JP2010098951A - Method for simply collecting and reusing cellulose-saccharifying amylase - Google Patents

Method for simply collecting and reusing cellulose-saccharifying amylase Download PDF

Info

Publication number
JP2010098951A
JP2010098951A JP2008270651A JP2008270651A JP2010098951A JP 2010098951 A JP2010098951 A JP 2010098951A JP 2008270651 A JP2008270651 A JP 2008270651A JP 2008270651 A JP2008270651 A JP 2008270651A JP 2010098951 A JP2010098951 A JP 2010098951A
Authority
JP
Japan
Prior art keywords
lignocellulose
enzyme
saccharification
batch
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008270651A
Other languages
Japanese (ja)
Inventor
Yutaka Sera
豊 世良
Noriko Kira
典子 吉良
Shigeo Tomiyama
茂男 冨山
Kenichi Nakamori
研一 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2008270651A priority Critical patent/JP2010098951A/en
Publication of JP2010098951A publication Critical patent/JP2010098951A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To collect and reuse an amylase by a simple method. <P>SOLUTION: The batch or semibatch-type method of saccharification of a lignocellulose for obtaining glucose of a hexose or a pentose by adding a cellulose-saccharifying amylase to a lignocellulose raw material subjected to a pretreatment so that the amylase may act thereon includes reusing an unhydrolyzed lignocellulose residue having the added amylase attached thereto for the enzymatic saccharification of the next time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リグノセルロース系バイオマスを酵素で糖化し、エタノールや生分解性プラスチックの原料となる乳酸の発酵原料となるグルコース等を製造する技術に関する。特に、本発明は、リグノセルロース材料を基質とし、簡易的な方法で一度利用した糖化酵素を回収・再利用できる工業的方法に関する。   The present invention relates to a technique for saccharifying lignocellulosic biomass with an enzyme to produce glucose or the like, which is a raw material for fermentation of lactic acid, which is a raw material for ethanol and biodegradable plastics. In particular, the present invention relates to an industrial method in which lignocellulosic material is used as a substrate and saccharification enzyme once used can be recovered and reused by a simple method.

セルロースを構成糖であるグルコースに加水分解する方法は大きく分けて2つの方法がある。一つは硫酸等の鉱酸を用いる酸糖化法であり、もう一つは酵素やその酵素を生産する微生物を用いる酵素糖化法である。前者は技術的に完成されてはいるが、過分解物等が生成する問題のほかに、硫酸の中和や回収にも課題が残る。後者については、近年、米国を主導とした開発が加速して酵素価格が下がる動向ではあるが、実用化には更なる酵素価格の低減が不可欠である。   There are roughly two methods for hydrolyzing cellulose into glucose, which is a constituent sugar. One is an acid saccharification method using a mineral acid such as sulfuric acid, and the other is an enzyme saccharification method using an enzyme and a microorganism that produces the enzyme. Although the former has been technically completed, there are still problems in neutralization and recovery of sulfuric acid in addition to the problem of overdecomposition. Regarding the latter, in recent years, the development led by the United States has accelerated and the enzyme price has fallen, but further reduction of the enzyme price is indispensable for practical use.

その対策として、酵素添加量を低減させる方法、あるいは一度使用した酵素を回収して再利用する方法が提唱されている。   As a countermeasure, a method of reducing the amount of enzyme added or a method of collecting and reusing an enzyme once used has been proposed.

例えば、Woodらはmixed waste office paperに酵素製剤を添加して併行糖化発酵を行う際に、240分に15分の割合で超音波を照射することで酵素の使用量を半減することが出来たと報告している。また、超音波によって繊維が弛緩されるのみならず、酵素がセルロース繊維に吸着されたのを剥離させ、再び新しいドメインに転移、作用させる効果があるためであると考察している(非特許文献1、2)。   For example, Wood et al. Was able to halve the amount of enzyme used by irradiating ultrasonic waves at a rate of 15 minutes every 240 minutes when an enzyme preparation was added to mixed waste office paper to perform parallel saccharification and fermentation. Reporting. In addition, it is considered that not only the fibers are relaxed by ultrasonic waves, but also that the enzyme is adsorbed on the cellulose fibers and peels off, and is transferred to a new domain and acts again (non-patent document). 1, 2).

また、非特許文献3には、蒸煮・爆砕処理したシラカンバ材を5%の濃度で糖化槽に加え、2万単位のセルラーゼを添加して、限外ろ過により糖液と酵素液とを分離し、酵素を回収再利用しながら、8日間で2kgのシラカンバ材から単糖類を630g得ている。この方法で酵素の使用量を20%節約できたと報告している。ただし、20%の節約では実用化には至らず。   In Non-Patent Document 3, steamed and crushed birch wood is added to a saccharification tank at a concentration of 5%, 20,000 units of cellulase is added, and the sugar solution and the enzyme solution are separated by ultrafiltration. While collecting and reusing the enzyme, 630 g of monosaccharide was obtained from 2 kg of birch wood in 8 days. It has been reported that this method saved 20% of the amount of enzyme used. However, a 20% saving does not lead to practical use.

さらに、非特許文献4には、アルカリ前処理したバガスをセルラーゼで糖化した低濃度糖液から、分画分子量10,000から20,000の限外ろ過膜を用いて酵素90%を回収。酵素の添加率は反応液1mL当たり30〜200単位で、基質1gに対する添加率はCMCaseで1,000〜2,800単位。ろ紙分解活性では45〜128単位(CMCaseが720単位のとき、ろ紙分解活性が33単位として計算)と考えられるが、この条件で糖化率は80%であった。一方、高濃度糖液の場合は糖化残渣が多くなり、この残渣にセルラーゼが吸着されて酵素回収量は75〜80%となったと報告されている。以上のような観点から、糖化装置の設計においても酵素を限外ろ過膜で回収・再利用する方法が検討されている(特許文献1〜3)。   Furthermore, in Non-Patent Document 4, 90% of the enzyme is recovered from a low-concentration sugar solution obtained by saccharifying bagasse pretreated with alkali with cellulase using an ultrafiltration membrane having a fractional molecular weight of 10,000 to 20,000. The addition rate of the enzyme is 30 to 200 units per mL of the reaction solution, and the addition rate for 1 g of the substrate is 1,000 to 2,800 units in CMCase. The filter paper decomposition activity is considered to be 45 to 128 units (calculated when the CMCase is 720 units and the filter paper decomposition activity is 33 units). Under these conditions, the saccharification rate was 80%. On the other hand, in the case of a high-concentration sugar solution, it is reported that the amount of saccharification residue increases and cellulase is adsorbed to this residue, resulting in an enzyme recovery amount of 75-80%. From the above viewpoints, methods for recovering and reusing enzymes with ultrafiltration membranes have also been studied in designing saccharification apparatuses (Patent Documents 1 to 3).

特許文献4では、7L 容量のスラリー中、コピー用紙が1.25%(w/w,絶乾)となるように懸濁し、攪拌速度180rpmで攪拌し、この基質を糖化反応槽へ連続的に送り出す。   In Patent Document 4, the copy paper is suspended in 7 L volume of slurry so that the copy paper is 1.25% (w / w, absolutely dry), stirred at a stirring speed of 180 rpm, and this substrate is continuously fed to the saccharification reaction tank. Send it out.

