JP2001181066A - Silicon carbide-based porous body and composite material comprising aluminum and the same - Google Patents

Silicon carbide-based porous body and composite material comprising aluminum and the same

Info

Publication number
JP2001181066A
JP2001181066A JP36908699A JP36908699A JP2001181066A JP 2001181066 A JP2001181066 A JP 2001181066A JP 36908699 A JP36908699 A JP 36908699A JP 36908699 A JP36908699 A JP 36908699A JP 2001181066 A JP2001181066 A JP 2001181066A
Authority
JP
Japan
Prior art keywords
sic
porous
composite material
thermal conductivity
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36908699A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP36908699A priority Critical patent/JP2001181066A/en
Publication of JP2001181066A publication Critical patent/JP2001181066A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Abstract

PROBLEM TO BE SOLVED: To provide an SiC porous body preferable for a filter and to obtain an Al/SiC-based composite material having high thermal conductivity and preferable for a heat sink for a semiconductor device by compositing the body with Al or an Al alloy. SOLUTION: This SiC porous body is obtained by sintering SiC powder with C powder and has a three-dimensional skeleton sintered α-SiC hexagonal tabular particle, 30-60% porosity, 10-200 μm mean pore diameter, >=30 Mpa three-point bending strength and >=10 W/m.K thermal conductivity. The Al/SiC- based composite material of the SiC porous body infiltrated with Al or an Al alloy has 40-70 vol.% SiC based on the whole, >=200 W/m.K thermal conductivity at 20 deg.C and small coefficient of thermal expansion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子及び電気
機器、機械構造部品、並びに化学装置等の広汎な分野に
有用な、高い熱伝導率と低い熱膨張係数を有するAl−
Si系複合材料、及びその骨格となるSiC多孔体に関
する。
BACKGROUND OF THE INVENTION The present invention relates to an Al-based alloy having a high thermal conductivity and a low coefficient of thermal expansion, which is useful in a wide variety of fields such as various electronic and electrical devices, mechanical structural parts, and chemical devices.
The present invention relates to a Si-based composite material and a porous SiC body serving as a skeleton thereof.

【0002】[0002]

【従来の技術】セラミック多孔体、特に炭化ケイ素(S
iC)粒子を、その粒界相を介して互いに焼結ネッキン
グした三次元骨格状組織を有する炭化ケイ素系多孔体
は、近年各種フィルタとして注目されている。その主な
用途は、半導体洗浄液のリサイクルと排液処理のための
液体濾過用フィルターや、自動車ディーゼルエンジンの
排気ガス浄化用のパティキュレートフィルタに向けられ
ている。
2. Description of the Related Art Porous ceramics, especially silicon carbide (S)
iC) A silicon carbide-based porous body having a three-dimensional skeletal structure in which particles are sintered and necked with each other via a grain boundary phase has attracted attention as various filters in recent years. Its main uses are directed to liquid filtration filters for recycling and drainage of semiconductor cleaning liquids, and particulate filters for purifying exhaust gas of automobile diesel engines.

【0003】前者の液体濾過用フィルターの場合には、
処理液中の微細な粒子の捕集能力並びに液の透過処理能
力の向上と共に、処理液に対する高い耐食性が要求され
る。このため、耐食性の良いセラミックスを用い、その
気孔率を上げると共に、平均細孔径や孔径部分の構造を
改良する試みがなされている。また、後者のパティキュ
レートフィルターの場合には、処理ガス中の微細なパテ
ィキュレートの効率的な捕集並びに有害ガスの分離能力
の向上と共に、高温ガス下での耐熱性及び耐食性が要求
される。このため、上記の場合と同様のセラミックスの
改良が進められつつある。
In the case of the former liquid filtration filter,
Along with improving the ability to collect fine particles in the processing liquid and the processing ability to permeate the liquid, high corrosion resistance to the processing liquid is required. For this reason, attempts have been made to increase the porosity of ceramics having good corrosion resistance and to improve the average pore diameter and the structure of the pore diameter portion. In the case of the latter particulate filter, heat resistance and corrosion resistance under a high-temperature gas are required, as well as efficient collection of fine particulates in the processing gas and improvement of the ability to separate harmful gases. For this reason, improvements in ceramics similar to those described above are being promoted.

【0004】また、このようなセラミック多孔体には、
フィルター等として使用する際に、形状保持のための機
械的な強度が備わっている必要がある。更に、排気ガス
浄化用パティキュレートフィルターでは、フィルタ自体
の昇温による基本性能の劣化を抑えるために、高い熱伝
導性と、常温から実用温度までの温度範囲で低熱膨張性
であることも求められている。
In addition, such a porous ceramic body includes:
When used as a filter or the like, it is necessary to have mechanical strength for maintaining the shape. In addition, particulate filters for purifying exhaust gas are required to have high thermal conductivity and low thermal expansion in the temperature range from room temperature to practical temperature in order to suppress deterioration of basic performance due to temperature rise of the filter itself. ing.

【0005】一方、このような高熱伝導性と低熱膨張
性、機械的な強度を兼ね備えたセラミック多孔体材料
は、その特徴を生かし、金属と複合された複合材料とす
ることによって、半導体装置のヒートシンク材として注
目されている。その有力な候補として、フィルタ用途同
様に上記のSiC多孔体が脚光を浴びている。
On the other hand, a ceramic porous material having such high thermal conductivity, low thermal expansion, and mechanical strength makes use of its characteristics to form a composite material which is composited with a metal. Has attracted attention as a material. As a promising candidate, the above-mentioned porous SiC body has been spotlighted as in the case of a filter.

【0006】かかる複合材料として、SiC多孔体にA
l又はAl合金を溶浸して複合化させたものがある。こ
のようなAl−SiC系複合材料は、例えば以下のよう
にして作製される。まず、SiC粉末をバインダーと共
に成形し、これを焼結して多孔体とする。次に、このS
iC多孔体に溶融したAl又はAl合金を溶浸させるこ
とにより、Al−SiC系複合材料が得られる。このよ
うなAl−SiC系複合材料は、一般にAl中にSiC
粒子が分散した粒子分散型複合材料の組織を持ってい
る。
[0006] As such a composite material, AC porous
There is a composite obtained by infiltrating l or Al alloy. Such an Al-SiC-based composite material is produced, for example, as follows. First, SiC powder is molded together with a binder, and this is sintered to form a porous body. Next, this S
By infiltrating molten Al or an Al alloy into the iC porous body, an Al-SiC-based composite material can be obtained. Such an Al-SiC-based composite material generally contains SiC in Al.
It has the structure of a particle-dispersed composite material in which particles are dispersed.

【0007】上記した従来のAl−SiC系複合材料
は、粒子分散型複合材料に適用される熱膨張係数の理論
値に近い熱膨張係数を持っているが、近年の半導体デバ
イス用のヒートシンク材には、熱膨張係数がより一層小
さく、且つ熱伝導率の高い複合材料が要求されている。
Although the above-mentioned conventional Al-SiC-based composite material has a thermal expansion coefficient close to the theoretical value of the thermal expansion coefficient applied to the particle-dispersed composite material, it has recently been used as a heat sink material for semiconductor devices. Therefore, there is a demand for a composite material having a smaller thermal expansion coefficient and a higher thermal conductivity.

【0008】[0008]

【発明が解決しようとする課題】上記した粒子分散型複
合材料の組織を有する従来のAl−SiC系複合材料に
対して、更に熱膨張係数を小さくし且つ熱伝導率を高め
ることが検討され、これを解決する方法としてSiCを
骨格構造化した多孔体が提案されている。
It has been studied to further reduce the coefficient of thermal expansion and increase the thermal conductivity of a conventional Al-SiC-based composite material having the structure of the above-mentioned particle-dispersed composite material. As a method for solving this, a porous body having a skeleton structure of SiC has been proposed.

