WO2011125992A1 - Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass - Google Patents

Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass Download PDF

Info

Publication number
WO2011125992A1
WO2011125992A1 PCT/JP2011/058569 JP2011058569W WO2011125992A1 WO 2011125992 A1 WO2011125992 A1 WO 2011125992A1 JP 2011058569 W JP2011058569 W JP 2011058569W WO 2011125992 A1 WO2011125992 A1 WO 2011125992A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant biomass
treatment
solution
saccharification
immersed
Prior art date
Application number
PCT/JP2011/058569
Other languages
French (fr)
Japanese (ja)
Inventor
田端一英
内田明男
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2011125992A1 publication Critical patent/WO2011125992A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/06Pretreatment of the finely-divided materials before digesting with alkaline reacting compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for treating plant biomass applied when producing sugar, alcohol and / or organic acid using plant biomass, a method for producing sugar from plant biomass containing the treatment method, alcohol and / or
  • the present invention relates to a method for producing an organic acid.
  • waste biomass such as waste wood is attracting attention as a chemical raw material resource.
  • cellulose which is one of the main components of wood, has glucose molecules as a structural unit.
  • Sugars such as glucose can be obtained by hydrolyzing the cellulose.
  • a polymer raw material produced in the petrochemical industry can be prepared.
  • alcohols and organic acids, such as ethanol can be manufactured by performing fermentation using the obtained saccharides.
  • Patent Document 1 a method including a hydrothermal treatment process using a pressurized hot water and a mechanical pulverization process is known (Patent Document 1). ).
  • Patent Document 2 discloses a method including a steaming step in which biomass is immersed in a chemical solution containing water, a water-soluble organic solvent and an organic acid, and the plant biomass is cooked as a pretreatment method for plant biomass.
  • Patent Document 3 discloses a technique for dissolving a lignin component by immersing plant biomass in a strong alkaline solution as a pretreatment method for plant biomass.
  • the present invention provides a method for treating plant biomass that can achieve excellent saccharification efficiency at a low cost in the production of sugar from plant biomass, and plant biomass including the treatment method. It is an object of the present invention to provide a method for producing sugar from sucrose, and a method for producing alcohol and / or organic acid from plant biomass including the treatment method.
  • saccharification treatment is carried out after the pretreatment step by treating the plant biomass with a dilute alkaline solution before the pretreatment step carried out prior to the saccharification step.
  • the present inventors have found that the saccharification efficiency in can be significantly improved, and have completed the present invention.
  • the plant biomass processing method according to the present invention includes the following.
  • the alkali solution has an alkali concentration in which the pH when the plant biomass is immersed is within a range of +2.5 from the pH when the plant biomass is immersed in water. It is preferable that
  • the alkali solution preferably has an alkali concentration of 5.0 mM or less.
  • the method for treating plant biomass according to the present invention may be adjusted to a lower pH by adding an acid such as sulfuric acid after the step of immersing the plant biomass in the alkaline solution. That is, it is preferable to adjust to a lower pH by adding an acid, for example, sulfuric acid, after the step of immersing plant biomass in the alkaline solution, and then subjecting it to the pretreatment step.
  • an acid for example, sulfuric acid
  • the processing method of the plant biomass which concerns on this invention may include the process of isolate
  • the processing method of the plant biomass which concerns on this invention mentioned above is applicable to the manufacturing method of sugar from plant biomass, and the manufacturing method of alcohol from plant biomass. That is, in the method for producing sugar from plant biomass according to the present invention, after the above-described method for treating plant biomass, a step of pretreating the plant biomass after treatment and saccharification of the plant biomass after pretreatment Process. Moreover, the manufacturing method of the alcohol from the plant biomass which concerns on this invention is a process which pre-processes with respect to the plant biomass after a process after the processing method of the plant biomass mentioned above, and saccharifies the plant biomass after a pre-process. A process and a process of synthesizing alcohol by using sugar derived from plant biomass.
  • examples of the pretreatment step include a treatment for removing the lignin component contained in the plant biomass and / or a treatment for partially decomposing the hemicellulose component.
  • Specific examples of the pretreatment step include hydrothermal treatment, steaming explosion treatment, dilute sulfuric acid treatment, steaming treatment, and microwave treatment.
  • a method using an enzyme that hydrolyzes polysaccharides contained in plant biomass can be applied. Examples of the enzyme include cellulase.
  • a method using ethanol fermentation using sugar obtained by saccharification as a substrate can be applied. At this time, yeast can be used as an example.
  • the saccharification efficiency in the treatment for saccharifying the polysaccharide contained in the plant biomass can be improved at a low cost. That is, by applying the plant biomass treatment method according to the present invention, sugars can be produced by effectively using polysaccharides contained in plant biomass, and alcohols using sugars can be produced. .
  • the saccharification experiment which uses eucalyptus as a raw material, it is a characteristic view which shows the relationship between the alkaline solution of various density
  • a saccharification experiment using eucalyptus as a raw material it is a characteristic diagram showing a saccharification rate when sulfuric acid is added after performing an immersion step.
  • a saccharification experiment using acacia as a raw material it is a characteristic diagram showing a saccharification rate when a dilute alkali solution is used in the dipping process.
  • a saccharification experiment using acacia as a raw material it is a characteristic diagram showing a saccharification rate when sulfuric acid is added after performing an immersion step.
  • a saccharification experiment using acacia as a raw material when sulfuric acid is added after carrying out an immersion step, it is a characteristic diagram showing a saccharification rate when solid-liquid separation is carried out after carrying out the immersion step.
  • a saccharification experiment using eucalyptus as a raw material when sulfuric acid is added after carrying out an immersion step, it is a characteristic diagram showing a saccharification rate when solid-liquid separation is carried out after carrying out the immersion step.
  • the plant biomass treatment method according to the present invention is carried out before the pretreatment step carried out prior to the saccharification step.
  • the saccharification efficiency in the saccharification process implemented after a pre-processing process can be improved significantly by passing through the process which immerses plant biomass in a dilute alkaline solution.
  • the dilute alkaline solution used in this dipping step means a solution having an alkali concentration such that the pH when the plant biomass is immersed is approximately the same as the pH when the plant biomass is immersed in water. Since plant biomass contains inorganic acids and oily components, the aqueous solution becomes acidic (pH is less than 7) when plant biomass is immersed in water. For example, when plant biomass is immersed in water at pH 7.0 and the drop in pH reaches an equilibrium state, the pH is about 3.0 to 6.0. In addition, the fall degree of pH at this time changes according to the kind of plant.
  • the same pH means a range of +2.5, preferably +2.0, more preferably +1.5, and further preferably +1.0 from the pH when plant biomass is immersed in water.
  • the dilute alkaline solution having a pH within the above range when the plant biomass is immersed is more specifically 5 mM or less, preferably 3 mM or less, more preferably 1 mM or less, and further preferably 0.5 mM or less.
  • An aqueous solution can be mentioned.
  • saccharification efficiency may not be improved as compared with a case where plant biomass is immersed in water instead of the dilute alkaline solution.
  • dilute alkali solution examples include an aqueous alkaline solution of 0.05 mM or more, preferably 0.1 mM or more, more preferably 0.2 mM or more.
  • a dilute alkaline solution having a pH lower than the above range is used, there is a possibility that only the saccharification efficiency equivalent to the case where plant biomass is immersed in water instead of the dilute alkaline solution can be achieved.
  • the alkali concentration in the dilute alkali solution to be used is appropriately set according to the plant biomass to be treated.
  • the alkali concentration of the dilute alkaline solution used is a relatively low concentration (for example, 0.5 mM, preferably 0.2 mM) is preferable.
  • the alkali concentration of the diluted alkaline solution used is relatively high (eg, 1.0 mM or more). It is preferable that
  • the dilute alkaline solution is not particularly limited, and for example, a sodium hydroxide solution, a calcium hydroxide solution, an ammonia solution, a potassium hydroxide solution and the like can be used.
  • examples of plant biomass include biomass mainly composed of lignin, cellulose, lignocellulose, and hemicellulose. More specifically, examples of plant biomass include woody and herbaceous materials. In the processing method of the plant biomass which concerns on this invention, it can be used without being limited at all as plant biomass. More specifically, plant biomass includes eucalyptus, bagasse, acacia, rice straw, cedar, wheat straw, bamboo, etc., pulp made from these plants, plywood materials, building materials, and wastes thereof (for example, Used paper). In the plant biomass treatment method according to the present invention, a pulverized product obtained by subjecting plant biomass to a pulverization process using a vibration mill, a cutter mill, or the like in advance can be used as the plant biomass.
  • the pulverized product may be appropriately subjected to a sieve (for example, a mesh of 150 ⁇ m to 4 mm), and the pulverized product that has passed may be used as plant biomass. Therefore, the processing method of the plant biomass which concerns on this invention may include the said crushing process process.
  • the plant biomass may be allowed to stand in a state of being immersed in the dilute alkali solution, or may be stirred in a state where the plant biomass is immersed in the dilute alkali solution.
  • the amount of plant biomass charged into the dilute alkaline solution is not particularly limited, but can be, for example, 1 to 30% by weight, preferably 1 to 15% by weight, and preferably 5 to 10% by weight. More preferably.
  • the treatment time of the dipping step can be appropriately set according to the type of plant biomass, the shape of the plant biomass introduced into the dilute alkaline solution, the dry state, etc., and can be set to, for example, 0 to 6 hours. 0 to 3 hours is preferable, and 0 to 1 hour is more preferable.
  • the treatment time of the dipping step within the above range, the dilute alkali solution can sufficiently act over the entire plant biomass, and finally excellent saccharification efficiency can be achieved.
  • the plant biomass is immersed in a dilute alkali solution.
  • the plant biomass after the treatment is subjected to a pretreatment step that is performed prior to the saccharification treatment step.
  • the pretreatment step include a treatment for removing a lignin component contained in plant biomass and / or a treatment for partially decomposing a hemicellulose component.
  • the treatment for removing the lignin component contained in the plant biomass may be a treatment for the purpose of removing the lignin component, and it is not necessary to remove the entire amount of the lignin component, or a part of the lignin component is removed or removed. What is necessary is just the process to decompose.
  • disassembles a hemicellulose component should just be the process aiming at the partial decomposition
  • examples of the pretreatment process include hydrothermal treatment, steaming explosion treatment, dilute sulfuric acid treatment, steaming treatment, and microwave treatment.
  • Hydrothermal treatment is a treatment that causes a high-temperature aqueous solution to act on plant biomass under pressurized conditions.
  • the treatment conditions include, for example, a temperature of 140 to 240 ° C. and a pressure of 0.1 to 4 MPa, more preferably a temperature of 140 to 180 ° C. and a pressure of 0.5 to 1 MPa.
  • the treatment time may be a time sufficient for the lignin, cellulose and hemicellulose to be untangled and become fibrous, for example 0.5 to 3 hours.
  • the hydrothermal treatment may be performed in a solution containing an inorganic acid and a water-soluble organic solvent.
  • Steaming and blasting is a process in which plant biomass pulverized to a predetermined size is immersed in a chemical solution containing water, a water-soluble organic solvent, and an organic acid, and then steamed.
  • Water-soluble organic solvents include alcohols such as methanol and ethanol, polyhydric alcohols such as glycerin and ethylene glycol, and water such as aprotic polar solvents such as dimethyl sulfoxide, dimethylformamide, and N, N-dimethylacetamide.
  • a water-soluble organic solvent having a low specific heat is used.
  • As the organic acid acetic acid, oxalic acid, formic acid, succinic acid, lactic acid, malic acid, tartaric acid, citric acid and the like are used.
  • the temperature at which the pulverized plant biomass is immersed in the chemical solution is about 160 to 220 ° C.
  • Steaming is preferably performed in a pressure resistant container.
  • the inside of the pressure vessel at this time is preferably saturated with steam, and the pressure is more preferably 1 to 5 times the saturated vapor pressure.
  • the pressure in the pressure vessel is preferably 0.1 to 5 MPa.
  • Diluted sulfuric acid treatment is a process of immersing plant biomass in dilute sulfuric acid.
  • the concentration of dilute sulfuric acid can be set to 0.2 to 2%, for example.
  • the temperature is preferably 140 to 220 ° C. with the plant biomass immersed in dilute sulfuric acid.
  • the dilute sulfuric acid treatment is preferably performed for 3 to 20 minutes at the above temperature.
  • Steaming is a process in which high temperature steam is applied to plant biomass and steamed under high temperature and pressure.
  • the treatment temperature for the steaming treatment is preferably 140 to 220 ° C.
  • the treatment time for the steaming treatment is preferably 3 to 20 minutes.
  • the microwave treatment is a process in which a predetermined microwave is irradiated to a pulverized or intact plant biomass and rapidly heated.
  • the treatment temperature for the microwave treatment is preferably 140 to 300 ° C.
  • the treatment time for the microwave treatment is preferably 1 to 10 minutes.
  • the solution in which the plant biomass is immersed may be directly subjected to the hydrothermal treatment after the immersion step in the dilute alkali solution described above.
  • the concentration of sulfuric acid contained in the solution to be subjected to hydrothermal treatment is not particularly limited, but can be, for example, 0.001 to 3% by weight, preferably 0.001 to 0.3% by weight, and 0.001 to 0.03% by weight. More preferably.
  • the concentration of dilute sulfuric acid contained in the solution to be subjected to hydrothermal treatment can be appropriately set depending on the type of plant biomass, the amount of plant biomass in the solution, the initial pH in the solution (solution pH after the immersion treatment), etc. .
  • the plant biomass content in the solution subjected to the hydrothermal treatment is, for example, 5 to 40% by weight, preferably 20 to 40% by weight, particularly preferably 30 to 40% by weight. .
  • a solid component made of plant biomass may be separated by solid-liquid separation treatment, and the solid component may be subjected to the pretreatment step.
  • a solid-liquid separation process The solid-liquid separation process by a filtration apparatus, the solid-liquid separation process by a pressing apparatus, the solid-liquid separation process by a centrifuge etc. can be mentioned.
  • an acid component having a buffering action such as phosphoric acid
  • the solid component of plant biomass is removed by solid-liquid separation treatment.
  • the delignification effect by hydrothermal treatment and the partial decomposition efficiency of hemicellulose can be achieved.
  • sulfuric acid is added before being subjected to hydrothermal treatment, a desired pH can be achieved by sulfuric acid conversion.
  • the obtained treated product can be used as a raw material used for the saccharification treatment.
  • sugars such as oligosaccharides and monosaccharides (glucose and xylose) can be produced from cellulose components and hemicellulose components (including partially decomposed products) contained in plant biomass.
  • the obtained sugar component can be converted into alcohols such as ethanol and other organic acids by fermentation using microorganisms such as yeast.
  • the organic acid include lactic acid, acetic acid, and succinic acid.
  • the alcohol include ethanol and butanol.
  • Acetone can also be obtained in butanol fermentation. Therefore, the obtained sugar component can be used in a production method for the purpose of, for example, lactic acid, acetic acid, succinic acid, ethanol, butanol and acetone.
  • examples of the enzyme include cellulase, hemicellulase (xylanase, xylobiase), mannanase and the like.
  • glucose can be obtained by using cellulase as an enzyme.
  • xylose can be obtained by using hemicellulase as an enzyme.
  • mannose can be obtained by using mannanase as an enzyme.
  • microorganisms that produce the enzymes themselves, culture solutions or culture supernatants of the microorganisms, immobilized enzymes, and the like can be used as the enzymes.
  • FPU FinterPUPaper Unit
  • a reaction product containing cellulase and hydrothermally treated product to which a buffer solution (for example, sodium acetate buffer (pH 5)) is added is used, for example, at a temperature of 35 to 45 ° C.
  • the reaction is preferably carried out at 38 to 42 ° C. for 12 to 48 hours. In addition, you may perform the said reaction under shaking.
  • the obtained processed product (hereinafter referred to as “saccharified product”) may be used as a saccharide as it is, or a product that has been subjected to purification or extraction treatment and purified or extracted may be used as a saccharide.
  • sugar to be obtained examples include glucose, xylose, mannose, galactose and the like.
  • Whether or not saccharification was significantly performed by saccharification treatment is determined by quantifying the amount of sugar by HPLC or the following formula
  • the saccharification rate (%) calculated by the above can be used as an index.
  • yeast capable of performing ethanol fermentation can be used.
  • yeasts belonging to the genus Saccharomyces such as Saccharomyces cerevisiae, the genus Kluyveromyces, the genus Schizosaccharomyces, the genus Pichia, and the genus Candida. Can be mentioned.
  • the basal medium used for yeast culture is generally yeast extract, glucose, KH 2 PO 4 , MgSO 4 .7H 2 O, NaCl, CaCl 2 , (NH 4 ) 2 SO 4 , H 3 BO 4 at a predetermined concentration. CuSO 4 ⁇ 5H 2 O, KI, FeCl 3 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O, ZnSO 4 ⁇ 7H 2 O and Na 2 MoO 4 ⁇ 2H 2 O.
  • yeast is cultured in a medium containing the saccharified product and the medium composition described above.
  • the culture conditions may be any conditions in which ethanol fermentation is sufficiently performed and yeast can grow.
  • the temperature is 25 to 45 ° C.
  • the obtained processed product (hereinafter referred to as “fermented processed product”) may be used as ethanol as it is, or may be subjected to purification or extraction treatment and purified or extracted to be used as ethanol.
  • Whether ethanol was significantly obtained by fermentation is determined by quantifying the amount of ethanol by HPLC or the like, or the following formula:
  • the ethanol conversion rate (%) calculated by the above can be used as an index.
  • Example 1 Production of Sugar from Plant Biomass Eucalyptus ground product (25 g) (vibration mill ground 150 ⁇ m mesh product) was collected in a beaker as plant biomass (hereinafter referred to as “BM”). Subsequently, the reaction solution (475 g) was added to adjust the total weight to 500 g.
  • water, 0.2 mM alkaline solution, 1 mM alkaline solution, 5 mM alkaline solution, 10 mM alkaline solution, 25 mM alkaline solution, 50 mM alkaline solution, 100 mM alkaline solution and 500 mM alkaline solution were prepared and used as the reaction solution. .
  • a sodium hydroxide solution was used as the alkali solution having various concentrations.
  • the reaction time was defined as a sufficient time for the neutralization reaction between the acid eluted from the eucalyptus ground product and the alkali of the reaction solution to reach equilibrium. Specifically, the reaction time was 6 to 12 hours, and the reaction temperature was room temperature (20 ° C.). The pH at the end of the dipping process was measured.
  • reaction solution was placed in a high-temperature and high-pressure vessel (made of SUS, 1 L), heated to 180 ° C. with stirring (heated up in about 30 minutes), and maintained at a pressure of about 1 MPa (saturated water vapor pressure) for 15 minutes. (Hydrothermal treatment). Immediately after the hydrothermal treatment, the mixture was water-cooled to room temperature. After cooling with water, the pH of the mixture was measured.
  • the obtained solid-liquid mixture (20 g) after hydrothermal treatment was collected in a falcon tube, and 1 ml of cellulase (CBH, EG) (NS50013, manufactured by Novozyme) and cellulase (BGL) against 1 g of BM by dry weight. ) (NS50010, manufactured by Novozyme) was added in an amount of 0.2 ml.
  • the total unit of these cellulases was 40 FPU.
  • sodium acetate buffer pH 5.0 was used as a buffer, and added to the above mixture so that the final concentration was 50 mM.
  • the mixture was reacted at 45 ° C. for 48 hours while shaking at 120 rpm in a shaker.
  • the saccharification rate (%) is calculated using the formula:
  • the calculated saccharification rate is shown in FIG. 1 for each alkali solution having various concentrations used in the above-described dipping process.
  • a bar graph showing the saccharification rate shows the solution pH after the dipping process (upper stage) and the solution pH after the hydrothermal treatment (lower stage).
  • the saccharification rate (58%) when water is used in the dipping process is shown as a solid line.
  • the pH when the eucalyptus ground product was immersed in water was 3.3
  • the pH when the eucalyptus ground product was immersed in an alkaline solution of 0.2 mM, 1 mM and 5 mM was 3.2, 3.4 and 5.8, respectively. there were. That is, among the alkaline solutions of various concentrations described above, the 0.2 mM, 1 mM and 5 mM alkaline solutions have a pH when the eucalyptus ground product is immersed (the pH after the immersion treatment), and the eucalyptus ground product is immersed in water.
  • the pH was similar to that at the time of exposure.
  • Example 2 In this example, the immersion process was performed using a 1 mM alkaline solution in Example 1, and then sulfuric acid was added to 0.003%, and then hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 1. It was. The results are shown in FIG. In addition, in FIG. 2, the saccharification rate at the time of using the 0.2 mM and 1 mM alkaline solution in Example 1 was also shown collectively. In FIG. 1, the saccharification rate (58%) when water is used in the dipping process is shown as a solid line.
  • Example 3 In this example, a dipping step, hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 1 except that acacia was used as a raw material and a 0.2 mM alkaline solution was used. The results are shown in FIG. In addition, in FIG. 3, the saccharification rate at the time of using water in the immersion process was shown collectively.
  • Example 4 In this example, the immersion process was performed using a 0.2 mM alkaline solution, sulfuric acid was added to 0.1%, and then hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 3. The results are shown in FIG.
  • the hydrothermal treatment was carried out at a lower pH with the addition of sulfuric acid, and thus a very large saccharification rate improvement effect could not be achieved (Example 3). It became clear that can be achieved. From this example, for plant biomass that has a pH of 5.0 or higher when immersed in water, after the immersion treatment, an acid is added to achieve a more acidic pH, and then hydrothermal treatment is performed. It became clear that a better saccharification rate could be achieved.
  • Example 5 In this example, after the immersion process was performed using a 0.2 mM alkaline solution, the solid component was separated by solid-liquid separation operation, and then the solid component was mixed into the solution (composition: water) and subjected to hydrothermal treatment. A saccharification treatment was performed in the same manner as in Example 3 except that the above was performed. Further, in this example, after performing the dipping process, hydrothermal treatment was performed in the case where sulfuric acid was added to 0.1% and in the case where sulfuric acid was not added.
  • FIG. 5 As can be seen from FIG. 5, it was revealed that a better saccharification rate can be achieved by solid-liquid separation treatment regardless of the presence or absence of sulfuric acid addition in hydrothermal treatment. From this example, for plant biomass having a pH of 5.0 or higher when immersed in water, it is possible to achieve a superior saccharification rate by carrying out hydrothermal treatment after removing the components eluted by the immersion treatment. It became clear.
  • FIG. 6 show that the solid solution was separated after the immersion process was performed using a 1 mM alkaline solution in Example 2, and then the solid component was a solution containing 0.003% sulfuric acid (composition: 0.003% sulfuric acid). It is the result of having performed the saccharification process like Example 2 except mixing with aqueous solution) and performing hydrothermal treatment.
  • Example 6 hydrothermal treatment and saccharification treatment were performed after the dipping step in the same manner as in Example 1 except that bagasse was used instead of eucalyptus and a 0.4 mM alkaline solution was used.
  • the result compared with the saccharification rate when water is used in the dipping process is shown in FIG.
  • the pH when bagasse was immersed in water was 3.6
  • the pH when bagasse was immersed in a 0.4 mM alkaline solution was 3.6, respectively. That is, in the 0.4 mM alkaline solution, the pH when the bagasse was immersed (the pH after the immersion treatment) was approximately the same as the pH when the bagasse was immersed in water.
  • a saccharification rate of about 15% or more was achieved compared to the saccharification rate when water was used in the dipping process.
  • Example 7 In this example, the dipping process was performed using a calcium hydroxide solution and an ammonia solution as the alkaline solution. Specifically, the dipping step, hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 1 except that 0.4 mM and 1 mM calcium hydroxide solutions and 0.4 mM and 1 mM ammonia solutions were used.
  • the pH of the solution was measured and found to be 3.2 to 3.4.
  • the pH of the solution was measured and found to be 3.6 to 3.7.
  • the pH of the solution was measured and found to be 3.2 to 3.4.
  • the pH of the solution was measured and found to be 3.2 to 3.4. Note that, after the immersion step using water instead of the alkaline solution, the pH of the solution was measured and found to be 3.0 to 3.4. From these results, when the immersion process was performed using 0.4 mM and 1 mM calcium hydroxide solutions and 0.4 mM and 1 mM ammonia solutions, the pH was about the same as when the immersion process was performed using water. I found out that
  • FIG. 8 the saccharification rate when each alkaline solution was used is shown in FIG.
  • “C” on the horizontal axis is the result when the immersion process is performed using water
  • “A-1” is the result when the immersion process is performed using a 0.4 mM ammonia solution
  • “A-2” is the result when the immersion process is performed using 1 mM ammonia solution
  • “Ca-1” is the result when the immersion process is performed using 0.4 mM calcium hydroxide solution
  • “-2” is the result when the immersion process was performed using a 1 mM calcium hydroxide solution.
  • the alkali concentration is such that the pH is similar to that obtained when the dipping process is performed using water. It was revealed that an excellent saccharification rate can be achieved.

