JP5715678B2 - Magnesium matrix composite - Google Patents

Magnesium matrix composite Download PDF

Info

Publication number
JP5715678B2
JP5715678B2 JP2013256016A JP2013256016A JP5715678B2 JP 5715678 B2 JP5715678 B2 JP 5715678B2 JP 2013256016 A JP2013256016 A JP 2013256016A JP 2013256016 A JP2013256016 A JP 2013256016A JP 5715678 B2 JP5715678 B2 JP 5715678B2
Authority
JP
Japan
Prior art keywords
sic
composite material
magnesium
porosity
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013256016A
Other languages
Japanese (ja)
Other versions
JP2014062329A (en
Inventor
功 岩山
功 岩山
義幸 高木
義幸 高木
美里 草刈
美里 草刈
西川 太一郎
太一郎 西川
利哉 池田
利哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Sumitomo Electric Industries Ltd
Original Assignee
ALMT Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp, Sumitomo Electric Industries Ltd filed Critical ALMT Corp
Priority to JP2013256016A priority Critical patent/JP5715678B2/en
Publication of JP2014062329A publication Critical patent/JP2014062329A/en
Application granted granted Critical
Publication of JP5715678B2 publication Critical patent/JP5715678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、マグネシウム(いわゆる純マグネシウム)又はマグネシウム合金を母材とし、この母材中にSiCが分散されたマグネシウム基複合材料、及びその製造方法に関するものである。特に、気孔率が少なく、熱特性に優れるマグネシウム基複合材料に関するものである。   The present invention relates to a magnesium-based composite material in which SiC (so-called pure magnesium) or a magnesium alloy is used as a base material, and SiC is dispersed in the base material, and a manufacturing method thereof. In particular, the present invention relates to a magnesium-based composite material having a low porosity and excellent thermal characteristics.

従来、半導体素子のヒートスプレッダーといった放熱部材の構成材料として、金属からなる母材(マトリクス)中にセラミクス粒子が分散された複合材料が利用されており、Al-SiCが代表的である。また、放熱部材の軽量化を主目的として、アルミニウムよりも軽量であるマグネシウムやその合金を母材とする複合材料が検討されている(特許文献1参照)。   Conventionally, a composite material in which ceramic particles are dispersed in a base material (matrix) made of metal has been used as a constituent material of a heat dissipation member such as a heat spreader of a semiconductor element, and Al-SiC is representative. Further, for the main purpose of reducing the weight of the heat dissipating member, a composite material using magnesium or an alloy thereof, which is lighter than aluminum, as a base material has been studied (see Patent Document 1).

特許文献1は、原料となるSiCを成形型に配置した状態で母材となる溶融金属(マグネシウム)を含浸させることで、熱特性に優れる(熱伝導率が高く、発熱対象との熱膨張係数の差が小さい)複合材料を作業性よく製造できることを開示している。   Patent Document 1 is excellent in thermal properties by impregnating molten metal (magnesium) as a base material with SiC as a raw material placed in a mold (high thermal conductivity, thermal expansion coefficient with heat generation target) It is disclosed that a composite material can be manufactured with good workability.

特開2006-299304号公報JP 2006-299304 A

従来の複合材料中には、気孔が存在し得る(特許文献1段落0003参照)。この気孔を低減する、即ち、複合材料中の気孔率を小さくすることにより、熱特性を向上できると予想される。しかし、特許文献1では、気孔率をどの程度小さくすればよいか十分に検討されていない。また、気孔率を小さくするための手法も十分に検討されていない。   In the conventional composite material, pores may exist (see Patent Document 1, paragraph 0003). It is expected that thermal characteristics can be improved by reducing the porosity, that is, by reducing the porosity in the composite material. However, Patent Document 1 does not fully examine how much the porosity should be reduced. In addition, methods for reducing the porosity have not been sufficiently studied.

気孔率は、含浸温度(含浸時の溶融金属の温度)を高くすることによって低減することができる。しかし、気孔率を非常に小さくする(例えば、3%未満にする)には、含浸温度を1000℃超にする必要があり、このような高温では、凝固時に引け巣やガスホールといった欠陥が生じ易くなり、鋳肌の悪化や、熱特性の低下を招く。従って、この方法により気孔率を低下して熱特性を向上することは困難である。また、この方法では、含浸時の加熱に大掛かりな装置が必要となる上に、成形型(鋳型)の寿命も短くなるため、コストが増大する。   The porosity can be reduced by increasing the impregnation temperature (the temperature of the molten metal at the time of impregnation). However, in order to make the porosity very small (for example, less than 3%), the impregnation temperature needs to be higher than 1000 ° C. At such a high temperature, defects such as shrinkage nests and gas holes occur during solidification. It becomes easy to cause deterioration of the casting surface and deterioration of thermal characteristics. Therefore, it is difficult to improve the thermal characteristics by reducing the porosity by this method. In addition, this method requires a large apparatus for heating at the time of impregnation and shortens the life of the mold (mold), resulting in an increase in cost.

或いは、原料にSiO2といった溶浸剤を混合することによって、気孔率を低減できる。しかし、気孔率を非常に小さくする(例えば、3%未満にする)には、溶浸剤を多くする必要がある。溶浸剤にSiO2を用いると、Mg-Si化合物やMg酸化物といった反応生成物が生じる。これらの生成物は、熱伝導率が小さいため、溶浸剤にSiO2を多く用いると、上記生成物により熱特性の低下を招く。従って、この方法も、気孔率を低下して熱特性を向上することは困難である。 Alternatively, the porosity can be reduced by mixing an infiltrant such as SiO 2 with the raw material. However, in order to make the porosity very small (for example, less than 3%), it is necessary to increase the infiltrant. When SiO 2 is used as the infiltrant, reaction products such as Mg—Si compounds and Mg oxides are generated. Since these products have a low thermal conductivity, if a large amount of SiO 2 is used as the infiltrant, the above products cause a decrease in thermal characteristics. Therefore, it is difficult for this method to improve the thermal characteristics by reducing the porosity.

そこで、本発明の目的の一つは、気孔率が小さいマグネシウム基複合材料を提供することにある。また、本発明の別の目的は、気孔率が小さいマグネシウム基複合材料の製造に適したマグネシウム基複合材料の製造方法を提供することにある。   Accordingly, one of the objects of the present invention is to provide a magnesium-based composite material having a low porosity. Another object of the present invention is to provide a method for producing a magnesium-based composite material suitable for producing a magnesium-based composite material having a low porosity.

本発明者らは、気孔率を3%未満にすることで、熱特性が良好なマグネシウム基複合材料を得られるとの知見を得た。また、本発明者らは、原料のSiCに特定の処理を施してから用いることで、或いは複合凝固物に特定の処理を施すことで、含浸温度を高くし過ぎず、かつ溶浸剤にSiO2を用いなくても、気孔率が小さいマグネシウム基複合材料が得られるとの知見を得た。本発明は、これらの知見に基づくものである。 The present inventors have found that a magnesium-based composite material having good thermal characteristics can be obtained by setting the porosity to less than 3%. In addition, the present inventors have used the raw material SiC after performing a specific treatment, or by performing a specific treatment on the composite coagulated product, so that the impregnation temperature is not excessively increased, and the infiltrant contains SiO 2. It was found that a magnesium-based composite material having a low porosity can be obtained without using the material. The present invention is based on these findings.

本発明マグネシウム基複合材料は、マグネシウム又はマグネシウム合金からなる母材にSiCが分散した複合材料であり、この複合材料中の気孔率が3%未満であることを特徴とする。   The magnesium-based composite material of the present invention is a composite material in which SiC is dispersed in a base material made of magnesium or a magnesium alloy, and the porosity in the composite material is less than 3%.

上記本発明複合材料は、以下に示す本発明マグネシウム基複合材料の製造方法(I)又は(II)により製造することができる。   The composite material of the present invention can be produced by the following production method (I) or (II) of the magnesium-based composite material of the present invention.

[製造方法(I)]
製造方法(I)は、マグネシウム又はマグネシウム合金からなる母材にSiCが分散した複合材料を製造するものであり、以下の酸化処理工程、及び含浸工程を具える。
酸化処理工程:原料のSiCを加熱して、その表面に酸化膜を形成する。
この酸化処理工程において、酸化膜は、加熱温度を700℃以上とし、上記原料のSiCに対する質量割合が0.4%以上1.5%以下を満たすように形成する。
含浸工程:上記酸化膜が形成された被覆SiCを成形型に配置して、成形型内の被覆SiCの集合体に、675℃以上1000℃以下の温度で母材となる溶融金属を含浸する。
[Production Method (I)]
The production method (I) is a method for producing a composite material in which SiC is dispersed in a base material made of magnesium or a magnesium alloy, and includes the following oxidation treatment step and impregnation step.
Oxidation treatment step: The raw material SiC is heated to form an oxide film on the surface thereof.
In this oxidation treatment step, the oxide film is formed so that the heating temperature is 700 ° C. or higher and the mass ratio of the raw material to SiC satisfies 0.4% or more and 1.5% or less.
Impregnation step: The coated SiC on which the oxide film is formed is placed in a mold, and the aggregate of the coated SiC in the mold is impregnated with a molten metal as a base material at a temperature of 675 ° C. or higher and 1000 ° C. or lower.

[製造方法(II)]
製造方法(II)は、マグネシウム又はマグネシウム合金からなる母材にSiCが分散した複合材料を製造するものであり、以下の準備工程、及び加圧工程を具える。
準備工程:SiCとマグネシウム又はマグネシウム合金との複合凝固物を準備する。
加圧工程:上記複合凝固物を加圧して、この複合凝固物中に存在する気孔を押し潰す。
この加圧工程において、上記複合凝固物への加圧は、温度を常温以上、母材であるマグネシウム又はマグネシウム合金の融点(液相線温度)未満とし、圧力を1ton/cm2以上として行う。
[Production Method (II)]
The production method (II) is a method for producing a composite material in which SiC is dispersed in a base material made of magnesium or a magnesium alloy, and includes the following preparation process and pressurization process.
Preparation step: A composite solidified product of SiC and magnesium or a magnesium alloy is prepared.
Pressurizing step: Pressurizing the composite coagulated product to crush pores present in the composite coagulated product.
In this pressurization step, the composite solidified product is pressurized at a temperature of normal temperature or higher, lower than the melting point (liquidus temperature) of the base material magnesium or magnesium alloy, and a pressure of 1 ton / cm 2 or higher.