【0009】例えば、「粉体粉末冶金協会講演概要集
(平成11年度秋期大会)」第255頁に報告されてい
るように、まず、SiC粉末をバインダーと共に成形し
て、不活性ガス中にて2000℃以上の温度で焼成す
る。この焼成によって、SiC粒子の一部が昇華してガ
ス化し、SiCとして再折出するときに、SiC粒子同
士が焼結して骨格構造化したSiC多孔体となる。この
骨格構造を有するSiC多孔体に、溶融したAl又はA
l合金を溶浸させることにより、Al−SiC系複合材
料を得ることができる。
For example, as reported on page 255 of "Summary of Powder and Powder Metallurgy Association (Fall 1999 Meeting)", first, SiC powder is molded together with a binder, and the resultant is molded in an inert gas. Baking at a temperature of 2000 ° C. or more. By this firing, a part of the SiC particles sublimates and gasifies, and when the SiC particles are re-folded as SiC, the SiC particles are sintered to form a SiC porous body having a skeleton structure. Melted Al or A is added to the porous SiC body having the skeleton structure.
By infiltrating the 1 alloy, an Al-SiC-based composite material can be obtained.

【0010】このようにSiC粒子が骨格構造を形成す
ることによって、同じSiC含有量のAl−SiC系複
合材料であっても、Alを主成分とする金属粉末とSi
C粉末とを混合し、これを成形して焼結する焼結法によ
って得られるものや、Al溶湯中にSiC粉末を投入
し、これを分散固化する鋳造法によって得られるものの
ように、Al系マトリックス金属中にSiC粒子が散ら
ばっている、いわゆる粒子分散型複合材料よりも、熱膨
張係数が小さくなる。これは、SiCが骨格構造を形成
することで、Al部分の熱膨張が抑制されるためであ
る。更に、このようなSiC骨格構造を有する複合材料
は、熱伝導率の高いSiC粒子が連続相となっているた
めに、粒子分散型複合材料よりも高い熱伝導率が得られ
る。
[0010] By forming the skeleton structure of the SiC particles in this way, even if the Al-SiC-based composite material has the same SiC content, the metal powder containing Al as a main component and the Si-based composite material have the same SiC content.
Al-based materials such as those obtained by a sintering method in which C powder is mixed and molded and sintered, and those obtained by a casting method in which SiC powder is poured into an Al melt and dispersed and solidified. The coefficient of thermal expansion is smaller than that of a so-called particle-dispersed composite material in which SiC particles are scattered in a matrix metal. This is because the thermal expansion of the Al portion is suppressed by forming the skeleton structure of SiC. Further, in the composite material having such a SiC skeleton structure, since the SiC particles having a high thermal conductivity are in a continuous phase, a higher thermal conductivity can be obtained than the particle-dispersed composite material.

【0011】しかし、このようなSiC粒子の骨格構造
を有するSiC多孔体を使用したAl−SiC系複合材
料であっても、そのベースとなるSiC多孔体自体の熱
伝導率が低いため、フィルタ用あるいは半導体装置用の
いずれの用途にも十分な熱伝導率ではない。即ち、通常
このような骨格構造の組織を持つAl−SiC系複合材
料は、熱伝導率の高いSiC粒子が連続相を形成してお
り、粒子分散複合材料よりも高い熱伝導率のものが得ら
れるが、それでも例えば上記講演概要集に記載のものは
170W/m・K程度と低い熱伝導率であった。
However, even in the case of an Al—SiC-based composite material using such a porous SiC material having a skeleton structure of SiC particles, the thermal conductivity of the base SiC porous material itself is low, so that it is not suitable for a filter. Alternatively, the thermal conductivity is not sufficient for any use for semiconductor devices. That is, an Al-SiC-based composite material having such a skeleton structure usually has a continuous phase of SiC particles having a high thermal conductivity, and has a higher thermal conductivity than the particle-dispersed composite material. Nevertheless, nonetheless, for example, those described in the above summary of the lecture had a low thermal conductivity of about 170 W / m · K.

【0012】本発明は、かかる従来の事情に鑑み、熱伝
導率を更に高めたSiC多孔体を提供すると共に、その
SiC多孔体を用いて、優れた機械的強度と高い熱伝導
率を有するAl−SiC系複合材料を提供することを目
的とする。
In view of the above circumstances, the present invention provides an SiC porous body having further improved thermal conductivity, and using the SiC porous body, has excellent mechanical strength and high thermal conductivity. -To provide a SiC-based composite material.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するSiC多孔体は、六角板状のα型
SiC粒子が焼結ネッキングした三次元骨格組織を持つ
SiC多孔体であって、気孔率が30〜60%、平均細
孔径が10〜200μm、JIS準拠の3点曲げ強度が
30MPa以上、20℃での熱伝導率が10W/m・K
以上であることを特徴とする。
In order to achieve the above object, the present invention provides a porous SiC body having a three-dimensional skeletal structure in which hexagonal plate-like α-type SiC particles are sintered and necked. The porosity is 30 to 60%, the average pore diameter is 10 to 200 μm, the three-point bending strength according to JIS is 30 MPa or more, and the thermal conductivity at 20 ° C. is 10 W / m · K.
It is characterized by the above.

【0014】また、上記SiC多孔体を用いる本発明の
Al−SiC系複合材料は、上記SiC多孔体と、該S
iC多孔体中に含浸されたAl又はAl合金とからな
り、SiCが全体の40〜70体積%、20℃での熱伝
導率が200W/m・K以上、20〜200℃の範囲で
の平均熱膨張係数yが10−6/℃単位で −5.37×ln(x)+25.10<y<−8.04×l
n(x)+39.19 (式中のlnは自然対数、xはSiCの体積%を表す)
で表される範囲内であることを特徴とする。
Further, the Al—SiC-based composite material of the present invention using the above-mentioned porous SiC material comprises the above-mentioned porous SiC material,
It is composed of Al or an Al alloy impregnated in the iC porous body, SiC is 40 to 70% by volume of the whole, and the thermal conductivity at 20 ° C is 200 W / m · K or more and the average in the range of 20 to 200 ° C. The coefficient of thermal expansion y is −5.37 × ln (x) +25.10 <y <−8.04 × l in units of 10 −6 / ° C.
n (x) +39.19 (in the formula, ln is a natural logarithm, and x represents a volume percentage of SiC)
Is within the range represented by

【0015】[0015]

【発明の実施の形態】本発明においては、SiC多孔体
の骨格構造化を工夫することにより、更に強固なSiC
粒子の骨格構造体が得られた。即ち、従来のごとくSi
C粉末を高温で焼成するのではなく、Si粉末と炭素粉
末を混合して高温で焼成する。このとき、SiとCの各
粉末の配合組成をややSiに富む組成、即ちSiを全体
の71〜73重量%にすることで、強固なSiC粒子の
骨格構造体が作製できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a more robust SiC is obtained by devising a skeleton structure of a porous SiC material.
A skeletal structure of the particles was obtained. That is, as in the prior art,
Instead of firing C powder at high temperature, Si powder and carbon powder are mixed and fired at high temperature. At this time, a strong SiC particle skeletal structure can be produced by setting the compounding composition of each powder of Si and C to a slightly rich composition, that is, 71 to 73% by weight of Si as a whole.

【0016】SiとCはSiが昇華する高温で反応し
て、SiCを形成する。この反応は、Siが溶融する1
450℃付近で始まり、液相のSiとC粉末が反応して
SiC化する。この時点では結晶系が立方晶系の3C型
SiCが生成するが、更に温度が上がり2000℃を越
えると、生成した3C型SiCは六方晶系の6H型Si
C(α型SiC)に転化し、図1のSEM写真(図中に
示すスケールの長さが200μmに相当する)に示すよ
うに六角板状の結晶となる。このSiCの六角板状結晶
の生成と同時に、このSiC粒子が焼結ネッキングして
三次元骨格構造が形成されるのである。
Si and C react at a high temperature at which Si sublimates to form SiC. This reaction is caused by the melting of Si 1
Beginning at around 450 ° C., liquid Si and C powder react to form SiC. At this point, cubic 3C-type SiC is generated, but when the temperature further rises and exceeds 2000 ° C., the generated 3C-type SiC becomes hexagonal 6H-type SiC.
It is converted to C (α-type SiC), and becomes a hexagonal plate-shaped crystal as shown in the SEM photograph of FIG. 1 (the scale length shown in the figure corresponds to 200 μm). Simultaneously with the generation of the hexagonal plate crystal of SiC, the SiC particles are sintered and necked to form a three-dimensional skeleton structure.

