JP4930650B1 - Method for producing ethanol from lignocellulose-containing biomass - Google Patents

Method for producing ethanol from lignocellulose-containing biomass Download PDF

Info

Publication number
JP4930650B1
JP4930650B1 JP2011203175A JP2011203175A JP4930650B1 JP 4930650 B1 JP4930650 B1 JP 4930650B1 JP 2011203175 A JP2011203175 A JP 2011203175A JP 2011203175 A JP2011203175 A JP 2011203175A JP 4930650 B1 JP4930650 B1 JP 4930650B1
Authority
JP
Japan
Prior art keywords
saccharification
raw material
fermentation
treatment
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011203175A
Other languages
Japanese (ja)
Other versions
JP2012254072A (en
Inventor
雅蘋 趙
寿子 得能
純 杉浦
基広 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2011203175A priority Critical patent/JP4930650B1/en
Application granted granted Critical
Publication of JP4930650B1 publication Critical patent/JP4930650B1/en
Publication of JP2012254072A publication Critical patent/JP2012254072A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

【課題】リグノセルロース原料からエタノールを製造する方法において、生産効率の高いエタノール製造方法を提供する。
【解決手段】
リグノセルロースを原料とした併行糖化発酵後の培養液をスクリーンサイズが1.0〜2.0mmのスクリュープレスで固液分離し、固液分離工程で除去できない微細繊維を80〜600メッシュの篩い処理で選択的に回収し、回収した微細繊維を原料として再度、糖化または併行糖化発酵を行うことによりエタノール生産量の向上が可能となる。さらに工程内に電解質を添加することによりエタノール生産量の向上が可能となる。
【選択図】 図1
In a method for producing ethanol from lignocellulose raw material, an ethanol production method having high production efficiency is provided.
[Solution]
The culture solution after saccharification and fermentation using lignocellulose as a raw material is solid-liquid separated with a screw press having a screen size of 1.0 to 2.0 mm, and fine fibers that cannot be removed in the solid-liquid separation step are sieved with 80 to 600 mesh. It is possible to improve the ethanol production amount by selectively recovering and re-saccharifying or simultaneous saccharification and fermentation using the recovered fine fiber as a raw material. Furthermore, the ethanol production can be improved by adding an electrolyte in the process.
[Selection] Figure 1

Description

本発明は、リグノセルロースを含有するバイオマスからエタノールを製造する方法において、併行糖化発酵処理後の処理懸濁液に残存する微細繊維を回収し、回収した微細繊維を再度、糖化または併行糖化発酵処理することによりエタノール生産量の向上が可能となるリグノセルロースを含有バイオマスからのエタノール製造方法に関する。   In the method for producing ethanol from biomass containing lignocellulose, the present invention recovers the fine fibers remaining in the suspension after the concurrent saccharification and fermentation treatment, and the collected fine fibers are again saccharified or the concurrent saccharification and fermentation treatment. The present invention relates to a method for producing ethanol from biomass containing lignocellulose, which can improve ethanol production.

糖化に適した処理を施したリグノセルロース原料から糖を製造する技術は、この糖を微生物の発酵基質として用いることによりガソリンの代替燃料となるアルコールや、プラスチック原料となるコハク酸や乳酸などの化成品原料を製造することができることから、循環型社会の形成に有益な技術である。
植物系バイオマス中の多糖類から発酵基質となる単糖や小糖類を製造する方法として酵素やその酵素を生産する微生物を用いて加水分解する酵素糖化法がある。リグニンを除去していないリグノセルロース材料は、リグニンを除去したリグノセルロース材料と比べて酵素によって分解されにくく、糖化されずに樹脂、金属などの不純物と一緒に糖化液中に残渣として残る。一般に、この残渣はスクリーン、遠心分離等により分離し廃棄される。酵素糖化法のコスト低減のために残渣を回収し有効利用することが課題である。酵素糖化法において回収した残渣を再利用する技術として、残渣を燃焼し熱エネルギーを得る方法(特許文献1)、残渣を水熱ガス化して、生成した合成ガスよりエタノール合成触媒でエタノールを合成する方法(特許文献2)、残渣を燃料あるいは肥料として利用する方法(特許文献3)、残渣を熱エネルギーとして利用する方法(特許文献4)が報告されている。しかし、これらの方法は、処理工程付加に伴うコストアップが大きいため実用的な設備を考案する場合、コスト低減という課題を解決するための方法として充分であるとは言えない。
また、糖化発酵処理後の酵素が吸着した未分解残渣を再度、糖化発酵工程に戻し酵素を再利用する技術が報告されている(特許文献5)。しかし、この方法では未分解残渣自体は再度酵素溶液と混合しても分解されにくい状態になっているため未分解残渣を糖化し易い状態にすることが課題である。本発明者らは固液分離により回収した未分解残渣を機械処理し再度、糖化発酵することによりエタノール生産量が高まることを見出した(特許文献6)。しかし、この方法で原料として用いた残渣は420メッシュ(38μm)のスクリーンで回収された残渣で幅広いサイズの繊維が含まれているという問題がある。リグニンが多く吸着したサイズの大きい繊維は酵素で分解されにくいため前処理(機械的処理等)を施さないと充分に糖化されない。もし、リグニン吸着量の少ない小さいサイズの繊維のみを選択的に回収し原料として前処理を施さず、再度、酵素糖化することができれば効率の良いエタノール生産量の向上が期待できる。
The technology to produce sugar from lignocellulose raw material that has been treated suitable for saccharification is the use of this sugar as a fermentation substrate for microorganisms to convert alcohol as an alternative fuel for gasoline, succinic acid and lactic acid as plastic raw materials. Since it can produce raw materials for products, it is a useful technology for the formation of a recycling society.
As a method for producing monosaccharides and small saccharides as fermentation substrates from polysaccharides in plant biomass, there is an enzyme saccharification method in which hydrolysis is performed using an enzyme or a microorganism that produces the enzyme. The lignocellulose material from which lignin has not been removed is less susceptible to degradation by enzymes than the lignocellulose material from which lignin has been removed, and remains as a residue in the saccharified solution together with impurities such as resin and metal without being saccharified. In general, the residue is separated and discarded by screen, centrifugation, or the like. The problem is to collect and effectively use the residue to reduce the cost of the enzymatic saccharification method. As a technique for reusing the residue recovered in the enzymatic saccharification method, a method of obtaining thermal energy by burning the residue (Patent Document 1), hydrolyzing the residue into hydrothermal gas, and synthesizing ethanol from the generated synthesis gas with an ethanol synthesis catalyst A method (Patent Document 2), a method using a residue as fuel or fertilizer (Patent Document 3), and a method using a residue as thermal energy (Patent Document 4) have been reported. However, these methods are not sufficient as a method for solving the problem of cost reduction when devising a practical facility because the cost increase accompanying the addition of the processing step is great.
Moreover, the technique which returns the undegraded residue which the enzyme after the saccharification fermentation process adsorb | sucked to a saccharification fermentation process again, and reuses an enzyme is reported (patent document 5). However, in this method, since the undecomposed residue itself is in a state that is not easily decomposed even if mixed with the enzyme solution again, it is a problem to make the undegraded residue easily saccharified. The present inventors have found that the amount of ethanol produced is increased by mechanically treating the undecomposed residue recovered by solid-liquid separation and again performing saccharification and fermentation (Patent Document 6). However, there is a problem that the residue used as a raw material in this method is a residue collected by a 420 mesh (38 μm) screen and contains a wide range of fibers. Large fibers with a large amount of adsorbed lignin are difficult to be decomposed by enzymes, so they cannot be sufficiently saccharified unless pretreated (such as mechanical treatment). If only small-sized fibers with a small amount of lignin adsorbed are selectively collected and pretreated as a raw material and can be enzymatically saccharified again, an efficient increase in ethanol production can be expected.

特許第4447148号Patent No. 4447148 特開2005−168335号公報JP 2005-168335 A 特開2008−54676号公報JP 2008-54676 A 特開2009−106932号公報JP 2009-106932 A 特開2010−98951号公報JP 2010-98951 A 特開2011−41493号公報JP 2011-41493 A

本発明の課題は、リグノセルロースを原料とするエタノール製造工程において、エタノール収率の高いエタノール製造方法を提供することにある。   The subject of this invention is providing the ethanol manufacturing method with a high ethanol yield in the ethanol manufacturing process which uses lignocellulose as a raw material.

本発明者らは、上記の課題を解決するために鋭意検討した結果、併行糖化発酵工程の培養液中に含まれる残渣から糖化され易い微細繊維のみを選択的に回収し、回収した微細繊維を原料として再度、糖化または併行糖化発酵を行うことによりエタノール生産量が向上し、かつ、工程内で排出される残渣量が減少することを見出し、下記発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors selectively recovered only fine fibers that are easily saccharified from the residue contained in the culture solution of the concurrent saccharification and fermentation process, and the recovered fine fibers It was found that by performing saccharification or parallel saccharification and fermentation again as a raw material, the amount of ethanol produced was improved and the amount of residue discharged in the process was reduced, and the following invention was completed.