糖化反応槽の液量は3kg、コピー用紙濃度は0.25%(w/w,絶乾)とし、酵素添加量はコピー用紙1gあたり260単位で滞留時間は12時間、50℃、250−300rpmの条件で運転。反応液は反応液貯留槽に送られ、限外ろ過装置で回収された酵素は糖化反応槽に戻される。1,000時間に及ぶ連続運転に際し、糖化率は98%以上を保っていた。投入する基質に対する残渣の蓄積量を5%以下に保つことで新たな酵素を追加せずに繰り返し、回収・再利用することが可能と報告されている。
ウッド・ビー・イー(Wood,B.E.)、アルドリッチ・エイチ・シー(Aldrich,H.C.)、イングラム・エル・オー(Ingram,L.O.)著、「Biotechnol.Prog.」,1997年、第13巻、p.232−237 トム・ピー(Tomme,P.)、ウォーレン・エイ・ジェイ(Warren,A.J.)、ミラー・ティー・シー・ジェイ(Miller,T.C.J.)、キルバーン・ディー・ジー(Kilburn,D.G.)、ギルケス・エム・アール(Gilkes,M.R.)著、「Enzymatic Degradation of Insoluble Carbohydrates」J.N.Saddler版)、ACS Symposium Ser、ACS,サン・ディエゴ、CA、1995年、第618巻,p.145−163, イシハラ・エム(Ishihara,M.)ら著、「Biotechnol.Bioeng.」,1991年、第37巻,p.948−954 安戸 饒著、木材学会誌,1989年、第35巻、第12号,p.1067−1072 特開昭61−260875号公報 特開昭61−234790号公報 特開昭63−87994号公報 特開2006−87319号公報
The liquid amount in the saccharification reaction tank is 3 kg, the copy paper concentration is 0.25% (w / w, absolutely dry), the enzyme addition amount is 260 units per gram of copy paper, the residence time is 12 hours, 50 ° C., 250-300 rpm. Driving under conditions. The reaction solution is sent to the reaction solution storage tank, and the enzyme recovered by the ultrafiltration device is returned to the saccharification reaction tank. During the continuous operation for 1,000 hours, the saccharification rate was maintained at 98% or more. It has been reported that it is possible to repeatedly collect and reuse without adding a new enzyme by keeping the accumulated amount of residue with respect to the substrate to be added at 5% or less.
“Wood, BE”, Aldrich, HC, Ingram, LO, “Biotechnol. Prog.”, 1997, Vol. 13, p. 232-237 Tom P, Warren, AJ, Miller, TCJ, Kilburn, DG, Gilkes M.R. (Gilkes, MR), “Enzymatic Degradation of Insoluble Carbohydrates”, JNSaddler Edition), ACS Symposium Ser, ACS, San Diego, CA, 1995, 618, p. 145-163 Ishihara, M. et al., “Biotechnol. Bioeng.”, 1991, vol. 37, p. 948-954 Yasuto Akira, Journal of the Wood Society, 1989, Vol. 35, No. 12, p. 1067-1072 Japanese Patent Laid-Open No. 61-260875 JP 61-234790 A JP-A-63-87994 JP 2006-87319 A

超音波を照射して基質から酵素を剥離させ、再び新しい反応ドメインに転移、作用させる、あるいは限外ろ過膜による酵素の回収・再利用を工業規模で実施するには、前者には多大なイニシャルコスト、後者には膜再生等のメンテナンス作業の発生が予想される。事業化を進めるうえでは、更に簡易的な方法による酵素の回収・再利用が望ましい。   In order to remove the enzyme from the substrate by irradiating ultrasonic waves, transfer it to a new reaction domain and act again, or to collect and reuse the enzyme by ultrafiltration membrane on an industrial scale, the former has a great deal of initials. In the latter case, maintenance work such as membrane regeneration is expected. In proceeding with commercialization, it is desirable to collect and reuse enzymes by a simpler method.

上記課題を解決するため、本発明のリグノセルロースのバッチ式またはセミバッチ式の糖化方法は、酵素が作用するように前処理が施されたリグノセルロース原料に、セルロース加水分解酵素を添加してC6糖であるグルコースやC5糖を得るリグノセルロースのバッチ式またはセミバッチ式の糖化方法であり、加水分解されず、かつ添加した酵素が付着しているリグノセルロース残渣を次回分の酵素糖化に再利用することを特徴とするものである。   In order to solve the above-mentioned problems, the lignocellulose batch or semi-batch saccharification method of the present invention adds a cellulose hydrolyzing enzyme to a lignocellulose raw material that has been pretreated so that the enzyme acts, thereby producing a C6 sugar. This is a batch or semi-batch saccharification method of lignocellulose to obtain glucose or C5 sugar, and the lignocellulose residue that is not hydrolyzed and to which the added enzyme is attached is reused for the next enzymatic saccharification. It is characterized by.

本発明において用いられるリグノセルロース原料とは、例えば針葉樹、広葉樹等の木材(間伐材、製材時の端材・おが屑、あるいはコンクリート型枠や解体家屋由来の建築廃材)、ヤシ類を中心とした南洋材(幹および実の外殻)、稲藁、麦藁、バガス、コーンストーバーなどの農業残渣、そして大型藻類や微細藻類等の植物組織を指す。   The lignocellulose raw material used in the present invention is, for example, timber such as softwood, hardwood, etc. (thinned wood, sawdust at sawing, building waste from concrete formwork or demolished house), southern ocean centering on palm Agricultural residues such as timber (trunk and fruit shells), rice straw, wheat straw, bagasse, corn stover, and plant tissues such as macroalgae and microalgae.

そして、「酵素が作用するように前処理が施された」とは、植物組織の強度を司り、セルロースおよびヘミセルロースを包埋するように存在するリグニン(リグノセルロースの20〜30%を占める)をアルカリや酸を加えた条件下で蒸煮、或いはそれらを加えない蒸煮や水蒸気爆砕等によって除去するとともに、強固なセルロースの結晶構造の弛緩も図ることを指す。また、このような前処理が既に施された原料として、前述した針葉樹や広葉樹由来の紙が挙げられる。   And “pretreated so that the enzyme acts” means the strength of the plant tissue, and lignin (occupies 20 to 30% of lignocellulose) existing so as to embed cellulose and hemicellulose. It means removing by steaming or steam explosion without adding them under conditions where alkali or acid is added, and also relaxing the crystal structure of strong cellulose. In addition, examples of the raw material that has been subjected to such pretreatment include the above-mentioned papers derived from conifers and hardwoods.

紙は、木材から、機械的あるいは化学的に繊維を取り出し、これを剥いて薄いシートにしたものである。特に化学パルプは、セルロース繊維を包埋するリグニンがほぼ取り除かれており、酵素糖化に好適なリグノセルロース原料と見なすことができる。また、紙(繊維)は容易に細断でき、これを絶乾重量で10%の懸濁液(スラリー)に調製したものが流動限界であり、これは他のリグノセルロース原料のそれよりも高濃度である。例えば硬い木材は微粉化に多大なコストを要するだけでなく、微粉化しても紙ほど高濃度スラリー化はできない。このため、連続、バッチ式酵素糖化法に関係なく、濃い糖化液が得られないという欠点があるが、この欠点をある程度補える紙は、好適な原料である。   Paper is obtained by mechanically or chemically removing fibers from wood and peeling them into thin sheets. In particular, chemical pulp is substantially free of lignin embedding cellulose fibers, and can be regarded as a lignocellulose raw material suitable for enzymatic saccharification. Also, paper (fiber) can be easily shredded, and it is the flow limit that is prepared in a 10% suspension (slurry) with an absolute dry weight, which is higher than that of other lignocellulose raw materials. Concentration. For example, hard wood not only requires a great deal of cost for pulverization but also cannot be made into a slurry with a higher concentration than paper even if pulverized. For this reason, there is a disadvantage that a thick saccharified solution cannot be obtained regardless of the continuous or batch type enzymatic saccharification method, but paper that can compensate for this disadvantage to some extent is a suitable raw material.

なお、機械パルプは古紙としての回収ルートが確立され、高い回収率で有効に再利用されているが、化学パルプは印刷用紙、コピー用紙などの事務用紙、包装用紙などに使用され、オフィス系紙ごみとして廃棄されることが多い。古紙リサイクルに含まれない紙資源として、都市ごみ焼却施設に持ち込まれ焼却処分される紙ごみ(主にオフィス系)の割合は都市部において約40%を占める。また、収集システムを新たに構築・整備する必要がないうえ、安定供給も期待できる。なお、コピー用紙などの上中質紙には白さと表面の滑らかさを出すため、化学パルプ以外に填料として炭酸カルシウムが数%含有されているが(ぷりんとぴあ、http://www.jfpi.or.jp/printpia/kami/story08.htm)、強酸性(pH4.8)付近では溶解性が増す。酵素糖化時のpHは更に低いため、ほぼ溶解して糖化液中に遊離していると思われる。   Although mechanical pulp has been established as a waste paper recovery route and is effectively reused at a high recovery rate, chemical pulp is used for office paper such as printing paper and copy paper, packaging paper, and office paper. Often discarded as garbage. As a paper resource that is not included in waste paper recycling, the percentage of paper waste (mainly offices) that is brought into municipal waste incineration facilities and incinerated is about 40% in urban areas. In addition, there is no need to build and maintain a new collection system, and a stable supply can be expected. In addition, high-quality paper such as copy paper contains white calcium carbonate as a filler in addition to chemical pulp in order to give whiteness and surface smoothness (Printopia, http: //www.jfpi.or .jp / printpia / kami / story08.htm), the solubility increases in the vicinity of strong acidity (pH 4.8). Since the pH at the time of enzymatic saccharification is lower, it is considered that it is almost dissolved and released into the saccharified solution.

