JP5715413B2 - Method for producing plate material for high-strength can body with good surface properties - Google Patents

Method for producing plate material for high-strength can body with good surface properties Download PDF

Info

Publication number
JP5715413B2
JP5715413B2 JP2010293274A JP2010293274A JP5715413B2 JP 5715413 B2 JP5715413 B2 JP 5715413B2 JP 2010293274 A JP2010293274 A JP 2010293274A JP 2010293274 A JP2010293274 A JP 2010293274A JP 5715413 B2 JP5715413 B2 JP 5715413B2
Authority
JP
Japan
Prior art keywords
temperature
soaking
rolling
time
homogenization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010293274A
Other languages
Japanese (ja)
Other versions
JP2012140664A (en
Inventor
原田 俊宏
俊宏 原田
齊藤 充
充 齊藤
明直 武田
明直 武田
齊藤 洋
洋 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2010293274A priority Critical patent/JP5715413B2/en
Publication of JP2012140664A publication Critical patent/JP2012140664A/en
Application granted granted Critical
Publication of JP5715413B2 publication Critical patent/JP5715413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、アルミニウム缶の缶ボディに適用される表面性状が良好な高強度缶ボディ用板材の製造方法に関する。   The present invention relates to a method for producing a plate material for a high-strength can body having a good surface property applied to a can body of an aluminum can.

アルミニウム缶の缶ボディには、JIS3004(AA3004)またはJIS3104合金などの、Al−Mn−Mg系合金硬質板が用いられている。同合金硬質板には、容器として使用するために必要な強度や耐食性、美麗な外観、優れた成形性などが要求される。
前記合金硬質板は、一般的なアルミニウム合金板と同様、溶解・鋳造・均質化・熱間圧延・冷間圧延等の工程を経て製造される。そして通常、缶ボディ各部の強度や成形性のバランスが最適な3/4硬質(H16またはH36)から特硬質(H19またはH39)に調質されている。即ち、アルミニウム合金板を圧延途中に一旦再結晶させ、軟質状態とした後、圧下率50〜90%程度の冷間圧延を行い、主として加工硬化により適度な強度としている。
For the can body of the aluminum can, an Al—Mn—Mg based alloy hard plate such as JIS3004 (AA3004) or JIS3104 alloy is used. The alloy hard plate is required to have strength and corrosion resistance necessary for use as a container, a beautiful appearance, and excellent formability.
The said alloy hard plate is manufactured through processes, such as melting | dissolving, casting, homogenization, hot rolling, cold rolling, like a general aluminum alloy plate. Usually, the can body is tempered from 3/4 hard (H16 or H36) to special hard (H19 or H39) with an optimal balance of strength and formability. That is, the aluminum alloy plate is recrystallized once in the course of rolling to be in a soft state, and then cold-rolled with a reduction rate of about 50 to 90% to obtain an appropriate strength mainly by work hardening.

最近の工業的な冷間圧延機を用いてアルミニウム合金板を圧延した場合、圧延による発熱で材料温度が高くなるため、圧延のままでも十分な延性が得られる。従って、通常、アルミニウム合金板は圧延のままの調質(H16〜H19)で用いられる。アルミニウム合金板の圧延速度が遅い場合など十分な延性が得られない場合などには、安定化焼鈍を施して、H3X調質でアルミニウム合金板を用いることも考えられる。
しかし、アルミニウム合金の圧延板の機械的性質に異方性があると、缶ボディを成形する際の成形性を阻害したり、成形後の缶ボディの対称性が低下したり、材料の使用歩留まりが低下するなどの問題がある。圧延板の異方性は、結晶粒の方位分布(集合組織)に依存する。そこで、冷間圧延による集合組織の変化を考慮し、冷間圧延前の再結晶で生じる集合組織を制御することにより、アルミニウム合金圧延板の異方性を低減している。
When an aluminum alloy sheet is rolled using a recent industrial cold rolling mill, the material temperature becomes high due to heat generated by rolling, so that sufficient ductility can be obtained even with rolling. Therefore, the aluminum alloy sheet is usually used in a tempered condition (H16 to H19) as it is rolled. When sufficient ductility cannot be obtained, for example, when the rolling speed of the aluminum alloy plate is low, it may be possible to perform stabilization annealing and use the aluminum alloy plate with H3X refining.
However, if the mechanical properties of the aluminum alloy rolled plate are anisotropic, the formability when forming the can body is hindered, the symmetry of the can body after forming is reduced, and the material usage yield is reduced. There are problems such as lowering. The anisotropy of the rolled sheet depends on the crystal grain orientation distribution (texture). In view of this, the anisotropy of the aluminum alloy rolled sheet is reduced by taking into account the change in texture due to cold rolling and controlling the texture generated by recrystallization before cold rolling.