(1)リグノセルロース原料に酵素糖化反応に適した原料とする処理を施す前処理工程、前処理が施されたリグノセルロース原料を酵素で糖化する酵素糖化及び酵素糖化処理によって生成する糖類を基質とする発酵処理を併行して行う一次併行糖化発酵工程、該一次併行糖化発酵工程から出る処理懸濁液をスクリーンサイズが1.0 〜 2.0mmのスクリュープレスで残渣と液体留分に分離する固液分離工程、該固液分離工程で分離された液体留分を80〜600メッシュの篩い処理で微細繊維と液体留分に分離する篩い処理工程、篩い処理後の微細繊維を除いた液体留分を減圧蒸留して発酵生成物を分離回収する蒸留工程、を有するリグノセルロース系原料からのエタノール製造方法において、分離した微細繊維を糖化または併行糖化発酵することを特徴とするリグノセルロース系原料からのエタノール製造方法。 (1) Pretreatment step of treating lignocellulose raw material as a raw material suitable for enzymatic saccharification reaction, enzymatic saccharification of pretreated lignocellulose raw material with enzyme, and saccharide produced by enzymatic saccharification treatment as a substrate A primary parallel saccharification and fermentation process performed in parallel with the fermentation process, and a solid suspension that separates the treated suspension from the primary parallel saccharification and fermentation process into a residue and a liquid fraction with a screw press having a screen size of 1.0 to 2.0 mm. A liquid separation step, a sieving treatment step for separating the liquid fraction separated in the solid-liquid separation step into a fine fiber and a liquid fraction by a sieving treatment of 80 to 600 mesh, a liquid fraction excluding the fine fiber after the sieving treatment In a method for producing ethanol from lignocellulosic raw materials having a distillation step of separating and recovering fermentation products by distillation under reduced pressure, the separated fine fibers are saccharified or simultaneously saccharified Ethanol production process from lignocellulosic feedstock, characterized by.

(2)前記分離した微細繊維を一次併行糖化発酵工程へ移送し併行糖化発酵することを特徴とする(1)項に記載のリグノセルロース系原料からのエタノール製造方法。 (2) The method for producing ethanol from a lignocellulosic raw material according to (1), wherein the separated fine fibers are transferred to a primary saccharification and fermentation step and subjected to saccharification and fermentation.

(3)前記分離した微細繊維を二次併行糖化発酵工程へ移送し併行糖化発酵することを特徴とする(1)項に記載のリグノセルロース系原料からのエタノール製造方法。 (3) The method for producing ethanol from a lignocellulosic raw material according to (1), wherein the separated fine fibers are transferred to a secondary saccharification and fermentation step and subjected to saccharification and fermentation.

(4)前記リグノセルロース原料の前処理が、リグノセルロース系原料を水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム及び炭酸水素ナトリウムから選ばれる1種以上のアルカリ薬品、又は、亜硫酸ナトリウムと前記アルカリ薬品の中から選ばれる1種以上のアルカリ薬品を含有する溶液に浸漬する化学的処理を含む前処理であることを特徴とする(1)項〜(3)項のいずれか1項に記載のリグノセルロース系原料からのエタノール製造方法。 (4) The pretreatment of the lignocellulosic raw material is a method wherein the lignocellulosic raw material is one or more alkaline chemicals selected from sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate and sodium hydrogencarbonate, or sodium sulfite Any one of the items (1) to (3), which is a pretreatment including a chemical treatment immersed in a solution containing one or more alkaline chemicals selected from the alkaline chemicals. A method for producing ethanol from the lignocellulosic raw material described.

(5)前記一次併行糖化発酵工程において、水溶性塩類よりなる電解質を原料懸濁液に添加し、原料懸濁液の電気伝導度を5〜25mS/cmにして糖化または併行糖化発酵を行うことを特徴とする(1)項〜(4)項のいずれか1項に記載のリグノセルロース系原料からのエタノール製造方法。 (5) In the primary parallel saccharification and fermentation step, an electrolyte composed of a water-soluble salt is added to the raw material suspension, and saccharification or parallel saccharification and fermentation is performed with the electric conductivity of the raw material suspension being 5 to 25 mS / cm. The method for producing ethanol from a lignocellulosic material according to any one of items (1) to (4).

本発明により、リグノセルロースを原料とした併行糖化発酵後の培養液に含まれる微細繊維を選択的に回収し、回収した微細繊維を原料として再度、糖化または併行糖化発酵を行うことによりエタノール生産量の向上が可能となる。   According to the present invention, the amount of ethanol produced by selectively recovering the fine fibers contained in the culture solution after the simultaneous saccharification and fermentation using lignocellulose as a raw material, and performing saccharification or parallel saccharification and fermentation again using the recovered fine fibers as a raw material Can be improved.

実施例1の製造工程フローを示す図The figure which shows the manufacturing process flow of Example 1. 実施例2の製造工程フローを示す図The figure which shows the manufacturing process flow of Example 2. 比較例1の製造工程フローを示す図The figure which shows the manufacturing process flow of the comparative example 1 実施例5の製造工程フローを示す図The figure which shows the manufacturing process flow of Example 5. 実施例6の製造工程フローを示す図The figure which shows the manufacturing process flow of Example 6.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

<リグノセルロース系原料>
本発明の方法で原料として使用するリグノセルロース系原料としては、木質系として、製紙用樹木、林地残材、間伐材等のチップ又は樹皮、製材工場等から発生する鋸屑又はおがくず、街路樹の剪定枝葉、建築廃材等が挙げられ、草本系としてケナフ、稲藁、麦わら、バガスなどの農産廃棄物、草本系エネルギー作物のエリアンサス、ミスカンサスやネピアグラス等が挙げられる。なお、本発明におけるリグノセルロース系原料としては、木材由来の紙、古紙、パルプ、パルプスラッジ等も利用可能である。
<Lignocellulose raw material>
As the lignocellulosic raw material used as a raw material in the method of the present invention, as woody material, chips or bark of papermaking trees, forest land residual materials, thinned wood, sawdust or sawdust generated from lumber mills, etc., pruning roadside trees Branches and leaves, building waste, etc. are listed. Herbaceous products include agricultural waste such as kenaf, rice straw, straw, bagasse, herbaceous energy crops Elianthus, Miscanthus and Napiergrass. In addition, as the lignocellulosic material in the present invention, paper derived from wood, waste paper, pulp, pulp sludge and the like can be used.

前記木質系のリグノセルロース系原料の中でも、木材の樹皮は、現在ほとんど有効利用されておらず、製材工場やチップ工場で均一な品質のものが大量に入手可能であり、木材の木部部分より柔軟かつ可溶性成分が多いため、糖化処理や併行糖化発酵処理の原料として特に好ましい。
例えば、製紙原料用として一般に用いられるユーカリ(Eucalyptus)属又はアカシア(Acacia)属等の樹種の樹皮は、製紙原料用の製材工場やチップ工場等から安定して大量に入手可能であるため、特に好適に用いられる。
Among the woody lignocellulosic raw materials, the bark of wood is hardly used at present and is available in large quantities at a lumber factory or chip factory, and from the wood part of the wood Since it is flexible and has many soluble components, it is particularly preferred as a raw material for saccharification treatment and concurrent saccharification and fermentation treatment.
For example, bark of tree species such as Eucalyptus genus or Acacia genus commonly used for papermaking raw materials can be obtained in large quantities stably from lumber mills and chip factories for papermaking raw materials. Preferably used.

<併行糖化発酵処理に適した前処理>
本発明の酵素糖化処理に適した前処理を施したリグノセルロースとは、前記リグノセルロース系原料に以下の前処理を行って、リグノセルロースを併行糖化発酵可能な状態としたリグノセルロースである。
機械的処理、化学的処理、水熱処理、加圧熱水処理、二酸化炭素添加水熱処理、蒸煮処理、湿式粉砕処理、希硫酸処理、水蒸気爆砕処理、アンモニア爆砕処理、二酸化炭素爆砕処理、超音波照射処理、マイクロ波照射処理、電子線照射処理、γ線照射処理、超臨界処理、亜臨界処理、有機溶媒処理、相分離処理、木材腐朽菌処理、グリーン溶媒活性化処理、各種触媒処理、ラジカル反応処理、オゾン酸化処理。
これらの処理は、各単独処理もしくは複数を組み合わせた処理のいずれであってもよい。中でも、上記リグノセルロース含有バイオマスに対し、アルカリ処理、加圧熱水処理、機械的処理から選択される1つ以上の前処理を行うことが好ましい。
<Pretreatment suitable for parallel saccharification and fermentation>
The lignocellulose that has been subjected to pretreatment suitable for the enzymatic saccharification treatment of the present invention is lignocellulose that has been subjected to the following pretreatment on the lignocellulose-based raw material so that the lignocellulose can be subjected to concurrent saccharification and fermentation.
Mechanical treatment, chemical treatment, hydrothermal treatment, pressurized hot water treatment, carbon dioxide added hydrothermal treatment, steaming treatment, wet grinding treatment, dilute sulfuric acid treatment, steam explosion treatment, ammonia explosion treatment, carbon dioxide explosion treatment, ultrasonic irradiation Treatment, microwave irradiation treatment, electron beam irradiation treatment, gamma ray irradiation treatment, supercritical treatment, subcritical treatment, organic solvent treatment, phase separation treatment, wood decay fungus treatment, green solvent activation treatment, various catalyst treatments, radical reaction Treatment, ozone oxidation treatment.
These processes may be either single processes or a combination of a plurality of processes. Among these, it is preferable to perform one or more pretreatments selected from alkali treatment, pressurized hot water treatment, and mechanical treatment on the lignocellulose-containing biomass.

前記機械的処理としては、破砕、裁断、磨砕等の任意の機械的手段が挙げられ、リグノセルロースを次工程の糖化発酵処理工程で糖化され易い状態にすることである。使用する機械装置については特に限定されないが、例えば、一軸破砕機、二軸破砕機、ハンマークラッシャー、レファイナー、ニーダー等を用いることができる。   Examples of the mechanical treatment include arbitrary mechanical means such as crushing, cutting, and grinding, and making lignocellulose easy to be saccharified in the subsequent saccharification and fermentation treatment step. Although it does not specifically limit about the mechanical apparatus to be used, For example, a uniaxial crusher, a biaxial crusher, a hammer crusher, a refiner, a kneader etc. can be used.