好ましくは、酵素が作用するよう前処理を施したリグノセルロースを2〜10%[dry wt/wt]のスラリーに調整し、該スラリーにリグノセルロース1%絶乾重量当たり200〜1000単位の糖化酵素を添加し、24〜72時間糖化処理する。   Preferably, lignocellulose pretreated so that the enzyme acts is adjusted to a slurry of 2 to 10% [dry wt / wt], and 200 to 1000 units of saccharifying enzyme per 1% of dry weight of lignocellulose is added to the slurry. And saccharify for 24-72 hours.

好ましくは、リグノセルロース糖化液に対して、減圧留去または炭素数2〜4個のアルコール(例えば、エタノール、ブタノール等)を添加した共沸を行うことによって、リグノセルロース糖化液をエタノール発酵に適した10〜15%の濃度に濃縮する。   Preferably, lignocellulose saccharified solution is suitable for ethanol fermentation by performing vacuum distillation or azeotropic addition of alcohol having 2 to 4 carbon atoms (for example, ethanol, butanol, etc.) to lignocellulose saccharified solution. Concentrate to a concentration of 10-15%.

好ましくは、前記リグノセルロース糖化液に対して、限外ろ過膜を用いて濃縮する。   Preferably, the lignocellulose saccharified solution is concentrated using an ultrafiltration membrane.

好ましくは、リグノセルロース糖化液を静置することで沈殿するリグノセルロース残渣を回収し、回収した全量または一部を次回分のリグノセルロースの酵素糖化に再利用酵素として添加する。   Preferably, the lignocellulose saccharified solution is recovered by allowing the lignocellulose saccharified solution to stand, and the whole or a part of the recovered lignocellulose residue is added as a reusable enzyme to the next enzymatic saccharification of lignocellulose.

好ましくは、前記リグノセルロース残渣の次回の処理への再利用を複数回にわたって繰り返して行う。   Preferably, reuse of the lignocellulose residue for the next treatment is repeated a plurality of times.

一回分の糖化処理では可溶化されずに酵素が付着したまま残渣となったリグノセルロースが次回分の糖化処理において可溶化、構成糖まで変換され、未反応残渣量を低減できる。   Lignocellulose that is not solubilized in one saccharification treatment and remains as a residue with the enzyme attached is converted to solubilized and constituent sugars in the next saccharification treatment, and the amount of unreacted residue can be reduced.

好ましくは、前記リグノセルロース原料は、従来の古紙回収システムには含まれず、都市ごみ焼却場で焼却処分されていた紙ごみに由来するもの、より好ましくは、オフィス系紙ごみに由来するものである。   Preferably, the lignocellulose raw material is not included in a conventional waste paper collection system, but is derived from paper waste that has been incinerated at a municipal waste incineration plant, more preferably from office paper waste. .

本発明によると、残渣に付着した酵素をpH調整や超音波等を駆使して剥離させることなく、残渣ごと再利用することができ、簡易に糖化処理を行うことができる。   According to the present invention, the enzyme adhering to the residue can be reused together with the residue without being peeled off by using pH adjustment or ultrasonic waves, and saccharification treatment can be easily performed.

一方、酵素の回収・再利用を前提とした連続式酵素糖化法に関する前述の特許文献4を例に挙げると、以下の問題点がある。例えば、化学パルプ由来のコピー用紙中のセルロース含量は原料(樹種)、製法、ロット等の違いによって一定ではないが、概ね50〜60%の範囲と考えられる。セルロース比を50%と仮定すると、特許文献4に記載の0.25%濃度の紙スラリーから得られるグルコース溶液濃度は、糖化率100%とした理論値でも0.25×0.5×1.111=0.138(%)程度であり、この極めて希薄な糖液をそのままエタノール発酵に適用するのは効率的ではない。少なくとも10〜15%グルコース溶液まで限外ろ過膜等で濃縮してからの適用が望ましい。実用化を考慮すると、リグノセルロースを酵素処理して得られる糖化液中のグルコース濃度はできる限り高い方が望ましく、仮に10〜15%濃度に至らずとも、0.138%ではなく5%グルコース溶液を濃縮する方が低コストなのは明らかである。また、同特許では、12時間程度で98%以上の糖化率を示すよう、コピー用紙重量あたり大量の酵素が反応系内に添加されているが、工業規模での連続処理においてトラブル(制御系故障による酵素の失活、破損による反応液流失など)が発生した場合の酵素費用損失リスクは極めて大きいと考えられる。   On the other hand, taking the above-mentioned Patent Document 4 relating to the continuous enzymatic saccharification method on the premise of enzyme recovery / reuse as an example, there are the following problems. For example, the cellulose content in copy paper derived from chemical pulp is not constant depending on differences in raw materials (tree species), production method, lots, etc., but is considered to be generally in the range of 50 to 60%. Assuming that the cellulose ratio is 50%, the glucose solution concentration obtained from the 0.25% concentration paper slurry described in Patent Document 4 is 0.25 × 0.5 × 1. It is about 111 = 0.138 (%), and it is not efficient to apply this extremely diluted sugar solution as it is to ethanol fermentation. Application after concentration to an at least 10-15% glucose solution with an ultrafiltration membrane or the like is desirable. Considering practical application, the glucose concentration in the saccharified solution obtained by enzymatic treatment of lignocellulose is desirably as high as possible. Even if the concentration does not reach 10 to 15%, it is not 0.138% but 5% glucose solution. Obviously, it is cheaper to concentrate. In this patent, a large amount of enzyme is added to the reaction system per copy paper weight so as to show a saccharification rate of 98% or more in about 12 hours. The risk of enzyme cost loss is considered to be extremely high when the enzyme is deactivated due to (eg, deactivation of the enzyme, loss of the reaction liquid due to breakage).

これに対して、本願発明では、リグノセルロース糖化液に対して、減圧留去または炭素数2〜4個のアルコールを添加した共沸を行うことによって、リグノセルロース糖化液をエタノール発酵に適した10〜15%の濃度に濃縮するか、または、限外ろ過膜を用いて濃縮することにより、上記のような問題点は解消される。   In contrast, in the present invention, the lignocellulose saccharified solution is suitable for ethanol fermentation by distilling under reduced pressure or azeotropically adding an alcohol having 2 to 4 carbon atoms. By concentrating to a concentration of ˜15% or by using an ultrafiltration membrane, the above problems are solved.

(濃い糖化液を得る方法)
リグノセルロースを酵素糖化して濃い糖液を得るためには、少なくとも処理懸濁液中のリグノセルロースは、それを達成できる濃度にしておくことが大前提である。前項で述べた通り、紙は10%懸濁液程度が流動限界である。ただし、紙は酵素により可溶化して粘度が低下するため、紙を段階的に投入して10%よりも濃い懸濁液とすることも可能ではある。しかし、その場合、糖化液中に最終産物であるグルコース、あるいはその2量体のセロビオースの絶対量が多くなり、これらによって酵素活性は阻害され、糖化率が低下することが知られている。以上の点を踏まえた検証実験により、現時点では紙10%懸濁液が最も効率的であると判断した。これを上限濃度としたバッチ式酵素糖化処理の具体例を以下に述べる。
(Method of obtaining a thick saccharified solution)
In order to obtain a concentrated sugar solution by enzymatic saccharification of lignocellulose, it is a major premise that at least the lignocellulose in the treated suspension is at a concentration that can achieve this. As stated in the previous section, the paper has a flow limit of about 10% suspension. However, since paper is solubilized by an enzyme and its viscosity decreases, it is also possible to add paper in stages to make a suspension with a concentration higher than 10%. However, in that case, it is known that the absolute amount of glucose or the dimer cellobiose in the saccharified solution increases in the saccharified solution, thereby inhibiting the enzyme activity and decreasing the saccharification rate. Based on the verification experiment based on the above points, it was determined that the 10% paper suspension is the most efficient at the present time. A specific example of batch-type enzymatic saccharification treatment with this as the upper limit concentration will be described below.