Abstract

In producing a saccharide from a plant biomass, a high saccharification rate can be established at a low cost. Prior to a pretreatment step to be performed before a saccharification step, a plant biomass is soaked in an aqueous alkali solution which, when the plant biomass is soaked therein, shows a pH value similar to the pH value of said plant biomass soaked in water.

Description

植物バイオマスの処理方法、植物バイオマスからの糖の製造方法、植物バイオマスからのアルコール及び/又は有機酸の製造方法Method for treating plant biomass, method for producing sugar from plant biomass, method for producing alcohol and / or organic acid from plant biomass
 本発明は、植物バイオマスを利用した糖、アルコール及び/又は有機酸を製造する際に適用される植物バイオマスの処理方法及び、当該処理方法を含む植物バイオマスからの糖の製造方法、アルコール及び/又は有機酸の製造方法に関する。 The present invention relates to a method for treating plant biomass applied when producing sugar, alcohol and / or organic acid using plant biomass, a method for producing sugar from plant biomass containing the treatment method, alcohol and / or The present invention relates to a method for producing an organic acid.
 近年、石油の大量消費による二酸化炭素等の地球温暖化物質の放出が問題になっている。その石油の代替として、廃木材等の廃棄バイオマスが化学原料資源として注目されている。 In recent years, the release of global warming substances such as carbon dioxide due to large consumption of oil has become a problem. As an alternative to petroleum, waste biomass such as waste wood is attracting attention as a chemical raw material resource.
 例えば、木材の主構成成分の1つであるセルロースは、グルコース分子を構成単位としている。このセルロースを加水分解することでグルコース等の糖類を得ることができる。得られた糖類を原料として、各種の触媒を用いて反応を行うことで、石油化学工業で製造している高分子原料を調製することができる。また、得られた糖類を用いて発酵を行うことによりエタノール等のアルコール類や有機酸を製造することができる。 For example, cellulose, which is one of the main components of wood, has glucose molecules as a structural unit. Sugars such as glucose can be obtained by hydrolyzing the cellulose. By using the obtained saccharide as a raw material and performing a reaction using various catalysts, a polymer raw material produced in the petrochemical industry can be prepared. Moreover, alcohols and organic acids, such as ethanol, can be manufactured by performing fermentation using the obtained saccharides.
 植物バイオマスからの糖の製造に際し、植物バイオマスの前処理方法としては、例えば、加圧熱水で処理する熱水処理工程と機械的粉砕処理工程とを含む方法が知られている(特許文献1)。また、特許文献2には、植物バイオマスの前処理方法として、バイオマスを、水、水溶性有機溶剤及び有機酸を含む薬液に浸漬させ、植物バイオマスを蒸煮させる蒸煮工程を含む方法が開示されている。さらに、特許文献3には、植物バイオマスの前処理方法として強アルカリ溶液に植物バイオマスを浸漬することで、リグニン成分を溶解する技術が開示されている。 In the production of sugar from plant biomass, as a pretreatment method for plant biomass, for example, a method including a hydrothermal treatment process using a pressurized hot water and a mechanical pulverization process is known (Patent Document 1). ). Patent Document 2 discloses a method including a steaming step in which biomass is immersed in a chemical solution containing water, a water-soluble organic solvent and an organic acid, and the plant biomass is cooked as a pretreatment method for plant biomass. . Furthermore, Patent Document 3 discloses a technique for dissolving a lignin component by immersing plant biomass in a strong alkaline solution as a pretreatment method for plant biomass.
 しかしながら、上述したような前処理を行ったとしても優れた糖化効率を達成することが困難である、又は強アルカリ溶液を使用するためコスト高となってしまうといった問題があった。 However, there is a problem that even if the pretreatment as described above is performed, it is difficult to achieve excellent saccharification efficiency, or the use of a strong alkaline solution increases the cost.
特開2006-136263号公報JP 2006-136263 A 特開2008-271962号公報JP 2008-271962 特開2008-535524号公報JP 2008-535524 A
 上述のように、従来においては、植物バイオマスからの糖の製造に際し、植物バイオマスの前処理方法として様々な方法が検討されているものの、低コストで、且つ糖化効率に優れた植物バイオマスの処理方法は知られていなかった。 As described above, conventionally, various methods have been studied as a pretreatment method for plant biomass in the production of sugar from plant biomass. However, the plant biomass treatment method is low in cost and excellent in saccharification efficiency. Was not known.
 そこで、本発明は、上述した実情に鑑み、植物バイオマスからの糖の製造に際し、低コストで、且つ優れた糖化効率を達成することができる植物バイオマスの処理方法、並びに当該処理方法を含む植物バイオマスからの糖の製造方法、及び当該処理方法を含む植物バイオマスからのアルコール及び/又は有機酸の製造方法を提供することを目的とする。 Therefore, in view of the above-described circumstances, the present invention provides a method for treating plant biomass that can achieve excellent saccharification efficiency at a low cost in the production of sugar from plant biomass, and plant biomass including the treatment method. It is an object of the present invention to provide a method for producing sugar from sucrose, and a method for producing alcohol and / or organic acid from plant biomass including the treatment method.
 上記目的を達成するため鋭意研究を行った結果、糖化工程に先立って実施される前処理工程の前に、植物バイオマスを希アルカリ溶液で処理することで、前処理工程の後に実施される糖化処理における糖化効率が格段に向上することを見出し、本発明を完成するに至った。 As a result of earnest research to achieve the above objective, saccharification treatment is carried out after the pretreatment step by treating the plant biomass with a dilute alkaline solution before the pretreatment step carried out prior to the saccharification step. The present inventors have found that the saccharification efficiency in can be significantly improved, and have completed the present invention.
 すなわち、本発明に係る植物バイオマスの処理方法は、以下を包含する。糖化工程に先立って実施される前処理工程の前に実施される処理方法であって、植物バイオマスを浸漬させた時のpHが、当該植物バイオマスを水に浸漬させた時のpHと同程度となるアルカリ水溶液に植物バイオマスを浸漬する工程を含むものである。 That is, the plant biomass processing method according to the present invention includes the following. A treatment method carried out prior to the pretreatment step carried out prior to the saccharification step, wherein the pH when the plant biomass is immersed is approximately the same as the pH when the plant biomass is immersed in water. A step of immersing plant biomass in an aqueous alkaline solution.
 また、本発明に係る植物バイオマスの処理方法において上記アルカリ溶液は、植物バイオマスを浸漬させた時のpHが、当該植物バイオマスを水に浸漬させた時のpHから+2.5以内の範囲であるアルカリ濃度であることが好ましい。 Further, in the plant biomass treatment method according to the present invention, the alkali solution has an alkali concentration in which the pH when the plant biomass is immersed is within a range of +2.5 from the pH when the plant biomass is immersed in water. It is preferable that
 さらに、本発明に係る植物バイオマスの処理方法において上記アルカリ溶液は5.0mM以下のアルカリ濃度であることが好ましい。 Furthermore, in the plant biomass treatment method according to the present invention, the alkali solution preferably has an alkali concentration of 5.0 mM or less.
 一方、本発明に係る植物バイオマスの処理方法は、上記アルカリ溶液に植物バイオマスを浸漬する工程の後に酸、例えば硫酸を添加することでより低いpHに調整してもよい。すなわち、上記アルカリ溶液に植物バイオマスを浸漬する工程の後に酸、例えば硫酸を添加することでより低いpHに調整し、その後に上記前処理工程に供することが好ましい。 On the other hand, the method for treating plant biomass according to the present invention may be adjusted to a lower pH by adding an acid such as sulfuric acid after the step of immersing the plant biomass in the alkaline solution. That is, it is preferable to adjust to a lower pH by adding an acid, for example, sulfuric acid, after the step of immersing plant biomass in the alkaline solution, and then subjecting it to the pretreatment step.
 また、本発明に係る植物バイオマスの処理方法は、上記アルカリ溶液に植物バイオマスを浸漬する工程の後、固液分離処理によって植物バイオマスからなる固体成分を分離する工程を含んでいてもよい。すなわち、上記アルカリ溶液に植物バイオマスを浸漬する工程の後、固液分離処理によって植物バイオマスからなる固体成分を分離し、当該固体成分を上記前処理工程に供してもよい。 Moreover, the processing method of the plant biomass which concerns on this invention may include the process of isolate | separating the solid component which consists of plant biomass by a solid-liquid separation process after the process of immersing plant biomass in the said alkaline solution. That is, after the step of immersing plant biomass in the alkaline solution, a solid component made of plant biomass may be separated by solid-liquid separation treatment, and the solid component may be subjected to the pretreatment step.
 ところで、上述した本発明に係る植物バイオマスの処理方法は、植物バイオマスからの糖の製造方法及び植物バイオマスからのアルコールの製造方法に適用することができる。すなわち、本発明に係る植物バイオマスからの糖の製造方法は、上述した植物バイオマスの処理方法の後、処理後の植物バイオマスに対して前処理を施す工程と、前処理後の植物バイオマスを糖化する工程とを含むものである。また、本発明に係る植物バイオマスからのアルコールの製造方法は、上述した植物バイオマスの処理方法の後、処理後の植物バイオマスに対して前処理を施す工程と、前処理後の植物バイオマスを糖化する工程と、植物バイオマス由来の糖を利用してアルコールを合成する工程とを含むものである。 By the way, the processing method of the plant biomass which concerns on this invention mentioned above is applicable to the manufacturing method of sugar from plant biomass, and the manufacturing method of alcohol from plant biomass. That is, in the method for producing sugar from plant biomass according to the present invention, after the above-described method for treating plant biomass, a step of pretreating the plant biomass after treatment and saccharification of the plant biomass after pretreatment Process. Moreover, the manufacturing method of the alcohol from the plant biomass which concerns on this invention is a process which pre-processes with respect to the plant biomass after a process after the processing method of the plant biomass mentioned above, and saccharifies the plant biomass after a pre-process. A process and a process of synthesizing alcohol by using sugar derived from plant biomass.
 ここで、前処理工程としては、植物バイオマスに含まれるリグニン成分を除去する処理及び/又はヘミセルロース成分を部分分解する処理を挙げることができる。前処理工程としては、具体的に、水熱処理、蒸煮爆砕処理、希硫酸処理、蒸煮処理、マイクロ波処理等を挙げることができる。また、糖化する工程では、植物バイオマスに含まれる多糖類を加水分解する酵素を利用する方法を適用することができる。当該酵素としては例えば、セルラーゼが挙げられる。さらに、アルコール及び/又は有機酸を合成する工程では、糖化処理によって得られた糖を基質としたエタノール発酵を利用する方法を適用することができる。このとき、一例として酵母を利用することができる。 Here, examples of the pretreatment step include a treatment for removing the lignin component contained in the plant biomass and / or a treatment for partially decomposing the hemicellulose component. Specific examples of the pretreatment step include hydrothermal treatment, steaming explosion treatment, dilute sulfuric acid treatment, steaming treatment, and microwave treatment. In the saccharification step, a method using an enzyme that hydrolyzes polysaccharides contained in plant biomass can be applied. Examples of the enzyme include cellulase. Furthermore, in the step of synthesizing alcohol and / or organic acid, a method using ethanol fermentation using sugar obtained by saccharification as a substrate can be applied. At this time, yeast can be used as an example.
 本明細書は本願の優先権の基礎である日本国特許出願2010-087943号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-087943 which is the basis of the priority of the present application.
 本発明に係る植物バイオマスの処理方法によれば、植物バイオマスに含まれる多糖類を糖化する処理における糖化効率を低コストで向上させることができる。すなわち、本発明に係る植物バイオマスの処理方法を適用することで、植物バイオマスに含まれる多糖類を有効に利用して糖を製造することができ、また糖を利用したアルコールを製造することができる。 According to the method for treating plant biomass according to the present invention, the saccharification efficiency in the treatment for saccharifying the polysaccharide contained in the plant biomass can be improved at a low cost. That is, by applying the plant biomass treatment method according to the present invention, sugars can be produced by effectively using polysaccharides contained in plant biomass, and alcohols using sugars can be produced. .