本発明製造方法(I)によれば、マグネシウムに対する濡れ性が高いSiO2を主体とする酸化膜が原料のSiCの表面に存在するため、SiCの集合体に溶融金属(マグネシウム又はマグネシウム合金の溶湯)を含浸すると、酸化膜と溶融金属とが十分に接触することで、SiCの周囲に溶融金属が回り込み易い。そのため、本発明製造方法(I)によれば、溶融金属の回り込み不足により生じる気孔を効果的に低減でき、気孔率が3%未満の複合材料が得られる。また、本発明製造方法(I)によれば、被覆SiCを用いることで、原料のSiCの表面に、マグネシウムに対する濡れ性が高いSiO2を集中的に存在させることが可能なため、原料中にSiO2が過剰に存在せず、得られた複合材料中における反応生成物の存在割合も低減できる。従って、本発明製造方法(I)によれば、反応生成物の存在による熱特性の低下を抑制して、熱特性に優れる複合材料が得られる。 According to the production method (I) of the present invention, since an oxide film mainly composed of SiO 2 having high wettability with magnesium is present on the surface of the raw material SiC, a molten metal (a molten metal of magnesium or magnesium alloy) is formed on the SiC aggregate. ), The oxide film and the molten metal are sufficiently in contact with each other, so that the molten metal easily wraps around the SiC. Therefore, according to the production method (I) of the present invention, pores generated due to insufficient circulation of the molten metal can be effectively reduced, and a composite material having a porosity of less than 3% can be obtained. Further, according to the production method (I) of the present invention, by using the coated SiC, SiO 2 having high wettability with respect to magnesium can be concentrated on the surface of the raw material SiC. SiO 2 does not exist excessively, and the presence ratio of the reaction product in the obtained composite material can be reduced. Therefore, according to the production method (I) of the present invention, a composite material having excellent thermal characteristics can be obtained by suppressing the deterioration of thermal characteristics due to the presence of the reaction product.

本発明製造方法(II)によれば、複合凝固物を特定の条件で押圧することで、気孔を積極的に消滅でき、気孔率が低い複合材料が得られる。特に、本発明製造方法(II)によれば、溶浸剤(SiO2)の有無に関わらず、気孔率が5%以下、特に、3%未満の複合材料が得られる。本発明製造方法(II)において溶浸剤(SiO2)を用いない場合、熱特性の低下に寄与する反応生成物の生成量を効果的に低減できる。 According to the production method (II) of the present invention, by pressing the composite solidified product under specific conditions, the pores can be actively eliminated and a composite material having a low porosity can be obtained. In particular, according to the production method (II) of the present invention, a composite material having a porosity of 5% or less, particularly less than 3%, can be obtained regardless of the presence or absence of an infiltrant (SiO 2 ). When the infiltrant (SiO 2 ) is not used in the production method (II) of the present invention, the amount of reaction product that contributes to the deterioration of thermal characteristics can be effectively reduced.

また、本発明製造方法(I),(II)によれば、溶融金属を過剰に加熱する必要がないため、引け巣やガスホールなどの欠陥が複合材料に生じ難く、熱特性の劣化が生じ難い。   In addition, according to the production methods (I) and (II) of the present invention, it is not necessary to heat the molten metal excessively, so defects such as shrinkage and gas holes are unlikely to occur in the composite material, resulting in deterioration of thermal characteristics. hard.

本発明複合材料によれば、気孔率が非常に小さく、熱特性に優れる。特に、上述の本発明製造方法(I)又は(II)により製造されることで、上述のように反応生成物や引け巣、ガスホールの存在による熱特性の低下が少なく、熱特性に優れる。以下、本発明をより詳細に説明する。   According to the composite material of the present invention, the porosity is very small and the thermal characteristics are excellent. In particular, by being produced by the above-described production method (I) or (II) of the present invention, as described above, there is little deterioration in thermal characteristics due to the presence of reaction products, shrinkage nests, and gas holes, and the thermal characteristics are excellent. Hereinafter, the present invention will be described in more detail.

[複合材料]
<母材組成>
母材は、99.8質量%以上のMg及び不純物からなるいわゆる純マグネシウム、又は添加元素と残部がMg及び不純物からなるマグネシウム合金のいずれでもよい。純マグネシウムが母材である複合材料は、熱伝導率が高い。マグネシウム合金が母材である複合材料は、耐食性や機械的特性(強度)に優れる。また、マグネシム合金は、一般に純マグネシウムよりも液相線温度が低いため、含浸時の温度をより低くすることができる。添加元素は、例えば、Li,Ag,Ni,Ca,Al,Zn,Mn,Si,Cu,Zrなどの少なくとも1種が挙げられる。添加元素の含有量は、多くなると熱伝導率の低下を招くため、合計で20質量%以下(母材を100質量%とする。以下、添加元素の含有量について同様)が好ましい。特に、Alは3質量%以下、Znは5質量%以下、その他の元素はそれぞれ10質量%以下がより好ましい。Liを添加すると、複合材料の軽量化、及び加工性向上の効果がある。公知のマグネシウム合金、例えば、ASTM記号におけるAZ系,AS系,AM系,ZK系,ZC系,LA系などでもよい。所望の組成となるように母材の原料を用意する。
[Composite material]
<Base material composition>
The base material may be either so-called pure magnesium composed of 99.8% by mass or more of Mg and impurities, or a magnesium alloy composed of additive elements and the balance Mg and impurities. A composite material in which pure magnesium is a base material has high thermal conductivity. A composite material whose base material is a magnesium alloy is excellent in corrosion resistance and mechanical properties (strength). Moreover, since a magnesium alloy generally has a lower liquidus temperature than pure magnesium, the temperature during impregnation can be further lowered. Examples of the additive element include at least one of Li, Ag, Ni, Ca, Al, Zn, Mn, Si, Cu, and Zr. When the content of the additive element is increased, the thermal conductivity is lowered, and therefore the total content is preferably 20% by mass or less (the base material is 100% by mass. The same applies to the content of the additive element). In particular, Al is more preferably 3% by mass or less, Zn is 5% by mass or less, and other elements are each preferably 10% by mass or less. Addition of Li has the effect of reducing the weight of the composite material and improving the workability. Known magnesium alloys, for example, AZ, AS, AM, ZK, ZC, LA, etc. in the ASTM symbol may be used. A raw material for the base material is prepared so as to have a desired composition.

<分散材>
《形状》
分散材の原料として、粒子状や繊維状のSiC粉末や、SiC粉末を焼結した焼結体、SiC粉末を成形したものが利用できる。複合材料中に分散するSiCは、原料に用いたSiCの形状を概ね維持して存在する。特に、原料に粉末を用いると、流動性に優れるため、(1)成形型における充填率を高め易く、SiCの含有量が高い複合材料を形成し易い、(2)成形型に充填し易く、複合材料の生産性がよい、(3)複雑な形状の成形型にも充填でき、複雑な形状の複合材料を簡便に作製できる、といった効果がある。また、平均粒径が異なる複数種のSiC粉末を組み合わせて用いると、充填率をより高め易く、この手法は、複合材料中のSiCの含有量を多くする際に好適に利用できる。原料に用いるSiCの大きさは、平均粒径(繊維状の場合、平均短径)1μm以上3000μm以下程度であると、母材中に均一的に分散させ易く好ましい。大きさが異なるSiC粉末を用いる場合、大きい粉末は、平均粒径が50μm以上成形型の最短の内寸の1/10以下、小さい粉末は、平均粒径が、大きい粉末の平均粒径の1/20以上1/2以下であると、上述のように充填率を高め易い。複合材料中のSiCの大きさや形状は、例えば、複合材料の断面をSEMや光学顕微鏡などで観察することで確認することができる。大きさが異なるSiC粉末を用いたことは、例えば、以下のようにして確認することができる。複合材料の断面顕微鏡写真(例えば、100倍)において、粒径が3μm以上のSiCが50個程度含まれる視野を対象とし、この視野中に存在する粒径が3μm以上の各SiCの粒径を例えば、切断法により測定する。これら50個程度のSiCの粒径の平均及び標準偏差を求める。そして、標準偏差を平均で割った値が0.5以上である場合、大きさが異なるSiCを用いたと判断することができる。なお、上記観察する際の倍率は、SiCの粒径に応じて、1視野に50個程度のSiC粒が写るように、適宜調整するとよい。
<Dispersant>
"shape"
As a raw material of the dispersion material, particulate or fibrous SiC powder, a sintered body obtained by sintering SiC powder, or a product obtained by molding SiC powder can be used. The SiC dispersed in the composite material exists while maintaining the shape of the SiC used as a raw material. In particular, when powder is used as a raw material, since it is excellent in fluidity, (1) it is easy to increase the filling rate in the mold, and it is easy to form a composite material having a high SiC content, (2) it is easy to fill the mold, There is an effect that the productivity of the composite material is good, and (3) a complex-shaped mold can be filled, and a complex-shaped composite material can be easily produced. In addition, when a plurality of types of SiC powders having different average particle diameters are used in combination, the filling rate can be increased more easily, and this technique can be suitably used for increasing the content of SiC in the composite material. The size of SiC used as a raw material is preferably about 1 μm or more and 3000 μm or less in average particle diameter (in the case of a fiber, average short diameter), which is preferable because it is easily dispersed uniformly in the base material. When using SiC powders of different sizes, the large powder has an average particle size of 50 μm or more and 1/10 or less of the shortest inner dimension of the mold, and the small powder has an average particle size of 1 of the average particle size of the large powder. When it is / 20 or more and 1/2 or less, it is easy to increase the filling rate as described above. The size and shape of SiC in the composite material can be confirmed, for example, by observing the cross section of the composite material with an SEM, an optical microscope, or the like. The use of SiC powders having different sizes can be confirmed, for example, as follows. In a cross-sectional micrograph of a composite material (e.g., 100 times), the field of view includes about 50 SiC particles having a particle size of 3 μm or more, and the particle size of each SiC particle having a particle size of 3 μm or more present in this field of view is shown. For example, it is measured by a cutting method. Obtain the average and standard deviation of the particle size of about 50 SiC. When the value obtained by dividing the standard deviation by the average is 0.5 or more, it can be determined that SiC having a different size is used. In addition, the magnification at the time of the above observation may be adjusted as appropriate so that about 50 SiC grains appear in one field of view according to the grain size of SiC.