【0017】Siを全体の70重量%にするとSiC1
00%粉末ができるが、これでは強固な骨格ができな
い。Siをやや多い組成にすると、余剰のSiがガスと
なり、生成したSiC粒子同士を焼結ネッキングさせる
働きをする。しかし、余剰Si量が多すぎると、熱伝導
率の低いSi相がSiC粒子間に生成して、SiC多孔
体の熱伝導率が低下する。逆にSi量が少なすぎると、
SiC粒子間の焼結が進まない。このような観点から、
Si粉末とC粉末の混合に際しては、Siが全体の71
〜73重量%の範囲となるように混合する。
When the content of Si is 70% by weight, SiC1
Although a 00% powder is produced, a strong skeleton cannot be obtained with this. If Si has a slightly higher composition, surplus Si becomes a gas, which acts to cause necking of the generated SiC particles. However, if the amount of excess Si is too large, a Si phase having a low thermal conductivity is generated between the SiC particles, and the thermal conductivity of the porous SiC body is reduced. Conversely, if the amount of Si is too small,
Sintering between SiC particles does not proceed. From this perspective,
When mixing Si powder and C powder, Si
It is mixed so as to be in a range of 7373% by weight.

【0018】Si粉末とC粉末の混合粉末は、成形体と
した後、Ar等の不活性ガス雰囲気中で焼結する。焼結
温度は2000℃以上が必要であり、2000℃未満で
は焼結が進行しない。また、焼結温度が2400℃を越
えると、SiCの昇華が激しくなるため収率が低下す
る。また、成形体を作成する際の圧力が高いほど、強固
なSiC多孔体が得られるので、通常は500〜700
MPa程度の成形圧を用いることが好ましい。
The mixed powder of the Si powder and the C powder is formed into a compact and then sintered in an atmosphere of an inert gas such as Ar. The sintering temperature must be 2000 ° C. or higher, and if it is lower than 2000 ° C., sintering does not proceed. On the other hand, if the sintering temperature exceeds 2400 ° C., the sublimation of SiC becomes intense and the yield decreases. In addition, since a stronger SiC porous body can be obtained as the pressure at the time of forming a molded body is higher, it is usually 500 to 700.
It is preferable to use a molding pressure of about MPa.

【0019】このようにして得られたSiC多孔体は、
粒子状のSiC粉末を成形及び焼結して作製したSiC
多孔体に比べ、SiC粒子同士の結合が強固であり、機
械的強度が高くなると共に、熱伝導率も高くなる。即
ち、一般に6H型SiC結晶の熱伝導率は結晶軸方向に
依存して変化し、板状面と垂直なc軸方向には熱伝導率
が小さく、板状面に平行なa軸方向には高い。経験的に
は、c軸方向の熱伝導率はa軸方向の0.7倍程度であ
る(High Temperatures−High Pressures、1997、vol.2
9、pages73−79参照)。このような理由により、本発明
のSiC多孔体では、図2に示すように、主として六角
板状の6H型(α型)SiC結晶の板状面に沿って熱が
伝導するため、SiC多孔体自体が極めて熱伝導率が高
い材料となる。
The SiC porous body thus obtained is
SiC produced by molding and sintering particulate SiC powder
Compared to a porous body, the bond between SiC particles is stronger, the mechanical strength is higher, and the thermal conductivity is higher. That is, generally, the thermal conductivity of the 6H-type SiC crystal changes depending on the crystal axis direction, the thermal conductivity is small in the c-axis direction perpendicular to the plate-like surface, and is small in the a-axis direction parallel to the plate-like surface. high. Empirically, the thermal conductivity in the c-axis direction is about 0.7 times that in the a-axis direction (High Temperatures-High Pressures, 1997, vol.2).
9, pages 73-79). For these reasons, in the SiC porous body of the present invention, as shown in FIG. 2, heat is mainly conducted along the plate-like surface of a hexagonal plate-shaped 6H-type (α-type) SiC crystal, and thus the SiC porous body The material itself has a very high thermal conductivity.

【0020】SiC多孔体の熱伝導率や強度は細孔径や
気孔率により変化するが、本発明においては、気孔率が
30〜60%、平均細孔径が10〜200μm、JIS
に準拠した3点曲げ強度が30MPa以上、20℃での
熱伝導率が10W/m・K以上のSiC多孔体となる。
SiC多孔体の気孔率は原料の炭素粉末の粒度分布や成
形圧を変化させることにより制御でき、粒度分布が広い
炭素粉末ほど、また成形圧が高いほど気孔率が低下す
る。また、原料の炭素粉末の平均粒径が大きくなるほ
ど、得られるSiC多孔体の平均細孔径が大きくなるた
め、機械的強度が低くなる傾向にある。従って、炭素粉
末の平均粒径は160μm以下とすることが好ましい。
Although the thermal conductivity and strength of the porous SiC material vary depending on the pore diameter and porosity, in the present invention, the porosity is 30 to 60%, the average pore diameter is 10 to 200 μm, and JIS.
It becomes a SiC porous body having a three-point bending strength of 30 MPa or more and a thermal conductivity at 20 ° C. of 10 W / m · K or more in accordance with the standard.
The porosity of the SiC porous body can be controlled by changing the particle size distribution and compaction pressure of the raw carbon powder. The porosity decreases as the carbon powder has a wider particle size distribution and the compaction pressure is higher. Also, as the average particle diameter of the raw carbon powder increases, the average pore diameter of the obtained SiC porous body increases, so that the mechanical strength tends to decrease. Therefore, it is preferable that the average particle size of the carbon powder be 160 μm or less.

【0021】上記した本発明のSiC多孔体中に、溶融
したAl又はAl合金を加圧下で溶浸することによっ
て、Al−SiC系複合材料を形成することができる。
SiC多孔体中に溶浸する金属がAl合金の場合、Al
−Si合金を用いると、添加成分のSiによってSiC
多孔体との濡れ性が向上すると共に、熱膨張係数を下げ
ることができる。即ち、Al合金中のSi添加量が多い
ほど、Al合金の熱膨張係数は低下する。しかしなが
ら、その一方でSiの量が多くなると、金属相の熱伝導
性が低下する。従って、本発明では金属相をAl−Si
合金にする場合、これらのバランスをとるため、溶浸す
るAl合金全体の20重量%までSiを添加したAl合
金を用い、SiCが複合材料全体の40〜70体積%と
なるように調整する。
The Al-SiC-based composite material can be formed by infiltrating molten Al or an Al alloy under pressure into the SiC porous body of the present invention.
If the metal infiltrating into the SiC porous body is an Al alloy,
-Si alloy, the SiC added
The wettability with the porous body is improved, and the coefficient of thermal expansion can be reduced. That is, the larger the amount of Si added to the Al alloy, the lower the coefficient of thermal expansion of the Al alloy. However, on the other hand, when the amount of Si increases, the thermal conductivity of the metal phase decreases. Therefore, in the present invention, the metal phase is Al-Si
In the case of forming an alloy, in order to balance these, an Al alloy to which Si is added up to 20% by weight of the entire Al alloy to be infiltrated is used, and the SiC is adjusted to be 40 to 70% by volume of the entire composite material.

【0022】本発明のAl−SiC複合材料は、極めて
熱伝導率が高いSiCが相互に結合したSiC骨格部分
を熱が優先的に伝わるため、熱伝導率が極めて高い複合
材料となる。本発明方法によれば、一般のSi粉末とC
粉末を用いても、熱伝導率が200W/m・K以上のA
l−SiC系複合材料が得られる。更に、原料のSi粉
末とC粉末中の不純物元素、特にAlとFeを100p
pm以下に低下させることにより、骨格となるSiCの
熱伝導率自体が向上するため、熱伝導率が250W/m
・K以上のAl−SiC系複合材料が得られる。
The Al-SiC composite material of the present invention is a composite material having an extremely high thermal conductivity because heat is transmitted preferentially to a SiC skeleton portion where SiCs having an extremely high thermal conductivity are mutually bonded. According to the method of the present invention, general Si powder and C
Even if a powder is used, the thermal conductivity of A is 200 W / m · K or more.
An l-SiC-based composite material is obtained. Further, the impurity elements in the raw material Si powder and C powder, in particular, Al and Fe are reduced by 100 p.
pm or less, the thermal conductivity itself of the skeleton SiC is improved.
-An Al-SiC composite material of K or more can be obtained.