化学的処理としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム及び炭酸水素ナトリウムから選ばれる1種以上のアルカリ薬品、又は、亜硫酸ナトリウムと前記アルカリ薬品の中から選ばれる1種以上のアルカリ薬品を含有する溶液に浸漬する化学的処理を含む前処理である。また、オゾン、二酸化塩素などの酸化剤による化学的処理も可能である。
化学的処理は、前記機械的処理と組み合わせてそれらの前処理の後処理として行うことが好適である。
As the chemical treatment, one or more alkali chemicals selected from sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate and sodium hydrogen carbonate, or one or more selected from sodium sulfite and the above alkaline chemicals are used. This is a pretreatment including a chemical treatment of immersing in a solution containing an alkaline chemical. Further, chemical treatment with an oxidizing agent such as ozone or chlorine dioxide is also possible.
The chemical treatment is preferably performed as a post-treatment of the pretreatment in combination with the mechanical treatment.

化学的処理で使用する薬品の添加量は、状況に応じて任意に調整可能であるが、薬品コスト低下の面から、またセルロースの溶出・過分解による収率低下防止の面から、リグノセルロース系原料の絶乾100質量部に対して50質量部以下であることが望ましい。化学的処理における薬品の水溶液への浸漬時間及び処理温度は、使用する原料や薬品によって任意に設定可能であるが、処理時間20〜90分、処理温度80〜200℃が好ましい。処理条件を厳しくすることで、原料中のセルロースの液側への溶出又は過分解が起こる場合もあるため、処理時間は70分以下、処理温度は180℃以下であることが好ましい。   The amount of chemicals used in the chemical treatment can be arbitrarily adjusted depending on the situation, but lignocellulosic from the standpoint of reducing chemical costs and preventing yield loss due to elution and overdegradation of cellulose. It is desirable that it is 50 mass parts or less with respect to 100 mass parts of absolutely dry materials. The immersion time and the treatment temperature of the chemical in the chemical treatment can be arbitrarily set depending on the raw materials and chemicals to be used, but a treatment time of 20 to 90 minutes and a treatment temperature of 80 to 200 ° C. are preferable. By tightening the processing conditions, elution or excessive decomposition of cellulose in the raw material may occur, so that the processing time is preferably 70 minutes or less and the processing temperature is preferably 180 ° C. or less.

酵素糖化反応に適した前処理が施されているリグノセルロース系原料に対しては、リグノセルロース系原料懸濁液の調製に使用する前に、殺菌処理を行うことが好ましい。リグノセルロース系バイオマス原料中に雑菌が混入していると、酵素による糖化を行う際に雑菌が糖を消費して生成物の収量が低下してしまうという問題が発生する。
殺菌処理は、酸やアルカリなど、菌の生育困難なpHに原料を晒す方法でも良いが、高温下で処理する方法でも良く、両方を組み合わせても良い。酸、アルカリ処理後の原料については、中性付近、もしくは、糖化及び/又は糖化発酵工程に適したpHに調整した後に原料として使用することが好ましい。また、高温殺菌した場合も、室温もしくは糖化発酵工程に適した温度まで降温させてから原料として使用することが好ましい。このように、温度やpHを調整してから原料を送り出すことで、好適pH、好適温度外に酵素が晒されて、失活することを防ぐことができる。
For lignocellulosic raw materials that have been subjected to pretreatment suitable for enzymatic saccharification reaction, it is preferable to perform sterilization treatment before use in the preparation of lignocellulosic raw material suspension. When miscellaneous bacteria are mixed in the lignocellulosic biomass raw material, there is a problem that the miscellaneous bacteria consume sugar when the enzyme is saccharified and the yield of the product decreases.
The sterilization treatment may be a method in which the raw material is exposed to a pH at which bacteria are difficult to grow, such as an acid or an alkali. About the raw material after an acid and an alkali treatment, it is preferable to use as a raw material, after adjusting to neutrality vicinity or pH suitable for a saccharification and / or saccharification fermentation process. In addition, even when pasteurized at a high temperature, it is preferably used as a raw material after the temperature is lowered to room temperature or a temperature suitable for the saccharification and fermentation process. Thus, by feeding out the raw material after adjusting the temperature and pH, it is possible to prevent the enzyme from being exposed to the outside of the preferred pH and the preferred temperature and being deactivated.

<一次併行糖化発酵処理工程>
糖化発酵に適した前処理が施されているリグノセルロース系原料が、適量の水と酵
素、及び発酵に必要な酵母等の微生物と混合され、一次併行糖化発酵工程に供給される。併行糖化発酵処理方法の典型的なプロセスは、図1に示される。
図1において、前処理工程で糖化発酵処理に適した状態に処理されたリグノセルロース系原料は酵素により糖化(セルロース→グルコース)され、次に酵母により発酵(グルコース→エタノール)される。
<Primary parallel saccharification and fermentation process>
A lignocellulosic raw material that has been subjected to pretreatment suitable for saccharification and fermentation is mixed with appropriate amounts of water and enzymes, and microorganisms such as yeast necessary for fermentation, and supplied to the primary saccharification and fermentation step. A typical process of the concurrent saccharification and fermentation treatment method is shown in FIG.
In FIG. 1, the lignocellulosic raw material treated in a state suitable for saccharification and fermentation treatment in the pretreatment step is saccharified by an enzyme (cellulose → glucose) and then fermented by yeast (glucose → ethanol).

リグノセルロース系原料の懸濁濃度は、1〜30質量%であることが好ましい。1質量%未満であると、最終的に生産物の濃度が低すぎて生産物の濃縮のコストが高くなるという問題が発生する。また、30質量%を超えて高濃度となるにしたがって原料の攪拌が困難になり、生産性が低下するという問題が発生する。   The suspension concentration of the lignocellulosic raw material is preferably 1 to 30% by mass. If it is less than 1% by mass, there is a problem in that the concentration of the product is ultimately too low and the cost for concentrating the product becomes high. Moreover, as the concentration exceeds 30% by mass, it becomes difficult to stir the raw materials, resulting in a problem that productivity is lowered.

併行糖化発酵で使用するセルロース分解酵素は、セロビオヒドロラーゼ活性、エンドグルカナーゼ活性、ベータグルコシダーゼ活性を有する、所謂セルラーゼと総称される酵素である。
各セルロース分解酵素は、夫々の活性を有する酵素を適宜の量で添加しても良いが、市販されているセルラーゼ製剤は、上記の各種のセルラーゼ活性を有すると同時に、ヘミセルラーゼ活性も有しているものが多いので市販のセルラーゼ製剤を用いれば良い。
Cellulolytic enzymes used in parallel saccharification and fermentation are enzymes collectively called cellulases having cellobiohydrolase activity, endoglucanase activity, and betaglucosidase activity.
Each cellulolytic enzyme may be added with an appropriate amount of an enzyme having the respective activity. However, commercially available cellulase preparations have the above-mentioned various cellulase activities and also have hemicellulase activity. Since many products are available, a commercially available cellulase preparation may be used.

市販のセルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス(Trametes)属、フーミコラ(Humicola)属、バチルス(Bacillus)属などに由来するセルラーゼ製剤がある。このようなセルラーゼ製剤の市販品としては、全て商品名で、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、GC220(ジェネンコア社製)等が挙げられる。
原料固形分100質量部に対するセルラーゼ製剤の使用量は、0.5〜100質量部が好ましく、1〜50質量部が特に好ましい。
Commercial cellulase preparations include the genus Trichoderma, the genus Acremonium, the genus Aspergillus, the genus Phanerochaete, the genus Trametes, the genus Humicola, and the like. There are cellulase formulations derived from Commercially available products of such cellulase preparations are all trade names, for example, cellulosin T2 (manufactured by HIPI), mecerase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme), multifect CX10L (manufactured by Genencor) ), GC220 (manufactured by Genencor).
0.5-100 mass parts is preferable and, as for the usage-amount of the cellulase formulation with respect to 100 mass parts of raw material solid content, 1-50 mass parts is especially preferable.

糖化工程または併行糖化発酵工程でのpHは3.5〜10.0の範囲に維持することが好ましく、4.0〜7.5の範囲に維持することがより好ましい。 The pH in the saccharification process or the concurrent saccharification and fermentation process is preferably maintained in the range of 3.5 to 10.0, more preferably in the range of 4.0 to 7.5.

糖化工程または併行糖化発酵工程の温度は、酵素の至適温度の範囲内であれば特に制限はなく、25〜50℃が好ましく、30〜40℃がさらに好ましい。反応は、連続式が好ましいが、セミバッチ式、バッチ式でも良い。反応時間は、酵素濃度によっても異なるが、バッチ式の場合は10〜240時間、さらに好ましくは15〜160時間である。連続式の場合も、平均滞留時間が、10〜150時間、さらに好ましくは15〜100時間である。   The temperature of the saccharification step or the concurrent saccharification and fermentation step is not particularly limited as long as it is within the optimum temperature range of the enzyme, preferably 25 to 50 ° C, and more preferably 30 to 40 ° C. The reaction is preferably continuous, but may be semi-batch or batch. The reaction time varies depending on the enzyme concentration, but in the case of a batch system, it is 10 to 240 hours, more preferably 15 to 160 hours. Also in the case of a continuous type, the average residence time is 10 to 150 hours, more preferably 15 to 100 hours.

発酵用に用いられる微生物としては酵母などが用いられ、培地などを同時に添加しても良い。酵母としては、サッカロマイセス・セラビシエ(Saccharomyces cerevisiae)等が使用できる。
また、微生物は固定化しておいてもよい。微生物を固定化しておくと、次工程に微生物を液と共に送り出して再回収するという工程を省くことができるか、少なくとも回収工程にかかる負担を軽減することができるし、微生物をロスするリスクを軽減することもできる。また、微生物を固定化するほどでのメリットはないが、凝集性のある微生物を選択することにより微生物の回収を容易にすることができる。
As the microorganism used for fermentation, yeast or the like is used, and a medium or the like may be added simultaneously. As yeast, Saccharomyces cerevisiae (Saccharomyces cerevisiae) etc. can be used.
Moreover, the microorganisms may be immobilized. By immobilizing microorganisms, it is possible to omit the process of sending the microorganisms together with the liquid and recovering them again in the next process, or at least reduce the burden on the recovery process and reduce the risk of losing microorganisms. You can also In addition, although there is no merit as to immobilize the microorganism, it is possible to facilitate the recovery of the microorganism by selecting an aggregating microorganism.