上述の観点から、アルミニウム合金圧延板の異方性を制御するために、冷間圧延前の再結晶をどのように制御するかが重要である。この観点から、アルミニウムの缶ボディ材の製造方法は、以下の3種に分類できる。
(1)熱間圧延→再結晶→最終冷延
第1の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、熱間圧延後、コイルに巻取った状態でそのまま再結晶させ、あるいは、人工的に焼鈍を施して再結晶させた後、冷間圧延を行う方法である。この方法には通常、熱間粗圧延機と3〜4スタンドのタンデム式仕上熱間圧延機を用いている。この場合、熱間仕上圧延条件を制御することにより、再結晶後に立方体集合組織を十分に発達させることが可能である。従って、冷間圧延の圧下率を例えば90%程度と比較的高くしても、最終的に得られるアルミニウム板の異方性を比較的小さく出来る。
From the above viewpoint, in order to control the anisotropy of the aluminum alloy rolled sheet, it is important how to control recrystallization before cold rolling. From this point of view, the manufacturing method of the aluminum can body material can be classified into the following three types.
(1) Hot rolling → Recrystallization → Final cold rolling In the first method, hot rolling is performed to a relatively thin aluminum alloy sheet of, for example, 3 mm or less, and after hot rolling, it is wound on a coil. This is a method in which recrystallization is performed as it is, or after artificial annealing and recrystallization, and then cold rolling. This method usually uses a hot roughing mill and a 3-4 stand tandem finishing hot rolling mill. In this case, it is possible to sufficiently develop the cube texture after recrystallization by controlling the hot finish rolling conditions. Therefore, even if the reduction ratio of the cold rolling is relatively high, for example, about 90%, the anisotropy of the finally obtained aluminum plate can be relatively small.

(2)熱間圧延→低圧下冷延→再結晶→最終冷延
第2の方法は、やはり熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、その後比較的低圧下の、例えば以下の特許文献1に記載の技術では、アルミニウム合金板材に6〜15%の冷間圧延を行った後、焼鈍を施し、最後に圧下率90%程度の最終冷間圧延を実施する方法である。先に記載の第一の方法と比較すると、比較的低圧下の冷間圧延という処理が追加されるが、この冷間圧延処理により焼鈍時の立方体集合組織の発達が促進される。従って、熱間仕上圧延条件の制御だけで十分な立方体方位が得られない場合に効果が期待できる。以下の特許文献2、3、4などに記載の技術では、熱間仕上圧延機に可逆式圧延機(リバーシングミル)を用いる場合に、本方法を提案している。
(2) Hot rolling-> cold rolling under low pressure->recrystallization-> final cold rolling The second method is to hot-roll into a relatively thin aluminum alloy sheet of, for example, 3 mm or less, and then at a relatively low pressure. For example, in the technique described in Patent Document 1 below, a method of performing cold rolling of 6 to 15% on an aluminum alloy sheet, then annealing, and finally performing final cold rolling with a reduction rate of about 90% It is. Compared with the first method described above, a process called cold rolling at a relatively low pressure is added, but this cold rolling process promotes the development of the cube texture during annealing. Therefore, an effect can be expected when sufficient cube orientation cannot be obtained only by controlling the hot finish rolling conditions. In the techniques described in the following Patent Documents 2, 3, 4 and the like, this method is proposed when a reversible rolling mill (reversing mill) is used as a hot finish rolling mill.