【0023】また、このAl−SiC複合材料は、Si
C多孔体の三次元骨格構造がAl又はAl合金の膨張を
抑えるため、SiC粒子が分散した組織を持つAl−S
iC系複合材料と比べて、同じSiC含有量であっても
熱膨張係数が小さくなる。即ち、本発明のAl−SiC
系複合材料においては、20〜200℃の範囲での平均
熱膨張係数y(単位10−6/℃)は、 −5.37×ln(x)+25.10<y<−8.04×l
n(x)+39.19 (式中のlnは自然対数、xはSiCの体積%を表す)
の関係を満たしている。
The Al-SiC composite material is made of Si
Since the three-dimensional skeletal structure of the C porous body suppresses the expansion of Al or Al alloy, Al-S having a structure in which SiC particles are dispersed
Compared with the iC-based composite material, the coefficient of thermal expansion becomes smaller even with the same SiC content. That is, the Al-SiC of the present invention
In the system composite material, the average coefficient of thermal expansion y (unit 10 −6 / ° C.) in the range of 20 to 200 ° C. is −5.37 × ln (x) +25.10 <y <−8.04 × l
n (x) +39.19 (in the formula, ln is a natural logarithm, and x represents a volume percentage of SiC)
Meet the relationship.

【0024】Al−SiC系複合材料の平均熱膨張係数
は、AlマトリックスのSi含有量により変化するが、
具体的には2.0〜10.0×10−6/℃の範囲内にあ
り、同じ組成の粒子分散型複合材料と比較すると小さい
熱膨張係数を示す。尚、熱膨張係数を低下させるため、
Si以外にも微量のMg、Fe等のSiCとAl合金の
濡れ性を向上させる元素を添加してもかまわない。
The average coefficient of thermal expansion of the Al-SiC composite material varies depending on the Si content of the Al matrix.
Specifically, it is in the range of 2.0 to 10.0 × 10 −6 / ° C., and shows a small thermal expansion coefficient as compared with the particle-dispersed composite material having the same composition. In order to reduce the coefficient of thermal expansion,
In addition to Si, trace elements such as Mg and Fe may be added to improve the wettability of SiC and Al alloy.

【0025】このように、本発明の上記SiC多孔体
は、六角板状のα型SiC粒子が焼結ネッキングした三
次元骨格組織を有し、耐熱性及び耐食性を有すると共
に、機械的強度が高く、高透過性能の各種フィルターと
して利用でき、特に液体濾過用フィルターや自動車ディ
ーゼルエンジンの排気ガス浄化用パティキュレートフィ
ルター材料として優れた機能を発揮する。しかも、この
SiC多孔体は、六角板状のSiC結晶が互いに絡み合
いながら強固に結合している骨格構造の組織を持つた
め、水銀圧入法で測定した多孔体の見掛けの細孔径より
も小さな粒径の粒子を捕集することができ、透過性能に
優れている。
As described above, the porous SiC body of the present invention has a three-dimensional skeleton structure in which hexagonal plate-shaped α-type SiC particles are sintered and necked, has heat resistance and corrosion resistance, and has high mechanical strength. It can be used as various filters with high permeation performance, and exhibits excellent functions especially as a filter for liquid filtration and a particulate filter material for purifying exhaust gas of automobile diesel engines. Moreover, since the SiC porous body has a skeletal structure in which hexagonal plate-like SiC crystals are entangled with each other and are strongly bonded, the particle size is smaller than the apparent pore diameter of the porous body measured by the mercury intrusion method. Particles can be trapped and have excellent permeation performance.

【0026】また、本発明のAl−SiC系複合材料
は、低熱膨張係数を有し且つ高熱伝導率を持つため、各
種の放熱材用途に利用することができ、特に半導体装置
用のヒートシンク材として好適である。
The Al-SiC composite material of the present invention has a low coefficient of thermal expansion and a high thermal conductivity, so that it can be used for various heat dissipating materials, and particularly as a heat sink material for semiconductor devices. It is suitable.

【0027】[0027]

【実施例】実施例1 下記表1に示すように、平均直径7〜175μmの市販
黒鉛(C)粉末と、平均粒径20〜36μmのSi粉末
とを、Si量が70.5〜73.5重量%の組成となるよ
うに混合した後、100〜700MPaの成形圧力で成
形体とし、これら各成形体を1気圧のArガス雰囲気中
において焼結温度1900〜2400℃で焼結すること
により、それぞれSiC多孔体を製造した。
【Example】Example 1  As shown in Table 1 below, commercially available with an average diameter of 7 to 175 μm
Graphite (C) powder and Si powder with an average particle size of 20 to 36 μm
And a composition having a Si content of 70.5 to 73.5% by weight.
After mixing, the molding is performed at a molding pressure of 100 to 700 MPa.
Each of these compacts was placed in an atmosphere of Ar gas at 1 atm.
Sintering at a sintering temperature of 1900-2400 ° C
In this manner, porous SiC bodies were produced.

【0028】比較のため、試料6、15、27、28と
して、SiC粉末を焼結して得られた従来のSiC多孔
体についても同様に併記した。尚、これら比較のための
試料で用いたSiC粉末の平均粒径は、試料6が30μ
m、試料15が50μm、試料27と試料28が70μ
mであり、各SiC粉末中に含まれる不純物のAlとF
eの量(単位ppm)は表1中に示したとおりである。
これら比較例の試料は、以上の各SiC粉末を表1に記
載の成形圧にて成形した後、表1に記載の温度にて1気
圧のArガス中で焼結したものである。
For comparison, a conventional porous SiC material obtained by sintering SiC powder was similarly described as Samples 6, 15, 27 and 28. The average particle size of the SiC powder used in these comparative samples was 30 μm for Sample 6.
m, sample 15 is 50 μm, sample 27 and sample 28 are 70 μm
m and the impurities Al and F contained in each SiC powder.
The amount of e (unit: ppm) is as shown in Table 1.
In the samples of these comparative examples, each of the above-mentioned SiC powders was molded at a molding pressure shown in Table 1, and then sintered in Ar gas at 1 atm at a temperature shown in Table 1.

【0029】[0029]

【表1】 Si粒径 C粒径 Al量(ppm) Fe量(ppm) Si粉量 成形圧 焼結温度試料 (μm) (μm) Si粉 C粉 Si粉 C粉 (wt%) (MPa) (℃) 1* 20 11 120 110 120 135 70.5 100 2300 2 20 11 120 110 120 135 71.0 100 2300 3 20 11 120 110 120 135 72.0 100 2300 4 20 11 120 110 120 135 73.0 100 2300 5* 20 11 120 110 120 135 73.5 100 2300 6* SiC粉末の多孔体(SiC粉中Al量110、Fe量120) 100 2300 7 20 11 90 85 90 88 72.0 100 2300 8 20 11 1 2 1 2 72.0 100 2300 9 20 11 120 110 120 135 72.0 100 2300 10 20 11 120 110 120 135 72.0 500 2300 11 20 11 120 110 120 135 72.0 700 2300 12 20 11 1 2 1 2 72.0 300 2300 13 20 11 1 2 1 2 72.0 500 2300 14 20 11 1 2 1 2 72.0 700 2300 15* SiC粉末の多孔体(SiC粉中Al量1、Fe量1) 700 2300 16 20 11 120 110 120 135 72.0 100 2400 17 20 11 120 110 120 135 72.0 100 2000 18* 20 11 120 110 120 135 72.0 100 1900 19 36 7 120 110 120 135 72.0 100 2300 20 36 11 120 110 120 135 72.0 100 2300 21 36 75 120 110 120 135 72.0 100 2300 22 36 153 120 110 120 135 72.0 100 2300 23* 36 175 120 110 120 135 72.0 100 2300 24 20 11 1 2 1 2 72.0 700 2300 25 20 11 1 2 1 2 72.0 700 2300 26 20 11 1 2 1 2 72.0 700 2300 27* SiC粉末の多孔体(SiC粉中Al量1、Fe量2) 700 2300 28* SiC粉末の多孔体(SiC粉中Al量1、Fe量2) 700 2300 (注)表中の*を付した試料は比較例である。[Table 1] Si particle size C particle sizeAl content (ppm) Fe content (ppm) Si powder molding pressure Sintering temperaturesample (μm) (μm) Si powder C powder Si powder C powder (wt%) (MPa) (℃)  1 * 20 11 120 110 120 135 70.5 100 2300 2 20 11 120 110 120 135 71.0 100 2300 3 20 11 120 110 120 135 72.0 100 2300 4 20 11 120 110 120 135 73.0 100 2300 5 * 20 11 120 110 120 135 73.5 100 2300 6 * Porous SiC powder (Al content 110, Fe content 120 in SiC powder) 100 2300 7 20 11 90 85 90 88 72.0 100 2300 8 20 11 1 2 1 2 72.0 100 2300 9 20 11 120 110 120 135 72.0 100 2300 10 20 11 120 110 120 135 72.0 500 2300 11 20 11 120 110 120 135 72.0 700 2300 12 20 11 1 2 1 2 72.0 300 2300 13 20 11 1 2 1 2 72.0 500 2300 14 20 11 1 2 1 2 72.0 700 2300 15 * Porous SiC powder (Al content 1 and Fe content 1 in SiC powder) 700 2300 16 20 11 120 110 120 135 72.0 100 2400 17 20 11 120 110 120 135 72.0 100 2000 18 * 20 11 120 110 120 135 72.0 100 1900 19 36 7 120 110 120 135 72.0 100 2300 20 36 11 120 110 120 135 72.0 100 2300 21 36 75 120 110 120 135 72.0 100 2300 22 36 153 120 110 120 135 72.0 100 2300 23 * 36 175 120 110 120 135 72.0 100 2300 24 20 11 1 2 1 2 72.0 700 2300 25 20 11 1 2 1 2 72.0 700 2300 26 20 11 1 2 1 2 72.0 700 2300 27 * Porous body of SiC powder (Al content in SiC powder 1, Fe content 2) 700 2300 28 * Porous body of SiC powder (Al content in SiC powder 1, Fe content 2) 700 2300 (Note) Samples marked with * are comparative examples.