<固液分離工程>
一次併行糖化発酵工程を出た培養液は、固液分離工程へ移送され、液体分(濾液)と残渣(一次残渣)に分離される。固液分離を行う装置としてスクリーンサイズが1.0 〜 2.0mmのスクリュープレスを用いる。スクリュープレスは構造的に繊維による目詰まりが発生しにくく比較的少ないエネルギーで効率よく固液分離できる装置である。固液分離効率を向上させるために背圧をかけても良い。
固液分離工程で分離された残渣にはリグニン、ヘミセルロース、セルロースが含まれており、セルロースにリグニン等が吸着しており、酵素による糖化が困難な状態となっている。固液分離工程後の残渣は一次併行糖化発酵工程で分解されなかった繊維分を多く含み、機械的処理や化学的処理を施すことにより糖化が容易となる(特許文献6)。
固液分離工程で分離された濾液(液体分)は、次の篩い処理工程へ移送される。
<Solid-liquid separation process>
The culture solution that has exited the primary saccharification and fermentation step is transferred to a solid-liquid separation step and separated into a liquid component (filtrate) and a residue (primary residue). A screw press having a screen size of 1.0 to 2.0 mm is used as an apparatus for performing solid-liquid separation. The screw press is a device that is structurally resistant to fiber clogging and can be efficiently solid-liquid separated with relatively little energy. A back pressure may be applied to improve the solid-liquid separation efficiency.
The residue separated in the solid-liquid separation step contains lignin, hemicellulose, and cellulose, and lignin and the like are adsorbed on the cellulose, which makes it difficult for the enzyme to be saccharified. The residue after the solid-liquid separation step contains a large amount of fiber that has not been decomposed in the primary parallel saccharification and fermentation step, and saccharification is facilitated by performing mechanical treatment or chemical treatment (Patent Document 6).
The filtrate (liquid component) separated in the solid-liquid separation process is transferred to the next sieving process.

<篩い処理工程>
固液分離後の濾液を篩い処理を行い微細繊維と濾液(液体分)に分離する。篩い処理の方法としては、微細繊維を分離できる篩い処理装置であれば特に限定なく用いることができる。篩い処理装置としては、スクリーン、フィルタープレス、ベルトプレス、ロータリープレス等を用いることができる。篩いのメッシュ(網目)は80メッシュ〜600メッシュ(28〜182μm)が好ましく、150メッシュ〜400メッシュ(39〜97μm)がさらに好ましい。処理効率を向上させるために、篩いに振動装置をつけて振動を加えてもよい。以上の処理で分離された微細繊維は一次残渣や二次残渣と比較しリグニン含量が低く、酵素により糖化され易い。また、篩い処理で微細繊維を除くことにより後段の蒸留工程で用いる減圧蒸留装置内に付着する固形分量を軽減することができ装置の長時間の運転が可能となるというメリットがある。回収された微細繊維は、一次糖化発酵工程へ移送し糖化発酵の原料として用いても良い(図1参照)。また、回収された微細繊維を後述の二次糖化発酵工程(一次糖化発酵工程とは異なる糖化発酵工程)へ移送し糖化発酵の原料として用いることもできる(図2参照)。更には、別の工程で糖化のみを行っても良い。このように微細繊維を糖化または糖化発酵することにより、微細繊維に吸着している酵素を有効に利用できる。
一方、篩い処理で分離された濾液は蒸留工程へ移送される。
<Sieving process>
The filtrate after solid-liquid separation is subjected to a sieving process to separate it into fine fibers and filtrate (liquid component). As a method of the sieving process, any sieving apparatus that can separate fine fibers can be used without particular limitation. As the sieving apparatus, a screen, a filter press, a belt press, a rotary press, or the like can be used. The sieve mesh (mesh) is preferably 80 mesh to 600 mesh (28 to 182 μm), more preferably 150 mesh to 400 mesh (39 to 97 μm). In order to improve processing efficiency, vibration may be applied by attaching a vibration device to the sieve. The fine fibers separated by the above treatment have a low lignin content as compared with primary residues and secondary residues, and are easily saccharified by enzymes. Further, by removing fine fibers by sieving, the amount of solid content adhering to the vacuum distillation apparatus used in the subsequent distillation step can be reduced, and there is an advantage that the apparatus can be operated for a long time. The recovered fine fibers may be transferred to the primary saccharification and fermentation process and used as a raw material for saccharification and fermentation (see FIG. 1). Moreover, the recovered fine fibers can be transferred to a secondary saccharification and fermentation process (a saccharification and fermentation process different from the primary saccharification and fermentation process) described later and used as a raw material for saccharification and fermentation (see FIG. 2). Furthermore, only saccharification may be performed in another step. Thus, by saccharifying or saccharifying and fermenting the fine fiber, the enzyme adsorbed on the fine fiber can be used effectively.
On the other hand, the filtrate separated by the sieving process is transferred to the distillation step.

<二次併行糖化発酵処理工程>
二次併行糖化発酵処理工程は一次併行糖化発酵処理工程とは独立した糖化発酵工程で、新しいリグノセルロースを原料として糖化発酵させることもできるし、工程内で排出された残渣を原料として糖化発酵させることもできる。また、一次併行糖化発酵工程でエタノールへ発酵されなかった糖を二次併行糖化発酵処理工程で発酵させることもできる。一次併行糖化発酵工程において、セルロースに由来する六炭糖、即ち、グルコース、マンノース、ガラクトース等がエタノール発酵されるが、ヘミセルロースに由来する五炭糖であるキシロースは未反応のまま残留するものもある。このような場合、二次併行糖化発酵処理工程で五炭糖をより確実に発酵する酵母を添加して五炭糖を発酵させることもできる。
本発明では、前記篩い処理で回収された微細繊維を二次併行糖化発酵処理工程へ移送し糖化発酵させることができる。
<Secondary concurrent saccharification and fermentation process>
The secondary parallel saccharification and fermentation process is a saccharification and fermentation process independent of the primary parallel saccharification and fermentation process. It can be saccharified and fermented using new lignocellulose as a raw material, or saccharified and fermented using the residue discharged in the process as a raw material. You can also In addition, sugar that has not been fermented to ethanol in the primary parallel saccharification and fermentation process can be fermented in the secondary parallel saccharification and fermentation process. In the primary parallel saccharification and fermentation process, hexose derived from cellulose, ie, glucose, mannose, galactose, etc. is ethanol-fermented, but xylose, a pentose derived from hemicellulose, may remain unreacted. . In such a case, the pentose can be fermented by adding yeast that more reliably ferments the pentose in the secondary parallel saccharification and fermentation treatment step.
In this invention, the fine fiber collect | recovered by the said sieving process can be transferred to a secondary parallel saccharification fermentation process process, and can be saccharified and fermented.

<蒸留工程>
篩い処理後の濾液、あるいは二次併行糖化発酵処理工程後の処理液(培養液)は蒸留工程へ移送される(図1、図2参照)。
蒸留工程では、減圧蒸留装置により発酵生成物が蒸留分離される。減圧下では低い温度で発酵生成物を分離できるため、酵素の失活を防ぐことができる。減圧蒸留装置としては、ロータリーエバポレーター、フラッシュエバポレーターなどを用いることができる。
蒸留温度は25〜60℃が好ましい。25℃未満であると、生成物の蒸留に時間がかかって生産性が低下する。また、60℃より高いと、酵素が熱変性して失活してしまい、新たに追加する酵素量が増加するため経済性が悪化する。
蒸留後の蒸留残渣留分中に残る発酵生成物濃度は0.1質量%以下であることが好ましい。このような濃度にすることによって、後段の固液分離工程において固形物とともに排出される発酵生成物量を低減することができ、収率を向上させることができる。
<Distillation process>
The filtrate after the sieving treatment or the treatment solution (culture solution) after the secondary concurrent saccharification and fermentation treatment step is transferred to the distillation step (see FIGS. 1 and 2).
In the distillation step, the fermentation product is separated by distillation using a vacuum distillation apparatus. Since the fermentation product can be separated at a low temperature under reduced pressure, inactivation of the enzyme can be prevented. As the vacuum distillation apparatus, a rotary evaporator, a flash evaporator, or the like can be used.
The distillation temperature is preferably 25 to 60 ° C. If it is lower than 25 ° C., it takes time to distill the product, and the productivity is lowered. On the other hand, when the temperature is higher than 60 ° C., the enzyme is heat-denatured to be inactivated, and the amount of newly added enzyme is increased, so that economical efficiency is deteriorated.
The concentration of the fermentation product remaining in the distillation residue fraction after distillation is preferably 0.1% by mass or less. By setting it as such a density | concentration, the amount of fermentation products discharged | emitted with a solid substance in a subsequent solid-liquid separation process can be reduced, and a yield can be improved.

<遠心分離工程>
蒸留残液は、遠心分離工程へ移送され残留している残渣(二次残渣)を遠心分離によって除去した後、液体留分は一次併行糖化発酵工程に循環される(図1参照)。この液体留分には酵素が含まれており、一次併行糖化発酵工程で再利用される。一方、残渣には、リグニンが含まれており燃焼原料として回収しエネルギーとして利用することもできるし、リグニンを回収し有効利用することもできる。
<Centrifuge separation process>
The distillation residue is transferred to the centrifugal separation step, and the remaining residue (secondary residue) is removed by centrifugation, and then the liquid fraction is circulated to the primary parallel saccharification and fermentation step (see FIG. 1). This liquid fraction contains an enzyme and is reused in the primary concurrent saccharification and fermentation process. On the other hand, the residue contains lignin and can be recovered as a combustion raw material and used as energy, or lignin can be recovered and used effectively.