まず、5〜10%懸濁液として調製した紙スラリーに糖化酵素(GC220 Genencor製)を添加し、至適温度(50〜65℃)、pH(4.0〜5.5)下で攪拌しながら24〜72時間、糖化処理する。糖化率は紙重量あたりの酵素添加量によって変動するが、充分な酵素添加量の場合、糖化率は90%以上が見込まれる。供試する上質紙のセルロース含有量は55%、糖化率は90%とすると、5および10%紙スラリーから酵素糖化処理で得られるグルコース溶液濃度は以下の通りである。   First, saccharification enzyme (GC220 Genencor) is added to a paper slurry prepared as a 5-10% suspension, and stirred at an optimum temperature (50-65 ° C.) and pH (4.0-5.5). Then, saccharification is performed for 24 to 72 hours. The saccharification rate varies depending on the amount of enzyme added per paper weight, but if the amount of enzyme added is sufficient, the saccharification rate is expected to be 90% or more. Assuming that the cellulose content of the fine paper to be tested is 55% and the saccharification rate is 90%, the glucose solution concentrations obtained by enzymatic saccharification treatment from 5 and 10% paper slurries are as follows.

(1)5%紙スラリー:5×0.55×0.9=2.47(%のグルコース溶液)
(2)10%紙スラリー:10×0.55×0.9=4.95(%のグルコース溶液)
以上の方法により、最高で5%弱のグルコース溶液が得られる。これをエタノール発酵に適した10〜15%まで濃縮する場合、2〜3倍程度の濃縮で良いため、限外ろ過膜を使用せず、減圧留去により水分を除去することも可能であり、再利用可能なエタノールやブタノールを糖化液に混入して共沸させれば、より効率的に濃縮できる。或いは5%濃度のままエタノール発酵に適用することも可能である。特許文献4のように糖化液中のグルコース濃度が0.14%程度では、これらの方法は成立しない。
(1) 5% paper slurry: 5 × 0.55 × 0.9 = 2.47 (% glucose solution)
(2) 10% paper slurry: 10 × 0.55 × 0.9 = 4.95 (% glucose solution)
By the above method, a glucose solution of a little less than 5% can be obtained. When concentrating to 10 to 15% suitable for ethanol fermentation, it is possible to concentrate about 2 to 3 times, so it is possible to remove moisture by distillation under reduced pressure without using an ultrafiltration membrane, If reusable ethanol or butanol is mixed and azeotroped in the saccharified solution, it can be concentrated more efficiently. Or it is also possible to apply to ethanol fermentation with 5% concentration. When the glucose concentration in the saccharified solution is about 0.14% as in Patent Document 4, these methods cannot be established.

(酵素の回収・再利用方法)
上記の方法で得られた紙の糖化液(グルコース溶液)中には未反応残渣も懸濁しており、これは反応槽の攪拌を止めて静置しておくと、2時間程度で沈殿するため、固液分離も容易である。なお、糖化酵素であるセルラーゼは、セロビオハイドラーゼ(CBH)、エンドグルカナーゼ(EG)およびβ−グリコシダーゼ(BGL)の3種類に大きく分類され、その中でもCBHの反応機構に関しては、これまでの酵素にはないprocessivity(反応終了後に残った生成物の一方が遊離しないで次の基質となる)という新しい概念が出されている(森川康著、「セルロース系バイオマスの酵素糖化」、化学工学、71(12)、p.27−30(2007)参照)。また、ほとんどのセルラーゼはセルロース結合領域(Cellulose binding domain:CBD)など、糖質結合モジュール(carbohydrate binding module:CBM)を有したモジュラー酵素である(Cazy(Carbohydrate-active Enzymes),http://www.cazy.org/)。つまり、セルラーゼは基質であるセルロースと結合した状態で機能することから、沈殿した未反応残渣には多くの酵素が結合し残存している。沈殿という簡易的方法で回収した残渣を酵素として次回分糖化処理に再利用することで、酵素の節減が可能となる。
(Enzyme recovery / reuse method)
Unreacted residues are also suspended in the paper saccharified solution (glucose solution) obtained by the above method, which precipitates in about 2 hours if the reaction vessel is stopped and allowed to stand. Solid-liquid separation is also easy. Cellulases, which are saccharifying enzymes, are roughly classified into three types, cellobiohydrase (CBH), endoglucanase (EG), and β-glycosidase (BGL). Among them, the reaction mechanism of CBH is the conventional enzyme. A new concept of processivity (one of the products remaining after the completion of the reaction is not released and becomes the next substrate) has been issued (by Yasushi Morikawa, “Enzymatic saccharification of cellulosic biomass”, Chemical Engineering, 71 (12), p.27-30 (2007)). Most cellulases are modular enzymes having a carbohydrate binding module (CBM) such as a cellulose binding domain (CBD) (Cazy (Carbohydrate-active Enzymes), http: // www .cazy.org /). That is, since cellulase functions in a state where it binds to cellulose as a substrate, a large amount of enzyme remains bound to the precipitated unreacted residue. By reusing the residue collected by a simple method of precipitation as an enzyme for the next saccharification treatment, the enzyme can be saved.

これに対し、pH調整や超音波処理によって残渣から酵素を剥離させ、更には限外ろ過膜を使って回収する工程の付帯には更なるコストおよびメンテナンスの付帯が見込まれる。特許文献4においては、少ない基質に対して充分な酵素を添加することによって、短時間に全基質を可溶化、糖化させることで、反応系内に酵素が付着する残渣が発生しないように留意。そして、糖化反応槽から薄い糖化液を排出し、この中に遊離している酵素を限外ろ過膜で回収・再利用することに主眼が置かれてはいるが、限外ろ過膜に依存したシステムであることに変わりはない。   On the other hand, additional costs and maintenance are anticipated in the incidental process of removing the enzyme from the residue by pH adjustment or ultrasonic treatment, and further using an ultrafiltration membrane. In Patent Document 4, care should be taken not to generate a residue to which the enzyme adheres in the reaction system by adding enough enzyme to a small amount of substrate to solubilize and saccharify all the substrates in a short time. The main focus is on draining a thin saccharified solution from the saccharification reaction tank and recovering and reusing the released enzyme in the ultrafiltration membrane, but it depends on the ultrafiltration membrane. It is still a system.

本発明は、残渣に付着した酵素をpH調整や超音波等を駆使して剥離させることなく、残渣ごと簡易的に再利用するスタンスである。紙は、10%スラリーが流動限界と前述したが、セルラーゼを添加した直後から可溶化が進み、流動性が向上してさらさらとなる。粘度が低くなった前回分の糖化残渣の全量は、同等の糖化力を有す酵素製剤よりも多いが、これを次回分の新しい紙スラリーに添加しても、流動性に大きな問題はない。仮に流動性に若干の問題がある場合も、新しい紙の投入を段階的に実施すれば解決できる。   The present invention is a stance in which an enzyme adhering to a residue can be easily reused together with the residue without causing pH adjustment or ultrasonic waves to be peeled off. As described above, the paper has a flow limit of 10% slurry, but the solubilization proceeds immediately after the addition of cellulase, and the fluidity improves and becomes smoother. Although the total amount of saccharification residue for the previous time when the viscosity has decreased is larger than that of the enzyme preparation having the same saccharification power, there is no significant problem in fluidity even if this is added to the new paper slurry for the next time. If there is a slight problem with fluidity, it can be solved by introducing new paper in stages.

ただし、残渣を除いた糖化液の濃縮に際し、減圧留去法ではなく、限外ろ過膜法を採用する場合は、特許文献1〜4と同じように糖化液中に遊離した酵素の回収・再利用も併せることが望ましく、より酵素の節約が図れる。また、再利用酵素の糖化力が不十分な場合は、新しい酵素を補充する必要があるのは言うまでもない。   However, when concentrating the saccharified solution excluding the residue, when using the ultrafiltration membrane method instead of the vacuum distillation method, the enzyme released in the saccharified solution can be recovered and re-used as in Patent Documents 1 to 4. It is desirable to combine use, and the enzyme can be saved more. Needless to say, if the saccharifying power of the reusable enzyme is insufficient, it is necessary to replenish a new enzyme.