(3)熱間圧延→冷間圧延→連続焼鈍炉を用いた再結晶→比較的低圧下の最終冷延
第3の方法は、アルミニウム合金板材の熱間圧延後、第一冷間圧延を行い、その後、連続焼鈍炉を用いて、比較的高温に急速加熱し、その後急速冷却する焼鈍を行い、最後に比較的低圧下率、例えば60%程度の冷間圧延を行う方法である。この方法は、上述の第2の方法と異なり、第1の冷間圧延の圧下率の上限の制限がない。従って、熱間圧延で3mm程度の薄肉仕上が出来ない圧延機でも、缶ボディ材の製造が可能である。即ち、圧延機の片側にしか巻取り装置がない、粗圧延・仕上圧延兼用の熱間圧延機を用い、例えば、6〜10mm程度まで熱間圧延した熱延板からでも缶ボディ材が製造でき、高価な熱間仕上圧延機を必要としない。
(3) Hot rolling → cold rolling → recrystallization using a continuous annealing furnace → final cold rolling at a relatively low pressure The third method is to perform first cold rolling after hot rolling of an aluminum alloy sheet. Thereafter, using a continuous annealing furnace, annealing is performed by rapid heating to a relatively high temperature, followed by rapid cooling, and finally cold rolling at a relatively low pressure reduction rate, for example, about 60%. Unlike the second method described above, this method has no upper limit on the reduction ratio of the first cold rolling. Therefore, a can body material can be manufactured even in a rolling mill that cannot achieve a thin wall finish of about 3 mm by hot rolling. That is, a can body material can be produced even from a hot-rolled sheet hot-rolled to about 6 to 10 mm, for example, using a hot rolling mill for both rough rolling and finishing rolling, which has a winding device only on one side of the rolling mill. Does not require expensive hot finishing mills.

しかし、熱間圧延後の冷延圧下率が高いと、その後の再結晶焼鈍時に十分な立方体方位を発達させることが出来ないため、中間焼鈍後の冷間圧下率が高いと、最終板材の異方性が大きくなりすぎる。そこで、第3の方法では、比較的高温で中間焼鈍を行ない、急速冷却し、Mg、Si、Cu等の金属間化合物を溶体化している。このため缶ボディに成形された後の塗装後の焼付け処理時に析出硬化効果を得られ、最終冷間圧延の圧下率が60%程度と低くても、十分な強度が得られる。(特許文献5参照)   However, if the cold rolling reduction after hot rolling is high, sufficient cube orientation cannot be developed during the subsequent recrystallization annealing, so if the cold rolling reduction after intermediate annealing is high, the final plate material will be different. The directivity becomes too large. Therefore, in the third method, intermediate annealing is performed at a relatively high temperature, rapid cooling is performed, and an intermetallic compound such as Mg, Si, or Cu is formed into a solution. For this reason, a precipitation hardening effect can be obtained at the time of baking after coating after being formed on the can body, and sufficient strength can be obtained even if the rolling reduction of the final cold rolling is as low as about 60%. (See Patent Document 5)