本発明では、酵素糖化処理工程内に電解質として水溶性塩を添加することができる。酵素糖化処理工程において、電解質を原料懸濁液に添加し原料懸濁液の電気伝導度を5〜25mS/cmの範囲に維持することが好ましい。電気伝導度を5〜25mS/cmの範囲に維持することによりリグノセルロース原料の未反応成分や反応残渣等への酵素の吸着が抑制されるため、酵素糖化処理工程内における酵素の循環率が長期にわたって高い水準に維持することができる。酵素糖化処理工程内において、操作上、電解質を添加することが可能な工程であれば、いずれの工程においても制限なく電解質を添加することができる。一次糖化発酵工程内で添加することが操作が容易なため望ましい。     In the present invention, a water-soluble salt can be added as an electrolyte in the enzymatic saccharification treatment step. In the enzymatic saccharification treatment step, it is preferable to add an electrolyte to the raw material suspension to maintain the electric conductivity of the raw material suspension in the range of 5 to 25 mS / cm. By maintaining the electrical conductivity in the range of 5 to 25 mS / cm, the adsorption of the enzyme to the unreacted components and reaction residues of the lignocellulose raw material is suppressed, so that the enzyme circulation rate in the enzymatic saccharification treatment process is long. Over high levels. In the enzymatic saccharification treatment step, the electrolyte can be added without limitation in any step as long as it is an operation that can add an electrolyte. It is desirable to add it in the primary saccharification and fermentation process because the operation is easy.

水溶性塩としては、アルカリ金属塩及びアルカリ土類金属塩から選ばれる塩類が好ましい。アルカリ金属塩及びアルカリ土類金属塩としては、アルカリ金属やアルカリ土類金属のハロゲン化物、硫酸塩、亜硫酸塩、チオ硫酸塩、炭酸塩、炭酸水素塩、リン酸塩、リン酸二水素塩、リン酸水素二塩、酢酸塩、クエン酸塩からなる群から選ばれる水溶性塩が挙げられる。   As the water-soluble salt, salts selected from alkali metal salts and alkaline earth metal salts are preferable. Alkali metal salts and alkaline earth metal salts include alkali metal and alkaline earth metal halides, sulfates, sulfites, thiosulfates, carbonates, bicarbonates, phosphates, dihydrogen phosphates, Examples thereof include water-soluble salts selected from the group consisting of hydrogen phosphate di-salt, acetate and citrate.

次に実施例を示して本発明を更に詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.

図1に示す製造フローでエタノールの製造を実施した。
[前処理]
チップ状のユーカリ・グロブラスの樹皮を20mmの丸孔スクリーンを取り付けた一軸破砕機(西邦機工社製、SC−15)で破砕し原料として用いた。
上記原料100kg(絶乾重量)に対して12.5質量%の水酸化カルシウムとなるように水に懸濁した水酸化カルシウム溶液を原料に添加後(原料に対する液比8)、120℃で1時間加熱(アルカリ処理)した。アルカリ処理後の原料をレファイナー(熊谷理器工業製、KRK高濃度ディスクレファイナー:クリアランス0.5mm)で磨砕した。磨砕処理後の原料に同量の純水を添加後、撹拌下で硫酸を用いてpH5に調整した。次に20メッシュ(847μm)のスクリーンを用いて固液分離(脱水)することにより溶液の電気伝導度が30μS/cmになるまで水で洗浄した。固液分離後の固形物(前処理物)を原料として糖化発酵工程に供した。
[一次併行糖化発酵]
一次併行糖化発酵槽に原料濃度が10質量%になるように原料100kg(絶乾重量)、ポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/Lとなるように各々を添加後,水を添加し最終容量を1mに調整した。液体培地(グルコース30g/L、ポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/L、pH
5.6)50Lで30℃、24時間前培養を行った酵母菌体を含む培養液及び市販セルラーゼ(Accellerase DUET、ジェネンコア社製)50Lを発酵槽に添加し、30℃、24時間で一次併行糖化発酵を行った。糖化発酵中の培養液のpHは5.0に調整した。
[固液分離]
前記第一次併行糖化発酵で得られた培養液を、スクリュープレス(富国工業株式会社製SHX−200 x 1500L、スクリーンサイズ1.2mm)で固液分離して残渣(一次残渣)と濾液を分離した。回収した一次残渣は19.4kg(絶乾重量)であった。
[篩い処理]
固液分離後のろ液を400メッシュ(39μm)のスクリーンを通過させて培養液中の微細繊維を回収した。得られた微細繊維の回収量は合計で15.6kg(絶乾重量)であった。回収した微細繊維は全量(15.6kg)、一次併行糖化発酵槽へ返送した。
[エタノール製造]
前記篩い処理で得られた濾液を減圧蒸留装置(エバポールCEP−1、大川原製作所)で蒸留温度:40℃、加熱温度:80℃、供給液量:150L/hの条件でエタノールを含む水溶液と濃縮培養液に分離した。得られたエタノールを含む水溶液の体積及びエタノール濃度を測定しエタノールの回収量を算出した。溶液中のエタノール濃度はグルコースセンサー(王子計測機器製BF−400型)で測定した。
[遠心分離]
減圧蒸留装置から分離された濃縮培養液をデカンタ式遠心機(IHI製、HS−204L形)は、回転数4500rpm、差速5.0rpmで運転し、残渣(二次残渣)と濾液に分離した。濾液は、一次併行糖化発酵槽へ移送した。回収した二次残渣は、18.6kg(絶乾重量)であった。
Ethanol was produced according to the production flow shown in FIG.
[Preprocessing]
Chip-shaped eucalyptus globula bark was crushed with a uniaxial crusher (Seiho Kiko Co., Ltd., SC-15) equipped with a 20 mm round hole screen and used as a raw material.
After adding a calcium hydroxide solution suspended in water to 12.5% by mass of calcium hydroxide with respect to 100 kg (absolute dry weight) of the above raw material (liquid ratio to raw material 8), 1 at 120 ° C. Heated for an hour (alkali treatment). The raw material after the alkali treatment was ground with a refiner (manufactured by Kumagai Riki Kogyo, KRK high concentration disk refiner: clearance 0.5 mm). After adding the same amount of pure water to the raw material after the grinding treatment, the pH was adjusted to 5 with sulfuric acid under stirring. Next, solid-liquid separation (dehydration) was performed using a 20 mesh (847 μm) screen, and the solution was washed with water until the electric conductivity of the solution reached 30 μS / cm. The solid (separated product) after solid-liquid separation was used as a raw material for the saccharification and fermentation process.
[Primary parallel saccharification and fermentation]
100 kg of raw material (absolute dry weight), polypeptone 5 g / L, yeast extract 3 g / L, malt extract 3 g / L, and water are added to the primary saccharification and fermentation tank so that the raw material concentration becomes 10% by mass. Was added to adjust the final volume to 1 m 3 . Liquid medium (glucose 30 g / L, polypeptone 5 g / L, yeast extract 3 g / L, malt extract 3 g / L, pH
5.6) A culture solution containing yeast cells pre-cultured at 50 ° C. for 30 hours at 30 ° C. and 50 L of commercially available cellulase (Accelerase DUET, manufactured by Genencor) are added to the fermentor, and the primary culture is performed at 30 ° C. for 24 hours. Saccharification and fermentation were performed. The pH of the culture solution during saccharification and fermentation was adjusted to 5.0.
[Solid-liquid separation]
The culture solution obtained by the first concurrent saccharification and fermentation is separated into solid and liquid by a screw press (SHX-200 x 1500 L, manufactured by Togoku Industry Co., Ltd., screen size 1.2 mm) to separate the residue (primary residue) and the filtrate. did. The recovered primary residue was 19.4 kg (absolute dry weight).
[Sieving process]
The filtrate after the solid-liquid separation was passed through a 400 mesh (39 μm) screen to collect fine fibers in the culture solution. The total recovered amount of fine fibers was 15.6 kg (absolute dry weight). The total amount (15.6 kg) of the collected fine fibers was returned to the primary saccharification and fermentation tank.
[Ethanol production]
The filtrate obtained by the sieving treatment is concentrated with an aqueous solution containing ethanol under the conditions of distillation temperature: 40 ° C., heating temperature: 80 ° C., supply liquid amount: 150 L / h, using a vacuum distillation apparatus (Evapor PEP-1, Okawara Seisakusho). Separated into culture. The volume and ethanol concentration of the obtained aqueous solution containing ethanol were measured, and the amount of ethanol recovered was calculated. The ethanol concentration in the solution was measured with a glucose sensor (BF-400 manufactured by Oji Scientific Instruments).
[Centrifuge]
The concentrated culture solution separated from the vacuum distillation apparatus was separated into a residue (secondary residue) and a filtrate by operating a decanter centrifuge (made by IHI, HS-204L type) at a rotational speed of 4500 rpm and a differential speed of 5.0 rpm. . The filtrate was transferred to a primary parallel saccharification and fermentation tank. The recovered secondary residue was 18.6 kg (absolute dry weight).

