解酵素と酵素によって可溶化した糖の除去を行った。
得られた固形物は比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Comparative Example 2>
10 L of 50 mM acetate buffer (pH 5) is again added to 100 g of the solid material obtained by performing the fiberization and saccharification steps in the same manner as in Comparative Example 1, and 100 mL of polysaccharide degrading enzyme (Genencor, GC220) is added. The mixture was stirred at 150 ° C. and 150 rpm for 18 hours. After the reaction solution was filtered with a 40 mesh filter cloth, the solid matter remaining on the filter cloth was washed with 10 L of ion-exchanged water, and the sugar solubilized by the acetate buffer, the polysaccharide degrading enzyme and the enzyme was removed.
The obtained solid was measured for lignin amount, sugar content, and hydroxyl value in the same manner as in Comparative Example 1.

<比較例3>
ユーカリチップを比較例1と同様に繊維化工程を行って得られた固形物100gに対し、磨砕機(増幸産業社製 マスコーロイダー)にて磨砕処理を行った。磨砕処理におけるクリアランスは10nmで行い、処理後、50mM酢酸緩衝液(pH5)を10L加え、多糖分解酵素(ジェネンコア製、GC220) 100mLを添加し、50℃、150rpmで攪拌し18時間反応させた。反応液を5000rpm、10分間の遠心処理で沈殿させ、上清を取り除いた後、イオン交換水を添加して懸濁させた後、再度遠心処理を行った。上清の電気伝導度が100uS/cm以下になるまで懸濁、遠心処理を繰り返し、沈殿として固形物を回収した。
<Comparative Example 3>
The eucalyptus chip was subjected to a grinding process using a grinding machine (Massko Sangyo Co., Ltd., a mass colloider) on 100 g of the solid material obtained by subjecting the eucalyptus chip to the fiberizing step in the same manner as in Comparative Example 1. The clearance in the grinding process was 10 nm, and after the treatment, 10 L of 50 mM acetate buffer (pH 5) was added, 100 mL of polysaccharide degrading enzyme (Genencor, GC220) was added, and the mixture was stirred at 50 ° C. and 150 rpm for 18 hours. . The reaction solution was precipitated by centrifugation at 5000 rpm for 10 minutes, the supernatant was removed, ion-exchanged water was added and suspended, and then centrifuged again. Suspension and centrifugation were repeated until the electrical conductivity of the supernatant reached 100 uS / cm or less, and solid matter was collected as a precipitate.

<比較例4>
市販されているクラフトリグニン(アルドリッチ社製)について比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Comparative Example 4>
The lignin amount, sugar content, and hydroxyl value of the commercially available kraft lignin (manufactured by Aldrich) were measured in the same manner as in Comparative Example 1.

<実施例1>
ユーカリチップを比較例3と同様に繊維化、磨砕処理、糖化、遠心処理工程を行って得られた固形物100gに対し、再度、同じ条件で磨砕処理、糖化処理、遠心処理を行った。
得られた固形物は比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Example 1>
The eucalyptus chips were subjected to the same process as in Comparative Example 3, and the grinding, saccharification, and centrifugation processes were again performed under the same conditions on 100 g of the solid material obtained by performing the steps of fiberization, grinding, saccharification, and centrifugation. .
The obtained solid was measured for lignin amount, sugar content, and hydroxyl value in the same manner as in Comparative Example 1.

<実施例2>
比較例1と同様に繊維化工程を行った後、試料300gに2.7Lのイオン交換水と60gの水酸化ナトリウムを添加(対原料20%)し、90℃、30分の化学処理を行った。処理後、反応液を40メッシュのろ布でろ過した後、ろ布上に残った固形物をイオン交換水10Lで洗浄した。得られた固形物に対し、比較例3と同様に磨砕処理、糖化処理、遠心処理を行い、再度、同じ条件で磨砕処理、糖化処理、遠心処理を行った。
得られた固形物は比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Example 2>
After performing the fiberization step in the same manner as in Comparative Example 1, 2.7 L of ion exchange water and 60 g of sodium hydroxide were added to 300 g of the sample (20% to the raw material), followed by chemical treatment at 90 ° C. for 30 minutes. . After the treatment, the reaction solution was filtered through a 40-mesh filter cloth, and the solid matter remaining on the filter cloth was washed with 10 L of ion-exchanged water. The obtained solid was ground, saccharified, and centrifuged in the same manner as in Comparative Example 3, and again ground, saccharified, and centrifuged under the same conditions.
The obtained solid was measured for lignin amount, sugar content, and hydroxyl value in the same manner as in Comparative Example 1.