ところで、アルミニウム缶に対する低価格化の要求は厳しく、このため材料使用量を出来るだけ低減する試みが、続けられている。しかし、素材板厚を薄くすると、缶体底部の強度確保が難しく、缶体壁部を薄くすると、飲料を充填後の流通過程でピンホール等が発生し、内容物の漏洩を生じやすくなるという問題があった。
このような問題に対し、本発明者らは、先に、耐ピンホール性の優れた缶ボディを製造するのに適したアルミニウム合金板材を提案している。そして、その場合の好ましい製造方法の一例として、連続焼鈍炉を用いて、比較的高温に急速加熱し、その後急速冷却する中間焼鈍を施す製造方法が好ましいことを提案している。
By the way, the demand for lower prices for aluminum cans is severe, and therefore, attempts to reduce the amount of material used as much as possible continue. However, if the material plate thickness is reduced, it is difficult to ensure the strength of the bottom of the can body, and if the can body wall portion is thinned, pinholes and the like are likely to occur in the distribution process after filling the beverage, and the contents are likely to leak. There was a problem.
In response to such problems, the present inventors have previously proposed an aluminum alloy plate material suitable for manufacturing a can body having excellent pinhole resistance. And as an example of the preferable manufacturing method in that case, using the continuous annealing furnace, it proposes that the manufacturing method which carries out the intermediate annealing which rapidly heats to comparatively high temperature and then rapidly cools is proposed.

アルミニウム製缶ボディは、JIS3004などのアルミニウム合金硬質板に絞り加工およびしごき加工を施して製造される。缶ボディ壁部は、しごき加工によって、光沢がある均一な表面になる。また、Al−Mn−Mg系合金は耐食性が優れる。したがって、しごき加工後、洗浄・化成処理を行い、比較的薄い塗装を施すだけで、美麗な外観と良好な耐食性が得られる。したがって、スチール缶等と比較した場合に、塗装コストが低いことがアルミニウム缶のメリットとなっている。しかし、缶壁表面に欠陥があると、薄い塗装では微細な欠陥でも隠すことが出来ないため、欠陥を生じないようにすることが、肝要である。
上述のような問題が生じる欠陥として、圧延方向に沿った線状の欠陥がある。この種の欠陥は缶ボディに成形すると、ループ状の特有な形態となるため、「フローライン」などと呼ばれている。フローラインの原因としては、板表面に生じた傷や、熱間圧延時のロールコーティングの不均一な転写などがあると言われている。(非特許文献1参照)
The aluminum can body is manufactured by drawing and ironing an aluminum alloy hard plate such as JIS3004. The can body wall becomes a glossy and uniform surface by ironing. Further, the Al—Mn—Mg alloy has excellent corrosion resistance. Therefore, a beautiful appearance and good corrosion resistance can be obtained simply by performing cleaning and chemical conversion treatment after ironing and applying a relatively thin coating. Therefore, when compared with steel cans or the like, a lower coating cost is an advantage of aluminum cans. However, if there is a defect on the surface of the can wall, even a fine defect cannot be concealed by thin coating, so it is important to prevent the defect from occurring.
As a defect that causes the above problems, there is a linear defect along the rolling direction. This type of defect is called a “flow line” because it forms a loop-like shape when molded into a can body. The cause of the flow line is said to be scratches generated on the surface of the plate and uneven transfer of roll coating during hot rolling. (See Non-Patent Document 1)

特許第3644819号公報Japanese Patent No. 3644819 特許第3644819号公報Japanese Patent No. 3644819 特許第3871462号公報Japanese Patent No. 3871462 特許第3871473号公報Japanese Patent No. 3871473 特公昭60−35424号公報Japanese Patent Publication No. 60-35424

大西の解説:板表面の欠陥防止、アルミニウム製品と製造技術、軽金属学会50周年記念事業実行委員会編集、76ページ(4)、2001年10月31日発行Onishi's commentary: Defect prevention on plate surfaces, aluminum products and manufacturing technology, edited by the 50th Anniversary Business Executive Committee of the Japan Institute of Light Metals, page 76 (4), published on October 31, 2001