【0030】得られた各SiC多孔体について、相対密
度、平均細孔経、20℃での熱伝導率、3点曲げ強度を
測定し、その結果を下記表2に示した。尚、各多孔体の
気孔率は表1に記載していないが、表の密度値を100
%から差し引いた値である。次に、下記表2に示す組成
のAl(Si量0wt%)又はAl−Si合金(Si量
10〜20wt%)を660℃に保持して溶融させ、圧
力200MPaで各試料のSiC多孔体中に溶浸させ
た。得られた各Al−SiC系複合材料について、熱伝
導率、熱膨張係数を測定し、その結果も表2に示した。
尚、各複合材料の相対密度は、全ての試料で100%で
あった。また、SiC粉末を用いて作成したSiC多孔
体に同様にAl又はAl合金を溶浸させたAl−SiC
系複合材料についても、同様に評価した結果を表3に併
せて示した。
The relative density, average pore diameter, thermal conductivity at 20 ° C., and three-point bending strength of each of the obtained SiC porous bodies were measured. The results are shown in Table 2 below. Although the porosity of each porous body is not described in Table 1, the density value in the table is 100%.
It is a value subtracted from%. Next, Al (Si content 0 wt%) or an Al-Si alloy (Si content 10 to 20 wt%) having a composition shown in Table 2 below is melted while being maintained at 660 ° C., and the pressure is 200 MPa. Was infiltrated. The thermal conductivity and the thermal expansion coefficient of each of the obtained Al-SiC-based composite materials were measured, and the results are also shown in Table 2.
The relative density of each composite material was 100% in all samples. Also, an Al-SiC in which Al or an Al alloy is similarly infiltrated into a porous SiC body prepared using SiC powder.
Table 3 also shows the results of similar evaluations for the system composite material.

【0031】[0031]

【表2】 SiC多孔体 Al−SiC系複合材料 密度 細孔径 熱伝導率 曲げ強度 Al組成 熱伝導率 熱膨張係数試料 (%) (μm) (W/m・K) (MPa) (Siwt%) (W/m・K) (×10−6/℃) 1* 40 23 8 85 0 170 12.3 2 40 23 10 102 0 203 9.00 3 40 23 15 115 0 245 8.30 4 40 23 11 102 0 202 8.70 5* 40 23 8 75 0 199 9.00 6* 40 23 8 70 0 188 12.30 7 40 23 15 115 0 276 8.30 8 40 23 15 115 0 299 8.30 9 51 25 27 140 0 240 6.30 10 60 27 42 170 0 238 4.80 11 70 29 58 200 0 233 3.50 12 51 25 27 140 0 321 6.30 13 60 27 42 170 0 335 4.80 14 70 29 58 200 0 346 3.50 15* 70 29 40 85 0 288 7.50 16 40 23 15 115 0 245 8.30 17 40 23 11 102 0 235 9.10 18* 40 23 7 50 0 199 12.30 19 40 10 15 122 0 245 8.40 20 40 23 15 115 0 247 8.40 21 40 100 15 62 0 249 8.40 22 40 199 15 35 0 251 8.40 23* 40 206 15 30 0 251 8.40 24 70 29 58 200 0 346 3.60 25 70 29 58 205 10 335 3.00 26 70 29 58 209 20 321 2.50 27* 70 31 42 102 10 288 6.90 28* 70 30 42 112 20 268 6.40 (注)表中の*を付した試料は比較例である。[Table 2]SiC porous body Al-SiC composite material  Density Pore size Thermal conductivity Bending strength Al composition Thermal conductivity Thermal expansion coefficientsample (%) (μm) (W / m ・ K) (MPa) (Siwt%) (W / m ・ K) (× 10 −6 / ℃)  1 * 40 23 8 85 0 170 12.3 2 40 23 10 102 0 203 9.00 3 40 23 15 115 0 245 8.30 4 40 23 11 102 0 202 8.70 5 * 40 23 8 75 0 199 9.00 6 * 40 23 8 70 0 188 12.30 7 40 23 15 115 0 276 8.30 8 40 23 15 115 0 299 8.30 9 51 25 27 140 0 240 6.30 10 60 27 42 170 0 238 4.80 11 70 29 58 200 0 233 3.50 12 51 25 27 140 0 321 6.30 13 60 27 42 170 0 335 4.80 14 70 29 58 200 0 346 3.50 15 * 70 29 40 85 0 288 7.50 16 40 23 15 115 0 245 8.30 17 40 23 11 102 0 235 9.10 18 * 40 23 7 50 0 199 12.30 19 40 10 15 122 0 245 8.40 20 40 23 15 115 0 247 8.40 21 40 100 15 62 0 249 8.40 22 40 199 15 35 0 251 8.40 23 * 40 206 15 30 0 251 8.40 24 70 29 58 200 0 346 3.60 25 70 29 58 205 10 335 3.00 26 70 29 58 209 20 321 2.50 27 * 70 31 42 102 10 288 6.90 28 * 70 30 42 112 20 268 6.40 (Note) Samples marked with * in the table are comparative examples.

【0032】上記表2から分かるように、本発明の実施
例によるSiC多孔体は、機械的強度と熱伝導率が高
く、特に不純物の少ないSi粉とC粉を用いて作成した
多孔体の特性が優れている。また、本発明によるAl−
SiC系複合材料は低熱膨張係数であると共に、高熱伝
導率であった。一方、SiC粉末を焼結して作製したS
iC多孔体にAl又はAl合金を含浸させたAl−Si
C系複合材料の熱膨張係数は、本発明のものに比べ大き
くなった。
As can be seen from Table 2, the SiC porous body according to the embodiment of the present invention has high mechanical strength and thermal conductivity, and particularly has the characteristics of a porous body prepared using Si powder and C powder having few impurities. Is better. In addition, the Al-
The SiC-based composite material had a low coefficient of thermal expansion and a high thermal conductivity. On the other hand, SC produced by sintering SiC powder
Al-Si in which iC porous body is impregnated with Al or Al alloy
The thermal expansion coefficient of the C-based composite material was larger than that of the present invention.