<実施例3>
実施例2と同様に処理を行う際、化学処理における使用薬品が水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウムでそれぞれ行った。(実施例3−1〜3−4)
得られた固形物は比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Example 3>
When the treatment was performed in the same manner as in Example 2, chemicals used in the chemical treatment were respectively potassium hydroxide, calcium hydroxide, sodium carbonate, and sodium bicarbonate. (Examples 3-1 to 3-4)
The obtained solid was measured for lignin amount, sugar content, and hydroxyl value in the same manner as in Comparative Example 1.

<実施例4>
実施例2と同様に処理を行う際、化学処理における使用薬品(対原料%)が5,10、25,50%でそれぞれ行った。(実施例4−1〜4−4)
得られた固形物は比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Example 4>
When the treatment was performed in the same manner as in Example 2, the chemicals used (% of raw material) in the chemical treatment were 5, 10, 25, and 50%, respectively. (Examples 4-1 to 4-4)
The obtained solid was measured for lignin amount, sugar content, and hydroxyl value in the same manner as in Comparative Example 1.

<実施例5>
実施例2と同様に処理を行う際、化学処理における処理温度が50、110,170,190℃でそれぞれ行った。(実施例5−1〜5−4)
得られた固形物は比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Example 5>
When processing was performed in the same manner as in Example 2, the processing temperatures in chemical processing were 50, 110, 170, and 190 ° C., respectively. (Examples 5-1 to 5-4)
The obtained solid was measured for lignin amount, sugar content, and hydroxyl value in the same manner as in Comparative Example 1.

<実施例6>
実施例2と同様に処理を行う際、化学処理における処理時間が5,15,60,180,360分でそれぞれ行った。(実施例6−1〜6−5)
得られた固形物は比較例1と同様にリグニン量、糖含有量、水酸基価の測定を行った。
<Example 6>
When processing was performed in the same manner as in Example 2, the processing times in the chemical processing were 5, 15, 60, 180, and 360 minutes, respectively. (Examples 6-1 to 6-5)
The obtained solid was measured for lignin amount, sugar content, and hydroxyl value in the same manner as in Comparative Example 1.

Figure 0005720131
Figure 0005720131

Claims (8)

粗破砕および又は磨砕処理を行ったリグノセルロースを多糖分解酵素で処理する第一糖化工程において糖液と残渣に分離し、得られた残渣を磨砕処理した後、磨砕処理した残渣を多糖分解酵素で処理する第二糖化工程において糖液とリグニン組成物とに分離することを特徴とするリグニン組成物の製造方法であって、得られるリグニンの糖含有率が30%以下であり、得られるリグニンの水酸基価5mmol/g以上であるリグニン組成物の製造方法。 In the first saccharification step in which lignocellulose that has been roughly crushed and / or ground is treated with a polysaccharide-degrading enzyme, it is separated into a sugar solution and a residue, the resulting residue is ground, and the ground residue is then polysaccharide. A method for producing a lignin composition characterized in that a sugar solution and a lignin composition are separated in a second saccharification step treated with a decomposing enzyme, wherein the sugar content of the obtained lignin is 30% or less, A method for producing a lignin composition having a hydroxyl value of 5 mmol / g or more. 第二糖化工程によって得られるリグニン組成物に対し、更に磨砕処理を行った後、多糖分解酵素により糖液とリグニン組成物とに分離する措置を繰り返すことを特徴とする、請求項1に記載のリグニン組成物の製造方法。 To lignin composition obtained by the second saccharification step, after further grinding treatment, and repeating the measures by polysaccharide degrading enzyme separated into a sugar solution and lignin composition, according to claim 1 A method for producing a lignin composition . 前記磨砕処理がニーダー又はレファイナーを用いることを特徴とする請求項1〜2のいずれかに記載のリグニン組成物の製造方法。 The said grinding process uses a kneader or a refiner, The manufacturing method of the lignin composition in any one of Claims 1-2 characterized by the above-mentioned. 前記記載の少なくとも第一糖化工程、第二工程のいずれかもしくは両方の工程において、工程前に化学処理を行うことを特徴とする請求項1〜3のいずれかに記載のリグニン組成物の製造方法。 The method for producing a lignin composition according to any one of claims 1 to 3, wherein a chemical treatment is performed before the step in at least one of the first saccharification step and the second step or both steps. . 前記記載の化学処理が水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、又は炭酸水素ナトリウム、もしくはそれらの混合物に接触させることを特徴とする請求項4記載のリグニン組成物の製造方法。 The method for producing a lignin composition according to claim 4, wherein the chemical treatment described above is brought into contact with sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, or sodium bicarbonate, or a mixture thereof. 前記記載の化学処理におけるアルカリ濃度が対リグノセルロース原料25%以下であることを特徴とする請求項4〜5のいずれかに記載のリグニン組成物の製造方法。 The method for producing a lignin composition according to any one of claims 4 to 5, wherein the alkali concentration in the chemical treatment described above is 25% or less of the lignocellulose raw material. 前記記載の化学処理における処理温度が170℃以下であり、処理時間が3時間以下であることを特徴とする請求項4〜6のいずれかに記載のリグニン組成物の製造方法。 The method for producing a lignin composition according to any one of claims 4 to 6, wherein a treatment temperature in the chemical treatment described above is 170 ° C or less and a treatment time is 3 hours or less. 請求項1から7のいずれか一項に記載の方法により製造されたリグニン組成物。The lignin composition manufactured by the method as described in any one of Claim 1 to 7.
JP2010153741A 2010-07-06 2010-07-06 Method for producing lignin and composition thereof Active JP5720131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153741A JP5720131B2 (en) 2010-07-06 2010-07-06 Method for producing lignin and composition thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153741A JP5720131B2 (en) 2010-07-06 2010-07-06 Method for producing lignin and composition thereof