前述した本発明者の研究により、連続焼鈍炉を用いて中間焼鈍を施す製造方法により、耐ピンホール性に優れた高強度アルミニウム缶ボディ材の製造が可能であり、缶ボディの価格低減に有効な素材薄肉化も達成できることが分かった。
しかし、先の技術を用いても、大量生産ラインでは、圧延板の表面に欠陥が発生する場合があり、缶ボディの外観に問題が生じるため、表面欠陥の発生抑制について鋭意検討した。その結果、表面キズが原因と考えられていたフローラインと形態が良く似ているが、表面キズが原因ではない欠陥(以下、「フローライン状欠陥」と呼ぶ)を生じることが判明した。
Based on the above-mentioned research by the present inventor, it is possible to produce a high-strength aluminum can body material with excellent pinhole resistance by a production method in which intermediate annealing is performed using a continuous annealing furnace, which is effective for reducing the price of the can body. It was found that a thin material can be achieved.
However, even if the previous technique is used, in the mass production line, defects may occur on the surface of the rolled plate, which causes a problem in the appearance of the can body. As a result, it was found that a defect (hereinafter referred to as a “flow line defect”) having a shape similar to that of the flow line considered to be caused by the surface flaw but not caused by the surface flaw was generated.

そこで、フローライン状欠陥の発生率や原因について、本発明者が詳しく検討したところ、欠陥の発生率には、熱間圧延前の均質化条件や熱間圧延最終パスの圧延条件が影響すること、熱間圧延以降の工程で板表面に認められるふくれが原因であることなどが、明らかになった。更に、アルミニウム合金の溶湯処理条件もフローライン状欠陥の発生率に影響することが明らかになった。   Therefore, when the present inventors examined the occurrence rate and cause of flow line defects in detail, the homogenization conditions before hot rolling and the rolling conditions in the final hot rolling influence the defect occurrence rate. It has been clarified that blisters observed on the surface of the plate in the processes after hot rolling are the cause. Furthermore, it became clear that the molten metal treatment conditions of the aluminum alloy also affect the rate of occurrence of flow line defects.

本発明は、これらの知見に基づいてなされたものであり、均質化処理の温度、時間を規制し、さらに熱間圧延最終パスの圧延条件などを規制することにより、フローライン状欠陥が発生しない缶ボデイ用板材の製造方法を提供することを第一の目的とする。
本発明の第二の目的は、上述の第一の目的を解決した結果として低下した、生産性や歩留まりを改善することである。
即ち、本発明では、熱間圧延最終パス後の温度やその温度に応じた圧下率上限を規制している。このため、温度を低下させるために熱間圧延時速度を下げたり、あるいは、熱間圧延により圧延可能な板厚が増加する。
更に、本発明では、素材の薄肉化を目的としているため、上述の目的を達成した上に、従来より板厚が薄い素材を製造することを目的としている。
従って、熱間圧延後、最終板厚とするまでに必要な冷間圧下率が増加した。このため、冷間圧延のパス数が増加したり、パス間で行う板幅端のトリム回数が増加し、歩留まりが低下するなどの問題を生じる。そこで、本発明は、これらの問題に対処し、工業的に最適な製造方法を提供することを第三の目的とする。
The present invention has been made on the basis of these findings, and by controlling the temperature and time of the homogenization treatment, and further regulating the rolling conditions of the final hot rolling pass, no flow line defects are generated. It is a first object to provide a method for producing a can body plate.
The second object of the present invention is to improve productivity and yield, which are reduced as a result of solving the first object.
That is, in the present invention, the temperature after the final hot rolling pass and the upper limit of the rolling reduction according to the temperature are regulated. For this reason, in order to reduce temperature, the speed at the time of hot rolling is reduced, or the plate | board thickness which can be rolled by hot rolling increases.
Furthermore, in the present invention, since the purpose is to reduce the thickness of the material, the object is to produce a material having a smaller plate thickness than the conventional one, in addition to achieving the above-mentioned object.
Accordingly, the cold rolling reduction required to reach the final thickness after hot rolling increased. For this reason, problems such as an increase in the number of cold rolling passes, an increase in the number of trims at the sheet width end performed between passes, and a decrease in yield are caused. Therefore, a third object of the present invention is to address these problems and provide an industrially optimal manufacturing method.