原料としてユーカリを使用した糖化実験において、浸漬工程で使用した各種濃度のアルカリ溶液と糖化率との関係を示す特性図である。In the saccharification experiment which uses eucalyptus as a raw material, it is a characteristic view which shows the relationship between the alkaline solution of various density | concentration used at the immersion process, and a saccharification rate. 原料としてユーカリを使用した糖化実験において、浸漬工程を実施した後に硫酸を添加したときの糖化率を示す特性図である。In a saccharification experiment using eucalyptus as a raw material, it is a characteristic diagram showing a saccharification rate when sulfuric acid is added after performing an immersion step. 原料としてアカシアを使用した糖化実験において、浸漬工程で希アルカリ溶液を用いたときの糖化率を示す特性図である。In a saccharification experiment using acacia as a raw material, it is a characteristic diagram showing a saccharification rate when a dilute alkali solution is used in the dipping process. 原料としてアカシアを使用した糖化実験において、浸漬工程を実施した後に硫酸を添加したときの糖化率を示す特性図である。In a saccharification experiment using acacia as a raw material, it is a characteristic diagram showing a saccharification rate when sulfuric acid is added after performing an immersion step. 原料としてアカシアを使用した糖化実験において、浸漬工程を実施した後に硫酸を添加したとき、浸漬工程を実施した後に固液分離をしたときの糖化率を示す特性図である。In a saccharification experiment using acacia as a raw material, when sulfuric acid is added after carrying out an immersion step, it is a characteristic diagram showing a saccharification rate when solid-liquid separation is carried out after carrying out the immersion step. 原料としてユーカリを使用した糖化実験において、浸漬工程を実施した後に硫酸を添加したとき、浸漬工程を実施した後に固液分離をしたときの糖化率を示す特性図である。In a saccharification experiment using eucalyptus as a raw material, when sulfuric acid is added after carrying out an immersion step, it is a characteristic diagram showing a saccharification rate when solid-liquid separation is carried out after carrying out the immersion step. 原料としてバガスを使用した糖化実験において、浸漬工程で希アルカリ溶液を用いたときの糖化率を示す特性図である。In a saccharification experiment using bagasse as a raw material, it is a characteristic diagram showing a saccharification rate when a dilute alkaline solution is used in the dipping process. 原料としてユーカリを使用した糖化実験において、アンモニア溶液及び/又は水酸化カルシウム溶液を使用したときの糖化率を示す特性図である。It is a characteristic figure which shows the saccharification rate when using an ammonia solution and / or a calcium hydroxide solution in the saccharification experiment which uses eucalyptus as a raw material.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る植物バイオマスの処理方法は、糖化工程に先立って実施される前処理工程の前に実施される。本処理方法では、植物バイオマスを希アルカリ溶液に浸漬する工程を経ることで、前処理工程の後に実施される糖化工程における糖化効率を著しく向上させることができる。 The plant biomass treatment method according to the present invention is carried out before the pretreatment step carried out prior to the saccharification step. In this processing method, the saccharification efficiency in the saccharification process implemented after a pre-processing process can be improved significantly by passing through the process which immerses plant biomass in a dilute alkaline solution.
 本浸漬工程に使用する希アルカリ溶液とは、植物バイオマスを浸漬させた時のpHが、当該植物バイオマスを水に浸漬させた時のpHと同程度となるアルカリ濃度の溶液を意味する。植物バイオマスには無機酸や油性成分が含まれているため、植物バイオマスを水に浸漬すると水溶液が酸性(pHが7未満)となる。例えば、pH7.0の水に植物バイオマスを浸漬させてpHの低下が平衡状態となったときに大凡pH3.0~6.0程度を示すこととなる。なお、このときのpHの低下度合いは、植物の種類に応じて異なる。 The dilute alkaline solution used in this dipping step means a solution having an alkali concentration such that the pH when the plant biomass is immersed is approximately the same as the pH when the plant biomass is immersed in water. Since plant biomass contains inorganic acids and oily components, the aqueous solution becomes acidic (pH is less than 7) when plant biomass is immersed in water. For example, when plant biomass is immersed in water at pH 7.0 and the drop in pH reaches an equilibrium state, the pH is about 3.0 to 6.0. In addition, the fall degree of pH at this time changes according to the kind of plant.
 また、植物バイオマスを希アルカリ溶液に浸漬すると、植物バイオマスから溶出した無機酸や油脂成分が中和されるが、この中和反応の進行に伴ってより多くの無機酸や油脂成分が溶出することとなり、また、植物バイオマスからは緩衝作用を示す無機酸が溶出されるため、植物バイオマスを水に浸漬したときのpHとほぼ同程度のpHを示すこととなる。換言すると、低濃度のアルカリ溶液であれば、植物バイオマスを浸漬しても、当該植物バイオマスから溶出した無機酸や油脂成分が中和されることなく、また、植物バイオマスから溶出した無機酸による緩衝作用によって、当該植物バイオマスを水に浸漬したときと同程度のpHを示すこととなる。 In addition, when plant biomass is immersed in a dilute alkaline solution, inorganic acids and oil / fat components eluted from plant biomass are neutralized, but more inorganic acids and oil / fat components are eluted with the progress of this neutralization reaction. In addition, since an inorganic acid having a buffering action is eluted from the plant biomass, the pH is approximately the same as the pH when the plant biomass is immersed in water. In other words, if the alkaline solution has a low concentration, even if the plant biomass is immersed, the inorganic acid and fat components eluted from the plant biomass are not neutralized, and the buffer by the inorganic acid eluted from the plant biomass is used. Due to the action, the plant biomass has a pH similar to that when the plant biomass is immersed in water.
 ここで、同程度のpHとは、植物バイオマスを水に浸漬したときのpHから+2.5の範囲、好ましくは+2.0の範囲、より好ましくは+1.5の範囲、更に好ましくは+1.0の範囲を意味する。また、植物バイオマスを浸漬したときのpHが上記範囲となるような希アルカリ溶液とは、より具体的には5mM以下、好ましくは3mM以下、より好ましくは1mM以下、更に好ましくは0.5mM以下のアルカリ水溶液を挙げることができる。pHが上記範囲を超える希アルカリ溶液を使用した場合には、希アルカリ溶液に代えて水に植物バイオマスを浸漬した場合と比較して糖化効率が向上しない虞がある。また、希アルカリ溶液としては、例えば0.05mM以上、好ましくは0.1mM以上、より好ましくは0.2mM以上のアルカリ水溶液を挙げることができる。pHが上記範囲を下回る希アルカリ溶液を使用した場合には、希アルカリ溶液に代えて水に植物バイオマスを浸漬した場合と同等の糖化効率しか達成し得ない虞がある。 Here, the same pH means a range of +2.5, preferably +2.0, more preferably +1.5, and further preferably +1.0 from the pH when plant biomass is immersed in water. To do. Further, the dilute alkaline solution having a pH within the above range when the plant biomass is immersed is more specifically 5 mM or less, preferably 3 mM or less, more preferably 1 mM or less, and further preferably 0.5 mM or less. An aqueous solution can be mentioned. When a dilute alkaline solution having a pH exceeding the above range is used, saccharification efficiency may not be improved as compared with a case where plant biomass is immersed in water instead of the dilute alkaline solution. Examples of the dilute alkali solution include an aqueous alkaline solution of 0.05 mM or more, preferably 0.1 mM or more, more preferably 0.2 mM or more. When a dilute alkaline solution having a pH lower than the above range is used, there is a possibility that only the saccharification efficiency equivalent to the case where plant biomass is immersed in water instead of the dilute alkaline solution can be achieved.
 なお、使用する希アルカリ溶液におけるアルカリ濃度は、処理対象の植物バイオマスに応じて適宜設定することが好ましい。例えば、水に浸漬したときのpHが比較的に高い値を示すような植物バイオマスを処理対象とする場合、使用する希アルカリ溶液のアルカリ濃度は、比較的に低濃度(例えば0.5mM、好ましくは0.2mM)とすることが好ましい。逆に、水に浸漬したときのpHが比較的に低い値を示すような植物バイオマスを処理対象とする場合、使用する希アルカリ溶液のアルカリ濃度は、比較的に高濃度(例えば1.0mM以上)とすることが好ましい。 In addition, it is preferable that the alkali concentration in the dilute alkali solution to be used is appropriately set according to the plant biomass to be treated. For example, when plant biomass whose pH is relatively high when immersed in water is to be treated, the alkali concentration of the dilute alkaline solution used is a relatively low concentration (for example, 0.5 mM, preferably 0.2 mM) is preferable. Conversely, when plant biomass whose pH is relatively low when immersed in water is to be treated, the alkali concentration of the diluted alkaline solution used is relatively high (eg, 1.0 mM or more). It is preferable that
 また、希アルカリ溶液としては、特に限定されず、例えば、水酸化ナトリウム溶液、水酸化カルシウム溶液、アンモニア溶液、水酸化カリウム溶液等を使用することができる。 Further, the dilute alkaline solution is not particularly limited, and for example, a sodium hydroxide solution, a calcium hydroxide solution, an ammonia solution, a potassium hydroxide solution and the like can be used.
 ここで、植物バイオマスとしては、例えばリグニン、セルロース、リグノセルロースやヘミセルロースを主成分とするバイオマスが挙げられる。より具体的に植物バイオマスとしては、例えば木質・草本系材料を挙げることができる。本発明に係る植物バイオマスの処理方法においては、植物バイオマスとして何ら限定されず使用することができる。さらに具体的に、植物バイオマスとしては、ユーカリ、バガス、アカシア、稲ワラ、スギ、ムギワラ、竹等の植物体、これら植物体から作製されたパルプ、合板材料、建築資材及びこれらの廃棄物(例えば古紙)が挙げられる。なお、本発明に係る植物バイオマス処理方法では、予め植物バイオマスを振動ミルやカッターミル等を用いた粉砕処理に供した粉砕品を植物バイオマスとして使用することができる。また、粉砕後、粉砕品を適宜、篩(例えば150μm~4mmの目開きメッシュ)に供し、通過した粉砕品を植物バイオマスとして使用してもよい。よって、本発明に係る植物バイオマスの処理方法は、当該粉砕処理工程を含むものであってもよい。 Here, examples of plant biomass include biomass mainly composed of lignin, cellulose, lignocellulose, and hemicellulose. More specifically, examples of plant biomass include woody and herbaceous materials. In the processing method of the plant biomass which concerns on this invention, it can be used without being limited at all as plant biomass. More specifically, plant biomass includes eucalyptus, bagasse, acacia, rice straw, cedar, wheat straw, bamboo, etc., pulp made from these plants, plywood materials, building materials, and wastes thereof (for example, Used paper). In the plant biomass treatment method according to the present invention, a pulverized product obtained by subjecting plant biomass to a pulverization process using a vibration mill, a cutter mill, or the like in advance can be used as the plant biomass. In addition, after pulverization, the pulverized product may be appropriately subjected to a sieve (for example, a mesh of 150 μm to 4 mm), and the pulverized product that has passed may be used as plant biomass. Therefore, the processing method of the plant biomass which concerns on this invention may include the said crushing process process.
 本浸漬工程では、上記希アルカリ溶液に植物バイオマスを浸漬させた状態で静置しても良いし、上記希アルカリ溶液に植物バイオマスを浸漬させた状態で撹拌しても良い。また、希アルカリ溶液に対する植物バイオマスの仕込量は、特に限定されないが、重量比で例えば1~30重量%とすることができ、1~15重量%とすることが好ましく、5~10重量%とすることがより好ましい。希アルカリ溶液に対する植物バイオマスの仕込量を上記範囲とすることで、仕込まれた植物バイオマスの全体に亘って均一に希アルカリ溶液を浸漬させることができ、最終的に優れた糖化効率を達成することができる。 In this immersion step, the plant biomass may be allowed to stand in a state of being immersed in the dilute alkali solution, or may be stirred in a state where the plant biomass is immersed in the dilute alkali solution. The amount of plant biomass charged into the dilute alkaline solution is not particularly limited, but can be, for example, 1 to 30% by weight, preferably 1 to 15% by weight, and preferably 5 to 10% by weight. More preferably. By making the amount of plant biomass charged to the dilute alkali solution within the above range, the dilute alkali solution can be uniformly immersed over the entire plant biomass charged, and finally achieve excellent saccharification efficiency. Can do.
 また、本浸漬工程では、希アルカリ溶液に植物バイオマスを投入した状態で常温常圧の条件下で処理しても良いし、所望の温度まで加熱しても良いし、所望の圧力まで加圧しても良い。また、浸漬工程の処理時間は、植物バイオマスの種類、希アルカリ溶液に投入された植物バイオマスの形状や乾燥状態などに応じて適宜設定することができるが、例えば0~6時間とすることができ、0~3時間とすることが好ましく、0~1時間とすることがより好ましい。浸漬工程の処理時間を上記範囲とすることによって、植物バイオマスの全体に亘って十分に希アルカリ溶液を作用させることができ、最終的に優れた糖化効率を達成することができる。 Moreover, in this immersion process, you may process under the conditions of normal temperature normal pressure in the state which put the plant biomass in the dilute alkaline solution, you may heat to desired temperature, and pressurize to desired pressure. Also good. In addition, the treatment time of the dipping step can be appropriately set according to the type of plant biomass, the shape of the plant biomass introduced into the dilute alkaline solution, the dry state, etc., and can be set to, for example, 0 to 6 hours. 0 to 3 hours is preferable, and 0 to 1 hour is more preferable. By setting the treatment time of the dipping step within the above range, the dilute alkali solution can sufficiently act over the entire plant biomass, and finally excellent saccharification efficiency can be achieved.