《含有量》
複合材料中のSiCの含有量は、原料のSiCが複合材料中に概ねそのまま存在することから、原料の量と実質的に同等である。複合材料中のSiCの含有量が多いと、熱伝導率が高まる上に、熱膨張係数が小さくなる傾向にある。所望の熱膨張係数に応じて原料の量を調整するとよい。例えば、SiCの含有量が体積割合で50%以上80%以下である場合、熱膨張係数が4×10-6〜10×10-6/K(4〜10ppm/K)の複合材料が得られる。SiCのより好ましい含有量は、体積割合で55%以上80%以下である。
"Content"
The content of SiC in the composite material is substantially equal to the amount of the raw material because the raw material SiC is generally present in the composite material as it is. When the content of SiC in the composite material is large, the thermal conductivity increases and the thermal expansion coefficient tends to decrease. The amount of the raw material may be adjusted according to a desired thermal expansion coefficient. For example, when the SiC content is 50% or more and 80% or less by volume, a composite material having a thermal expansion coefficient of 4 × 10 −6 to 10 × 10 −6 / K (4 to 10 ppm / K) is obtained. . A more preferable content of SiC is 55% or more and 80% or less by volume ratio.

《純度》
原料のSiCとして高純度のものを用い、複合材料中に存在するSiCの純度が95%以上、特に99%以上といった高純度であると、SiCの特性を十分に活用できる。また、結晶性の高いSiCを使用すると、複合材料の熱伝導率が高くなり易い。
"purity"
If the high-purity SiC is used as the raw material and the purity of the SiC present in the composite material is 95% or higher, particularly 99% or higher, the characteristics of SiC can be fully utilized. Moreover, when SiC with high crystallinity is used, the thermal conductivity of the composite material tends to be high.

<組織>
《気孔率》
溶融金属と分散材原料との濡れ性を高めた本発明製造方法(I)により得られた本発明複合材料や気孔を押し潰して消滅させる本発明製造方法(II)により得られた本発明複合材料は、気孔率が低い。具体的にな気孔率は、3%未満であり、好ましくは1%未満、より好ましくは、0.5%未満である。気孔は存在しないことが望ましく、究極的には気孔率は0%が望まれる。気孔率の測定方法は、後述する。
<Organization>
《Porosity》
Invention composite material obtained by the present invention production method (II) obtained by crushing and eliminating pores of the present invention composite material obtained by the present invention production method (I) with improved wettability between the molten metal and the dispersion material The material has a low porosity. The specific porosity is less than 3%, preferably less than 1%, more preferably less than 0.5%. It is desirable that no pores exist, and ultimately a porosity of 0% is desired. A method for measuring the porosity will be described later.

《酸素濃度》
原料のSiCに酸化膜を積極的に形成し、気孔率の低減に有効な酸化膜の厚さを調べたところ、60nmを超え、320nm程度であった。このような被覆SiCを用いて製造した本発明複合材料は、溶融金属と酸化膜との反応により生成されたMg酸化物(例えば、MgO)がSiCの近傍、具体的にはSiCの輪郭線から100〜300nm以内の領域に多く存在すると考えられる。従って、各SiCの周囲に存在する母材において、SiCの輪郭線から150nm以下までの相似形状の領域をSiCの外周領域とし、SiCの輪郭線から1μm以上の領域を主領域とするとき、SiCの外周領域における酸素濃度が主領域よりも高いものが本発明複合材料の一形態として挙げられる。本発明複合材料は、母材中に均一的にSiCが分散した組織を有するため、原料に上記被覆SiCを用いた場合、複合材料の任意の箇所の断面において、任意のSiCの外周領域は、主領域よりも酸素濃度が高い。従って、複合材料の任意の箇所における任意のSiCの外周領域について酸素濃度を調べることができるが、複合材料を放熱部材に用いる場合、複合材料の中心部分が放熱性能に関与するため、この中央部分に存在するSiCの外周領域の酸素濃度を調べることが好ましい。即ち、複合材料の断面における外周縁から、複合材料の最小長さの1/10までの領域よりも内側の領域を中心領域とし、この中心領域について酸素濃度を調べる。
<Oxygen concentration>
When an oxide film was actively formed on the raw material SiC and the thickness of the oxide film effective for reducing the porosity was examined, it was over 60 nm and about 320 nm. In the composite material of the present invention manufactured using such a coated SiC, the Mg oxide (for example, MgO) generated by the reaction between the molten metal and the oxide film is in the vicinity of SiC, specifically from the outline of SiC. Many are considered to exist in the region of 100 to 300 nm. Therefore, in the base material existing around each SiC, when the region of similar shape from the SiC contour line to 150 nm or less is the outer peripheral region of SiC, and the region of 1 μm or more from the SiC contour line is the main region, SiC One having a higher oxygen concentration in the outer peripheral region than that in the main region is an example of the composite material of the present invention. Since the composite material of the present invention has a structure in which SiC is uniformly dispersed in the base material, when the above-described coated SiC is used as a raw material, the outer peripheral region of any SiC in the cross-section at any location of the composite material is: Oxygen concentration is higher than the main region. Therefore, the oxygen concentration can be examined for the outer peripheral region of any SiC in any part of the composite material. However, when the composite material is used as a heat dissipation member, the central portion of the composite material is involved in the heat dissipation performance. It is preferable to examine the oxygen concentration in the outer peripheral region of SiC present in the substrate. That is, a region inside the region from the outer peripheral edge in the cross section of the composite material to 1/10 of the minimum length of the composite material is taken as a central region, and the oxygen concentration is examined for this central region.

例えば、本発明複合材料が横幅50mm、厚さ5mm程度の板状材である場合、最小長さには厚さが該当する。従って、複合材料の外周縁から5mm×1/10=500μmよりも内側の領域が中心領域となる。具体的には、厚さの1/2の箇所を通過する平面を中心平面とし、この中心平面の横幅方向における中心線をとり、この中心線から横幅方向にそれぞれ24.5mmまで、かつ中心平面から厚さ方向にそれぞれ2mmまでの領域を中心領域とする。また、例えば、本発明複合材料が厚さ1mm以下の板状材である場合も最小長さには厚さが該当することから、同様にして厚さの1/10までの領域よりも内側の領域を中心領域とすればよい。特に、厚さが薄い場合、厚さの1/2の箇所を通過する平面を中心平面とし、この中心平面から厚さ方向にそれぞれ100μm程度までの領域、即ち、厚さ200μm程度の領域を中心領域としてもよい。   For example, when the composite material of the present invention is a plate-like material having a width of about 50 mm and a thickness of about 5 mm, the minimum length corresponds to the thickness. Therefore, the area inside 5 mm × 1/10 = 500 μm from the outer peripheral edge of the composite material becomes the central area. Specifically, a plane passing through a half of the thickness is a center plane, and a center line in the width direction of this center plane is taken, and from this center line to the width direction up to 24.5 mm, respectively, and from the center plane The area up to 2 mm in the thickness direction is the center area. In addition, for example, when the composite material of the present invention is a plate-like material having a thickness of 1 mm or less, the thickness corresponds to the minimum length, and similarly, the inner side of the region up to 1/10 of the thickness. The area may be the central area. In particular, when the thickness is small, the plane passing through the half of the thickness is the central plane, and the area from the central plane to the thickness direction is about 100 μm, that is, the area is about 200 μm thick. It may be an area.

上記中心領域から、SiCを1個以上選択し、選択したSiCに対して外周領域及び主領域を選択し、酸素濃度を測定して比較する。より具体的には、例えば、TEM装置に附属のEDX分析装置を用いてSiCを選択し、更に選択した各SiCについて外周領域及び主領域をとり、各外周領域及び主領域から測定点を選択する。外周領域の測定点は、SiCの輪郭線から150nmの地点(外周領域の周縁上の任意の点)、主領域の測定点は、SiCの輪郭線から3μmの母材上の箇所であって、他のSiCの外周領域を含まない箇所を選択することができる。1個のSiCに対して、外周領域の測定点及び主領域の測定点はそれぞれ、5点以上選択して観察する。SiCを3個(好ましくは5個)以上選択して、各SiCの外周領域の測定点及び主領域の測定点をそれぞれ、1点以上(好ましくは5点以上)選択して観察することが好ましい。   One or more SiCs are selected from the central region, an outer peripheral region and a main region are selected for the selected SiC, and oxygen concentrations are measured and compared. More specifically, for example, SiC is selected using the EDX analyzer attached to the TEM apparatus, and the outer peripheral region and the main region are taken for each selected SiC, and the measurement point is selected from each outer peripheral region and the main region. . The measurement point of the outer peripheral region is a point 150 nm from the SiC contour line (any point on the periphery of the outer peripheral region), the measurement point of the main region is a point on the base material 3 μm from the SiC contour line, Locations that do not include other SiC peripheral regions can be selected. For one SiC, select five or more measurement points in the outer peripheral region and measurement points in the main region, and observe them. It is preferable to select three or more (preferably five) SiC and select one or more (preferably five or more) measurement points in the outer peripheral region and main region of each SiC for observation. .