上記の課題を解決するため、本発明は以下の構成を採用した。
本発明の表面性状が良好な高強度缶ボディ用板材の製造方法は、質量%で、Mn:0.7〜1.1%、Mg:0.9〜1.7%、Si:0.25〜0.45%、Fe:0.35〜0.55%、Cu:0.25〜0.45%、Zn:0.05〜0.30%、Ti:0.15%以下を含有し、残部不可避不純物の組成を有するアルミニウム合金の鋳塊を均質化処理と均熱処理した後、熱間圧延と冷間圧延を施し、連続焼鈍した後、最終冷間圧延して板厚0.23mm以上0.4mm以下の表面性状が良好な高強度缶ボディ用板材を製造する方法であって、前記均質化処理を555〜580℃の温度で1〜12時間行い、前記均熱処理を535〜555℃の温度で1時間以上行い、均質化処理時間と均熱処理時間の合計時間を40時間以下にするとともに、前記均質化処理と前記均熱処理をそれぞれ専用炉で行う場合、前記均質化温度に昇温する時間と前記均質化温度から降温する時間のうち、前記均熱温度の下限である535℃以上であった時間を前記均質化処理時間と均熱処理時間の合計時間の一部として含み、前記均質化処理と前記均熱処理を兼用炉で行う場合、前記均質化処理時間と均熱時間の合計時間を前記均熱温度下限の535℃に達してから前記鋳塊を取り出すまでの時間とし、前記熱間圧延最終パスの圧下率を(85−0.08T)%以下(ただしTは、熱間圧延最終パス後、熱間圧延機から巻取直後の温度℃を示す)に設定し、熱間圧延機から巻取直後のコイル温度を270℃以上460℃以下、熱間圧延後連続焼鈍までの第一冷間圧延圧下率を40%以上、連続焼鈍後、最終板厚までの最終冷間圧延圧下率を55%以上70%以下とすることを特徴とする。
本発明の表面性状が良好な高強度缶ボディ用板材の製造方法は、前記均質化処理と前記均熱処理を兼用炉で行う場合、前記均質化温度よりも前記均熱温度を10℃以上低い温度に設定し、前記鋳塊の昇温時に前記鋳塊の温度を前記均質化温度−10℃に到達させた時点から、前記均質化温度としている時間を経て、前記鋳塊の温度を前記均質化温度から前記均熱温度に降温時に前記均質化温度−10℃または前記均熱温度+10℃の高い方の温度とした時点までを前記均質化処理時間とし、前記均熱時間は、前記鋳塊の温度を前記均質化温度から前記均熱温度に降温開始後、前記均熱温度+10℃以下になった時点から、前記鋳塊を前記兼用炉から取り出すまでの時間とすることを特徴とする。
本発明の表面性状が良好な高強度缶ボディ用板材の製造方法は、前記熱間圧延において最後2パス以上4パス以下の熱間仕上パスを、圧延機の両側に巻取装置を有する熱間圧延機を用い、圧延後の板材を巻取機でコイル状に巻き取りしながら圧延する方法であって、前記熱間圧延における熱間仕上パス開始板厚を18mm以上30mm以下で行い、前記冷間圧延における第一冷間圧延圧下率を88%以下とすることを特徴とする。
本発明は、上述の製造方法においてMg:1.30〜1.7%、Cu:0.30%〜0.45%の範囲とすることを特徴とする。
In order to solve the above problems, the present invention employs the following configuration.
The manufacturing method of the board | plate material for high-strength can bodies with the favorable surface property of this invention is the mass%, Mn: 0.7-1.1%, Mg: 0.9-1.7%, Si: 0.25. ~ 0.45%, Fe: 0.35-0.55%, Cu: 0.25-0.45%, Zn: 0.05-0.30%, Ti: 0.15% or less, The ingot of aluminum alloy having the composition of the remaining inevitable impurities is homogenized and soaked, then hot rolled and cold rolled, continuously annealed, and finally cold rolled to a thickness of 0.23 mm or more. A method for producing a plate material for a high-strength can body having a good surface property of 4 mm or less, wherein the homogenization treatment is performed at a temperature of 555 to 580 ° C. for 1 to 12 hours, and the soaking treatment is performed at a temperature of 535 to 555 ° C. When the temperature is kept for 1 hour or more and the total time of the homogenization treatment time and the soaking time is 40 hours or less Moni, the case where homogenization treatment and the soaking dedicated heat treatment of each furnace, among time lowering the time and the homogenization temperature of heated to the homogenization temperature, 535 ° C. wherein the lower limit of the soaking temperature The above-mentioned time is included as part of the total time of the homogenization treatment time and the soaking time, and when the homogenization treatment and the soaking treatment are performed in a combined furnace, the total of the homogenization treatment time and the soaking time The time is defined as the time from reaching the lower soaking temperature lower limit of 535 ° C. until the ingot is taken out, and the reduction ratio of the final hot rolling pass is not more than (85−0.08T)% (where T is hot After the final pass of rolling, the temperature immediately after winding from the hot rolling mill is indicated), and the coil temperature immediately after winding from the hot rolling mill is 270 ° C. or higher and 460 ° C. or lower until the continuous annealing after hot rolling. First cold rolling reduction rate of 40% or more, continuous annealing The final cold rolling reduction ratio to the final thickness, characterized in that 70% or less than 55%.
The method for producing a plate material for a high-strength can body having a good surface property according to the present invention is such that when the homogenization treatment and the soaking treatment are performed in a dual-purpose furnace, the soaking temperature is 10 ° C. or more lower than the homogenization temperature. And when the temperature of the ingot is raised, the temperature of the ingot is made to reach the homogenization temperature −10 ° C., and then the temperature of the ingot is homogenized through the time set as the homogenization temperature. From the temperature to the soaking temperature, when the temperature is lowered, the homogenization temperature is −10 ° C. or the higher temperature of the soaking temperature + 10 ° C. is defined as the homogenization treatment time. The temperature is defined as the time from when the soaking temperature is reduced to 10 ° C. or less after the temperature is lowered from the homogenization temperature to the soaking temperature until the ingot is taken out from the combined furnace.
The method for producing a plate material for a high-strength can body having a good surface property according to the present invention includes a hot finishing pass of the last 2 passes or more and 4 passes or less in the hot rolling, and a hot having a winding device on both sides of the rolling mill. A method of rolling using a rolling machine while winding a rolled plate material in a coil shape with a winder, wherein a hot finishing pass start plate thickness in the hot rolling is 18 mm or more and 30 mm or less, The first cold rolling reduction in cold rolling is 88% or less.
The present invention is characterized in that Mg: 1.30 to 1.7% and Cu: 0.30% to 0.45% in the above-described manufacturing method.