 以上のように本発明に係る植物バイオマスの処理方法においては、植物バイオマスを希アルカリ溶液に浸漬させる。処理後の植物バイオマスは、糖化処理工程に先立って実施される前処理工程に供される。前処理工程とは、植物バイオマスに含まれるリグニン成分を除去する処理及び/又はヘミセルロース成分を部分分解する処理を挙げることができる。ここで、植物バイオマスに含まれるリグニン成分を除去する処理とは、リグニン成分の除去を目的とした処理であればよく、リグニン成分の全量を除去する必要はなく、リグニン成分の一部を除去或いは分解する処理であればよい。また、ヘミセルロース成分を部分分解する処理とは、ヘミセルロースの部分分解を目的とした処理であれば良く、ヘミセルロースの全量を部分分解する必要はなく、ヘミセルロースの一部を部分分解する処理であればよい。 As described above, in the plant biomass treatment method according to the present invention, the plant biomass is immersed in a dilute alkali solution. The plant biomass after the treatment is subjected to a pretreatment step that is performed prior to the saccharification treatment step. Examples of the pretreatment step include a treatment for removing a lignin component contained in plant biomass and / or a treatment for partially decomposing a hemicellulose component. Here, the treatment for removing the lignin component contained in the plant biomass may be a treatment for the purpose of removing the lignin component, and it is not necessary to remove the entire amount of the lignin component, or a part of the lignin component is removed or removed. What is necessary is just the process to decompose. Moreover, the process which partially decomposes | disassembles a hemicellulose component should just be the process aiming at the partial decomposition | disassembly of hemicellulose, it is not necessary to partially decompose | disassemble the whole quantity of hemicellulose, and should just be the process which partially decomposes | disassembles a part of hemicellulose. .
 具体的に、前処理工程としては、水熱処理、蒸煮爆砕処理、希硫酸処理、蒸煮処理、マイクロ波処理等を挙げることができる。 Specifically, examples of the pretreatment process include hydrothermal treatment, steaming explosion treatment, dilute sulfuric acid treatment, steaming treatment, and microwave treatment.
 水熱処理とは、加圧条件下で高温の水溶液を植物バイオマスに作用させる処理である。処理条件としては、例えば温度140~240℃及び圧力0.1~4MPa、さらに好ましくは温度140~180℃及び圧力0.5~1MPaが挙げられる。処理時間は、リグニンとセルロース及びヘミセルロースとの交絡が解れ、繊維状になるのに十分な時間であればよく、例えば0.5~3時間である。また、水熱処理においては、無機酸と水溶性有機溶媒とを含む溶液中で実施しても良い。 Hydrothermal treatment is a treatment that causes a high-temperature aqueous solution to act on plant biomass under pressurized conditions. The treatment conditions include, for example, a temperature of 140 to 240 ° C. and a pressure of 0.1 to 4 MPa, more preferably a temperature of 140 to 180 ° C. and a pressure of 0.5 to 1 MPa. The treatment time may be a time sufficient for the lignin, cellulose and hemicellulose to be untangled and become fibrous, for example 0.5 to 3 hours. Further, the hydrothermal treatment may be performed in a solution containing an inorganic acid and a water-soluble organic solvent.
 蒸煮爆砕処理とは、所定の大きさまで粉砕された植物バイオマスを、水、水溶性有機溶剤及び有機酸を含む薬液に浸漬させ蒸煮させる工程である。水溶性有機溶剤としては、メタノール、エタノール等のアルコール類、グリセリン、エチレングリコール等の多価アルコール類、ジメチルスルホキシド、ジメチルホルムアミド、N,N-ジメチルアセトアミド等の非プロトン性極性溶剤等の水よりも比熱の低い水溶性有機溶剤が使用される。有機酸としては、酢酸、シュウ酸、蟻酸、コハク酸、乳酸、リンゴ酸、酒石酸及びクエン酸等が使用される。粉砕された植物バイオマスを薬液に浸漬させるときの温度は、160~220℃程度とされる。蒸煮は、耐圧容器内で行うことが好ましい。このときの耐圧容器内は、蒸気で飽和させることが好ましく、圧力が飽和蒸気圧の1~5倍であることがより好ましい。 Steaming and blasting is a process in which plant biomass pulverized to a predetermined size is immersed in a chemical solution containing water, a water-soluble organic solvent, and an organic acid, and then steamed. Water-soluble organic solvents include alcohols such as methanol and ethanol, polyhydric alcohols such as glycerin and ethylene glycol, and water such as aprotic polar solvents such as dimethyl sulfoxide, dimethylformamide, and N, N-dimethylacetamide. A water-soluble organic solvent having a low specific heat is used. As the organic acid, acetic acid, oxalic acid, formic acid, succinic acid, lactic acid, malic acid, tartaric acid, citric acid and the like are used. The temperature at which the pulverized plant biomass is immersed in the chemical solution is about 160 to 220 ° C. Steaming is preferably performed in a pressure resistant container. The inside of the pressure vessel at this time is preferably saturated with steam, and the pressure is more preferably 1 to 5 times the saturated vapor pressure.
具体的には、耐圧容器内の圧力が、0.1~5MPaであることが好ましい。 Specifically, the pressure in the pressure vessel is preferably 0.1 to 5 MPa.
 希硫酸処理とは、植物バイオマスを希硫酸中に浸漬する工程である。希硫酸の濃度は、例えば0.2~2%とすることができる。また、希硫酸処理においては、希硫酸に植物バイオマスを浸漬した状態で、例えば140~220℃とすることが好ましい。また、希硫酸処理は、上記温度とした状態で3~20分間行うことが好ましい。 Diluted sulfuric acid treatment is a process of immersing plant biomass in dilute sulfuric acid. The concentration of dilute sulfuric acid can be set to 0.2 to 2%, for example. In the dilute sulfuric acid treatment, for example, the temperature is preferably 140 to 220 ° C. with the plant biomass immersed in dilute sulfuric acid. The dilute sulfuric acid treatment is preferably performed for 3 to 20 minutes at the above temperature.
 蒸煮処理とは、植物バイオマスに高温スチームを当て、高温高圧下にて蒸す工程である。蒸煮処理の処理温度としては、140~220℃とすることが好ましい。蒸煮処理の処理時間としては3~20分とすることが好ましい。 Steaming is a process in which high temperature steam is applied to plant biomass and steamed under high temperature and pressure. The treatment temperature for the steaming treatment is preferably 140 to 220 ° C. The treatment time for the steaming treatment is preferably 3 to 20 minutes.
 マイクロ波処理とは、粉砕した又はそのままの植物バイオマスに対して所定のマイクロ波を照射し、急速に加熱する工程である。マイクロ波処理の処理温度としては、140~300℃とすることが好ましい。マイクロ波処理の処理時間としては1~10分とすることが好ましい。 The microwave treatment is a process in which a predetermined microwave is irradiated to a pulverized or intact plant biomass and rapidly heated. The treatment temperature for the microwave treatment is preferably 140 to 300 ° C. The treatment time for the microwave treatment is preferably 1 to 10 minutes.
 特に、前処理として上記水熱処理を行う場合、上述した希アルカリ溶液への浸漬工程の後、植物バイオマスを浸漬した溶液をそのまま水熱処理に供しても良い。しかし、上述した希アルカリ溶液への浸漬工程の後、植物バイオマスを浸漬した溶液に希硫酸を添加した後に水熱処理に供することが好ましい。上記浸漬工程の後に硫酸を所定の濃度となるように添加して水熱処理を実施することで、糖化処理工程における糖化効率が、硫酸を添加しないで水熱処理をした場合と比較してより向上することとなる。ここで、水熱処理に供する溶液に含まれる硫酸の濃度は、特に限定されないが、例えば0.001~3重量%とすることができ、0.001~0.3重量%とすることが好ましく、0.001~0.03重量%とすることがより好ましい。なお、水熱処理に供する溶液に含まれる希硫酸の濃度は、植物バイオマスの種類、溶液中の植物バイオマス量、溶液中の初期pH(上記浸漬処理後の溶液pH)等によって適宜設定することができる。 In particular, when the hydrothermal treatment is performed as a pretreatment, the solution in which the plant biomass is immersed may be directly subjected to the hydrothermal treatment after the immersion step in the dilute alkali solution described above. However, it is preferable to use the hydrothermal treatment after adding dilute sulfuric acid to the solution in which the plant biomass is immersed after the immersion step in the diluted alkaline solution described above. By carrying out hydrothermal treatment by adding sulfuric acid to a predetermined concentration after the immersion step, the saccharification efficiency in the saccharification treatment step is further improved as compared to the case of hydrothermal treatment without adding sulfuric acid. It will be. Here, the concentration of sulfuric acid contained in the solution to be subjected to hydrothermal treatment is not particularly limited, but can be, for example, 0.001 to 3% by weight, preferably 0.001 to 0.3% by weight, and 0.001 to 0.03% by weight. More preferably. The concentration of dilute sulfuric acid contained in the solution to be subjected to hydrothermal treatment can be appropriately set depending on the type of plant biomass, the amount of plant biomass in the solution, the initial pH in the solution (solution pH after the immersion treatment), etc. .
 また、前処理として上記水熱処理を行う場合、水熱処理に供する溶液における植物バイオマスの含有割合は、例えば5~40重量%、好ましくは20~40重量%、特に好ましくは30~40重量%である。 When the hydrothermal treatment is performed as a pretreatment, the plant biomass content in the solution subjected to the hydrothermal treatment is, for example, 5 to 40% by weight, preferably 20 to 40% by weight, particularly preferably 30 to 40% by weight. .
 一方、水熱処理等の前処理に際しては、上記浸漬工程の後、固液分離処理によって植物バイオマスからなる固体成分を分離し、当該個体成分を上記前処理工程に供してもよい。固液分離処理としては、特に限定されないが、ろ過装置による固液分離処理、圧搾装置による固液分離処理、遠心装置による固液分離処理等を挙げることができる。 On the other hand, in the pretreatment such as hydrothermal treatment, after the immersion step, a solid component made of plant biomass may be separated by solid-liquid separation treatment, and the solid component may be subjected to the pretreatment step. Although it does not specifically limit as a solid-liquid separation process, The solid-liquid separation process by a filtration apparatus, the solid-liquid separation process by a pressing apparatus, the solid-liquid separation process by a centrifuge etc. can be mentioned.
 固液分離処理を行うことで、植物バイオマスから溶出した無機酸や油脂成分を水熱処理等の前処理に持ち込むことを防止することができる。植物バイオマスの種類によっては、リン酸等の緩衝作用を示す酸成分が溶出して、希アルカリ溶液のpHが十分に低下しない場合がある。したがって、このような植物バイオマスを用いて上記浸漬工程を実施し、その後、そのままの溶液を水熱処理に供すると、水熱処理による脱リグニン効果やヘミセルロース部分分解効率が低下する虞がある。また、上述したように、水熱処理に供する前に硫酸を添加する場合、リン酸等による緩衝作用により所望のpHまで低下できない虞もある。 By performing the solid-liquid separation treatment, it is possible to prevent inorganic acids and oil components eluted from plant biomass from being brought into pretreatment such as hydrothermal treatment. Depending on the type of plant biomass, an acid component having a buffering action such as phosphoric acid may be eluted, and the pH of the diluted alkaline solution may not be sufficiently lowered. Therefore, when the said immersion process is implemented using such plant biomass and the solution as it is after that is subjected to hydrothermal treatment, the delignification effect and the hemicellulose partial decomposition efficiency by hydrothermal treatment may be reduced. In addition, as described above, when sulfuric acid is added before being subjected to hydrothermal treatment, there is a possibility that it cannot be lowered to a desired pH due to a buffering action by phosphoric acid or the like.
 そこで、リン酸等の緩衝作用を示す酸成分が溶出するような場合(例えば、浸漬処理後の溶液pHが5.0以上であるような場合)には、固液分離処理によって植物バイオマスの固体成分を分離することで、水熱処理による脱リグニン効果やヘミセルロース部分分解効率することができる。また、上述したように、水熱処理に供する前に硫酸を添加する場合、硫酸転換により所望のpHを達成することができる。 Therefore, when an acid component having a buffering action such as phosphoric acid is eluted (for example, when the solution pH after immersion treatment is 5.0 or more), the solid component of plant biomass is removed by solid-liquid separation treatment. By separating, the delignification effect by hydrothermal treatment and the partial decomposition efficiency of hemicellulose can be achieved. Further, as described above, when sulfuric acid is added before being subjected to hydrothermal treatment, a desired pH can be achieved by sulfuric acid conversion.