【0033】実施例2 上記実施例1の試料3、6、14、及び15の各SiC
多孔体を用いて、外径8mm、肉厚0.2mm、長さ5
mmのSiC多孔体を切り出し、その一端を樹脂で封止
してパイプ状フィルターを作製した。この各パイプ状フ
ィルターを用いて以下の実験を行い、その結果を下記表
3に示した。
[0033]Example 2  Each SiC of Samples 3, 6, 14, and 15 of Example 1 above
Using a porous body, outer diameter 8 mm, wall thickness 0.2 mm, length 5
mm SiC porous body, one end of which is sealed with resin
Thus, a pipe-shaped filter was produced. Each of these pipes
The following experiment was conducted using the filter, and the results are shown in the table below.
3 is shown.

【0034】(1) パイプ状フィルターの内部から外部
へ、粒径10、20、30μmの各ポリエチレン粒子の
懸濁液(濃度10ppm)100mlを圧力0.1MP
aで濾過させ、粒子の捕集率を測定した。 (2) パイプ状フィルターの内部から外部へ、純水を圧
力0.1MPaで連続供給して、透過流量を測定した。 (3) パイプ状フィルターの内部に空気圧を負荷し、圧
力を上げながらフィルターが破壊する耐圧力を測定し
た。 (4) 上記実験(1)で粒径30μmの粒子を捕集後、フ
ィルターの両端部に100Wの電力を印加して通電発熱
させ、捕集されたポリエチレン粒子が完全に燃焼し終え
るまでの燃焼時間を測定した。
(1) From the inside to the outside of the pipe-shaped filter, 100 ml of a suspension of polyethylene particles having a particle size of 10, 20, and 30 μm (concentration: 10 ppm) was applied at a pressure of 0.1 MPa.
The mixture was filtered through a, and the collection rate of the particles was measured. (2) Pure water was continuously supplied from the inside to the outside of the pipe-shaped filter at a pressure of 0.1 MPa, and the permeation flow rate was measured. (3) Air pressure was applied to the inside of the pipe-shaped filter, and the pressure resistance at which the filter was destroyed was measured while increasing the pressure. (4) After collecting particles having a particle diameter of 30 μm in the above experiment (1), apply 100 W of electric power to both ends of the filter to generate electricity and generate heat, and burn until the collected polyethylene particles are completely burned. The time was measured.

【0035】[0035]

【表3】 粒子の捕集率(%) 透過流量 耐圧力 燃焼時間試料 10μm 20μm 30μm (l/sec/m) (MPa) (sec) 3 100 100 100 560 0.8 5 6* 15 85 100 185 0.5 13 14 85 100 100 420 1.3 3 15* 0 75 100 136 0.8 12 (注)表中の*を付した試料は比較例である。[Table 3]Particle collection rate (%) Permeate flow pressure Withstand combustion timesample 10 μm 20 μm 30 μm (l / sec / m) (MPa) (sec)  3 100 100 100 560 0.8 5 6 * 15 85 100 185 0.5 13 14 85 100 100 420 1.3 3 15 * 0 75 100 136 0.812 (Note) Samples marked with * in the table are comparative examples.

【0036】本発明のSiC多孔体から作製したフィル
ターは、従来のSiC粒子を焼結した多孔体で作製した
フィルターに比べ、性能的に優れていることが分かる。
即ち、六角板状のα型SiC粒子が結合した複雑な細孔
構造を有するため、水銀圧入法で測定した見掛けの細孔
径(表2参照)よりも小さな粒子を捕集することがで
き、透過性能に優れている。また、高い透過性能を有す
ると同時に、高強度であるため耐圧性にも優れている。
更に、熱伝導率が高いため、捕集したポリエチレン粒子
の燃焼時間が短く、それ故にディーゼルエンジン用のパ
ティキュレートフィルタとして有効であることが分かっ
た。
It can be seen that the filter manufactured from the porous SiC body of the present invention is superior in performance to the filter manufactured from the conventional porous body obtained by sintering SiC particles.
That is, since it has a complicated pore structure in which hexagonal plate-like α-type SiC particles are bonded, particles smaller than the apparent pore diameter (see Table 2) measured by the mercury intrusion method can be collected and transmitted. Excellent performance. In addition to having high transmission performance, it is also excellent in pressure resistance due to high strength.
Further, it has been found that the high thermal conductivity reduces the burning time of the collected polyethylene particles, and is therefore effective as a particulate filter for diesel engines.

【0037】実施例3 上記実施例1の試料3、7、13及び19と同じ製造方
法で作製したAl−SiC系複合材料からなる放熱基板
を用いて、図3に示すようなパワーモジュール半導体装
置を製造した。図1において、1は本発明の複合材料か
らなる放熱基板、2は同基板上にロウ付けされた電気絶
縁性の窒化アルミニウムセラミックス(熱伝導率170
W/m・K)製の基板、3はシリコン半導体素子、4は
放熱基板1に機械的に固定されたアルミニウム合金から
なる冷却構造体である。尚、放熱基板1の上下面と基板
2の下面にはニッケルメッキが、基板2の上面にはWメ
タライズ層及びニッケルメッキ層を介して銅の導体回路
層が形成されている。また、放熱基板1と冷却構造体4
との界面には、予めシリコーンオイルの薄い層が形成さ
れている。半導体素子3はAg−Sn系の半田で接続さ
れている。尚、各部材の間、特に放熱基板1の周辺の接
続状態は良好で問題はなかった。
[0037]Example 3  Same manufacturing method as Samples 3, 7, 13 and 19 in Example 1 above
Heat-dissipating substrate made of Al-SiC-based composite material prepared by the method
The power module semiconductor device shown in FIG.
The device was manufactured. In FIG. 1, 1 is the composite material of the present invention.
The heat dissipation board consisting of
Aluminum nitride ceramics with thermal conductivity (thermal conductivity 170
W / m · K) substrate, 3 is a silicon semiconductor device, 4 is
From an aluminum alloy mechanically fixed to the heat sink 1
Cooling structure. In addition, the upper and lower surfaces of the heat radiation substrate 1 and the substrate
2 is nickel plated on the lower surface and W
Copper conductor circuit via tally layer and nickel plating layer
A layer is formed. Further, the heat radiating substrate 1 and the cooling structure 4
Interface, a thin layer of silicone oil is formed in advance.
Have been. The semiconductor element 3 is connected with Ag-Sn based solder.
Have been. In addition, contact between each member, especially around the heat radiation substrate 1 is described.
The connection was good and there was no problem.

【0038】このような構造の各アッセンブリーを用い
て、−60℃で30分間保持した後150℃で30分間
保持する昇降温の冷熱サイクルを1000サイクル行っ
たところ、接続部周辺の損傷及びモジュール特性の劣化
は観測されなかった。以上の結果から、本発明の方法で
製造されたAl−SiC系複合材料を、過酷な実用条件
で使われる半導体装置の部材に用いても、何ら支障なく
使用可能なことが判明した。尚、本発明の複合材料を、
この種のモジュールに比べて低出力・低熱負荷のパーソ
ナルコンピュータ等の半導体装置に実装する評価も行っ
たが、その実用信頼性には何ら問題のないことが確認さ
れた。
Using each assembly having such a structure, 1000 cycles of heating and cooling were performed at -60.degree. C. for 30 minutes and then at 150.degree. C. for 30 minutes. No deterioration was observed. From the above results, it has been found that the Al-SiC-based composite material manufactured by the method of the present invention can be used without any problem even when used for a member of a semiconductor device used under severe practical conditions. Incidentally, the composite material of the present invention,
An evaluation was also made of mounting on a semiconductor device such as a personal computer having a lower output and a lower thermal load than this type of module, but it was confirmed that there was no problem in the practical reliability.

【0039】[0039]

【発明の効果】本発明によれば、六角板状のα型SiC
結晶が強固に結合した三次元骨格構造を持つことによ
り、高い機械的強度と熱伝導率を兼ね備えたSiC多孔
体を提供することがでる。このSiC多孔体にAl又は
Al合金を溶浸することによって、高い熱伝導率を持つ
と共に、熱膨張係数の小さいAl−SiC系複合材料を
提供することができる。
According to the present invention, hexagonal plate-like α-type SiC
By having a three-dimensional skeletal structure in which crystals are strongly bonded, it is possible to provide a SiC porous body having both high mechanical strength and thermal conductivity. By infiltrating Al or an Al alloy into the SiC porous body, it is possible to provide an Al-SiC-based composite material having a high thermal conductivity and a small thermal expansion coefficient.