本発明は特定組成のアルミニウム合金を均質化処理するとともに均熱処理し、それらの合計時間を規定し、熱間圧延最終パスの圧下率を(85−0.08T)%以下(Tは最終熱間圧延機から巻取直後の温度)に設定し、熱間圧延機から巻取直後のコイル温度を規定の範囲とし、第一冷間圧延率と最終冷間圧延圧下率を規定の範囲としたので、熱間圧延最終パスにおいて適切な圧下率と適切な温度で仕上圧延される効果としてフローライン状欠陥の発生を抑制することができる。これにより、缶ボディに加工された場合であっても表面にフローライン状欠陥に起因する傷の生じない缶ボディ用板材を提供できる効果がある。   In the present invention, an aluminum alloy having a specific composition is homogenized and soaked, the total time thereof is defined, and the rolling reduction of the final hot rolling pass is not more than (85-0.08T)% (T is the final hot Since the coil temperature immediately after winding from the hot rolling mill is within the specified range, and the first cold rolling rate and final cold rolling reduction are within the specified range. As a result of finish rolling at an appropriate reduction rate and an appropriate temperature in the final hot rolling pass, the occurrence of flow line defects can be suppressed. Thereby, even if it is a case where it is processed into a can body, there exists an effect which can provide the board | plate material for can bodies which does not produce the damage | wound resulting from a flow line-like defect on the surface.