 以上のように前処理を実施した後、得られた処理物は、糖化処理に使用する原料として使用することができる。糖化処理によれば、植物バイオマスに含まれるセルロース成分、ヘミセルロース成分(部分分解物も含む)からオリゴ糖や単糖(グルコースやキシロース)といった糖を製造することができる。また、得られた糖成分は、酵母等の微生物を用いた発酵によりエタノール等のアルコールやその他有機酸に変換することができる。有機酸としては、例えば乳酸、酢酸、コハク酸を挙げることができる。アルコールとしては、例えばエタノール、ブタノールを挙げることができる。また、ブタノール発酵においてはアセトンもまた得ることができる。したがって、得られた糖成分は、例えば乳酸、酢酸、コハク酸、エタノール、ブタノール及びアセトンを目的とした製造方法に利用することができる。 After carrying out the pretreatment as described above, the obtained treated product can be used as a raw material used for the saccharification treatment. According to the saccharification treatment, sugars such as oligosaccharides and monosaccharides (glucose and xylose) can be produced from cellulose components and hemicellulose components (including partially decomposed products) contained in plant biomass. Moreover, the obtained sugar component can be converted into alcohols such as ethanol and other organic acids by fermentation using microorganisms such as yeast. Examples of the organic acid include lactic acid, acetic acid, and succinic acid. Examples of the alcohol include ethanol and butanol. Acetone can also be obtained in butanol fermentation. Therefore, the obtained sugar component can be used in a production method for the purpose of, for example, lactic acid, acetic acid, succinic acid, ethanol, butanol and acetone.
 ここで、酵素としては、例えばセルラーゼ、へミセルラーゼ(キシラナーゼ、キシロビアーゼ)、マンナナーゼ等が挙げられる。例えば、酵素としてセルラーゼを用いることで、グルコース(糖)を得ることができる。また、酵素としてヘミセルラーゼを用いることで、キシロース(糖)を得ることができる。さらに、酵素としてマンナナーゼを用いることで、マンノース(糖)を得ることができる。これら酵素は、当該酵素を生産する微生物それ自体、当該微生物の培養液又は培養上清、固定化酵素等を酵素として使用することができる。また、例えばセルラーゼを使用する場合には、水熱処理物1gに対して、例えば4~40FPU(Filter Paper Unit)のセルラーゼを使用する。 Here, examples of the enzyme include cellulase, hemicellulase (xylanase, xylobiase), mannanase and the like. For example, glucose (sugar) can be obtained by using cellulase as an enzyme. Moreover, xylose (sugar) can be obtained by using hemicellulase as an enzyme. Furthermore, mannose (sugar) can be obtained by using mannanase as an enzyme. As these enzymes, microorganisms that produce the enzymes themselves, culture solutions or culture supernatants of the microorganisms, immobilized enzymes, and the like can be used as the enzymes. For example, when cellulase is used, 4 to 40 FPU (FilterPUPaper Unit) cellulase is used per 1 g of the hydrothermally treated product.
 糖化工程は、例えばセルラーゼを使用する場合には、緩衝液(例えば、酢酸ナトリウム緩衝液(pH5))を加えたセルラーゼと水熱処理物とを含む反応物を用いて、例えば温度35~45℃、好ましくは38~42℃で12~48時間反応に供することにより行われる。なお、当該反応は、振盪下において行ってもよい。得られた処理物(以下、「糖化処理物」という)は、そのまま糖として使用してもよいし、また精製や抽出処理に供し、精製又は抽出したものを糖として使用してもよい。 In the saccharification step, for example, when cellulase is used, a reaction product containing cellulase and hydrothermally treated product to which a buffer solution (for example, sodium acetate buffer (pH 5)) is added is used, for example, at a temperature of 35 to 45 ° C. The reaction is preferably carried out at 38 to 42 ° C. for 12 to 48 hours. In addition, you may perform the said reaction under shaking. The obtained processed product (hereinafter referred to as “saccharified product”) may be used as a saccharide as it is, or a product that has been subjected to purification or extraction treatment and purified or extracted may be used as a saccharide.
 得られる糖としては、例えばグルコース、キシロース、マンノース、ガラクトース等が挙げられる。 Examples of the sugar to be obtained include glucose, xylose, mannose, galactose and the like.
 糖化処理により有意に糖化が行われたか否かは、HPLC等によって糖量を定量し、あるいは以下の式:
Figure JPOXMLDOC01-appb-M000001
Whether or not saccharification was significantly performed by saccharification treatment is determined by quantifying the amount of sugar by HPLC or the following formula
Figure JPOXMLDOC01-appb-M000001
によって算出される糖化率(%)を指標に判断することができる。 The saccharification rate (%) calculated by the above can be used as an index.
 また、得られた糖からアルコールを製造する工程では、従来公知の酵母を特に限定されることなく使用することができる。ここで使用する酵母としては、エタノール発酵を行うことができる酵母を使用することができる。当該酵母としては、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)等のサッカロミセス属、クルイベロミセス(Kluyveromyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ピキア(Pichia)属、カンジダ(Candida)属等に属する酵母が挙げられる。 Moreover, in the process of producing alcohol from the obtained sugar, conventionally known yeast can be used without any particular limitation. As the yeast used here, yeast capable of performing ethanol fermentation can be used. Examples of the yeast include yeasts belonging to the genus Saccharomyces such as Saccharomyces cerevisiae, the genus Kluyveromyces, the genus Schizosaccharomyces, the genus Pichia, and the genus Candida. Can be mentioned.
 酵母の培養に使用する基礎培地は、一般に、所定の濃度でyeast extract、グルコース、KH2PO4、MgSO4・7H2O、NaCl、CaCl2、(NH4)2SO4、H3BO4、CuSO4・5H2O、KI、FeCl3・6H2O、MnSO4・5H2O、ZnSO4・7H2O及びNa2MoO4・2H2Oを含む。発酵工程においては、糖化処理物と上述の培地組成を含む培地において酵母を培養する。培養条件としては、エタノール発酵が十分に行われ、且つ酵母が生育する条件であればよく、例えば温度25~45℃(好ましくは30~37℃)、pH3.0~7.0(好ましくはpH4.0~6.0)で12~72時間(好ましくは24~48時間)が挙げられる。なお、当該培養は、振盪培養であってもよい。得られた処理物(以下、「発酵処理物」という)は、そのままエタノールとして使用してもよいし、また精製や抽出処理に供し、精製又は抽出したものをエタノールとして使用してもよい。 The basal medium used for yeast culture is generally yeast extract, glucose, KH 2 PO 4 , MgSO 4 .7H 2 O, NaCl, CaCl 2 , (NH 4 ) 2 SO 4 , H 3 BO 4 at a predetermined concentration. CuSO 4 · 5H 2 O, KI, FeCl 3 · 6H 2 O, MnSO 4 · 5H 2 O, ZnSO 4 · 7H 2 O and Na 2 MoO 4 · 2H 2 O. In the fermentation process, yeast is cultured in a medium containing the saccharified product and the medium composition described above. The culture conditions may be any conditions in which ethanol fermentation is sufficiently performed and yeast can grow. For example, the temperature is 25 to 45 ° C. (preferably 30 to 37 ° C.), pH 3.0 to 7.0 (preferably pH 4.0). -6.0) for 12-72 hours (preferably 24-48 hours). The culture may be shaking culture. The obtained processed product (hereinafter referred to as “fermented processed product”) may be used as ethanol as it is, or may be subjected to purification or extraction treatment and purified or extracted to be used as ethanol.
 発酵により有意にエタノールが得られたか否かは、HPLC等によってエタノール量を定量し、あるいは以下の式:
Figure JPOXMLDOC01-appb-M000002
Whether ethanol was significantly obtained by fermentation is determined by quantifying the amount of ethanol by HPLC or the like, or the following formula:
Figure JPOXMLDOC01-appb-M000002
によって算出されるエタノール変換率(%)を指標に判断することができる。 The ethanol conversion rate (%) calculated by the above can be used as an index.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。以下の実施例及び比較例においては、植物バイオマスからの糖の製造を、グルコースを指標とした糖化率により評価した。 Hereinafter, the present invention will be described in more detail using examples, but the technical scope of the present invention is not limited to these examples. In the following examples and comparative examples, the production of sugar from plant biomass was evaluated by the saccharification rate using glucose as an index.
〔実施例1〕
植物バイオマスからの糖の製造
 植物バイオマス(以下、「BM」という)としてユーカリ粉砕品(25g)(振動ミル粉砕150μmメッシュ通過品)をビーカーに採取した。次いで、反応溶液(475g)を加えて、総重量が500gになるように調整した。本実施例において、反応溶液としては、水、0.2mMアルカリ溶液、1mMアルカリ溶液、5mMアルカリ溶液、10mMアルカリ溶液、25mMアルカリ溶液、50mMアルカリ溶液、100mMアルカリ溶液及び500mMアルカリ溶液を準備して使用した。なお、本実施例では、上記各種濃度のアルカリ溶液として水酸化ナトリウム溶液を使用した。
[Example 1]
Production of Sugar from Plant Biomass Eucalyptus ground product (25 g) (vibration mill ground 150 μm mesh product) was collected in a beaker as plant biomass (hereinafter referred to as “BM”). Subsequently, the reaction solution (475 g) was added to adjust the total weight to 500 g. In this example, water, 0.2 mM alkaline solution, 1 mM alkaline solution, 5 mM alkaline solution, 10 mM alkaline solution, 25 mM alkaline solution, 50 mM alkaline solution, 100 mM alkaline solution and 500 mM alkaline solution were prepared and used as the reaction solution. . In this example, a sodium hydroxide solution was used as the alkali solution having various concentrations.
 次に、ユーカリ粉砕品を各反応溶液に浸漬させた(浸漬工程)。本実施例では、ユーカリ粉砕品から溶出する酸と反応溶液のアルカリとの中和反応が平衡に至る十分な時間を反応時間とした。具体的に反応時間を6~12時間とし、反応温度を室温(20℃)とした。浸漬工程の終了時のpHを測定した。 Next, the eucalyptus ground product was immersed in each reaction solution (immersion step). In this example, the reaction time was defined as a sufficient time for the neutralization reaction between the acid eluted from the eucalyptus ground product and the alkali of the reaction solution to reach equilibrium. Specifically, the reaction time was 6 to 12 hours, and the reaction temperature was room temperature (20 ° C.). The pH at the end of the dipping process was measured.
 次に、当該反応溶液を高温高圧容器(SUS製、1L)に入れ、撹拌しながら180℃まで加熱し(約30分で昇温)、圧力約1MPa(飽和水蒸気圧)下で15分間維持した(水熱処理)。水熱処理後、直ちに混合物を室温まで水冷した。水冷後、混合物のpHを測定した。 Next, the reaction solution was placed in a high-temperature and high-pressure vessel (made of SUS, 1 L), heated to 180 ° C. with stirring (heated up in about 30 minutes), and maintained at a pressure of about 1 MPa (saturated water vapor pressure) for 15 minutes. (Hydrothermal treatment). Immediately after the hydrothermal treatment, the mixture was water-cooled to room temperature. After cooling with water, the pH of the mixture was measured.
 次に、得られた水熱処理後の固液混合物(20g)をファルコンチューブに採取し、乾物重量で1gのBMに対してセルラーゼ(CBH、EG)(NS50013、ノボザイム製)を1ml及びセルラーゼ(BGL)(NS50010、ノボザイム製)を0.2ml加えた。これらセルラーゼの合計のユニットは、40FPUであった。 Next, the obtained solid-liquid mixture (20 g) after hydrothermal treatment was collected in a falcon tube, and 1 ml of cellulase (CBH, EG) (NS50013, manufactured by Novozyme) and cellulase (BGL) against 1 g of BM by dry weight. ) (NS50010, manufactured by Novozyme) was added in an amount of 0.2 ml. The total unit of these cellulases was 40 FPU.
 さらに、緩衝液として酢酸ナトリウム緩衝液(pH5.0)を使用し、上記混合物に最終濃度が50mMになるように添加した。 Furthermore, sodium acetate buffer (pH 5.0) was used as a buffer, and added to the above mixture so that the final concentration was 50 mM.
 当該混合物を振盪機内で、1分間に120回転の速度で振盪しながら45℃で48時間反応させた。 The mixture was reacted at 45 ° C. for 48 hours while shaking at 120 rpm in a shaker.
 次いで、反応後の混合物中のグルコース量をHPLCにて定量し、糖化率を算出した。糖化率(%)は、式:
Figure JPOXMLDOC01-appb-M000003
Next, the amount of glucose in the mixture after the reaction was quantified by HPLC, and the saccharification rate was calculated. The saccharification rate (%) is calculated using the formula:
Figure JPOXMLDOC01-appb-M000003
により算出した。 Calculated by
 算出した糖化率を、上述した浸漬工程で使用した各種濃度のアルカリ溶液毎に図1に示した。なお、図1中、糖化率を示す棒グラフに、浸漬工程後の溶液pH(上段)及び水熱処理後の溶液pH(下段)を併せて示した。また、図1中、浸漬工程で水を使用した際の糖化率(58%)を実線として示した。 The calculated saccharification rate is shown in FIG. 1 for each alkali solution having various concentrations used in the above-described dipping process. In FIG. 1, a bar graph showing the saccharification rate shows the solution pH after the dipping process (upper stage) and the solution pH after the hydrothermal treatment (lower stage). In FIG. 1, the saccharification rate (58%) when water is used in the dipping process is shown as a solid line.
 本実施例の結果から、ユーカリ粉砕品を水に浸漬したときのpHは3.3であり、0.2mM、1mM及び5mMのアルカリ溶液にユーカリ粉砕品を浸漬したときのpHはそれぞれ3.2、3.4及び5.8であった。すなわち、上述した各種濃度のアルカリ溶液のうち、0.2mM、1mM及び5mMのアルカリ溶液は、ユーカリ粉砕品を浸漬させた時のpH(浸漬処理後のpH)が、当該ユーカリ粉砕品を水に浸漬させた時のpHと同程度となっていた。 From the results of this example, the pH when the eucalyptus ground product was immersed in water was 3.3, and the pH when the eucalyptus ground product was immersed in an alkaline solution of 0.2 mM, 1 mM and 5 mM was 3.2, 3.4 and 5.8, respectively. there were. That is, among the alkaline solutions of various concentrations described above, the 0.2 mM, 1 mM and 5 mM alkaline solutions have a pH when the eucalyptus ground product is immersed (the pH after the immersion treatment), and the eucalyptus ground product is immersed in water. The pH was similar to that at the time of exposure.