(実施例1:濃い糖化液の製造)
標準紙サンプルとして、市販の化学パルプ由来の上質OA紙(コピー用紙)の同ロットをまとめて購入し、シュレッダーで細断した後、乾燥機中で絶乾させたものを全試験に供試した。これを蒸留水中、2.5〜10%濃度になるよう計量して懸濁させ、100mL容量のスラリーとして酵素糖化試験に適用した。なお、使用した酵素製剤はGenencor社製、Trichoderma reesei由来のGC220(液状)であり、力価はCMC(カルボキシメチルセルロース)糖化活性として6,200単位/g、比重は1.1〜1.2の表示であった。この酵素を紙の総重量あたり、1〜20%(wt/wt)になるように添加し、図1に示す実験系で50℃、pH4.0、200rpmの条件下で32〜72時間処理した。酵素糖化実験時のリグノセルローススラリーは、50mM酢酸緩衝液化することが報告されているが、実用を考慮してより単価の低い硫酸のみでpH調整した(酢酸と硫酸の違いによる糖化率の差は認められなかった)。
(Example 1: Production of concentrated saccharified solution)
As a standard paper sample, the same lot of high-quality OA paper (copy paper) derived from commercially available chemical pulp was purchased together, shredded with a shredder, and then dried in a dryer for all tests. . This was weighed and suspended in distilled water to a concentration of 2.5 to 10%, and applied to the enzymatic saccharification test as a slurry of 100 mL capacity. The enzyme preparation used was GC220 (liquid) derived from Trichoderma reesei, manufactured by Genencor, with a titer of 6,200 units / g as CMC (carboxymethylcellulose) saccharification activity and a specific gravity of 1.1 to 1.2. It was a display. This enzyme was added so as to be 1 to 20% (wt / wt) based on the total weight of the paper, and was treated in the experimental system shown in FIG. 1 for 32 to 72 hours under the conditions of 50 ° C., pH 4.0, and 200 rpm. . Lignocellulose slurry at the time of enzymatic saccharification experiment has been reported to be converted to 50 mM acetic acid buffer solution, but considering practical use, pH was adjusted only with sulfuric acid with a lower unit price (the difference in saccharification rate due to the difference between acetic acid and sulfuric acid is I was not able to admit).

図2の通り、5%紙スラリーによる酵素糖化基礎実験では、希硫酸を加えた上での熱処理には特に前処理としての効果はなく、無処理と同等の糖化率だった。紙の場合、あくまでも糖化率は酵素添加量のみに依存し、前処理効果はないという結果が得られた。そして、酵素GC220の場合は、紙絶乾重量あたり、少なくとも5%[wt/wt]を添加しなければ満足な糖収率は得られないことがわかった。酵素単価の見通し、および採算性の面から、紙絶乾重量あたりの添加量は5%[wt/wt]が上限と概算し、この添加量を大前提として、以降の実験を遂行した。なお、GC220の比重を1.1として上記の添加量5%[wt/wt]を力価に換算すると、紙1gあたりCMC糖化活性として340単位となる。   As shown in FIG. 2, in the basic experiment for enzymatic saccharification using 5% paper slurry, the heat treatment with the addition of dilute sulfuric acid had no particular effect as a pretreatment, and the saccharification rate was the same as that of no treatment. In the case of paper, the result shows that the saccharification rate depends only on the amount of enzyme added and there is no pretreatment effect. In the case of the enzyme GC220, it was found that a satisfactory sugar yield cannot be obtained unless at least 5% [wt / wt] is added per absolute dry weight of paper. From the perspective of the enzyme unit price and the profitability, the upper limit of the amount added per absolute dry weight of paper was estimated to be 5% [wt / wt], and the subsequent experiments were carried out based on this amount added. When the specific gravity of GC220 is 1.1 and the above addition amount of 5% [wt / wt] is converted into a titer, the CMC saccharification activity is 340 units per 1 g of paper.

図3に紙スラリー濃度を、2.5、5、10%とし、紙絶乾重量あたり酵素をそれぞれ5%[wt/wt]添加した場合のグルコース収量の推移を示す。紙の絶対量に比例してグルコース収量は上がるものの、紙濃度を分母としたグルコースへの転換率で示すと順位は逆転し、10%紙スラリーのそれが最も低くなった(図4)。この原因は、10%スラリーは紙の絶対量が多いため、糖化液中にグルコースおよびセロビオースがより多く生成され、酵素活性が阻害されたことによると考えられた。特に図5に示す通り、セロビオースの生成は2.5や5%スラリーのそれらよりも著しく多かった。そこで、GC220を5%[wt/wt]添加した8時間および24時間後に、Aspergillus niger由来のセルラーゼ(ヤクルト薬品工業製:Y−2NC、セルラーゼ65%、デキストリン35%の凍結乾燥粉末でCMC力価表示60,000単位/g)をそれぞれ0.5%[wt/wt]添加する追加試験を実施した。   FIG. 3 shows the transition of glucose yield when the paper slurry concentration is 2.5, 5, and 10%, and 5% [wt / wt] of enzyme is added per absolute dry weight of paper. Although the glucose yield increased in proportion to the absolute amount of paper, the order was reversed when converted to glucose using the paper concentration as the denominator, and the lowest for the 10% paper slurry (FIG. 4). This was considered to be because 10% slurry had a large absolute amount of paper, so that more glucose and cellobiose were produced in the saccharified solution, and the enzyme activity was inhibited. In particular, as shown in FIG. 5, the production of cellobiose was significantly higher than those of 2.5 and 5% slurries. Therefore, 8 and 24 hours after adding GC220 5% [wt / wt], cellulase derived from Aspergillus niger (manufactured by Yakult Pharmaceutical Co., Ltd .: Y-2NC, cellulase 65%, dextrin 35% freeze-dried powder with CMC titer An additional test was performed in which 0.5% [wt / wt] of the indicated 60,000 units / g) was added.

図6に示すように、GC220だけでは32時間時点で2.5%程度だったグルコース濃度は4%まで向上し、72時間目には5%弱に達した。以上の結果より、10%紙スラリーからは、少なくとも72時間処理で5%弱のグルコース溶液が得られることが解かったが、グルコース濃度4%に達する32時間程度で処理を終了することが反応効率上は望ましいと考える。なお、共試した標準紙のセルロース含量は53.6%であり(表1)、これをもとに計算すると以下の通り、糖化率は約90%となる。   As shown in FIG. 6, with GC220 alone, the glucose concentration, which was about 2.5% at 32 hours, improved to 4%, and reached less than 5% at 72 hours. From the above results, it was found that a 10% paper slurry yielded a glucose solution of less than 5% in the treatment for at least 72 hours. However, the reaction could be terminated in about 32 hours when the glucose concentration reached 4%. I think it is desirable for efficiency. The cellulose content of the co-tested standard paper is 53.6% (Table 1), and the saccharification rate is about 90% as calculated below based on this calculation.

Figure 2010098951
Figure 2010098951

8時間後にY−2NCを0.5%[wt/wt]添加:4.8÷(10×0.536)×100=89.5(%)
なお、セロビオースが反応液中に蓄積されると、酵素活性は阻害される。その対策として、セロビオースをグルコースに加水分解するβ−グリコシダーゼが豊富とされるA.niger由来のセルラーゼを併用すると、それが解消され、糖化率が向上するというのは周知の酵素反応である。
After 8 hours, 0.5% [wt / wt] of Y-2NC was added: 4.8 / (10 × 0.536) × 100 = 89.5 (%)
In addition, when cellobiose accumulates in the reaction solution, the enzyme activity is inhibited. As a countermeasure, it is a well-known enzyme reaction that, when used together with cellulase derived from A. niger that is rich in β-glycosidase that hydrolyzes cellobiose to glucose, it is eliminated and the saccharification rate is improved.

(実施例2:残渣の回収・再利用1)
前項で述べた通り、酵素GC220の場合は、紙絶乾重量あたり、少なくとも5%[wt/wt]を添加しなければ満足な糖収率は得られない。力価に換算すると、紙1gあたりCMC糖化活性として340単位が必要だったが、実用を考慮すると、この添加量を上限とし、満足な糖収率を得つつ、更に酵素量を節減することが望ましい。
(Example 2: Recovery and reuse of residue 1)
As described in the previous section, in the case of the enzyme GC220, a satisfactory sugar yield cannot be obtained unless at least 5% [wt / wt] is added per dry weight of paper. In terms of titer, 340 units were required as CMC saccharification activity per gram of paper. However, considering practical use, this addition amount is set as the upper limit, and a sufficient sugar yield can be obtained while further reducing the amount of enzyme. desirable.

この観点に基づいて、5%紙スラリーに紙絶乾重量あたり、5、10、20%[wt/wt]の酵素を添加して48時間処理して得られた残渣を回収し、それぞれを新しい紙スラリーに酵素として添加した場合の糖化率を検証した。図7に48時間の酵素糖化後のそれぞれの残渣量を示す。静置して2時間程度で沈殿し、24時間を経過すると見た目の体積の低下はほぼ止まった。酵素添加量が多いほど見た目の体積は小さく、20%添加で8mL vol、10%添加で12mL vol、そして5%添加で28mL volであった。   Based on this point of view, the residue obtained by adding 5, 10, 20% [wt / wt] enzyme per 5% paper slurry to the absolute dry weight of the paper and treating for 48 hours is collected. The saccharification rate when added as an enzyme to the paper slurry was verified. FIG. 7 shows the amount of each residue after 48 hours of enzymatic saccharification. It settled in about 2 hours after standing, and the decrease in the apparent volume almost stopped after 24 hours. The larger the amount of enzyme added, the smaller the apparent volume was 8 mL vol at 20% addition, 12 mL vol at 10% addition, and 28 mL vol at 5% addition.