SiCの外周領域と主領域との酸素濃度の高低は、例えば、SEM装置に付属のEDX分析装置、TEM装置に付属のEDX分析装置を用いた特性X線分光分析、オージェ電子分光分析などを利用することで、確認することができる。   For example, the oxygen concentration in the outer peripheral region and main region of SiC can be measured by using the EDX analyzer attached to the SEM device, the characteristic X-ray spectroscopy using the EDX analyzer attached to the TEM device, Auger electron spectroscopy, etc. This can be confirmed.

<熱特性>
本発明複合材料の一形態として、熱伝導率κが180W/m・K以上のものが挙げられる。また、本発明複合材料の一形態として、熱膨張係数αが4×10-6/K(4ppm/K)以上10×10-6/K(10ppm/K)以下のものが挙げられる。
<Thermal characteristics>
One embodiment of the composite material of the present invention is one having a thermal conductivity κ of 180 W / m · K or more. In addition, one embodiment of the composite material of the present invention includes a material having a thermal expansion coefficient α of 4 × 10 −6 / K (4 ppm / K) or more and 10 × 10 −6 / K (10 ppm / K) or less.

上記熱特性を満たす複合材料は、熱伝導性が高く、半導体素子(4〜7ppm/K程度(例えば、Si:4.2ppm/K、GaAs:6.5ppm/K))やその周辺部品(例えば、金属(ステンレス鋼(20ppm/K前後)、鋼(11〜12ppm/K))や、Al2O3(6.5ppm/K)といったセラミクスからなるパッケージ)と熱膨張係数の整合性に優れる。即ち、この複合材料は、半導体素子の近傍に配置される放熱部材に好適な熱特性を有する。熱伝導率や熱膨張係数は、母材の組成やSiCの含有量で変化するため、所望の熱特性となるように原料を適宜調整するとよい。熱伝導率は、高い方が好ましいため上限は特に設けない。200W/m・K以上がより好ましい。 Composite materials that satisfy the above thermal characteristics have high thermal conductivity, semiconductor elements (about 4 to 7 ppm / K (e.g., Si: 4.2 ppm / K, GaAs: 6.5 ppm / K)) and peripheral components (e.g., metal (Package made of ceramics such as stainless steel (around 20 ppm / K), steel (11-12 ppm / K)) and Al 2 O 3 (6.5 ppm / K)) and excellent thermal expansion coefficient. That is, this composite material has thermal characteristics suitable for a heat radiating member disposed in the vicinity of the semiconductor element. Since the thermal conductivity and the coefficient of thermal expansion change depending on the composition of the base material and the content of SiC, it is preferable to appropriately adjust the raw materials so as to obtain desired thermal characteristics. Since the heat conductivity is preferably higher, there is no particular upper limit. 200 W / m · K or more is more preferable.

[製造方法(I)]
この方法は、分散材となる分散材原料を成形型に配置する→分散材原料の集合体に母材となる溶融金属を含浸して、溶融金属と分散材とを複合する→複合物を冷却して溶融金属を凝固させる、といった工程により複合材料を製造する。特に、分散材原料として、SiCに酸化膜を形成したものを用いる。
[Production Method (I)]
In this method, a dispersion material as a dispersion material is placed in a molding die. → A dispersion metal material assembly is impregnated with a molten metal as a base material, and the molten metal and the dispersion material are combined. → The composite is cooled. Then, the composite material is manufactured by a process of solidifying the molten metal. In particular, a material in which an oxide film is formed on SiC is used as a dispersion material.

原料のSiCに対する酸化膜の割合が小さい(酸化膜量が少ない)と、酸化膜による溶融金属との濡れ性の向上効果が十分に得られず、同割合が大きい(酸化膜量が多い)と、反応生成物であるMg酸化物の量が多くなり、熱特性の低下を招く。原料のSiCに対する酸化膜の質量割合が0.4%以上1.5%以下となるように酸化膜を形成する。好ましくは質量割合が0.4%以上1%以下となるように酸化膜を形成する。但し、酸化膜が多い(厚い)ほど、低温・短時間での溶融金属の含浸が可能となる。従って、例えば、熱特性の向上よりも含浸時の成形型の加熱装置の簡略化、含浸時間(サイクルタイム)の短縮、成形型の長寿命化といった効果を望む場合、質量割合が1.5%超の酸化膜を具えるSiCを利用することができる。   If the ratio of the oxide film to the raw material SiC is small (the amount of oxide film is small), the effect of improving the wettability with the molten metal by the oxide film cannot be obtained sufficiently, and the ratio is large (the amount of oxide film is large). The amount of Mg oxide, which is a reaction product, increases, resulting in deterioration of thermal characteristics. The oxide film is formed so that the mass ratio of the oxide film to the raw material SiC is 0.4% to 1.5%. Preferably, the oxide film is formed so that the mass ratio is 0.4% or more and 1% or less. However, the more (thick) the oxide film is, the more the molten metal can be impregnated at a low temperature and in a short time. Therefore, for example, when the effect of simplifying the heating device of the mold during impregnation, shortening of the impregnation time (cycle time), and extending the life of the mold is desired rather than improving the thermal characteristics, the mass ratio exceeds 1.5%. SiC with an oxide film can be used.

上記酸化膜を形成する際、原料のSiCを加熱する温度が700℃未満では、SiCの表面に酸化膜を十分に形成できず、溶融金属に十分に濡れないことで気孔率が高くなるため、酸化膜形成時の加熱温度は700℃以上とする。SiCの表面の酸化反応は、800℃で活発になり、また、加熱温度が高いほど、酸化膜の形成速度が速くなるため、800℃以上、特に850℃以上、更に875℃以上が好ましい。但し、加熱温度が高過ぎると、酸化膜の形成速度が速くなり過ぎて、酸化膜量(厚さ)や均一性の制御が困難になる。酸化膜が多くなったり、酸化膜の厚さが不均一になると、多量の反応生成物量による熱伝導率の低下や、部分的な溶融金属の濡れ不足が生じ得ることから、上限温度は1000℃が好ましい。酸化膜量は、加熱時間にも影響を受け、加熱時間が長いほど増加する傾向にある。好ましい加熱時間は、2時間程度である。また、酸化膜量は、原料のSiCの大きさにも影響を受け、原料のSiCが細かいほど増加する傾向にある。従って、酸化膜量が所望の量(質量割合)となるように、加熱温度、加熱時間、原料のSiCの大きさを適宜調整するとよい。また、酸化膜の総量を所定の量に維持したまま原料のSiCの大きさを変更したい場合、変更後のSiCの大きさに対応して、酸化膜形成時の加熱温度及び加熱時間を調整するとよい。   When forming the oxide film, if the temperature of heating the raw material SiC is less than 700 ° C., the oxide film cannot be sufficiently formed on the surface of the SiC, and the porosity is increased by not being sufficiently wet with the molten metal. The heating temperature for forming the oxide film is 700 ° C. or higher. The oxidation reaction on the surface of SiC becomes active at 800 ° C., and the higher the heating temperature, the faster the formation rate of the oxide film. Therefore, 800 ° C. or higher, particularly 850 ° C. or higher, and more preferably 875 ° C. or higher is preferable. However, if the heating temperature is too high, the formation rate of the oxide film becomes too fast, and it becomes difficult to control the amount (thickness) and uniformity of the oxide film. If the oxide film increases or the oxide film thickness becomes nonuniform, the thermal conductivity may decrease due to a large amount of reaction products and partial wetting of the molten metal may occur. Is preferred. The amount of oxide film is also affected by the heating time, and tends to increase as the heating time increases. A preferable heating time is about 2 hours. The amount of oxide film is also affected by the size of the raw material SiC, and tends to increase as the raw material SiC becomes finer. Therefore, the heating temperature, the heating time, and the size of the raw material SiC may be appropriately adjusted so that the oxide film amount becomes a desired amount (mass ratio). Also, if you want to change the SiC size of the raw material while maintaining the total amount of oxide film at a predetermined amount, adjust the heating temperature and heating time when forming the oxide film according to the changed SiC size. Good.

成形型への分散材原料の配置は、例えば、分散材原料が粉末である場合、粉末のままタッピングすることで成形型に充填したり、スラリーを作製して成形型に流す鋳込み成型をすることが挙げられる。鋳込み成型は、単純な形状だけでなく、複雑な形状の成形型に分散材原料を簡単に配置できる。また、鋳込み成型を行う場合、適宜、タッピングしたり、圧縮することで、SiC間の隙間を低減してSiCの充填率を高められる。更に、分散材原料からなる成形体を予め作製して成形型に配置してもよい。成形体は、例えば、スラリーを成形して乾燥させたものや分散材原料とバインダとを混合して加圧成形したもの、或いはこれらの成形体を更に焼結したもの、その他、市販の焼結材が利用できる。成形後に焼結した焼結体では、焼結により、SiC同士を直接結合した場合、熱膨張係数が小さい複合材料が得られる傾向にある。焼結する場合、酸化処理は、焼結後に行ってもよい。市販の焼結材を用いる場合、焼結材に酸化処理を施す。   For example, when the dispersion material is powder, the dispersal material is placed in the mold by tapping the powder as it is, filling the mold, or casting the slurry into the mold. Is mentioned. Casting molding can easily disperse the raw material of the dispersion material not only in a simple shape but also in a complicated shape. Moreover, when performing casting molding, the gap between SiC can be reduced and the filling rate of SiC can be raised by tapping or compressing suitably. Furthermore, a molded body made of a dispersion material material may be prepared in advance and placed in a mold. The molded body is, for example, a slurry formed and dried, a dispersion material raw material and a binder mixed and pressure-molded, a sintered body of these molded bodies, or a commercially available sintered body. Material is available. In a sintered body sintered after forming, when SiC is directly bonded by sintering, a composite material having a small thermal expansion coefficient tends to be obtained. When sintering, the oxidation treatment may be performed after sintering. When using a commercially available sintered material, the sintered material is oxidized.