図2に示す製造フローでエタノールの製造を実施した。
[前処理]
実施例1と同様の方法で実施した。
[一次併行糖化発酵]
実施例1と同様の方法で実施した。
[固液分離]
実施例1と同様の方法で実施した。回収した一次残渣は19.2kg(絶乾重量)であった。
[篩い処理]
実施例1と同様の方法で実施した。合計100kgの原料を一次併行糖化発酵で処理して得られた微細繊維の回収量は合計で15.5kg(絶乾重量)であった。
[二次併行糖化発酵]
篩い処理で得られた微細繊維15.5kg(絶乾重量)を原料として二次併行糖化発酵槽に添加した。ポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/Lとなるように各々を二次併行糖化発酵槽に添加し水で最終容量を150Lに調整した。液体培地(グルコース30g/L、ポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/L、pH5.6)50Lで市販酵母(商品名:Maurivin: Mauri Yeast Australia Pty Limited)を30℃で24時間培養した。培養後の酵母を含む培養液50L及び市販セルラーゼ(Accellerase DUET、ジェネンコア社製)10Lを発酵槽に添加し、30℃、24時間で二次併行糖化発酵を行った。糖化発酵中の培養液のpHは5.0に調整した。
[エタノール製造]
実施例1と同様の方法で実施した。
[遠心分離]
実施例1と同様の方法で実施した。回収した二次残渣は、18.6kg(絶乾重量)であった。
Ethanol was produced according to the production flow shown in FIG.
[Preprocessing]
The same method as in Example 1 was performed.
[Primary parallel saccharification and fermentation]
The same method as in Example 1 was performed.
[Solid-liquid separation]
The same method as in Example 1 was performed. The recovered primary residue was 19.2 kg (absolute dry weight).
[Sieving process]
The same method as in Example 1 was performed. A total of 15.5 kg (absolute dry weight) of recovered fine fibers obtained by treating 100 kg of raw materials by primary parallel saccharification and fermentation.
[Secondary parallel saccharification and fermentation]
15.5 kg (absolute dry weight) of fine fibers obtained by sieving was added as a raw material to the secondary saccharification and fermentation tank. Each was added to a secondary parallel saccharification and fermentation tank so as to be 5 g / L of polypeptone, 3 g / L of yeast extract, and 3 g / L of malt extract, and the final volume was adjusted to 150 L with water. Commercially available yeast (trade name: Maurivin: Mauri Yeast Australia Pty Limited) at 30 ° C. at 50 ° C. in a liquid medium (glucose 30 g / L, polypeptone 5 g / L, yeast extract 3 g / L, malt extract 3 g / L, pH 5.6) Incubate for hours. 50 L of a culture solution containing yeast after culturing and 10 L of commercially available cellulase (Accelerase DUET, manufactured by Genencor Corp.) were added to the fermentor, and secondary saccharification and fermentation was performed at 30 ° C. for 24 hours. The pH of the culture solution during saccharification and fermentation was adjusted to 5.0.
[Ethanol production]
The same method as in Example 1 was performed.
[Centrifuge]
The same method as in Example 1 was performed. The recovered secondary residue was 18.6 kg (absolute dry weight).

<比較例1>
図3に示す製造フローでエタノールの製造を実施した。実施例1の[篩い処理]を省略した試験を比較例1とした(下記)。
[前処理]
実施例1と同様の方法で実施した。
[一次併行糖化発酵]
実施例1と同様の方法で実施した。
[固液分離]
実施例1と同様の方法で実施した。回収した一次残渣は19.3kg(絶乾重量)であった。
[エタノール製造]
前記固形分離で得られた濾液を実施例1に記載と同様の方法でエタノールを含む水溶液と濃縮培養液に分離した。得られたエタノールを含む水溶液の体積とエタノール濃度を測定しエタノールの回収量を算出した。
[遠心分離]
実施例1と同様の方法で実施した。回収した二次残渣は、34.2kg(絶乾重量)であった。
<Comparative Example 1>
Ethanol was produced according to the production flow shown in FIG. A test in which [Sieving treatment] in Example 1 was omitted was defined as Comparative Example 1 (below).
[Preprocessing]
The same method as in Example 1 was performed.
[Primary parallel saccharification and fermentation]
The same method as in Example 1 was performed.
[Solid-liquid separation]
The same method as in Example 1 was performed. The recovered primary residue was 19.3 kg (absolute dry weight).
[Ethanol production]
The filtrate obtained by the solid separation was separated into an aqueous solution containing ethanol and a concentrated culture solution in the same manner as described in Example 1. The volume of the aqueous solution containing ethanol and the ethanol concentration were measured, and the amount of ethanol recovered was calculated.
[Centrifuge]
The same method as in Example 1 was performed. The recovered secondary residue was 34.2 kg (absolute dry weight).

Figure 0004930650
エタノールの生産量の結果を表1に示す。実施例1(微細繊維を回収し一次併行糖化発酵槽に返送した場合)及び実施例2(微細繊維を回収し二次併行糖化発酵槽に移送した場合)では、比較例1(微細繊維を回収しない場合)と比較しエタノール生産量が向上した。
Figure 0004930650
The results of ethanol production are shown in Table 1. In Example 1 (when fine fibers are collected and returned to the primary parallel saccharification and fermentation tank) and Example 2 (when fine fibers are collected and transferred to the secondary parallel saccharification and fermentation tank), Comparative Example 1 (fine fibers are collected) The amount of ethanol produced was improved compared to the case of

[糖化発酵試験]
実施例1で得られた微細繊維を原料として用いて試験管内で糖化発酵試験を行いエタノール生産量を下記の方法で測定した。
液体培地A(ポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/L、グルコース30g/L、蒸留水に溶解、pH 5.6)100mlと液体培地B(ポリペプトン15g/L、酵母エキス10g/L、麦芽エキス10g/L:蒸留水に溶解)20mlを混合した培地で市販酵母(商品名:Maurivin: Mauri Yeast Australia Pty Limited)を30℃、24時間培養した。培養後の培養液100mlを遠心分離(5000rpm、20分間)し、上清を取り除き培養液の容量を10mlに調製(酵母を集菌)した(濃縮酵母菌体)。
300ml容三角フラスコ(滅菌済)に原料(微細繊維)の最終濃度が5質量%になるように添加した。次に、濃縮酵母菌体10ml、市販セルラーゼ(Accellerase DUET、ジェネンコア社製)2.5mlを添加し、最終容量を蒸留水で100mlにメスアップした。この混合液を30℃で24時間培養(糖化発酵)した。培養後の培養液を遠心分離(5000rpm、20分間)し、上清液のエタノール濃度を測定した。また、微細繊維のカッパー価(リグニン含量の指標)をJISP8211に準拠の測定法で測定した。
[Saccharification and fermentation test]
A saccharification and fermentation test was conducted in a test tube using the fine fiber obtained in Example 1 as a raw material, and the ethanol production was measured by the following method.
Liquid medium A (polypeptone 5 g / L, yeast extract 3 g / L, malt extract 3 g / L, glucose 30 g / L, dissolved in distilled water, pH 5.6) 100 ml and liquid medium B (polypeptone 15 g / L, yeast extract 10 g / L, malt extract 10 g / L: dissolved in distilled water) Commercial yeast (trade name: Maurivin: Mauri Yeast Australia Pty Limited) was cultured at 30 ° C. for 24 hours in a medium mixed with 20 ml. Centrifugation (5000 rpm, 20 minutes) of the culture solution after culturing was performed, and the supernatant was removed, and the volume of the culture solution was adjusted to 10 ml (yeast was collected) (concentrated yeast cells).
It added so that the final concentration of a raw material (fine fiber) might be 5 mass% to a 300 ml Erlenmeyer flask (sterilized). Next, 10 ml of concentrated yeast cells and 2.5 ml of commercially available cellulase (Accelerase DUET, Genencor) were added, and the final volume was made up to 100 ml with distilled water. This mixed solution was cultured at 30 ° C. for 24 hours (saccharification and fermentation). The culture solution after the culture was centrifuged (5000 rpm, 20 minutes), and the ethanol concentration of the supernatant was measured. Further, the kappa number (index of lignin content) of the fine fiber was measured by a measuring method based on JISP8211.

<比較例2>
実施例1で得られた一次残渣を原料として用いて実施例3と同様の方法で糖化発酵試験を行いエタノール生産量及び一次残渣のカッパー価を測定した。
<Comparative example 2>
Using the primary residue obtained in Example 1 as a raw material, a saccharification and fermentation test was conducted in the same manner as in Example 3 to measure the ethanol production and the primary residue kappa number.

<比較例3>
実施例1で得られた二次残渣を原料として用いて実施例3と同様の方法で糖化発酵試験を行いエタノール生産量及び二次残渣のカッパー価を測定した。
<Comparative Example 3>
Using the secondary residue obtained in Example 1 as a raw material, a saccharification and fermentation test was performed in the same manner as in Example 3, and the ethanol production and the secondary residue kappa number were measured.

Figure 0004930650
表2にエタノール濃度及びカッパー価を示す。微細繊維(実施例3)を原料とした場合、一次残渣(比較例2)及び二次残渣(比較例3)を原料とした場合と比較し培養液中のエタノール濃度が高かった。また、微細繊維(実施例3)のカッパー価は、一次残渣(比較例2)及び二次残渣(比較例3)のカッパー価と比較し値が低かった。以上の結果から、微細繊維は一次残渣及び二次残渣と比較しリグニン含量が低く、その結果として微細繊維を糖化発酵の原料として用いた場合、一次残渣及び二次残渣と比較しエタノール生産量が高まることがわかった。微細繊維は前処理(機械的処理等)を施さなくても糖化発酵が容易に進行し、糖化発酵の原料として適していることが判明した。
Figure 0004930650
Table 2 shows the ethanol concentration and the kappa number. When the fine fiber (Example 3) was used as the raw material, the ethanol concentration in the culture broth was higher than when the primary residue (Comparative Example 2) and the secondary residue (Comparative Example 3) were used as the raw material. Moreover, the kappa number of the fine fiber (Example 3) was lower than that of the primary residue (Comparative Example 2) and the secondary residue (Comparative Example 3). From the above results, the fine fiber has a low lignin content compared to the primary residue and the secondary residue, and as a result, when the fine fiber is used as a raw material for saccharification and fermentation, the ethanol production is lower than the primary residue and the secondary residue. I found it to increase. It turned out that saccharification and fermentation proceed easily even if the fine fiber is not subjected to pretreatment (such as mechanical treatment), and is suitable as a raw material for saccharification and fermentation.

実施例1で原料として用いたユーカリ・グロブラスの樹皮の変わりにユーカリ・グロブラスの林地残材(樹皮70%、枝葉30%)を原料として用いた試験を実施例4とした。林地残材を用いた以外は全て実施例1と同様の方法で試験した(製造フローは図1と同様)。   A test using Eucalyptus globulus forest land remnant (70% bark, 30% branch leaves) as a raw material instead of the bark of eucalyptus globulus used as a raw material in Example 1 was taken as Example 4. Except for using the remaining forest land, all tests were performed in the same manner as in Example 1 (the manufacturing flow is the same as in FIG. 1).