図8にこれらの上澄みを静かに除去し、若干の糖化液を含んだ残渣の全量をそれぞれ新しい紙5gに加え、最終的に100mL容量の5%紙スラリーになるようにメスアップ。これらを50℃、pH4.0の条件で32時間処理した結果を示す(コントロールとして同じ5%スラリーに新しい酵素5%[wt/wt]を添加したパターンも並行して実施)。いずれも前回分の糖化液が若干持ち込まれることによって、開始時(0時間目)には0.5%前後のグルコースが検出されるが、32時間後にはグルコース濃度1.2〜1.3%に達した。開始時のグルコース濃度を差し引くと、0.7〜0.8%であり、これは、図2に示した紙重量あたり1%の酵素を添加した場合のそれ(32時間後にグルコース濃度0.5%弱)よりも高い糖化力だった。なお、各糖の収率は図8の通りであるが、目視によるOA紙の可溶化は、上記残渣を加えたいずれの場合も処理化開始から2〜3時間で大幅に進み、スラリーの粘度が低下して攪拌効率が大幅に改善された。特にセロビオースの生成はコントロールのそれと遜色ないことから、CBHやEGは残渣に残っているものが充分、機能していたと推察される。   In FIG. 8, these supernatants are gently removed, and the total amount of the residue containing a slight amount of saccharified solution is added to 5 g of each new paper, and finally made up to a volume of 100% 5% paper slurry. The results of treating these for 32 hours under the conditions of 50 ° C. and pH 4.0 are shown (a pattern in which 5% [wt / wt] of a new enzyme was added to the same 5% slurry as a control was also performed in parallel). In either case, glucose of about 0.5% is detected at the start (0 hour) by bringing in the saccharified solution for the previous time slightly, but after 32 hours, the glucose concentration is 1.2 to 1.3%. Reached. Subtracting the starting glucose concentration is 0.7-0.8%, which is the result of adding 1% enzyme per paper weight as shown in FIG. The saccharification power was higher than The yield of each sugar is as shown in FIG. 8, but visual solubilization of OA paper progressed greatly in 2 to 3 hours from the start of the treatment in any case where the residue was added, and the viscosity of the slurry. And the stirring efficiency was greatly improved. In particular, since the production of cellobiose is not inferior to that of the control, it is surmised that CBH and EG remained sufficiently in the residue.

一方、各種残渣の次回分における糖化力がほぼ同等である点については、酵素添加量の増加(5、10、20%[wt/wt])に反比例して残渣量は低下(28、12、8mL vol)するが、残渣volあたりの酵素絶対量は異なるため、総合的には酵素総量が同じであったことによると推察する。つまり、残渣に吸着されたままの酵素を再利用する観点においては、5%[wt/wt]の酵素添加量が経済的であると考えられる。   On the other hand, regarding the point that the saccharification power of the various residues in the next time is almost the same, the amount of the residue decreases (28, 12, 20%, inversely proportional to the increase of the enzyme addition amount (5, 10, 20% [wt / wt]). 8 mL vol), but because the absolute amount of enzyme per residue vol is different, it is presumed that the total amount of enzyme was the same overall. That is, from the viewpoint of reusing the enzyme that is still adsorbed on the residue, an enzyme addition amount of 5% [wt / wt] is considered economical.

以上の結果から、紙絶乾重量あたり5%[wt/wt]の酵素を添加して発生した1回分の残渣は、少なくとも1%[wt/wt]の新しい酵素と同等以上の糖化力が残っていると考えられた。   Based on the above results, the residue generated by adding 5% [wt / wt] enzyme per absolute dry weight of paper remains at least as high as saccharification power at least 1% [wt / wt] new enzyme. It was thought that

(実施例3:残渣の回収・再利用2)
前項で述べた通り、5%OA紙スラリーに紙絶乾重量あたり5%[wt/wt]の酵素を添加して48時間処理して発生した1回分の糖化残渣は、少なくとも1%[wt/wt]の新しい酵素と同等以上の糖化力が残っていると考えられた。この観点に基づいて、同残渣と糖化力を補充するために新しい酵素を5%OA紙スラリーに添加した場合の糖化率を検証した。
(Example 3: Recovery / reuse of residue 2)
As described in the previous section, the saccharification residue for one batch generated by adding 5% [wt / wt] enzyme to the 5% OA paper slurry and treating it for 48 hours is at least 1% [wt / wt]. It was thought that saccharification power equal to or better than the new enzyme of [wt] remained. Based on this viewpoint, the saccharification rate when a new enzyme was added to a 5% OA paper slurry in order to supplement the residue and saccharification power was verified.

図9に32時間酵素糖化後のグルコース収率を示す(コントロールとして同じ5%OA紙スラリーに新しい酵素5%[wt/wt]を添加したパターンも並行して実施)。実施例2と同じく前回分の糖化液が若干持ち込まれることによって、開始時(0時間目)には0.5%前後のグルコースが検出されるため、これを差し引いて評価したところ、残渣プラス新しい酵素3%[wt/wt]以上の併用でコントロールと同等もしくはそれ以上のグルコース収率が得られた。つまり、5%濃度のOA紙スラリーが対象の場合、前回分残渣を次回分に適用することにより、従来は5%[wt/wt]を要した酵素量を少なくとも3%[wt/wt]に削減できるという結果が得られた。   FIG. 9 shows the glucose yield after enzymatic saccharification for 32 hours (as a control, a pattern in which 5% [wt / wt] of a new enzyme was added to the same 5% OA paper slurry was also performed in parallel). As in Example 2, a little saccharified solution for the previous time was brought in, so that about 0.5% of glucose was detected at the start (0 hour). A glucose yield equal to or higher than that of the control was obtained when the enzyme was used in an amount of 3% [wt / wt] or more. In other words, when OA paper slurry with a concentration of 5% is the target, the amount of enzyme that conventionally required 5% [wt / wt] is reduced to at least 3% [wt / wt] by applying the residue from the previous time to the next time. The result that it can reduce was obtained.

糖化酵素はセルロースをグルコースまで加水分解できるのであれば特に限定しないが、トリコデルマ(Trichoderma)属やアスペルギルス(Aspergillus)属、リゾプス(Rhizopus)属等の菌が生産するセルラーゼを主体とする酵素、あるいは商業的に大量生産されている酵素製剤を単独、あるいは併用して使用する。そして、酵素再利用の面からは、時間および熱に対する安定性を高めるため、構成タンパクの改変等が施されている酵素がより望ましい。なお、市販の酵素製剤に表示してあるCMC糖化活性、ろ紙崩壊力などの力価はあくまでも参考値でしかなく、処理対象となるリグノセルロース原料から満足な糖収率を得るために最適な添加量を原料毎に検証することが重要である。   The saccharifying enzyme is not particularly limited as long as it can hydrolyze cellulose to glucose, but it is an enzyme mainly composed of cellulase produced by bacteria such as Trichoderma genus, Aspergillus genus, Rhizopus genus, or commercial. Enzyme preparations that are mass-produced are used alone or in combination. From the viewpoint of enzyme reuse, an enzyme that has been subjected to modification of a constituent protein or the like is more desirable in order to increase stability against time and heat. In addition, titers such as CMC saccharification activity and filter paper disintegration power displayed on commercially available enzyme preparations are only reference values, and are optimal additions to obtain a satisfactory sugar yield from the lignocellulose raw material to be treated. It is important to verify the quantity for each raw material.

以上、既に脱リグニンされた紙を対象とした実施例を紹介したが、これらの方法、特に酵素の再利用方法は、紙のみならず、他のリグノセルロース資源、例えば針葉樹、広葉樹などの木材、ヤシ類を中心とした南洋材(幹および実の外殻)、稲藁、麦藁、バガス、コーンストーバーなどの農業残渣、そして大型藻類や微細藻類等の酵素糖化にも応用することが可能である。   As described above, examples have been introduced for paper that has already been delignified, but these methods, particularly the enzyme recycling method, are not only paper, but also other lignocellulosic resources, such as wood such as conifers and hardwoods, It can also be applied to agricultural saccharification such as southern seawood (trunk and fruit hulls), mainly rice palm, rice straw, wheat straw, bagasse and corn stover, and enzymatic saccharification of macroalgae and microalgae. .