分散材原料と溶融金属との接触は、Arといった不活性雰囲気で行うと、溶融金属(特に、Mg)と雰囲気ガスとの反応を防止でき、反応生成物の存在に伴う熱特性の劣化を抑制できる。雰囲気圧力は、大気圧以下とすると、ガスの取り込みによる気孔が生じ難く好ましい。   When contact between the dispersion material and the molten metal is performed in an inert atmosphere such as Ar, the reaction between the molten metal (especially Mg) and the atmospheric gas can be prevented, and the deterioration of the thermal characteristics due to the presence of the reaction product is suppressed. it can. When the atmospheric pressure is set to atmospheric pressure or lower, it is preferable that pores due to gas uptake hardly occur.

溶融金属の好ましい含浸温度は、酸化膜量(厚さ)に依存し、上記範囲において酸化膜量が少ない場合、含浸温度は高い方が好ましく、上記範囲において酸化膜量が多い場合、含浸温度は低くてもよい。具体的には、0.4質量%以上0.65質量%以下の場合、含浸温度は、800℃以上1000℃以下が好ましく、0.65質量%超1.5%未満の場合、含浸温度は、675℃以上875℃以下でもよいし、勿論875℃超でもよい。より具体的には、例えば、母材を純マグネシウムとする場合であって、酸化膜量を原料のSiCの総量に対して0.4質量%程度とするとき、溶融金属の含浸温度を750℃超とすると溶融金属と分散材原料との濡れ性が高くなり、含浸することができる。含浸温度が高いほど濡れ性が高まって気孔率が減少するため、含浸温度は、800℃以上、特に850℃以上が好ましい。例えば、母材を純マグネシウムとする場合であって、酸化膜量を原料のSiCの総量に対して0.8質量%程度とするとき、溶融金属の含浸温度を675℃以上とすると溶融金属と分散材原料との濡れ性が高くなり含浸することができる。このとき、上記酸化膜量が0.4質量%程度の場合と同様に、含浸温度が高いほど濡れ性が高まって気孔率が減少するため、含浸温度は、700℃以上、特に725℃以上が好ましい。酸化膜量がより多い場合(但し、1.5質量%以下)は、溶融金属の含浸温度が700℃未満であっても良好に含浸できると考えられる。但し、母材を純マグネシウムとする場合、含浸温度を1000℃超とすると、引け巣やガスホールといった欠陥が複合材料に生じたり、Mgが沸騰する恐れがあるため、1000℃以下が好ましい。   The preferable impregnation temperature of the molten metal depends on the amount of oxide film (thickness) .If the amount of oxide film is small in the above range, the impregnation temperature is preferably high.If the amount of oxide film is large in the above range, the impregnation temperature is It may be low. Specifically, in the case of 0.4 mass% or more and 0.65 mass% or less, the impregnation temperature is preferably 800 ° C or more and 1000 ° C or less, and in the case of more than 0.65 mass% and less than 1.5%, the impregnation temperature is 675 ° C or more and 875 ° C or less. Of course, it may be over 875 ° C. More specifically, for example, when the base material is pure magnesium and the oxide film amount is about 0.4% by mass with respect to the total amount of raw material SiC, the impregnation temperature of the molten metal is more than 750 ° C. As a result, the wettability between the molten metal and the dispersion material becomes high, and impregnation is possible. The higher the impregnation temperature, the higher the wettability and the lower the porosity. Therefore, the impregnation temperature is preferably 800 ° C. or higher, particularly 850 ° C. or higher. For example, when the base material is pure magnesium and the oxide film amount is about 0.8% by mass with respect to the total amount of raw material SiC, and the impregnation temperature of the molten metal is 675 ° C. or higher, the molten metal and the dispersion material The wettability with a raw material becomes high and can be impregnated. At this time, as in the case where the amount of the oxide film is about 0.4 mass%, the higher the impregnation temperature, the higher the wettability and the lower the porosity. Therefore, the impregnation temperature is preferably 700 ° C. or higher, particularly 725 ° C. or higher. When the amount of oxide film is larger (however, 1.5% by mass or less), it is considered that good impregnation can be achieved even when the impregnation temperature of the molten metal is less than 700 ° C. However, when the base material is pure magnesium, if the impregnation temperature exceeds 1000 ° C., defects such as shrinkage cavities and gas holes may occur in the composite material, and Mg may boil.

一方、母材をマグネシウム合金とする場合、液相線温度が純マグネシウムの融点よりも低くなるため、より低い温度で含浸可能である。例えば、母材をAZ31やAZ91とする場合、酸化膜量が少ない場合でも含浸温度が800℃以下でも含浸可能であり、母材をAZ91とする場合、含浸可能温度は650℃以上である。この場合も、上記純マグネシウムを母材とする場合と同様に温度が高いほど濡れ性が高まって気孔率が減少するため、含浸温度は、700℃以上が好ましい。母材をマグネシウム合金とする場合、蒸気圧の低下、沸点の上昇が生じるため、含浸温度を若干高められ、1000℃以上とすることができるが、それでも1100℃未満が好ましい。   On the other hand, when the base material is a magnesium alloy, the liquidus temperature is lower than the melting point of pure magnesium, so that the impregnation is possible at a lower temperature. For example, when the base material is AZ31 or AZ91, impregnation is possible even when the amount of oxide film is small even if the impregnation temperature is 800 ° C. or less. When the base material is AZ91, the impregnation temperature is 650 ° C. or more. Also in this case, the impregnation temperature is preferably 700 ° C. or higher because the wettability increases and the porosity decreases as the temperature increases, as in the case where the pure magnesium is used as the base material. When the base material is a magnesium alloy, the vapor pressure decreases and the boiling point increases, so that the impregnation temperature can be raised slightly and can be set to 1000 ° C. or higher, but it is still preferably less than 1100 ° C.

複合物における溶融金属の凝固も不活性雰囲気で行うことが好ましく、雰囲気圧力は、大気圧でもよいが、凝固時の欠陥生成を抑制するために、大気圧以上としてもよい。複合物の冷却は、全体に亘って均一的に、かつ晶出物の成長を抑制するために速く行うことが好ましい。熱伝導性に優れる炭素、黒鉛、ステンレス鋼などで形成された成形型を用いたり、自然放冷だけでなく、ファンなどを用いた空冷や水冷などの強制冷却を行うと、冷却速度を速められる。   Solidification of the molten metal in the composite is also preferably performed in an inert atmosphere, and the atmospheric pressure may be atmospheric pressure, but may be higher than atmospheric pressure in order to suppress generation of defects during solidification. It is preferable that the cooling of the composite is carried out quickly throughout the entire body in order to suppress the growth of the crystallized product. Cooling speed can be increased by using a mold made of carbon, graphite, stainless steel, etc., which has excellent thermal conductivity, or by forced cooling such as air cooling or water cooling using a fan as well as natural cooling. .

更に、製造方法(I)において、凝固された複合凝固物を加圧して、この複合凝固物中に存在する気孔を押し潰す加圧工程を具えると、気孔率をより低減できる。   Furthermore, in the production method (I), the porosity can be further reduced by providing a pressurizing step of pressurizing the solidified solidified solid and crushing pores existing in the solidified solidified.

上記加圧工程において加圧は、常温で行ってもよいが、複合凝固物を加熱した状態で行うと、母材の塑性加工性を高めて、より低い圧力で気孔を押し潰すことができる。或いは、加圧時の圧力を一定とする場合、複合凝固物を加熱した状態で加圧すると、常温の場合よりも気孔を効果的に押し潰すことができる。加圧圧力は1ton/cm2以上が好ましく、大きいほど気孔を潰し易いため、3ton/cm2以上、更に5ton/cm2以上が好ましく、加圧によりSiCを損傷しないように9ton/cm2以下が好ましい。加圧圧力は、加熱温度に応じて変化させるとよい。例えば、加熱温度を240℃超と高めにする場合、加圧圧力を1ton/cm2以上とすることで、気孔を効果的に押し潰すことができる。加熱温度を150℃以上240℃以下と比較的低温にする場合、加圧圧力を3ton/cm2以上とすることで、気孔を効果的に押し潰すことができる。常温以上150℃未満とする場合、加圧圧力を5ton/cm2以上とすることで、気孔を効果的に押し潰すことができる。上述のように温度が高いほど気孔を潰し易いが、凝固した母材が溶融しないように、加熱温度の上限は、母材であるマグネシウム又はマグネシウム合金の融点(液相線温度)とする。より好ましい加熱温度は、400℃以上600℃以下である。加圧温度、加圧圧力は、複合凝固物が破損したり、過剰な歪が導入されない範囲で適宜選択するとよい。加圧時間が長過ぎると、母材に歪などが加えられるため、加圧時間は、10分程度が好ましい。なお、マグネシウムに質量割合で数%のLiを添加すると、マグネシウムの結晶構造が塑性変形し易いbcc構造となり、常温〜150℃未満であっても、5ton/cm2以下の比較的低い圧力で気孔を効果的に押し潰すことができる。 In the pressurizing step, pressurization may be performed at room temperature, but if the composite solidified product is heated, the plastic workability of the base material can be improved and the pores can be crushed with a lower pressure. Or when making the pressure at the time of pressurization constant, if it pressurizes in the state which heated the composite solidified substance, a pore can be crushed more effectively than the case of normal temperature. Applied pressure is preferably 1 ton / cm 2 or more, liable crush larger pores, 3 ton / cm 2 or more, further 5 ton / cm 2 or more, is to 9ton / cm 2 or less so as not to damage the SiC by pressurization preferable. The pressurizing pressure may be changed according to the heating temperature. For example, when the heating temperature is increased to over 240 ° C., the pores can be effectively crushed by setting the pressurizing pressure to 1 ton / cm 2 or more. When the heating temperature is set to a relatively low temperature of 150 ° C. or higher and 240 ° C. or lower, the pores can be effectively crushed by setting the pressure to 3 ton / cm 2 or higher. When the temperature is normal temperature or higher and lower than 150 ° C., the pores can be effectively crushed by setting the pressure to 5 ton / cm 2 or higher. As described above, the higher the temperature, the more easily the pores are crushed. However, the upper limit of the heating temperature is the melting point (liquidus temperature) of magnesium or a magnesium alloy as the base material so that the solidified base material does not melt. A more preferable heating temperature is 400 ° C. or more and 600 ° C. or less. The pressurization temperature and pressurization pressure may be appropriately selected within a range in which the composite solidified product is not damaged or excessive strain is not introduced. If the pressurization time is too long, distortion or the like is added to the base material, and therefore the pressurization time is preferably about 10 minutes. In addition, when several percent of Li by mass is added to magnesium, the crystal structure of magnesium becomes a bcc structure that is easily plastically deformed, and even at room temperature to less than 150 ° C, pores can be formed at a relatively low pressure of 5 ton / cm 2 or less. Can be effectively crushed.