<比較例4>
実施例4の[篩い処理]を省略した試験を比較例4とした。篩い処理を省略した以外は全て実施例4と同様の方法で試験した(製造フローは図3と同様)。
<Comparative example 4>
A test in which [Sieving treatment] in Example 4 was omitted was referred to as Comparative Example 4. All tests were performed in the same manner as in Example 4 except that the sieving treatment was omitted (the manufacturing flow is the same as in FIG. 3).

Figure 0004930650
エタノールの生産量の結果を表3に示す。実施例4(微細繊維を回収し一次併行糖化発酵槽に返送した場合)では、比較例4(微細繊維を回収しない場合)と比較しエタノール生産量が向上した。
Figure 0004930650
The results of ethanol production are shown in Table 3. In Example 4 (when fine fibers were collected and returned to the primary parallel saccharification and fermentation tank), ethanol production was improved as compared with Comparative Example 4 (when fine fibers were not collected).

図4に示す製造フローでエタノールの製造を実施した。
[前処理]
実施例1と同様の方法で実施した。
[一次併行糖化発酵]
培養液中に電解質として塩化ナトリウムを添加する以外は実施例1と同様の方法で実施した。実施例1と同様の方法で調整した培養液に塩化ナトリウム(電解質)の最終濃度が、100mMとなるように添加した(原料懸濁液の電気伝導度:12.2mS/cm)。次に、実施例1と同様の方法で酵母菌体及び市販セルラーゼを発酵槽に添加し、一次併行糖化発酵を行った。
[固液分離]
実施例1と同様の方法で実施した。回収した一次残渣は15.3kg(絶乾重量)であった。
[篩い処理]
実施例1と同様の方法で実施した。回収した微細繊維は合計で13.4kg(絶乾重量)であった。回収した微細繊維は全量(13.4kg)、一次併行糖化発酵槽へ返送した。
[エタノール製造]
実施例1と同様の方法で実施した。
[遠心分離]
実施例1と同様の方法で実施した。回収した二次残渣は、14.7kg(絶乾重量)であった。
Ethanol was produced according to the production flow shown in FIG.
[Preprocessing]
The same method as in Example 1 was performed.
[Primary parallel saccharification and fermentation]
It implemented by the method similar to Example 1 except adding sodium chloride as electrolyte in a culture solution. To the culture solution prepared in the same manner as in Example 1, sodium chloride (electrolyte) was added so that the final concentration was 100 mM (electrical conductivity of the raw material suspension: 12.2 mS / cm). Next, yeast cells and commercially available cellulase were added to the fermentor in the same manner as in Example 1 to perform primary saccharification and fermentation.
[Solid-liquid separation]
The same method as in Example 1 was performed. The recovered primary residue was 15.3 kg (absolute dry weight).
[Sieving process]
The same method as in Example 1 was performed. The collected fine fibers totaled 13.4 kg (absolute dry weight). The total amount (13.4 kg) of the collected fine fibers was returned to the primary saccharification and fermentation tank.
[Ethanol production]
The same method as in Example 1 was performed.
[Centrifuge]
The same method as in Example 1 was performed. The recovered secondary residue was 14.7 kg (absolute dry weight).

Figure 0004930650
エタノール生産量の結果を表4に示す。培養液中に塩化ナトリウムを添加した場合(実施例5)では、塩化ナトリウムを添加しない場合(実施例1)と比較しエタノール生産量が向上した。
Figure 0004930650
The results of ethanol production are shown in Table 4. In the case where sodium chloride was added to the culture solution (Example 5), the ethanol production was improved as compared to the case where sodium chloride was not added (Example 1).

図5に示す製造フローでエタノールの製造を実施した。
[前処理]
実施例1と同様の方法で実施した。
[一次併行糖化発酵]
培養液中に電解質として塩化ナトリウムを添加する以外は実施例1と同様の方法で実施した。実施例1と同様の方法で調整した培養液に塩化ナトリウム(電解質)の最終濃度が、100mMとなるように添加した(原料懸濁液の電気伝導度:12.2mS/cm)。次に、実施例1と同様の方法で酵母菌体及び市販セルラーゼを発酵槽に添加し、一次併行糖化発酵を行った。
[固液分離]
実施例1と同様の方法で実施した。回収した一次残渣は14.8kg(絶乾重量)であった。
[篩い処理]
実施例1と同様の方法で実施した。回収した微細繊維は合計で13.0kg(絶乾重量)であった。回収した微細繊維は全量(13.0kg)、一次併行糖化発酵槽へ返送した。
[二次併行糖化発酵]
実施例2と同様の方法で実施した。
[エタノール製造]
実施例1と同様の方法で実施した。
[遠心分離]
実施例1と同様の方法で実施した。回収した二次残渣は、14.2kg(絶乾重量)であった。
Ethanol was produced according to the production flow shown in FIG.
[Preprocessing]
The same method as in Example 1 was performed.
[Primary parallel saccharification and fermentation]
It implemented by the method similar to Example 1 except adding sodium chloride as electrolyte in a culture solution. To the culture solution prepared in the same manner as in Example 1, sodium chloride (electrolyte) was added so that the final concentration was 100 mM (electrical conductivity of the raw material suspension: 12.2 mS / cm). Next, yeast cells and commercially available cellulase were added to the fermentor in the same manner as in Example 1 to perform primary saccharification and fermentation.
[Solid-liquid separation]
The same method as in Example 1 was performed. The recovered primary residue was 14.8 kg (absolute dry weight).
[Sieving process]
The same method as in Example 1 was performed. The collected fine fibers totaled 13.0 kg (absolute dry weight). The total amount (13.0 kg) of the collected fine fibers was returned to the primary saccharification and fermentation tank.
[Secondary parallel saccharification and fermentation]
The same method as in Example 2 was used.
[Ethanol production]
The same method as in Example 1 was performed.
[Centrifuge]
The same method as in Example 1 was performed. The recovered secondary residue was 14.2 kg (absolute dry weight).

Figure 0004930650
エタノール生産量の結果を表5に示す。培養液中に塩化ナトリウムを添加した場合(実施例6)では、塩化ナトリウムを添加しない場合(実施例2)と比較しエタノール生産量が向上した。
Figure 0004930650
The results of ethanol production are shown in Table 5. When sodium chloride was added to the culture solution (Example 6), the amount of ethanol produced was improved compared to the case where sodium chloride was not added (Example 2).

図1に示す製造フローでエタノールの製造を実施した。
[前処理]
チップ状のユーカリ・グロブラスの樹皮を20mmの丸孔スクリーンを取り付けた一軸破砕機(西邦機工社製、SC−15)で破砕し原料として用いた。
上記原料100kg(絶乾重量)に対して97.0%亜硫酸ナトリウム20g及び水酸化ナトリウム1gを含む水700mlを添加後、170℃で1時間加熱した。加熱処理後の原料をレファイナー(熊谷理器工業製、KRK高濃度ディスクレファイナー:クリアランス0.5mm)で磨砕した。磨砕処理後の原料に同量の純水を添加後、撹拌下で硫酸を用いてpH5に調整した。次に20メッシュ(847μm)のスクリーンを用いて固液分離(脱水)することにより溶液の電気伝導度が30μS/cmになるまで水で洗浄した。固液分離後の固形物(前処理物)を原料として糖化発酵工程に供した。
[一次併行糖化発酵]
実施例1と同様の方法で実施した。
[固液分離]
実施例1と同様の方法で実施した。回収した一次残渣は14.7kg(絶乾重量)であった。
[篩い処理]
実施例1と同様の方法で実施した。回収した微細繊維は合計で12.9kg(絶乾重量)であった。回収した微細繊維は全量(12.9kg)を一次併行糖化発酵槽へ返送した。
[エタノール製造]
実施例1と同様の方法で実施した。
[遠心分離]
実施例1と同様の方法で実施した。回収した二次残渣は、14.0kg(絶乾重量)であった。
Ethanol was produced according to the production flow shown in FIG.
[Preprocessing]
Chip-shaped eucalyptus globula bark was crushed with a uniaxial crusher (Seiho Kiko Co., Ltd., SC-15) equipped with a 20 mm round hole screen and used as a raw material.
After adding 700 ml of water containing 20 g of 97.0% sodium sulfite and 1 g of sodium hydroxide to 100 kg (absolute dry weight) of the raw material, the mixture was heated at 1700C for 1 hour. The raw material after the heat treatment was ground with a refiner (manufactured by Kumagai Riki Kogyo, KRK high concentration disk refiner: clearance 0.5 mm). After adding the same amount of pure water to the raw material after the grinding treatment, the pH was adjusted to 5 with sulfuric acid under stirring. Next, solid-liquid separation (dehydration) was performed using a 20 mesh (847 μm) screen, and the solution was washed with water until the electric conductivity of the solution reached 30 μS / cm. The solid (separated product) after solid-liquid separation was used as a raw material for the saccharification and fermentation process.
[Primary parallel saccharification and fermentation]
The same method as in Example 1 was performed.
[Solid-liquid separation]
The same method as in Example 1 was performed. The recovered primary residue was 14.7 kg (absolute dry weight).
[Sieving process]
The same method as in Example 1 was performed. The collected fine fibers totaled 12.9 kg (absolute dry weight). The total amount (12.9 kg) of the collected fine fibers was returned to the primary saccharification and fermentation tank.
[Ethanol production]
The same method as in Example 1 was performed.
[Centrifuge]
The same method as in Example 1 was performed. The recovered secondary residue was 14.0 kg (absolute dry weight).