本発明により、従来よりも酵素使用量を削減することができ、ひいてはリグノセルロース原料から糖類を製造する経済性を高めることが可能となる。これによって糖類を発酵基質としてエタノールや乳酸、その他の化成品を生産・供給する産業全般の経済性も高めることのみならず、糖蜜やデンプンなど、食料に成り得るものを前述の用途に適用するといった道義的問題も回避することに繋がる。   According to the present invention, the amount of enzyme used can be reduced as compared with the conventional case, and as a result, the economics of producing saccharides from the lignocellulose raw material can be improved. This not only enhances the economics of the industry as a whole, producing and supplying ethanol, lactic acid and other chemicals using sugar as a fermentation substrate, but also applies foods such as molasses and starch to the aforementioned uses. It leads to avoiding moral problems.

実施例1のバッチ式糖化処理を説明する図である。It is a figure explaining the batch type saccharification process of Example 1. FIG. 実施例1の糖化処理における各反応器のグルコース濃度の変化を示すグラフである。2 is a graph showing changes in glucose concentration in each reactor in the saccharification treatment of Example 1. FIG. グルコース濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of glucose concentration. グルコースへの転換率(%)の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the conversion rate (%) to glucose. セロビオース濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of a cellobiose density | concentration. A酵素を添加した場合のグルコース濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the glucose concentration at the time of adding A enzyme. 48時間の酵素糖化処理を行った後の状態を示す写真である。It is a photograph which shows the state after performing the enzymatic saccharification process for 48 hours. 糖化液残渣により糖化処理を行った場合の各種糖の経時変化を示すグラフであり、(a)はセロビオース濃度、(b)はグルコース濃度、(c)はキシロース濃度の経時変化をそれぞれ示している。It is a graph which shows the time-dependent change of various saccharide | sugar when performing a saccharification process by a saccharified liquid residue, (a) shows cellobiose concentration, (b) shows glucose concentration, (c) shows time-dependent change of xylose concentration, respectively. . 実施例3の場合のグルコース濃度の経時変化を示すグラフである。6 is a graph showing changes with time in glucose concentration in Example 3.

Claims (8)

酵素が作用するように前処理が施されたリグノセルロース原料に、セルロース加水分解酵素を添加してC6糖であるグルコースやC5糖を得るリグノセルロースのバッチ式またはセミバッチ式の糖化方法であり、
加水分解されず、かつ添加した酵素が付着しているリグノセルロース残渣を次回分の酵素糖化に再利用することを特徴とするリグノセルロースのバッチ式またはセミバッチ式の糖化方法。
A lignocellulose batch or semi-batch saccharification method in which a cellulose hydrolase is added to a lignocellulose raw material that has been pretreated so that an enzyme acts to obtain glucose or C5 sugar as C6 sugar,
A lignocellulose batch or semi-batch saccharification method, wherein the lignocellulose residue that is not hydrolyzed and to which the added enzyme is attached is reused for the next enzymatic saccharification.
酵素が作用するように前処理を施したリグノセルロースを2〜10%[dry wt/wt]のスラリーに調整し、該スラリーにリグノセルロース1g絶乾重量当たり200〜1000単位の糖化酵素を添加し、24〜72時間糖化処理することを特徴とする請求項1記載のリグノセルロースのバッチ式またはセミバッチ式の糖化方法。   The lignocellulose pretreated so that the enzyme acts is adjusted to a slurry of 2 to 10% [dry wt / wt], and 200 to 1000 units of saccharifying enzyme is added to the slurry per 1 g of dry weight of lignocellulose. 24. The batch or semi-batch saccharification method of lignocellulose according to claim 1, wherein the saccharification treatment is performed for 24 to 72 hours. リグノセルロース糖化液に対して、減圧留去または炭素数2〜4個のアルコールを添加した共沸を行うことによって、リグノセルロース糖化液をエタノール発酵に適した10〜15%の濃度に濃縮する、請求項1または2に記載の方法。   Concentrating the lignocellulose saccharified solution to a concentration of 10 to 15% suitable for ethanol fermentation by performing vacuum distillation or azeotropic addition of an alcohol having 2 to 4 carbon atoms to the lignocellulose saccharified solution, The method according to claim 1 or 2. 前記リグノセルロース糖化液に対して、限外ろ過膜を用いて濃縮する、請求項1または2に記載のリグノセルロースの糖化方法。   The method for saccharification of lignocellulose according to claim 1 or 2, wherein the lignocellulose saccharified solution is concentrated using an ultrafiltration membrane. リグノセルロース糖化液を静置することで沈殿するリグノセルロース残渣を回収し、回収した全量または一部を次回分のリグノセルロースの酵素糖化に再利用酵素として添加する、請求項1または2に記載のリグノセルロースのバッチ式またはセミバッチ式の糖化方法。   The lignocellulose residue precipitated by collecting the lignocellulose saccharified solution is recovered, and the whole or a part of the recovered lignocellulose is added as a reusable enzyme to the next enzymatic saccharification of lignocellulose. Lignocellulose batch or semi-batch saccharification method. 前記リグノセルロース残渣の次回の処理への再利用を複数回にわたって繰り返して行う、請求項1〜5のいずれか1つに記載のリグノセルロースのバッチ式またはセミバッチ式の糖化方法。   The batch-type or semi-batch-type saccharification method of lignocellulose according to any one of claims 1 to 5, wherein the reuse of the lignocellulose residue is repeatedly performed a plurality of times. 前記リグノセルロース原料は、従来の古紙回収システムには含まれず、都市ごみ焼却場で焼却処分されていた紙ごみに由来するものである、請求項1〜6のいずれか1つに記載のリグノセルロースのバッチ式またはセミバッチ式糖化方法。   The said lignocellulose raw material is not contained in the conventional waste paper collection | recovery system, but is derived from the paper waste incinerated at the municipal waste incineration plant, The lignocellulose as described in any one of Claims 1-6 Batch or semi-batch saccharification method. 前記リグノセルロース原料は、オフィス系紙ごみに由来するものである、請求項7に記載のリグノセルロースのバッチ式またはセミバッチ式糖化方法。   The batch-type or semi-batch-type saccharification method of lignocellulose according to claim 7, wherein the lignocellulose raw material is derived from office paper waste.
JP2008270651A 2008-10-21 2008-10-21 Method for simply collecting and reusing cellulose-saccharifying amylase Pending JP2010098951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270651A JP2010098951A (en) 2008-10-21 2008-10-21 Method for simply collecting and reusing cellulose-saccharifying amylase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270651A JP2010098951A (en) 2008-10-21 2008-10-21 Method for simply collecting and reusing cellulose-saccharifying amylase

Publications (1)

Publication Number Publication Date
JP2010098951A true JP2010098951A (en) 2010-05-06

Family

ID=42290156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270651A Pending JP2010098951A (en) 2008-10-21 2008-10-21 Method for simply collecting and reusing cellulose-saccharifying amylase

Country Status (1)

Country Link
JP (1) JP2010098951A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115040A1 (en) * 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same
JP2012039999A (en) * 2010-07-18 2012-03-01 Japan International Research Center For Agricultural Services Method for reutilizing enzyme
WO2012029842A1 (en) 2010-08-31 2012-03-08 王子製紙株式会社 Method for enzymatic saccharification of lignocellulosic biomass, and method for manufacturing ethanol from lignocellulosic biomass
JP4930650B1 (en) * 2010-11-15 2012-05-16 王子製紙株式会社 Method for producing ethanol from lignocellulose-containing biomass
JP2012100617A (en) * 2010-11-12 2012-05-31 Oji Paper Co Ltd Enzymatic saccharification treatment method of lignocellulosic raw material
JP4947223B1 (en) * 2010-08-31 2012-06-06 王子製紙株式会社 Enzymatic saccharification method for lignocellulose-containing biomass
DE102011007857A1 (en) 2010-04-22 2012-06-14 Denso Corporation Inter-vehicle communication system
WO2013111762A1 (en) * 2012-01-24 2013-08-01 株式会社日本触媒 Method for saccharification of biomass
JP5431499B2 (en) * 2009-11-27 2014-03-05 三井化学株式会社 Monosaccharide production method
JP2014042511A (en) * 2012-08-29 2014-03-13 Oji Holdings Corp Enzymatic saccharification method of lignocellulose-containing biomass
CN104745640A (en) * 2015-03-25 2015-07-01 桂林电子科技大学 Ultrasonic-assisted wet process anaerobic fermentation processing method for household refuse organics
WO2016043281A1 (en) * 2014-09-18 2016-03-24 味の素株式会社 Device for enzymatic saccharification of cellulose starting material
CN105541059A (en) * 2015-12-08 2016-05-04 东北大学 Device and method for degrading excess sludge through pretreatment-EGSB-microorganism-electrochemistry integration
JP5976185B1 (en) * 2015-10-01 2016-08-23 新日鉄住金エンジニアリング株式会社 Lignocellulosic biomass-derived compound production apparatus and production method
CN106563686A (en) * 2016-10-21 2017-04-19 河南农业大学 A method of subjecting livestock and poultry died of disease to ultrasonic enzymatic hydrolysis
WO2017217453A1 (en) * 2016-06-14 2017-12-21 味の素株式会社 Cellulase