加圧工程後に、母材に生じた歪みを除去するために、焼き鈍しを行ってもよい。焼き鈍しの温度の上限は、母材であるマグネシウム又はマグネシウム合金の融点(液相線温度)とする。   After the pressurizing step, annealing may be performed to remove distortion generated in the base material. The upper limit of the annealing temperature is the melting point (liquidus temperature) of the base material magnesium or magnesium alloy.

[製造方法(II)]
上述のように複合凝固物を加熱した状態で加圧することで、気孔を押し潰して消滅させられるため、気孔率を効果的に低減できる。具体的には、気孔率が5%以下、特に、3%未満の複合凝固物が得られる。加圧対象である複合凝固物の製造方法は、特に問わない。上述のように本発明製造方法(I)により製造された複合凝固物でも、原料に酸化膜を形成していないSiCを用いて本発明製造方法(I)と同様な溶浸法により製造したものでも、一般に気孔が多く存在する粉末冶金法(母材粉末と分散材原料粉末とを混合して成型し、焼成する方法)により製造されたものでも、溶融法(母材の溶融金属に分散材原料を混合した混合溶湯を凝固する方法)により製造されたものでもよい。加圧条件(温度、圧力、時間)は、上述の条件と同様である。
[Production Method (II)]
By pressurizing the composite solidified product in a heated state as described above, the pores can be crushed and disappeared, so that the porosity can be effectively reduced. Specifically, a composite coagulated product having a porosity of 5% or less, particularly less than 3% is obtained. There is no particular limitation on the method for producing the composite coagulated product to be pressurized. As described above, the composite coagulated product manufactured by the manufacturing method (I) of the present invention is manufactured by the same infiltration method as the manufacturing method (I) of the present invention using SiC without forming an oxide film as a raw material. However, even those manufactured by the powder metallurgy method (a method in which the base material powder and the dispersion material raw material powder are mixed and molded and fired) generally have a large number of pores, the melting method (the dispersion material on the molten metal of the base material) It may be produced by a method of solidifying a mixed molten metal mixed with raw materials. The pressurizing conditions (temperature, pressure, time) are the same as those described above.

本発明製造方法によれば、含浸温度を非常に高くしたり、溶浸剤を用いたりすることなく、気孔率が低い複合材料を製造することができる。本発明複合材料によれば、溶浸剤の使用由来する熱伝導率が低い相の含有率や気孔率が低いことから、熱特性に優れる。   According to the production method of the present invention, a composite material having a low porosity can be produced without increasing the impregnation temperature or using an infiltrant. According to the composite material of the present invention, since the content and porosity of the phase having low thermal conductivity derived from the use of the infiltrant are low, the thermal characteristics are excellent.

試験例1で作製した複合材料の顕微鏡写真であり、(I)は試料No.1-1、(II)は試料No.1-2、(III)は試料No.1-3、(IV)は試料No.1-4を示す。It is a micrograph of the composite material produced in Test Example 1, (I) is sample No. 1-1, (II) is sample No. 1-2, (III) is sample No. 1-3, (IV) Indicates Sample No. 1-4. 試験例1で作製した試料のうち、原料に#120:#600=8:2のSiC粉末を用いた試料について、原料のSiCに酸化処理を施すときの加熱温度と、得られた複合材料の気孔率との関係を示すグラフである。Of the samples prepared in Test Example 1, for the sample using SiC powder of # 120: # 600 = 8: 2 as the raw material, the heating temperature when oxidizing the raw material SiC and the obtained composite material It is a graph which shows the relationship with a porosity. 試験例2で作製した複合材料の顕微鏡写真であり、(I)は試料No.2-9、(II)は試料No.2-16を示す。4 is a micrograph of the composite material produced in Test Example 2, wherein (I) shows sample No. 2-9 and (II) shows sample No. 2-16.

(試験例1)
母材金属が純マグネシウム又はマグネシウム合金であり、分散材がSiCであるマグネシウム基複合材料を作製し、気孔率及び熱特性を調べた。
(Test Example 1)
A magnesium-based composite material in which the base metal was pure magnesium or a magnesium alloy and the dispersion material was SiC was produced, and the porosity and thermal characteristics were examined.

複合材料は、以下のように作製した。原料として、表1に示す母材(Mg:99.8質量%以上のMg及び不純物からなる純マグネシウム(表1では「Mg」と記載)、AZ31及びAZ91:Al,Znを含有するマグネシウム合金)と、平均粒径の異なるSiCの粉末(平均粒径:#120(約150μm)、#600(約25μm)、#1000(約15μm))と、SiC焼結体とを用意した。原料はいずれも市販のものを用いた。   The composite material was produced as follows. As raw materials, the base material shown in Table 1 (Mg: pure magnesium composed of 99.8% by mass or more of Mg and impurities (described as `` Mg '' in Table 1), AZ31 and AZ91: magnesium alloy containing Al, Zn), and SiC powders having different average particle sizes (average particle size: # 120 (about 150 μm), # 600 (about 25 μm), # 1000 (about 15 μm)) and a SiC sintered body were prepared. All the raw materials used were commercially available.

原料のSiC粉末、及びSiC焼結体に、表1に示す温度(℃)で酸化処理を施した。加熱時間は、いずれの試料も2時間とした。酸化処理後、酸化膜量を測定した。その結果を表1に示す。酸化膜量は、ICP-AES(誘導結合プラズマ発光分光分析)装置により測定した。なお、酸化処理を施していないものは、表1に「酸化なし」と記載している。   The raw SiC powder and the SiC sintered body were subjected to oxidation treatment at the temperature (° C.) shown in Table 1. The heating time was 2 hours for all samples. After the oxidation treatment, the amount of oxide film was measured. The results are shown in Table 1. The amount of oxide film was measured with an ICP-AES (Inductively Coupled Plasma Emission Spectroscopy) apparatus. In addition, those not subjected to oxidation treatment are described as “no oxidation” in Table 1.

酸化処理を施した被覆SiC粉末、被覆SiC焼結体、未処理のSiC粉末を表1に示す混合比(体積比率)で混合したものを直方体状の成形型(50mm×30mm×6mm)に流し入れた後、適宜振動を与えて均した(タップ充填した)。そして、母材となる溶融金属を成形型に導入して、表1に示す含浸温度(℃)、含浸時間(hour)に成形型を保持して、成形型中のSiCの集合体に溶融金属を含浸させた。上記含浸時間経過後、成形型を冷却して、溶融金属を凝固し、複合材料(複合凝固物)を得た。なお、溶融金属の導入から冷却までは、Ar雰囲気で行った(大気圧)。   A mixture of oxidized SiC powder, coated SiC sintered body, and untreated SiC powder mixed at the mixing ratio (volume ratio) shown in Table 1 is poured into a rectangular parallelepiped mold (50 mm x 30 mm x 6 mm) After that, it was leveled by applying appropriate vibrations (tap filling). Then, the molten metal as a base material is introduced into the mold, and the mold is held at the impregnation temperature (° C.) and the impregnation time (hour) shown in Table 1, and the molten metal is added to the SiC aggregate in the mold. Was impregnated. After the impregnation time elapsed, the mold was cooled to solidify the molten metal to obtain a composite material (composite solidified product). The process from introduction of the molten metal to cooling was performed in an Ar atmosphere (atmospheric pressure).

得られた各複合材料について、気孔率(%)、熱伝導率(W/K・m)、熱膨張係数(ppm/K)、SiCの含有量(体積割合、%)を調べた。その結果を表1に示す。   Each composite material obtained was examined for porosity (%), thermal conductivity (W / K · m), thermal expansion coefficient (ppm / K), and SiC content (volume ratio,%). The results are shown in Table 1.

複合材料中の気孔率(%)は、以下のように求めた。まず、得られた複合材料を樹脂に埋め込み、母材となる金属が含浸していない領域に存在するSiCが遊離しないように固定した。樹脂に埋め込んだ複合材料の任意の断面を、市販の非腐食性ダイヤモンドペースト及び潤滑液を用いて回転研磨板により研磨した後、この断面を光学顕微鏡で観察し(倍率:50倍)、この観察像において、2mm×3mm以上の領域を市販の画像処理装置で画像処理して、上記領域に存在する全ての気孔の合計面積を求め、{(合計面積)/(領域の面積)}×100をこの断面における気孔率とし、n=3の断面の気孔率の平均値を表1に示す。   The porosity (%) in the composite material was determined as follows. First, the obtained composite material was embedded in a resin and fixed so that SiC existing in a region not impregnated with the base metal was not released. An arbitrary cross section of the composite material embedded in the resin was polished with a rotating polishing plate using a commercially available non-corrosive diamond paste and a lubricating liquid, and then this cross section was observed with an optical microscope (magnification: 50 times). In the image, an area of 2 mm × 3 mm or more is image-processed with a commercially available image processing apparatus, and the total area of all pores existing in the area is obtained, and {(total area) / (area of area)} × 100 Table 1 shows the average value of the porosity of the cross section with n = 3 as the porosity in this cross section.