Figure 0004930650
エタノール生産量の結果を表6に示す。実施例7(微細繊維を回収し一次併行糖化発酵槽に返送した場合)では、比較例1(微細繊維を回収しない場合)と比較しエタノール生産量が向上した。以上の結果から、原料を亜硫酸ナトリウム及び水酸化ナトリウムを含む溶液で処理した場合においても篩い処理により微細繊維を回収し一次併行糖化発酵槽に返送することによりエタノール生産量が向上することが判明した。
Figure 0004930650
The results of ethanol production are shown in Table 6. In Example 7 (when fine fibers were collected and returned to the primary parallel saccharification and fermentation tank), ethanol production was improved as compared with Comparative Example 1 (when fine fibers were not collected). From the above results, it was found that even when the raw material was treated with a solution containing sodium sulfite and sodium hydroxide, ethanol production was improved by collecting fine fibers by sieving and returning them to the primary saccharification and fermentation tank. .

本発明により、糖化発酵後の培養液に含まれる微細繊維を糖化発酵の原料として再利用することによりエタノール生産量を向上することが可能となる。また、電解質を培養液中に添加することによりエタノール生産量の向上が可能となる。 According to the present invention, it is possible to improve ethanol production by reusing fine fibers contained in a culture solution after saccharification and fermentation as raw materials for saccharification and fermentation. Moreover, ethanol production can be improved by adding an electrolyte to the culture solution.

Claims (5)

リグノセルロース原料に酵素糖化反応に適した原料とする処理を施す前処理工程、前処理が施されたリグノセルロース原料を酵素で糖化する酵素糖化及び酵素糖化処理によって生成する糖類を基質とする発酵処理を併行して行う一次併行糖化発酵工程、該一次併行糖化発酵工程から出る処理懸濁液をスクリーンサイズが1.0 〜 2.0mmのスクリュープレスで残渣と液体留分に分離する固液分離工程、該固液分離工程で分離された液体留分を80〜600メッシュの篩い処理で微細繊維と液体留分に分離する篩い処理工程、篩い処理後の微細繊維を除いた液体留分を減圧蒸留して発酵生成物を分離回収する蒸留工程、を有するリグノセルロース系原料からのエタノール製造方法において、分離した微細繊維を糖化または併行糖化発酵することを特徴とするリグノセルロース系原料からのエタノール製造方法。 Pretreatment process for treating lignocellulose raw material as a raw material suitable for enzymatic saccharification reaction, enzymatic saccharification of pretreated lignocellulose raw material with enzyme and fermentation treatment using saccharide produced by enzymatic saccharification treatment as substrate Primary saccharification and fermentation step performed in parallel, solid-liquid separation step of separating the treated suspension from the primary saccharification and fermentation step into a residue and a liquid fraction with a screw press having a screen size of 1.0 to 2.0 mm , A sieving process for separating the liquid fraction separated in the solid-liquid separation process into a fine fiber and a liquid fraction by a sieving process of 80 to 600 mesh, a liquid fraction excluding the fine fiber after the sieving process is distilled under reduced pressure In the method for producing ethanol from a lignocellulosic raw material having a distillation step for separating and recovering the fermentation product, the separated fine fiber is saccharified or concurrently saccharified and fermented Ethanol production process from lignocellulosic feedstock characterized and. 前記分離した微細繊維を一次併行糖化発酵工程へ移送し併行糖化発酵することを特徴とする請求項1に記載のリグノセルロース系原料からのエタノール製造方法。 The method for producing ethanol from a lignocellulosic material according to claim 1, wherein the separated fine fibers are transferred to a primary saccharification and fermentation step and subjected to saccharification and fermentation. 前記分離した微細繊維を二次併行糖化発酵工程へ移送し併行糖化発酵することを特徴とする請求項1に記載のリグノセルロース系原料からのエタノール製造方法。 The method for producing ethanol from a lignocellulosic raw material according to claim 1, wherein the separated fine fibers are transferred to a secondary saccharification and fermentation process and subjected to saccharification and fermentation. 前記リグノセルロース原料の前処理が、リグノセルロース系原料を水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム及び炭酸水素ナトリウムから選ばれる1種以上のアルカリ薬品、又は、亜硫酸ナトリウムと前記アルカリ薬品の中から選ばれる1種以上のアルカリ薬品を含有する溶液に浸漬する化学的処理を含む前処理であることを特徴とする請求項1〜3のいずれか1項に記載のリグノセルロース系原料からのエタノール製造方法。 The pretreatment of the lignocellulose raw material is one or more alkaline chemicals selected from sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate and sodium hydrogencarbonate, or sodium sulfite and the alkaline chemical. From the lignocellulosic raw material according to any one of claims 1 to 3, wherein the raw material is a pretreatment including a chemical treatment immersed in a solution containing at least one alkaline chemical selected from Ethanol production method. 前記一次併行糖化発酵工程において、水溶性塩類よりなる電解質を原料懸濁液に添加し、原料懸濁液の電気伝導度を5〜25mS/cmにして糖化または併行糖化発酵を行うことを特徴とする請求項1〜4のいずれか1項に記載のリグノセルロース系原料からのエタノール製造方法。   In the primary saccharification and fermentation step, an electrolyte composed of a water-soluble salt is added to the raw material suspension, and saccharification or parallel saccharification and fermentation is performed with the electric conductivity of the raw material suspension being 5 to 25 mS / cm. The ethanol manufacturing method from the lignocellulose raw material of any one of Claims 1-4 to do.
JP2011203175A 2010-11-15 2011-09-16 Method for producing ethanol from lignocellulose-containing biomass Active JP4930650B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203175A JP4930650B1 (en) 2010-11-15 2011-09-16 Method for producing ethanol from lignocellulose-containing biomass

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010254441 2010-11-15
JP2010254441 2010-11-15
JP2011107820 2011-05-13
JP2011107820 2011-05-13
JP2011203175A JP4930650B1 (en) 2010-11-15 2011-09-16 Method for producing ethanol from lignocellulose-containing biomass

Publications (2)

Publication Number Publication Date
JP4930650B1 true JP4930650B1 (en) 2012-05-16
JP2012254072A JP2012254072A (en) 2012-12-27

Family

ID=46395248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203175A Active JP4930650B1 (en) 2010-11-15 2011-09-16 Method for producing ethanol from lignocellulose-containing biomass

Country Status (1)

Country Link
JP (1) JP4930650B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685959B2 (en) * 2011-01-26 2015-03-18 王子ホールディングス株式会社 Method for producing valuable material from lignocellulose-containing biomass
JP6528928B2 (en) * 2014-07-18 2019-06-12 王子ホールディングス株式会社 Method for producing ethanol from lignocellulosic material
JP6492724B2 (en) * 2015-02-10 2019-04-03 王子ホールディングス株式会社 Method for crushing lignocellulose-containing biomass
JP6554816B2 (en) * 2015-02-25 2019-08-07 王子ホールディングス株式会社 Lignin composition and use thereof
JP2021036840A (en) * 2019-09-05 2021-03-11 Eneos株式会社 Method for producing ethanol
JP2023082414A (en) * 2021-12-02 2023-06-14 株式会社 商船三井 On-water floating type facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168335A (en) * 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology System for producing ethanol from various lignocellulose resources
JP2008054676A (en) * 2006-08-04 2008-03-13 National Institute Of Advanced Industrial & Technology Method for producing ethanol from biomass
JP2009124973A (en) * 2007-11-21 2009-06-11 National Institute Of Advanced Industrial & Technology Method for producing ethanol raw material and ethanol from lignocellulosic biomass
JP4447148B2 (en) * 2000-11-27 2010-04-07 月島機械株式会社 Cellulosic waste treatment method
JP2010098951A (en) * 2008-10-21 2010-05-06 Hitachi Zosen Corp Method for simply collecting and reusing cellulose-saccharifying amylase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447148B2 (en) * 2000-11-27 2010-04-07 月島機械株式会社 Cellulosic waste treatment method
JP2005168335A (en) * 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology System for producing ethanol from various lignocellulose resources
JP2008054676A (en) * 2006-08-04 2008-03-13 National Institute Of Advanced Industrial & Technology Method for producing ethanol from biomass
JP2009124973A (en) * 2007-11-21 2009-06-11 National Institute Of Advanced Industrial & Technology Method for producing ethanol raw material and ethanol from lignocellulosic biomass
JP2010098951A (en) * 2008-10-21 2010-05-06 Hitachi Zosen Corp Method for simply collecting and reusing cellulose-saccharifying amylase

Also Published As

Publication number Publication date
JP2012254072A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US8728770B2 (en) Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
JP5353554B2 (en) Ethanol production method from woody biomass
JP5685959B2 (en) Method for producing valuable material from lignocellulose-containing biomass
JP4930650B1 (en) Method for producing ethanol from lignocellulose-containing biomass
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP4947223B1 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP2011047083A (en) Method for producing bast fiber and bast fiber
JP6213612B2 (en) Method for producing ethanol from lignocellulosic material
JP2014018178A (en) Method of manufacturing ethanol from lignocellulose-containing biomass
JP6256967B2 (en) Pretreatment method for lignocellulose-containing biomass
JP5862376B2 (en) A method for producing ethanol from lignocellulosic materials.
JP2014090707A (en) Method for enzymatic saccharification of biomass containing lignocellulose and method of producing ethanol with biomass containing lignocellulose
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP6123504B2 (en) Ethanol production method
JP5924192B2 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP2014039492A (en) Method of producing ethanol from lignocellulose-containing biomass
JP2014132052A (en) Fuel composition
JP2015012857A (en) Ethanol manufacturing method from biomass raw material
JP2015027285A (en) Production method of ethanol from biomass feedstock
JP5637254B2 (en) A method for producing ethanol from woody biomass.
JP2013183690A (en) Method of pretreating biomass containing lignocellulose
JP2015167487A (en) Producing method of ethanol from lignocellulose containing lignocellulose
JP2013247924A (en) Method for preprocessing biomass containing lignocellulose
JP2016146760A (en) Crushing method of lignocellulose-containing biomass
JP2013188202A (en) Method for producing ethanol from lignocellulose-containing biomass

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4930650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250