【0040】本発明のSiC多孔体はフィルターとして
用いると、捕集性能や透過性能に優れると同時に、高強
度のためにフィルター厚みを薄く設定でき、高い踏査性
能を示す。また、このSiC多孔体は熱伝導率が高く、
捕集した煤などを効率よく燃焼させることができるの
で、ジーゼルエンジンの排気ガス浄化用パティキュレー
トフィルターとして好適である。更に、本発明のAl−
SiC系複合材料は高熱伝導率であるため、半導体装置
用のヒートシンクとして有効である。
When the porous SiC body of the present invention is used as a filter, it has excellent trapping performance and permeation performance, and at the same time, the thickness of the filter can be set thin because of its high strength. In addition, this SiC porous body has high thermal conductivity,
Since the collected soot and the like can be efficiently burned, it is suitable as a particulate filter for purifying exhaust gas of diesel engines. Furthermore, the Al-
Since the SiC-based composite material has high thermal conductivity, it is effective as a heat sink for a semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSiC多孔体を構成するSiC粒子の
SEM写真である。
FIG. 1 is an SEM photograph of SiC particles constituting a porous SiC body of the present invention.

【図2】本発明のSiC多孔体を熱が伝わる状態を説明
する概略図である。
FIG. 2 is a schematic diagram illustrating a state where heat is transmitted through a porous SiC body of the present invention.

【図3】本発明のAl−SiC系多孔体を放熱基板とし
て用いた半導体装置を示す概略の断面図である。
FIG. 3 is a schematic cross-sectional view showing a semiconductor device using the Al—SiC-based porous body of the present invention as a heat dissipation substrate.

【符号の説明】[Explanation of symbols]

1 放熱基板 2 基板 3 半導体素子 4 冷熱構造体 DESCRIPTION OF SYMBOLS 1 Heat dissipation board 2 Substrate 3 Semiconductor element 4 Thermal structure

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D019 AA01 AA03 BA01 BA02 BB06 BB07 BC12 BD01 CA03 CB06 4G001 BA60 BA62 BB22 BC47 BC52 BC54 BC77 BD03 BD05 BE31 BE33 4G019 FA11 FA13 5F036 AA01 BB01 BD03 BD14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D019 AA01 AA03 BA01 BA02 BB06 BB07 BC12 BD01 CA03 CB06 4G001 BA60 BA62 BB22 BC47 BC52 BC54 BC77 BD03 BD05 BE31 BE33 4G019 FA11 FA13 5F036 AA01 BB01 BD03 BD14

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 六角板状のα型SiC粒子が焼結ネッキ
ングした三次元骨格組織を持つSiC多孔体であって、
気孔率が30〜60%、平均細孔径が10〜200μ
m、JIS準拠の3点曲げ強度が30MPa以上、20
℃での熱伝導率が10W/m・K以上であることを特徴
とするSiC多孔体。
1. A SiC porous body having a three-dimensional skeletal structure in which hexagonal plate-like α-type SiC particles are sintered and necked,
The porosity is 30 to 60% and the average pore diameter is 10 to 200 μ
m, JIS-compliant three-point bending strength of 30 MPa or more, 20
A porous SiC material having a thermal conductivity at 10 ° C. of 10 W / m · K or more.
【請求項2】 請求項1のSiC多孔体からなる液体濾
過用フィルター。
2. A liquid filtration filter comprising the porous SiC material according to claim 1.
【請求項3】 請求項1のSiC多孔体からなる自動車
ディーゼルエンジンの排気ガス浄化用パティキュレート
フィルター。
3. A particulate filter for purifying exhaust gas of an automobile diesel engine, comprising the porous SiC body of claim 1.
【請求項4】 請求項1のSiC多孔体と、該SiC多
孔体中に含浸されたAl又はAl合金とからなり、Si
Cが全体の40〜70体積%、20℃での熱伝導率が2
00W/m・K以上、20〜200℃の範囲での平均熱
膨張係数yが10−6/℃単位で −5.37×ln(x)+25.10<y<−8.04×l
n(x)+39.19 (式中のlnは自然対数、xはSiCの体積%を表す)
で表される範囲内であることを特徴とするAl−SiC
系複合材料。
4. The SiC porous body according to claim 1, comprising Al or an Al alloy impregnated in said SiC porous body.
C is 40 to 70% by volume of the whole, and the thermal conductivity at 20 ° C. is 2
The average thermal expansion coefficient y in the range of not less than 00 W / m · K and 20 to 200 ° C. is −5.37 × ln (x) +25.10 <y <−8.04 × l in units of 10 −6 / ° C.
n (x) +39.19 (in the formula, ln is a natural logarithm, and x represents a volume percentage of SiC)
Al-SiC characterized by being within the range represented by:
Based composite materials.
【請求項5】 20℃での熱伝導率が250W/m・K
以上であることを特徴とする、請求項4に記載のAl−
SiC系複合材料。
5. The thermal conductivity at 20 ° C. is 250 W / m · K.
It is above, The Al- of Claim 4 characterized by the above-mentioned.
SiC-based composite material.
【請求項6】 請求項4又は5の複合材料をヒートシン
クとして用いた半導体装置。
6. A semiconductor device using the composite material according to claim 4 as a heat sink.
【請求項7】 請求項1のSiC多孔体の製造方法であ
つて、Si粉末と炭素粉末とをSi量が全体の71〜7
3重量%となるように混合し、成形体とした後、不活性
ガス雰囲気中において温度2000〜2400℃で熱処
理することを特徴とするSiC多孔体の製造方法。
7. The method for producing a porous SiC body according to claim 1, wherein the Si powder and the carbon powder have a total Si content of 71 to 7%.
A method for producing a porous SiC material, which comprises mixing at 3% by weight to form a molded body, and then performing heat treatment at a temperature of 2000 to 2400 ° C in an inert gas atmosphere.
【請求項8】 Si粉末及び炭素粉末中に含まれるFe
及びAlの不純物量がそれぞれ100ppm以下である
ことを特徴とする、請求項7に記載のSiC多孔体の製
造方法。
8. Fe contained in Si powder and carbon powder.
The method for producing a porous SiC body according to claim 7, wherein the impurity amounts of Al and Al are each 100 ppm or less.
【請求項9】 請求項4のAl−SiC系複合材料の製
造方法であつて、請求項1のSiC多孔体中に、溶融し
たAl又はAl合金を加圧下で溶浸することを特徴とす
るAl−SiC系複合材料の製造方法。
9. The method for producing an Al—SiC-based composite material according to claim 4, wherein molten Al or an Al alloy is infiltrated under pressure into the SiC porous material according to claim 1. A method for producing an Al-SiC-based composite material.
【請求項10】 Al合金中のSi量がAl合金全体の
20重量%までであることを特徴とする、請求項9に記
載のAl−SiC系複合材料の製造方法。
10. The method for producing an Al—SiC-based composite material according to claim 9, wherein the amount of Si in the Al alloy is up to 20% by weight of the entire Al alloy.
JP36908699A 1999-12-27 1999-12-27 Silicon carbide-based porous body and composite material comprising aluminum and the same Pending JP2001181066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36908699A JP2001181066A (en) 1999-12-27 1999-12-27 Silicon carbide-based porous body and composite material comprising aluminum and the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36908699A JP2001181066A (en) 1999-12-27 1999-12-27 Silicon carbide-based porous body and composite material comprising aluminum and the same

Publications (1)

Publication Number Publication Date
JP2001181066A true JP2001181066A (en) 2001-07-03

Family

ID=18493530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36908699A Pending JP2001181066A (en) 1999-12-27 1999-12-27 Silicon carbide-based porous body and composite material comprising aluminum and the same

Country Status (1)