複合材料の熱伝導率及び熱膨張係数は、得られた複合材料から試験片を切り出し、市販の測定器を用いて測定した。なお、熱膨張係数は、30〜150℃の範囲について測定した。また、含浸時間経過後に含浸が十分に行われなかったなどの理由により試験片ができず、熱特性の測定が行えなかったものは、表1に「測定不可」と記載している。   The thermal conductivity and the thermal expansion coefficient of the composite material were measured using a commercially available measuring instrument after cutting out a test piece from the obtained composite material. In addition, the thermal expansion coefficient was measured about the range of 30-150 degreeC. In addition, Table 1 describes that “not measurable” when the test piece could not be obtained due to the reason that the impregnation was not sufficiently performed after the impregnation time and the thermal characteristics could not be measured.

複合材料中のSiCの含有量は、以下のように求めた。複合材料の任意の断面を光学顕微鏡で観察し(倍率:50倍)、この観察像を市販の画像処理装置で画像処理して、この断面に存在する全てのSiCの合計面積を求め、この合計面積を体積割合に換算したものをこの断面に基づく体積割合とし、n=3の断面の体積割合の平均値を表1に示す。   The content of SiC in the composite material was determined as follows. An arbitrary cross section of the composite material is observed with an optical microscope (magnification: 50 times), and this observation image is subjected to image processing with a commercially available image processing apparatus to obtain a total area of all SiC present in the cross section, and this total The area converted into the volume ratio is defined as the volume ratio based on this cross section, and the average value of the volume ratio of the cross section of n = 3 is shown in Table 1.

表1に示すように気孔率が3%未満である複合材料は、組成が同じ母材で比較すると、熱伝導率が高いことが分かる。また、このような複合材料は、700℃以上の加熱温度で酸化処理を施し、SiCに対して0.4質量%以上の酸化膜を形成した被覆SiC粉末を用い、母材の組成に応じて含浸温度を適宜調整することで製造できることが分かる。更に、原料のSiC粉末の平均粒径を小さくし、かつ小さいSiC粉末の使用量を増加させたり、酸化処理温度を高くすることによって、酸化膜量を0.65質量%超まで増やせることが分かる。そして、酸化膜量を0.65質量%超とすると、酸化膜量が0.45質量%の場合と比較して含浸温度が低くても、気孔率が低く熱伝導率が高い複合材料が製造できることが分かる。   As shown in Table 1, it can be seen that a composite material having a porosity of less than 3% has a high thermal conductivity when compared with a base material having the same composition. In addition, such a composite material is subjected to an oxidation treatment at a heating temperature of 700 ° C. or more, and uses a coated SiC powder in which an oxide film of 0.4% by mass or more is formed on SiC, and an impregnation temperature according to the composition of the base material. It turns out that it can manufacture by adjusting suitably. Furthermore, it can be seen that the oxide film amount can be increased to more than 0.65 mass% by reducing the average particle size of the raw SiC powder and increasing the amount of small SiC powder used or by increasing the oxidation treatment temperature. When the amount of oxide film exceeds 0.65% by mass, it can be seen that a composite material having low porosity and high thermal conductivity can be produced even when the impregnation temperature is lower than when the amount of oxide film is 0.45% by mass.

図1は、作製した複合材料の断面の光学顕微鏡写真(50倍)であり、(I)は試料No.1-1、(II)は試料No.1-2、(III)は試料No.1-3、(IV)は試料No.1-4を示す。図2は、原料として#120:#600=8:2のSiC粉末を用いた試料について、酸化処理時の加熱温度と気孔率との関係を示すグラフである。図1において、黒く見える部分が気孔であり、矩形状に見える複数の粒状物がSiCである(後述する図3についても同様)。図1に示すように、被覆SiC粉末を用いて製造した試料No.1-3,1-4は、未処理のSiC粉末を用いて製造した試料No.1-1と比較して、気孔が格段に低減されていることが分かる。特に、試料No.1-1は、大きな気孔が多数見られるのに対し、試料No.1-3(酸化膜量:0.45質量%)では、大きな気孔が少ないことが分かる。加熱温度が700℃未満である試料No.1-2(酸化膜量:0.21質量%)も気孔が多く存在することが分かる。酸化処理時の加熱温度をより高くした試料No.1-4(酸化膜量:0.86質量%)は、実質的に気孔が確認できない。これらの写真、及び図2のグラフから、酸化処理時の加熱温度が700℃以上、特に800℃以上であり、酸化膜量が0.4質量%以上であれば、気孔を格段に低減できることが分かる。また、酸化膜量が1質量%以下でも、気孔を十分に低減できることが分かる。   FIG. 1 is an optical micrograph (50 ×) of a cross-section of the produced composite material, (I) is sample No. 1-1, (II) is sample No. 1-2, (III) is sample No. 1-3 and (IV) show Sample No. 1-4. FIG. 2 is a graph showing the relationship between the heating temperature and the porosity during the oxidation treatment for a sample using SiC powder of # 120: # 600 = 8: 2 as a raw material. In FIG. 1, the portions that appear black are pores, and the plurality of particles that appear rectangular are SiC (the same applies to FIG. 3 described later). As shown in FIG. 1, sample Nos. 1-3 and 1-4 manufactured using the coated SiC powder have pores as compared to sample No. 1-1 manufactured using the untreated SiC powder. It can be seen that the number is significantly reduced. In particular, sample No. 1-1 has many large pores, whereas sample No. 1-3 (oxide film amount: 0.45 mass%) has few large pores. It can be seen that Sample No. 1-2 (amount of oxide film: 0.21 mass%) having a heating temperature of less than 700 ° C. has many pores. In sample No. 1-4 (the amount of oxide film: 0.86% by mass) in which the heating temperature during the oxidation treatment was higher, pores could not be substantially confirmed. From these photographs and the graph of FIG. 2, it can be seen that the pores can be remarkably reduced if the heating temperature during the oxidation treatment is 700 ° C. or higher, particularly 800 ° C. or higher, and the amount of oxide film is 0.4 mass% or higher. It can also be seen that the pores can be sufficiently reduced even when the oxide film amount is 1% by mass or less.

更に、加熱温度を700℃以上として酸化膜を形成した被覆SiC粉末を用いて製造した複合材料のうち、気孔率が3%未満だった各試料について、断面をオージェ電子分光装置で分析した。その結果、各試料の中心領域においてSiCの外周領域に酸素が認められ、この酸素濃度がこのSiCに対する主領域よりも高くなっていた。このことから、原料のSiCに形成した酸化膜と溶融金属とが反応し、SiCと溶融金属の接触を促進したことが裏付けられる。なお、酸素濃度の比較は、中心領域からSiCを選択し、このSiCに対して外周領域(SiCの輪郭線から150nmの地点)及び主領域から測定点をそれぞれ任意に5点選択して行い、5点のいずれもがSiCの外周領域の酸素濃度が主領域よりも高かった。   Furthermore, among the composite materials manufactured using the coated SiC powder on which an oxide film was formed with a heating temperature of 700 ° C. or higher, the cross section of each sample having a porosity of less than 3% was analyzed with an Auger electron spectrometer. As a result, oxygen was recognized in the outer peripheral region of SiC in the center region of each sample, and this oxygen concentration was higher than that in the main region for this SiC. This confirms that the oxide film formed on the raw material SiC reacts with the molten metal and promotes the contact between the SiC and the molten metal. In addition, the comparison of the oxygen concentration is performed by selecting SiC from the central region and arbitrarily selecting five measurement points from the outer peripheral region (a point 150 nm from the outline of the SiC) and the main region for this SiC, In all five points, the oxygen concentration in the outer peripheral region of SiC was higher than that in the main region.

更に、加熱温度を700℃以上として酸化膜を形成した被覆SiC粉末を用いて製造した複合材料の中には、熱伝導率が180W/K・m以上と高いものが得られ、気孔率が低いほど、熱伝導率が向上する傾向にある。また、熱伝導率が180W/K・m以上で熱膨張係数が4〜10ppm/Kである複合材料は、放熱部材に求められる熱特性を有することから、放熱部材に好適に利用できると期待される。   Furthermore, among the composite materials manufactured using coated SiC powder with an oxide film formed at a heating temperature of 700 ° C. or higher, those having a high thermal conductivity of 180 W / K · m or higher are obtained, and the porosity is low. As the result, the thermal conductivity tends to be improved. In addition, a composite material having a thermal conductivity of 180 W / K · m or more and a thermal expansion coefficient of 4 to 10 ppm / K is expected to be suitably used for a heat radiating member because it has the thermal characteristics required for the heat radiating member. The

加えて、被覆SiC粉末を用いて複合材料を製造する場合、含浸温度を675℃以上とすると、気孔率を低減できることが分かる。なお、母材が純マグネシウムである場合に含浸温度が1000℃であると、気孔率が3%を超えることがあった。この原因は、引け巣やガスホールが生じたためであると考えられ、凝固工程の前に、875℃以下の温度で十分な時間、溶融状態を保持したり、脱水素処理を施すなどの対策により、改善が可能であると考えられる。   In addition, it can be seen that when the composite material is manufactured using the coated SiC powder, the porosity can be reduced when the impregnation temperature is 675 ° C. or higher. When the base material is pure magnesium and the impregnation temperature is 1000 ° C., the porosity may exceed 3%. This is thought to be due to the formation of shrinkage cavities and gas holes, and measures such as maintaining the molten state at a temperature of 875 ° C. or lower for a sufficient amount of time or performing dehydrogenation treatment before the solidification process. It is thought that improvement is possible.

(試験例2)
母材金属が純マグネシウムであり、分散材がSiCである複合凝固物に加圧処理を施したマグネシウム基複合材料を作製し、気孔率を調べた。
(Test Example 2)
A magnesium-based composite material was prepared by applying pressure treatment to a composite solidified material in which the base metal was pure magnesium and the dispersion material was SiC, and the porosity was examined.