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213396A (en) * 1983-05-20 1984-12-03 Agency Of Ind Science & Technol Saccharification of cellulose
JPH05219977A (en) * 1991-11-27 1993-08-31 Kohjin Co Ltd Production of high-purity maltose
JP2000176997A (en) * 1998-12-16 2000-06-27 Sumitomo Wiring Syst Ltd Manufacture of cylindrical molded product
JP2006087319A (en) * 2004-09-22 2006-04-06 Research Institute Of Innovative Technology For The Earth Method for continuously saccharifying lignocellulose
JP2008043328A (en) * 2006-07-19 2008-02-28 Taisei Corp Method for saccharifying wood-based biomass
JP2008506370A (en) * 2004-07-16 2008-03-06 イオゲン エナジー コーポレーション Method for obtaining a sugar product stream from cellulosic biomass
JP2008161137A (en) * 2006-12-28 2008-07-17 Nippon Paper Industries Co Ltd Method for saccharifying cellulose-containing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213396A (en) * 1983-05-20 1984-12-03 Agency Of Ind Science & Technol Saccharification of cellulose
JPH05219977A (en) * 1991-11-27 1993-08-31 Kohjin Co Ltd Production of high-purity maltose
JP2000176997A (en) * 1998-12-16 2000-06-27 Sumitomo Wiring Syst Ltd Manufacture of cylindrical molded product
JP2008506370A (en) * 2004-07-16 2008-03-06 イオゲン エナジー コーポレーション Method for obtaining a sugar product stream from cellulosic biomass
JP2006087319A (en) * 2004-09-22 2006-04-06 Research Institute Of Innovative Technology For The Earth Method for continuously saccharifying lignocellulose
JP2008043328A (en) * 2006-07-19 2008-02-28 Taisei Corp Method for saccharifying wood-based biomass
JP2008161137A (en) * 2006-12-28 2008-07-17 Nippon Paper Industries Co Ltd Method for saccharifying cellulose-containing material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013029731; VALLANDER,L. AND ERIKSSON,K.: 'Enzyme recirculation in saccharification of lignocellulosic materials.' Enzyme Microb. Technol. Vol.9, No.12, 198712, pp.714-20 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5431499B2 (en) * 2009-11-27 2014-03-05 三井化学株式会社 Monosaccharide production method
WO2011115040A1 (en) * 2010-03-15 2011-09-22 東レ株式会社 Manufacturing method for sugar solution and device for same
JP5970813B2 (en) * 2010-03-15 2016-08-17 東レ株式会社 Production method and apparatus for sugar solution
US10266860B2 (en) 2010-03-15 2019-04-23 Toray Industries, Inc. Apparatus that produces sugar solutions from cellulose
US9624516B2 (en) 2010-03-15 2017-04-18 Toray Industries, Inc. Manufacturing method for sugar solution and device for same
DE102011007857A1 (en) 2010-04-22 2012-06-14 Denso Corporation Inter-vehicle communication system
US9074200B2 (en) 2010-07-18 2015-07-07 Japan International Research Center For Agricultural Sciences Method for recycling enzyme
JP2012039999A (en) * 2010-07-18 2012-03-01 Japan International Research Center For Agricultural Services Method for reutilizing enzyme
WO2012029842A1 (en) 2010-08-31 2012-03-08 王子製紙株式会社 Method for enzymatic saccharification of lignocellulosic biomass, and method for manufacturing ethanol from lignocellulosic biomass
JP4947223B1 (en) * 2010-08-31 2012-06-06 王子製紙株式会社 Enzymatic saccharification method for lignocellulose-containing biomass
US8728770B2 (en) 2010-08-31 2014-05-20 Oji Holdings Corporation Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
JP2012100617A (en) * 2010-11-12 2012-05-31 Oji Paper Co Ltd Enzymatic saccharification treatment method of lignocellulosic raw material
JP4930650B1 (en) * 2010-11-15 2012-05-16 王子製紙株式会社 Method for producing ethanol from lignocellulose-containing biomass
JPWO2013111762A1 (en) * 2012-01-24 2015-05-11 株式会社日本触媒 Biomass saccharification method
WO2013111762A1 (en) * 2012-01-24 2013-08-01 株式会社日本触媒 Method for saccharification of biomass
JP2014042511A (en) * 2012-08-29 2014-03-13 Oji Holdings Corp Enzymatic saccharification method of lignocellulose-containing biomass
WO2016043281A1 (en) * 2014-09-18 2016-03-24 味の素株式会社 Device for enzymatic saccharification of cellulose starting material
CN104745640A (en) * 2015-03-25 2015-07-01 桂林电子科技大学 Ultrasonic-assisted wet process anaerobic fermentation processing method for household refuse organics
WO2017057697A1 (en) * 2015-10-01 2017-04-06 新日鉄住金エンジニアリング株式会社 Device and method for producing compound derived from lignocellulose-based biomass
JP5976185B1 (en) * 2015-10-01 2016-08-23 新日鉄住金エンジニアリング株式会社 Lignocellulosic biomass-derived compound production apparatus and production method
CN105541059B (en) * 2015-12-08 2017-10-24 东北大学 Pre-process the united excess sludge decomposition apparatus of EGSB microorganism electrochemicals and method
CN105541059A (en) * 2015-12-08 2016-05-04 东北大学 Device and method for degrading excess sludge through pretreatment-EGSB-microorganism-electrochemistry integration
WO2017217453A1 (en) * 2016-06-14 2017-12-21 味の素株式会社 Cellulase
CN106563686A (en) * 2016-10-21 2017-04-19 河南农业大学 A method of subjecting livestock and poultry died of disease to ultrasonic enzymatic hydrolysis
CN106563686B (en) * 2016-10-21 2019-04-12 河南农业大学 A kind of method of ultrasonic wave enzymatic hydrolysis dead livestock and poultry

Similar Documents

Publication Publication Date Title
JP2010098951A (en) Method for simply collecting and reusing cellulose-saccharifying amylase
EP2582820B1 (en) Enzymatic hydrolysis of cellulose
US8728770B2 (en) Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
JP4554314B2 (en) Continuous saccharification method of lignocellulose
US8609379B2 (en) Process for the production of alcohols from biomass
WO2010050223A1 (en) Saccharide production process and ethanol production process
US20140234934A1 (en) Process for producing high value products from biomass
JP4928254B2 (en) Method for saccharification of cellulose-containing materials
US8715969B2 (en) Delignification of biomass with sequential base treatment
CN102174594A (en) Efficient enzyme hydrolysis method of lignocellulose biomass
CN102471759A (en) Biomass hydrolysis process
JP4947223B1 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP2011024545A (en) Method for producing saccharide from cellulose-containing material
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP2011152079A (en) Saccharifying fermentation system of cellulose-based biomass
CN107904271A (en) A kind of method of microwave reinforced soda lime preprocessing lignocellulose
CN106520861A (en) Method for preparing fermentable sugar from office paper
JP2011083238A (en) Method for producing saccharide from bark raw material
JP2005341924A (en) Method for producing saccharides from vegetable resource
JP5924192B2 (en) Enzymatic saccharification method for lignocellulose-containing biomass
CN102803498B (en) Biomass hydrolysis process
JP5381119B2 (en) Method for producing saccharides from bark raw material
JP5910367B2 (en) Method for producing ethanol from lignocellulose-containing biomass
WO2015019362A1 (en) Preparation of ethanol from lignocellulosic materials
RU2575616C2 (en) Enzymic hydrolysis of cellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029