Publications (2)

Publication Number Publication Date
JP2012016285A JP2012016285A (en) 2012-01-26
JP5720131B2 true JP5720131B2 (en) 2015-05-20

Family

ID=45602019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153741A Active JP5720131B2 (en) 2010-07-06 2010-07-06 Method for producing lignin and composition thereof

Country Status (1)

Country Link
JP (1) JP5720131B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182369B2 (en) * 2013-06-24 2017-08-16 花王株式会社 Method for producing lignin degradation product
JP6247030B2 (en) * 2013-06-24 2017-12-13 花王株式会社 UV absorber
JP6182368B2 (en) * 2013-06-24 2017-08-16 花王株式会社 Method for producing lignin degradation product
JP6343967B2 (en) * 2014-03-06 2018-06-20 王子ホールディングス株式会社 Method for producing ferulic acid
JP6346853B2 (en) * 2014-12-04 2018-06-20 本田技研工業株式会社 Neisseria gonorrhoeae mutant, transformant and method for producing saccharifying enzyme
JP6447078B2 (en) * 2014-12-12 2019-01-09 王子ホールディングス株式会社 Method for producing lignin composition
JP2019156926A (en) * 2018-03-09 2019-09-19 株式会社神鋼環境ソリューション Lignophenol production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169690A (en) * 2001-12-06 2003-06-17 Aoba Kasei Kk Method for extracting lignin-containing material and antioxidant using lignin
JP4765073B2 (en) * 2006-07-05 2011-09-07 国立大学法人広島大学 Method for hydrothermal hydrolysis of lignocellulose
JP5339250B2 (en) * 2008-07-28 2013-11-13 独立行政法人産業技術総合研究所 Method for producing enzyme solution and method for producing sugar
JP2010104361A (en) * 2008-10-02 2010-05-13 Musashino Chemical Laboratory Ltd Method of producing saccharified liquid using lignocellulosic biomass
JP2010136702A (en) * 2008-12-15 2010-06-24 Forestry & Forest Products Research Institute Method for producing ethanol

Also Published As

Publication number Publication date
JP2012016285A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
AU2011296986B2 (en) Method for enzymatic saccharification of lignocellulosic-containing biomass, and method for producing ethanol from lignocellulosic-containing biomass
JP5720131B2 (en) Method for producing lignin and composition thereof
Geng et al. Effect of delignification on hemicellulose extraction from switchgrass, poplar, and pine and its effect on enzymatic convertibility of cellulose-rich residues
JP2010131004A (en) Saccharide production process
JP2011523349A (en) Biomass processing method
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP5685959B2 (en) Method for producing valuable material from lignocellulose-containing biomass
JP4947223B1 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP6447078B2 (en) Method for producing lignin composition
JP5267387B2 (en) Bast fiber manufacturing method and bast fiber
JP6213612B2 (en) Method for producing ethanol from lignocellulosic material
JP6256967B2 (en) Pretreatment method for lignocellulose-containing biomass
WO2011125992A1 (en) Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP2011055732A (en) Method for producing saccharides from bark raw material
JP2015167480A (en) Method for enzymatic saccharification of biomass containing lignocellulose
JP5924192B2 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP5381119B2 (en) Method for producing saccharides from bark raw material
Arita et al. Production of Glucose from Waste Bark Acacia Mangium Using Delifnification and Chemical Hydrolysis Process
Srinivasan Pretreatment of Guayule Biomass Using Supercritical CO 2-based Method for Use as Fermentation Feedstock
Deba et al. Biosugar production from oil palm mesocarp fiber (OPMF) using Viscozyme
FI127296B (en) Method for processing and fractionating biomass
JP6343967B2 (en) Method for producing ferulic acid
JP2015159755A (en) Method for producing ethanol from lignocellulose-containing biomass
Weeraphan et al. Steam explosion pretreatment of Oil Palm Empty Fruit Bunch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250