この試験では、試験例1で作製した試料No.1-1の複合凝固物(未処理のSiC粉末を使用して作製したもの)と同様の条件で複数の複合凝固物を作製し、各複合凝固物に以下の加圧処理を施した。   In this test, multiple composite solidified products were prepared under the same conditions as the sample No. 1-1 composite solidified product prepared in Test Example 1 (prepared using untreated SiC powder). The solidified product was subjected to the following pressure treatment.

作製した複合凝固物を常温(30℃)〜600℃に保持した状態で、1〜5ton/cm2で10minの条件で加圧処理を施して、複合材料を作製した。各試料の製造条件及び気孔率を表2に示す。 The composite solidified material thus prepared was subjected to pressure treatment at 1 to 5 ton / cm 2 for 10 minutes while being maintained at room temperature (30 ° C.) to 600 ° C. to prepare a composite material. Table 2 shows the production conditions and porosity of each sample.

得られた複合材料について、試験例1と同様にして、気孔率(%)を測定した。その結果を表2に示す。また、図3(I)に試料No.2-9、図3(II)に試料No.2-16の断面の光学顕微鏡写真(50倍)を示す。なお、複合材料中のSiCの含有量を試験例1と同様にして求めたところ、いずれの試料も58〜60体積%であった。   With respect to the obtained composite material, the porosity (%) was measured in the same manner as in Test Example 1. The results are shown in Table 2. Further, FIG. 3 (I) shows an optical microscope photograph (50 times) of a cross section of sample No. 2-9 and FIG. 3 (II) of sample No. 2-16. When the content of SiC in the composite material was determined in the same manner as in Test Example 1, all the samples were 58 to 60% by volume.

図3に示すように、特定の条件で加圧処理を行うことで、大きな気孔を消滅させることができることが分かる。具体的には、表2に示すように常温では加圧圧力を5ton/cm2以上、加熱温度が150℃のときは、加圧圧力を3t/cm2以上、加熱温度が240℃以上のときは、加圧圧力を1t/cm2以上とすると、複合材料の気孔率が大きく減少することが分かる。また、加圧時の加熱温度が高いほど、並びに加圧圧力が高いほど、気孔率を効果的に低減できることが分かる。このようにして作製した気孔率の低い複合材料は、試験例1と同様に、高い熱伝導特性を示すと考えられる。この試験から、原料のSiCに特定の処理を施さなくても、溶融金属の含浸処理後に特定の加圧処理を施すことにより、気孔率が小さい複合材料が得られることがわかる。また、原料のSiCに特定の処理を施した複合凝固物に上記特定の加圧処理を施した場合、気孔率を効果的に低減できると期待される。 As shown in FIG. 3, it can be seen that large pores can be eliminated by performing pressure treatment under specific conditions. Specifically, the applied pressure at normal temperature as shown in Table 2 5 ton / cm 2 or more, when the heating temperature is 0.99 ° C., the applied pressure 3t / cm 2 or more, when the heating temperature is above 240 ° C. It can be seen that the porosity of the composite material is greatly reduced when the pressure applied is 1 t / cm 2 or more. Moreover, it turns out that a porosity can be reduced effectively, so that the heating temperature at the time of pressurization is high, and a pressurization pressure is high. The composite material having a low porosity produced in this way is considered to exhibit high heat conduction characteristics as in Test Example 1. From this test, it can be seen that a composite material having a low porosity can be obtained by applying a specific pressure treatment after the impregnation treatment of the molten metal without performing a specific treatment on the raw material SiC. Moreover, when the said specific pressurization process is performed to the composite solidified material which performed specific process to raw material SiC, it is anticipated that a porosity can be reduced effectively.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、複合材料中のSiCの含有量、大きさ、形状、母材の組成などを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the content, size, shape, and composition of the base material of SiC in the composite material can be changed as appropriate.

本発明複合材料は、熱放散性に優れると共に、半導体素子やその周辺部品との熱膨張係数の整合性に優れるため、ヒートスプレッダーなどといった放熱部材の構成材料に好適に利用することができる。また、本発明複合材料の製造方法は、上記複合材料の製造に好適に利用することができる。   The composite material of the present invention is excellent in heat dissipation, and is excellent in matching of the thermal expansion coefficient with the semiconductor element and its peripheral components. Therefore, it can be suitably used as a constituent material of a heat radiating member such as a heat spreader. Moreover, the manufacturing method of this invention composite material can be utilized suitably for manufacture of the said composite material.

Claims (2)

マグネシウム又はマグネシウム合金からなる母材にSiCが分散したマグネシウム基複合材料であって、
前記マグネシウム基複合材料中のSiCの含有量が体積割合で50%以上80%以下であり、
前記マグネシウム基複合材料中の気孔率が3%未満であり、
熱伝導率が180W/m・K以上であり、
熱膨張係数が4×10−6/K以上10×10−6/K以下であり、
前記マグネシウム基複合材料中には、大きさが異なるSiC粉末が分散され、
大きいSiC粉末は、その平均粒径が50μm以上150μm以下であり、
小さいSiC粉末は、その平均粒径が前記大きいSiC粉末の平均粒径の1/20以上前記大きいSiC粉末の平均粒径の1/2以下であり、
前記大きいSiC粉末の体積比率が前記小さいSiC粉末よりも多いマグネシウム基複合材料。
A magnesium-based composite material in which SiC is dispersed in a base material made of magnesium or a magnesium alloy,
The content of SiC in the magnesium-based composite material is 50% or more and 80% or less by volume ratio,
The porosity in the magnesium-based composite material is less than 3%;
The thermal conductivity is 180 W / m · K or more,
Thermal expansion coefficient of Ri der 4 × 10 -6 / K or 10 × 10 -6 / K or less,
In the magnesium-based composite material, SiC powders having different sizes are dispersed,
The large SiC powder has an average particle size of 50 μm or more and 150 μm or less,
The small SiC powder has an average particle size of 1/20 or more of the average particle size of the large SiC powder and 1/2 or less of the average particle size of the large SiC powder,
A magnesium-based composite material in which the volume ratio of the large SiC powder is larger than that of the small SiC powder .
熱伝導率が223W/m・K以上である請求項1に記載のマグネシウム基複合材料。 The magnesium-based composite material according to claim 1, wherein the thermal conductivity is 223 W / m · K or more.
JP2013256016A 2013-12-11 2013-12-11 Magnesium matrix composite Active JP5715678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256016A JP5715678B2 (en) 2013-12-11 2013-12-11 Magnesium matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256016A JP5715678B2 (en) 2013-12-11 2013-12-11 Magnesium matrix composite

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008261522A Division JP5437616B2 (en) 2008-10-03 2008-10-08 Heat dissipation member and method for manufacturing heat dissipation member

Publications (2)

Publication Number Publication Date
JP2014062329A JP2014062329A (en) 2014-04-10
JP5715678B2 true JP5715678B2 (en) 2015-05-13

Family

ID=50617807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256016A Active JP5715678B2 (en) 2013-12-11 2013-12-11 Magnesium matrix composite

Country Status (1)

Country Link
JP (1) JP5715678B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469295B2 (en) 2019-04-02 2024-04-16 住友電気工業株式会社 Composite material and heat dissipation material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881722A (en) * 1994-09-14 1996-03-26 Suzuki Motor Corp Production of mg-base partially reinforced composite member
JPH11277217A (en) * 1998-01-19 1999-10-12 Mitsubishi Materials Corp Substrate for heat radiation, and its manufacture
JP2001181066A (en) * 1999-12-27 2001-07-03 Sumitomo Electric Ind Ltd Silicon carbide-based porous body and composite material comprising aluminum and the same
JP2002285258A (en) * 2001-03-23 2002-10-03 Taiheiyo Cement Corp Metal-ceramic composite material and production method therefor
JP2003183748A (en) * 2001-12-19 2003-07-03 Toyota Motor Corp Process for manufacturing magnesium-based, dispersion strengthened composite material, reinforcement particle used for this and its manufacturing process
JP4720981B2 (en) * 2005-04-15 2011-07-13 住友電気工業株式会社 Magnesium matrix composite
JP2007247058A (en) * 2006-02-14 2007-09-27 Akiyoshi Nishino Composite material and its production method

Also Published As

Publication number Publication date
JP2014062329A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2010038483A1 (en) Composite member
JP4541969B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
JP4720981B2 (en) Magnesium matrix composite
CN103501939A (en) Composite material for heat dissipating substrate, and method for manufacturing composite material for heat dissipating substrate
JP5340864B2 (en) SiC / Al composite material and method for producing the same
JP5645048B2 (en) Heat dissipation member, semiconductor device, and method for manufacturing composite material
JP5265867B2 (en) Method for producing a high density semi-finished product or component
JP2014001439A (en) Composite member, method for manufacturing composite member and semiconductor device
JP2017039997A (en) Aluminum alloy-ceramic composite material and production method for aluminum alloy-ceramic composite material
JP5715678B2 (en) Magnesium matrix composite
JP5437616B2 (en) Heat dissipation member and method for manufacturing heat dissipation member
JP2015140456A (en) Composite material, semiconductor device, and method for manufacturing composite material
JP6221246B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6807013B2 (en) Manufacturing method of aluminum alloy-ceramic composite material
JP6617153B2 (en) Method for producing aluminum alloy-silicon carbide composite
JP4594433B1 (en) Heat dissipation member
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
Paidpilli et al. Sintering Response of Aluminum 6061-TiB 2 Composite: Effect of Prealloyed and Premixed Matrix
JP2016160523A (en) Copper-molybdenum composite material and method for producing the same
JP5513058B2 (en) Composite member manufacturing method, composite member, heat dissipation member, and semiconductor device
JP4693399B2 (en) Method for producing ceramic-metal composite
JP5503474B2 (en) Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member
JP2013245374A (en) Composite material, method for producing the same, and semiconductor device
JP2008066379A (en) Composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R150 Certificate of patent or registration of utility model

Ref document number: 5715678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250