 また、本実施例の結果から、0.2mM、1mM及び5mMのアルカリ溶液を用いた場合、浸漬工程で水を使用した場合の糖化率と同等以上の糖化率を示した。特に、0.2mM及び1mMのアルカリ溶液を浸漬工程に使用した場合、浸漬工程で水を使用した場合の糖化率と比較して約25%以上の糖化率を達成することができた。 In addition, from the results of this example, when 0.2 mM, 1 mM and 5 mM alkaline solutions were used, saccharification rates equal to or higher than the saccharification rates when water was used in the dipping process were shown. In particular, when 0.2 mM and 1 mM alkaline solutions were used in the dipping step, a saccharification rate of about 25% or more was achieved compared to the saccharification rate when water was used in the dipping step.
〔実施例2〕
 本実施例では、実施例1において1mMのアルカリ溶液を使用して浸漬工程を実施した後、硫酸を0.003%となるように添加し、その後、実施例1と同様に水熱処理及び糖化処理を行った。その結果を図2に示した。なお、図2には、実施例1で0.2mM及び1mMのアルカリ溶液を使用した場合の糖化率も併せて示した。図1中、浸漬工程で水を使用した際の糖化率(58%)を実線として示した。
[Example 2]
In this example, the immersion process was performed using a 1 mM alkaline solution in Example 1, and then sulfuric acid was added to 0.003%, and then hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 1. It was. The results are shown in FIG. In addition, in FIG. 2, the saccharification rate at the time of using the 0.2 mM and 1 mM alkaline solution in Example 1 was also shown collectively. In FIG. 1, the saccharification rate (58%) when water is used in the dipping process is shown as a solid line.
 図2から判るように、より低いpHで水熱処理を実施した場合には、約98%の糖化率(浸漬工程で水を使用した場合と比較すると約40%の透過率向上)を達成できることが明らかとなった。 As can be seen from FIG. 2, when hydrothermal treatment is carried out at a lower pH, a saccharification rate of about 98% can be achieved (an increase in permeability of about 40% compared to the case where water is used in the dipping process). It became clear.
〔実施例3〕
 本実施例では、原料としてアカシアを使用し、0.2mMのアルカリ溶液を使用した以外は実施例1と同様にして、浸漬工程、水熱処理及び糖化処理を行った。結果を図3に示す。なお、図3には、浸漬工程において水を使用した場合の糖化率を併せて示した。
Example 3
In this example, a dipping step, hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 1 except that acacia was used as a raw material and a 0.2 mM alkaline solution was used. The results are shown in FIG. In addition, in FIG. 3, the saccharification rate at the time of using water in the immersion process was shown collectively.
 図3に示すように、原料としてアカシアを使用した場合にも、0.2mMのアルカリ溶液を用いた浸漬処理によって、水を使用した場合よりも糖化率の向上が認められた。しかし、透過率の向上効果はユーカリを用いたときほど大きいとは評価できなかった。 As shown in FIG. 3, even when acacia was used as a raw material, the saccharification rate was improved by immersion treatment using a 0.2 mM alkaline solution compared to when water was used. However, the effect of improving the transmittance could not be evaluated as great as when eucalyptus was used.
〔実施例4〕
 本実施例では、0.2mMのアルカリ溶液を使用して浸漬工程を実施した後、硫酸を0.1%となるように添加し、その後、実施例3と同様に水熱処理及び糖化処理を行った。その結果を図4に示した。
Example 4
In this example, the immersion process was performed using a 0.2 mM alkaline solution, sulfuric acid was added to 0.1%, and then hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 3. The results are shown in FIG.
 図4から判るように、硫酸を添加してより低いpHで水熱処理を実施することで、あまり大きな糖化率向上効果を達成できなかった(実施例3)アカシアについても、非常に優れた糖化率を達成できることが明らかとなった。本実施例から、水に浸漬したときのpHが5.0以上となる植物バイオマスについては、浸漬処理の後、より酸性側のpHとなるように酸を添加し、その後、水熱処理を実施することでより優れた糖化率を達成できることが明らかとなった。 As can be seen from FIG. 4, the hydrothermal treatment was carried out at a lower pH with the addition of sulfuric acid, and thus a very large saccharification rate improvement effect could not be achieved (Example 3). It became clear that can be achieved. From this example, for plant biomass that has a pH of 5.0 or higher when immersed in water, after the immersion treatment, an acid is added to achieve a more acidic pH, and then hydrothermal treatment is performed. It became clear that a better saccharification rate could be achieved.
〔実施例5〕
 本実施例では、0.2mMのアルカリ溶液を使用して浸漬工程を実施した後、固液分離操作によって固体成分を分離し、その後、固体成分を溶液(組成:水)に混合して水熱処理を行った以外は実施例3と同様にして糖化処理を行った。また、本実施例では、浸漬工程を実施した後、硫酸を0.1%となるように添加した場合と硫酸添加をしなかった場合で水熱処理を実施した。
Example 5
In this example, after the immersion process was performed using a 0.2 mM alkaline solution, the solid component was separated by solid-liquid separation operation, and then the solid component was mixed into the solution (composition: water) and subjected to hydrothermal treatment. A saccharification treatment was performed in the same manner as in Example 3 except that the above was performed. Further, in this example, after performing the dipping process, hydrothermal treatment was performed in the case where sulfuric acid was added to 0.1% and in the case where sulfuric acid was not added.
 その結果を図5に示した。図5から判るように、水熱処理における硫酸添加の有無に拘わらず、固液分離処理することによってより優れた糖化率を達成できることが明らかとなった。本実施例から、水に浸漬したときのpHが5.0以上となる植物バイオマスについては、浸漬処理により溶出した成分を除去してから、水熱処理を実施することでより優れた糖化率を達成できることが明らかとなった。 The result is shown in FIG. As can be seen from FIG. 5, it was revealed that a better saccharification rate can be achieved by solid-liquid separation treatment regardless of the presence or absence of sulfuric acid addition in hydrothermal treatment. From this example, for plant biomass having a pH of 5.0 or higher when immersed in water, it is possible to achieve a superior saccharification rate by carrying out hydrothermal treatment after removing the components eluted by the immersion treatment. It became clear.
 なお、比較のため、アカシアに代えてユーカリを原料とした場合の結果を図6に示した。図6に示した結果は、実施例2において1mMのアルカリ溶液を使用して浸漬工程を実施した後に固液分離を行い、その後、固体成分を0.003%の硫酸を含む溶液(組成:0.003%硫酸水溶液)に混合して水熱処理を行った以外は実施例2と同様にして糖化処理を行った結果である。 For comparison, the results when eucalyptus is used as a raw material instead of acacia are shown in FIG. The results shown in FIG. 6 show that the solid solution was separated after the immersion process was performed using a 1 mM alkaline solution in Example 2, and then the solid component was a solution containing 0.003% sulfuric acid (composition: 0.003% sulfuric acid). It is the result of having performed the saccharification process like Example 2 except mixing with aqueous solution) and performing hydrothermal treatment.
 図6に示すように、ユーカリを原料とした場合には、浸漬工程で溶出した成分を持ち込んで水熱処理を実施したほうがより優れた糖化率を達成できることが明らかとなった。この結果から、浸漬工程の後の固液分離処理による糖化率向上効果は、植物バイオマスの種類によって異なることが明らかとなった。 As shown in FIG. 6, when eucalyptus was used as a raw material, it was revealed that a superior saccharification rate could be achieved by carrying out hydrothermal treatment with the components eluted in the dipping process. From this result, it was clarified that the effect of improving the saccharification rate by the solid-liquid separation treatment after the dipping process differs depending on the type of plant biomass.
〔実施例6〕
 本実施例では、ユーカリに代えてバガスを使用し、0.4mMのアルカリ溶液を使用した以外は実施例1と同様に、浸漬工程の後に水熱処理及び糖化処理を行った。浸漬工程において水を使用したときの糖化率と比較した結果を図7に示した。図7から判るように、バガスを水に浸漬したときのpHは3.6であり、0.4mMのアルカリ溶液にバガスを浸漬したときのpHはそれぞれ3.6であった。すなわち、0.4mMのアルカリ溶液は、バガスを浸漬させた時のpH(浸漬処理後のpH)が、当該バガスを水に浸漬させた時のpHと同程度となっていた。また、本実施例の結果から、0.4mMのアルカリ溶液を用いた場合、浸漬工程で水を使用した場合の糖化率と比較して約15%以上の糖化率を達成することができた。
Example 6
In this example, hydrothermal treatment and saccharification treatment were performed after the dipping step in the same manner as in Example 1 except that bagasse was used instead of eucalyptus and a 0.4 mM alkaline solution was used. The result compared with the saccharification rate when water is used in the dipping process is shown in FIG. As can be seen from FIG. 7, the pH when bagasse was immersed in water was 3.6, and the pH when bagasse was immersed in a 0.4 mM alkaline solution was 3.6, respectively. That is, in the 0.4 mM alkaline solution, the pH when the bagasse was immersed (the pH after the immersion treatment) was approximately the same as the pH when the bagasse was immersed in water. In addition, from the results of this Example, when a 0.4 mM alkaline solution was used, a saccharification rate of about 15% or more was achieved compared to the saccharification rate when water was used in the dipping process.
〔実施例7〕
 本実施例では、アルカリ溶液として水酸化カルシウム溶液及びアンモニア溶液を使用して浸漬工程を実施した。具体的には、0.4mM及び1mMの水酸化カルシウム溶液と、0.4mM及び1mMのアンモニア溶液を使用した以外は、実施例1と同様にして浸漬工程、水熱処理及び糖化処理を行った。
Example 7
In this example, the dipping process was performed using a calcium hydroxide solution and an ammonia solution as the alkaline solution. Specifically, the dipping step, hydrothermal treatment and saccharification treatment were performed in the same manner as in Example 1 except that 0.4 mM and 1 mM calcium hydroxide solutions and 0.4 mM and 1 mM ammonia solutions were used.
 0.4mMの水酸化カルシウム溶液を用いた浸漬工程の後、溶液のpHを測定したところ3.2~3.4であった。1mMの水酸化カルシウム溶液を用いた浸漬工程の後、溶液のpHを測定したところ3.6~3.7であった。0.4mMのアンモニア溶液を用いた浸漬工程の後、溶液のpHを測定したところ3.2~3.4であった。1mMのアンモニア溶液を用いた浸漬工程の後、溶液のpHを測定したところ3.2~3.4であった。なお、アルカリ溶液に代えて水を用いた浸漬工程の後、溶液のpHを測定したところ3.0~3.4であった。これらの結果から、0.4mM及び1mMの水酸化カルシウム溶液と、0.4mM及び1mMのアンモニア溶液を使用して浸漬工程を行うと、水を使用して浸漬工程を行ったときと同程度のpHとなることが判った。 After the immersion process using 0.4 mM calcium hydroxide solution, the pH of the solution was measured and found to be 3.2 to 3.4. After the dipping process using 1 mM calcium hydroxide solution, the pH of the solution was measured and found to be 3.6 to 3.7. After the immersion step using a 0.4 mM ammonia solution, the pH of the solution was measured and found to be 3.2 to 3.4. After the dipping process using 1 mM ammonia solution, the pH of the solution was measured and found to be 3.2 to 3.4. Note that, after the immersion step using water instead of the alkaline solution, the pH of the solution was measured and found to be 3.0 to 3.4. From these results, when the immersion process was performed using 0.4 mM and 1 mM calcium hydroxide solutions and 0.4 mM and 1 mM ammonia solutions, the pH was about the same as when the immersion process was performed using water. I found out that
 また、各アルカリ溶液を使用したときの糖化率を図8に示した。図8において、横軸の「C」は水を使用して浸漬工程を実施したときの結果、「A-1」は0.4mMのアンモニア溶液を使用して浸漬工程を実施したときの結果、「A-2」は1mMのアンモニア溶液を使用して浸漬工程を実施したときの結果、「Ca-1」は0.4mMの水酸化カルシウム溶液を使用して浸漬工程を実施したときの結果、「Ca-2」は1mMの水酸化カルシウム溶液を使用して浸漬工程を実施したときの結果である。 In addition, the saccharification rate when each alkaline solution was used is shown in FIG. In FIG. 8, “C” on the horizontal axis is the result when the immersion process is performed using water, and “A-1” is the result when the immersion process is performed using a 0.4 mM ammonia solution. "A-2" is the result when the immersion process is performed using 1 mM ammonia solution, and "Ca-1" is the result when the immersion process is performed using 0.4 mM calcium hydroxide solution. "-2" is the result when the immersion process was performed using a 1 mM calcium hydroxide solution.
 図8から判るように、アルカリ溶液として水酸化カルシウム及びアンモニアを浸漬工程で使用した場合も、水を使用して浸漬工程を行ったときと同程度のpHとなるようなアルカリ濃度であれば、優れた糖化率を達成できることが明らかとなった。 As can be seen from FIG. 8, even when calcium hydroxide and ammonia are used as the alkaline solution in the dipping process, the alkali concentration is such that the pH is similar to that obtained when the dipping process is performed using water. It was revealed that an excellent saccharification rate can be achieved.
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into the present specification as they are.