Country Link
JP (1) JP2001181066A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299418A (en) * 2006-05-08 2006-11-02 Sumitomo Electric Ind Ltd Holder for semiconductor or liquid crystal manufacturing apparatus and semiconductor or liquid crystal manufacturing apparatuses carrying the same
US7196417B2 (en) 2002-07-30 2007-03-27 Kabushiki Kaisha Toyota Jidoshokki Method of manufacturing a low expansion material and semiconductor device using the low expansion material
JP2009149455A (en) * 2007-12-19 2009-07-09 Denki Kagaku Kogyo Kk Aluminum-ceramic composite, and method for producing the same
WO2010038483A1 (en) * 2008-10-03 2010-04-08 住友電気工業株式会社 Composite member
JP2010090436A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Magnesium-based composite material and production method of the same
JP2010106362A (en) * 2008-10-03 2010-05-13 Sumitomo Electric Ind Ltd Composite member and process for producing the same
JP4594433B1 (en) * 2009-10-02 2010-12-08 住友電気工業株式会社 Heat dissipation member
JP2011035308A (en) * 2009-08-05 2011-02-17 Mitsubishi Materials Corp Radiator plate, semiconductor device, and method of manufacturing radiator plate
KR101186957B1 (en) 2010-10-08 2012-09-28 성균관대학교산학협력단 Fabrication of porous SiC ceramics
CN103060596A (en) * 2012-12-17 2013-04-24 华南理工大学 Preparation method for SiC reinforced Al-matrix composite material
JP2014062329A (en) * 2013-12-11 2014-04-10 Sumitomo Electric Ind Ltd Magnesium-base composite material
CN105200261A (en) * 2015-10-26 2015-12-30 三峡大学 There-dimensional spatial ordered-structure graphite/aluminum composite material and preparation method thereof
WO2016147488A1 (en) * 2015-03-16 2016-09-22 三井金属鉱業株式会社 Porous body, porous bonded body, filtration filter for molten metals, jig for firing, and method for producing porous body
CN111138198A (en) * 2019-12-30 2020-05-12 珠海凯利得新材料有限公司 Preparation method and application of aluminum silicon carbide composite material
CN112723904A (en) * 2021-01-29 2021-04-30 湖南三安半导体有限责任公司 Method for producing porous SiC sintered body, and SiC crystal
WO2022172874A1 (en) * 2021-02-10 2022-08-18 聡 安斎 Device for cooling arithmetic processing unit
CN115505775A (en) * 2022-09-26 2022-12-23 中南大学 Manufacturing method of frame body for electronic product and frame body for electronic product
US20230042620A1 (en) * 2021-08-05 2023-02-09 Shin-Etsu Chemical Co., Ltd. METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US20230083924A1 (en) * 2021-09-09 2023-03-16 Shin-Etsu Chemical Co., Ltd. Method for producing sic single crystal and method for suppressing dislocations in sic single crystal

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196417B2 (en) 2002-07-30 2007-03-27 Kabushiki Kaisha Toyota Jidoshokki Method of manufacturing a low expansion material and semiconductor device using the low expansion material
JP2006299418A (en) * 2006-05-08 2006-11-02 Sumitomo Electric Ind Ltd Holder for semiconductor or liquid crystal manufacturing apparatus and semiconductor or liquid crystal manufacturing apparatuses carrying the same
JP4732430B2 (en) * 2007-12-19 2011-07-27 電気化学工業株式会社 Aluminum-ceramic composite and method for producing the same
JP2009149455A (en) * 2007-12-19 2009-07-09 Denki Kagaku Kogyo Kk Aluminum-ceramic composite, and method for producing the same
WO2010038483A1 (en) * 2008-10-03 2010-04-08 住友電気工業株式会社 Composite member
JP2010106362A (en) * 2008-10-03 2010-05-13 Sumitomo Electric Ind Ltd Composite member and process for producing the same
CN102170986A (en) * 2008-10-03 2011-08-31 住友电气工业株式会社 Composite member
US9028959B2 (en) 2008-10-03 2015-05-12 Sumitomo Electric Industries, Ltd. Composite member
EP2332674A4 (en) * 2008-10-03 2017-03-08 Sumitomo Electric Industries, Ltd. Composite member
JP2010090436A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Magnesium-based composite material and production method of the same
JP2011035308A (en) * 2009-08-05 2011-02-17 Mitsubishi Materials Corp Radiator plate, semiconductor device, and method of manufacturing radiator plate
JP4594433B1 (en) * 2009-10-02 2010-12-08 住友電気工業株式会社 Heat dissipation member
JP2011073950A (en) * 2009-10-02 2011-04-14 Sumitomo Electric Ind Ltd Heat-dissipating member
KR101186957B1 (en) 2010-10-08 2012-09-28 성균관대학교산학협력단 Fabrication of porous SiC ceramics
CN103060596A (en) * 2012-12-17 2013-04-24 华南理工大学 Preparation method for SiC reinforced Al-matrix composite material
JP2014062329A (en) * 2013-12-11 2014-04-10 Sumitomo Electric Ind Ltd Magnesium-base composite material
WO2016147488A1 (en) * 2015-03-16 2016-09-22 三井金属鉱業株式会社 Porous body, porous bonded body, filtration filter for molten metals, jig for firing, and method for producing porous body
JPWO2016147488A1 (en) * 2015-03-16 2017-04-27 三井金属鉱業株式会社 POROUS BODY, POROUS JOINT, FILTER FILTER FILTER FILTER, BIG JIG, AND POROUS BODY
JP2017105707A (en) * 2015-03-16 2017-06-15 三井金属鉱業株式会社 Porous body, porous bonded body, filtration filter for molten metals, jig for firing, and method for producing porous body
CN107427753A (en) * 2015-03-16 2017-12-01 三井金属矿业株式会社 Porous plastid, Porous conjugant, molten metal filter, burn till manufacture method with assembly fixture and porous plastid
CN105200261A (en) * 2015-10-26 2015-12-30 三峡大学 There-dimensional spatial ordered-structure graphite/aluminum composite material and preparation method thereof
CN111138198A (en) * 2019-12-30 2020-05-12 珠海凯利得新材料有限公司 Preparation method and application of aluminum silicon carbide composite material
CN112723904A (en) * 2021-01-29 2021-04-30 湖南三安半导体有限责任公司 Method for producing porous SiC sintered body, and SiC crystal
WO2022172874A1 (en) * 2021-02-10 2022-08-18 聡 安斎 Device for cooling arithmetic processing unit
US20230042620A1 (en) * 2021-08-05 2023-02-09 Shin-Etsu Chemical Co., Ltd. METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US20230083924A1 (en) * 2021-09-09 2023-03-16 Shin-Etsu Chemical Co., Ltd. Method for producing sic single crystal and method for suppressing dislocations in sic single crystal
CN115505775A (en) * 2022-09-26 2022-12-23 中南大学 Manufacturing method of frame body for electronic product and frame body for electronic product

Similar Documents

Publication Publication Date Title
JP2001181066A (en) Silicon carbide-based porous body and composite material comprising aluminum and the same
TWI599554B (en) Cooling plate, method of manufacturing the same, and device for semiconductor manufacturing apparatus
KR102084033B1 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
US5735332A (en) Method for making a ceramic metal composite
KR20080105152A (en) Porous silicon carbide and process for producing the same
Pampuch et al. Solid combustion synthesis of β SiC powders
EP0662019A1 (en) Method for making a ceramic metal composite
JP4113971B2 (en) Low expansion material and manufacturing method thereof
WO2011145387A1 (en) Si-SiC-BASED COMPOSITE MATERIAL AND PROCESS FOR PRODUCTION THEREOF, HONEYCOMB STRUCTURE, HEAT-CONDUCTIVE MATERIAL, AND HEAT EXCHANGER
JP4900663B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP2001247381A (en) Porous silicon carbide and method for producing the same
JP2634612B2 (en) Silicon carbide honeycomb filter and method for producing the same
JPH0232003B2 (en)
JP5048266B2 (en) Heat dissipation board and manufacturing method thereof
JP4305986B2 (en) Method for producing silicon carbide composite material
JP2672545B2 (en) Method for manufacturing silicon carbide honeycomb filter
JP3223275B2 (en) Method for producing cubic boron nitride sintered body
JP4041879B2 (en) Ceramic porous body and method for producing the same
JPH11217270A (en) Honeycomb structure
Ramasesha et al. Reactive infiltration of aluminum into molybdenum disilicide preform
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
JP3211408B2 (en) Filter material
JP2002212651A (en) Copper composite material
JPS60131862A (en) High strength silicon carbide base sintered body
JP2673095B2 (en) Aluminum nitride sintered body