Claims (13)

  1.  植物バイオマスを浸漬させた時のpHが、当該植物バイオマスを水に浸漬させた時のpHと同程度となるアルカリ溶液に植物バイオマスを浸漬する工程を含み、
     当該工程は、糖化工程に先立って実施される前処理工程の前に実施されることを特徴とする植物バイオマスの処理方法。
    A step of immersing the plant biomass in an alkaline solution having a pH at which the plant biomass is immersed is approximately the same as the pH when the plant biomass is immersed in water;
    The said process is implemented before the pre-processing process implemented prior to a saccharification process, The processing method of the plant biomass characterized by the above-mentioned.
  2.  上記アルカリ溶液は、植物バイオマスを浸漬させた時のpHが、当該植物バイオマスを水に浸漬させた時のpHから+2.5以内の範囲となるアルカリ濃度であることを特徴とする請求項1記載の植物バイオマスの処理方法。 2. The alkali solution according to claim 1, wherein the alkaline solution has an alkali concentration in which the pH when the plant biomass is immersed is within a range of +2.5 from the pH when the plant biomass is immersed in water. A method for treating plant biomass.
  3.  上記アルカリ溶液は、5.0mM以下のアルカリ濃度であることを特徴とする請求項1記載の植物バイオマスの処理方法。 The plant biomass treatment method according to claim 1, wherein the alkali solution has an alkali concentration of 5.0 mM or less.
  4.  上記アルカリ溶液に植物バイオマスを浸漬する工程の後、上記前処理工程を実施する前に酸を添加することを特徴とする請求項1記載の植物バイオマスの処理方法。 The method for treating plant biomass according to claim 1, wherein an acid is added after the step of immersing the plant biomass in the alkaline solution and before the pretreatment step.
  5.  上記アルカリ溶液に植物バイオマスを浸漬する工程の後、固液分離処理によって植物バイオマスからなる固体成分を分離する工程をさらに含むことを特徴とする請求項1記載の植物バイオマスの処理方法。 The method for treating plant biomass according to claim 1, further comprising a step of separating a solid component comprising plant biomass by solid-liquid separation after the step of immersing the plant biomass in the alkaline solution.
  6.  上記植物バイオマスは、上記浸漬する工程において緩衝作用を示す酸成分を溶出する植物由来であることを特徴とする請求項5記載の植物バイオマスの処理方法。 The method for treating plant biomass according to claim 5, wherein the plant biomass is derived from a plant that elutes an acid component having a buffering action in the step of immersing.
  7. 上記植物バイオマスは、上記浸漬する工程の後のpHが5.0以上となる植物由来であることを特徴とする請求項5記載の植物バイオマスの処理方法。 The method for treating plant biomass according to claim 5, wherein the plant biomass is derived from a plant having a pH of 5.0 or more after the soaking step.
  8.  請求項1乃至7いずれか一項記載の植物バイオマスの処理方法によって処理された処理物に対して前処理を実施する工程と、
     前処理後の処理物を糖化する工程とを含む、糖の製造方法。
    A step of performing a pretreatment on a treated product treated by the plant biomass treatment method according to any one of claims 1 to 7,
    And a step of saccharifying the treated product after the pretreatment.
  9.  上記前処理工程は上記処理物に対して水熱処理を行う工程であることを特徴とする請求項8記載の糖の製造方法。 The method for producing sugar according to claim 8, wherein the pretreatment step is a step of performing a hydrothermal treatment on the treated product.
  10.  上記糖化する工程では、植物バイオマスに含まれる多糖類を加水分解する酵素による酵素反応を利用する方法であることを特徴とする請求項8記載の糖の製造方法。 The method for producing sugar according to claim 8, wherein the saccharifying step uses an enzymatic reaction by an enzyme that hydrolyzes a polysaccharide contained in plant biomass.
  11.  上記酵素はセルラーゼであることを特徴とする請求項8記載の糖の製造方法。 The method for producing sugar according to claim 8, wherein the enzyme is cellulase.
  12.  請求項8乃至11いずれか一項記載の糖の製造方法により得られた糖を基質として発酵により有機酸及び/又はアルコールを製造する、有機酸及び/又はアルコールの製造方法。 A method for producing an organic acid and / or alcohol, wherein an organic acid and / or alcohol is produced by fermentation using the sugar obtained by the method for producing sugar according to any one of claims 8 to 11 as a substrate.
  13.  上記アルコールはエタノールであることを特徴とする請求項12記載の有機酸及び/又はアルコールの製造方法。 13. The method for producing an organic acid and / or alcohol according to claim 12, wherein the alcohol is ethanol.
PCT/JP2011/058569 2010-04-06 2011-04-05 Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass WO2011125992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-087943 2010-04-06
JP2010087943A JP2011217634A (en) 2010-04-06 2010-04-06 Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass

Publications (1)

Publication Number Publication Date
WO2011125992A1 true WO2011125992A1 (en) 2011-10-13

Family

ID=44762928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058569 WO2011125992A1 (en) 2010-04-06 2011-04-05 Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass

Country Status (2)

Country Link
JP (1) JP2011217634A (en)
WO (1) WO2011125992A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014097799A1 (en) * 2012-12-18 2017-01-12 昭和電工株式会社 Method for hydrolysis of plant biomass
US20150337403A1 (en) * 2012-12-18 2015-11-26 Showa Denko K.K. Plant-biomass hydrolysis method
JP5982549B1 (en) * 2015-10-01 2016-08-31 新日鉄住金エンジニアリング株式会社 Pretreatment method and pretreatment apparatus for lignocellulosic biomass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125050A (en) * 2007-11-28 2009-06-11 Jfe Engineering Corp Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
JP2009528035A (en) * 2006-02-27 2009-08-06 淮北市輝克薬業有限公司 Production method of liquid fuel with new biomass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528035A (en) * 2006-02-27 2009-08-06 淮北市輝克薬業有限公司 Production method of liquid fuel with new biomass
JP2009125050A (en) * 2007-11-28 2009-06-11 Jfe Engineering Corp Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch

Also Published As

Publication number Publication date
JP2011217634A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
CN101796247B (en) Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
WO2012029842A1 (en) Method for enzymatic saccharification of lignocellulosic biomass, and method for manufacturing ethanol from lignocellulosic biomass
JP4958166B2 (en) Treatment of plant biomass with alcohol in the presence of oxygen
CN106011199B (en) Pretreatment method of crop straws
JP2006136263A (en) Method for treating lignocellulosic biomass
WO2011027389A1 (en) Process for producing ethanol from lignocellulosic biomass
JP2009125050A (en) Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
CN102191299A (en) Method for increasing lignocellulose saccharification yield through multi-step enzymolysis
JP4522797B2 (en) Lignocellulose pretreatment method and ethanol production method
WO2011065449A9 (en) Process for production of monosaccharide
WO2015005589A1 (en) Method for preparing sugar, bioethanol or microbial metabolite from lignocellulosic biomass
CA2707027C (en) Conversion of knot rejects from chemical pulping
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP2017522440A (en) Method for hydrolyzing lignocellulosic materials
JP5685959B2 (en) Method for producing valuable material from lignocellulose-containing biomass
JP2007151433A (en) Method for pretreatment of lignocellulose and method for producing ethanol
KR101039792B1 (en) Pretreatment device for fabricating of bio fuel and bio chemical material, and pretreatment process and fabricating process of bio fuel and bio chemical material using the same
JP4930650B1 (en) Method for producing ethanol from lignocellulose-containing biomass
KR101273218B1 (en) Manufacturing method of hydrolysate by improving alkali-catalyzed steam explosion from biomass
JP5267387B2 (en) Bast fiber manufacturing method and bast fiber
WO2011125992A1 (en) Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass
JP5701632B2 (en) Sugar-containing composition
Ali et al. Saccharification of corn cobs an agro-industrial waste by sulphuric acid for the production of monomeric sugars.
JP2014158437A (en) Saccharified solution of lignocellulosic biomass, and manufacturing and application method thereof
JP2010279305A (en) Method for producing sugar and ethanol from vegetable biomass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765892

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765892

Country of ref document: EP

Kind code of ref document: A1