図1は本発明に係る製造方法を実施する際に用いる装置と工程を示す説明図。FIG. 1 is an explanatory view showing an apparatus and steps used in carrying out the manufacturing method according to the present invention. 図2はアルミニウム缶の缶ボディに形成されたフローライン状欠陥の一部を示す組織写真。FIG. 2 is a structural photograph showing a part of a flow line defect formed in a can body of an aluminum can. 図3はアルミニウム缶の缶ボディに形成されたフローライン状欠陥の一例を示す斜視図。FIG. 3 is a perspective view showing an example of a flow line-like defect formed in a can body of an aluminum can.

以下、本発明に係る表面性状が良好な高強度缶ボディ用板材の製造方法について説明するが、初めに、高強度缶ボディ用板材(缶ボディ用アルミニウム合金板)の板厚と合金組成について説明する。
本実施形態のアルミニウム合金の高強度缶ボディ用板材は目標とする板厚が0.23mm以上0.4mm以下であり、質量%で、Mn:0.7〜1.1%、Mg:0.9〜1.7%、Si:0.25〜0.45%、Fe:0.35〜0.55%、Cu:0.25〜0.45%、Zn:0.05〜0.30%、Ti:0.15%以下を含有し、残部不可避不純物とアルミニウムの組成を有するアルミニウム合金からなる。
[成分組成]
以下、本発明の表面性状が良好な高強度缶ボディ用板材において限定する成分組成について説明する。なお、本明細書において記載する各元素の含有量は、特に規定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。従って、例えば0.7〜1.1%との表記は0.7%以上1.1%以下を意味する。
Hereinafter, a method for producing a plate material for a high-strength can body with good surface properties according to the present invention will be described. First, the plate thickness and alloy composition of a plate material for a high-strength can body (aluminum alloy plate for a can body) will be described. To do.
The plate material for the high-strength can body of the aluminum alloy of the present embodiment has a target plate thickness of 0.23 mm or more and 0.4 mm or less, in terms of mass%, Mn: 0.7 to 1.1%, Mg: 0.00. 9 to 1.7%, Si: 0.25 to 0.45%, Fe: 0.35 to 0.55%, Cu: 0.25 to 0.45%, Zn: 0.05 to 0.30% , Ti: 0.15% or less, the balance is made of an aluminum alloy having the composition of inevitable impurities and aluminum.
[Ingredient composition]
Hereinafter, the component composition limited in the board | plate material for high-strength can bodies with the favorable surface property of this invention is demonstrated. In addition, content of each element described in this specification is mass% unless otherwise specified, and includes an upper limit and a lower limit unless otherwise specified. Therefore, for example, the notation of 0.7 to 1.1% means 0.7% or more and 1.1% or less.

「Mn」0.7〜1.1%
Mnは、本発明の表面性状が良好な高強度缶ボディ用板材において、Al−Mn−Fe系金属間化合物を形成し、晶出相及び分散相となって分散硬化作用を発揮するとともに、しごき成形加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Mnの含有量が0.7%未満であると、Al−Mn−Fe系金属間化合物の量が少なくなりすぎて充分な硬化特性が得られず、しごき金型への焼き付が生じやすくなる。Mnの含有量が1.1%を越えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホール(PH)が生じやすくなる。従って、Mnの含有量は、0.7〜1.1%の範囲内とすることが好ましい。
"Mn" 0.7-1.1%
Mn forms an Al-Mn-Fe intermetallic compound in the plate material for high strength can body with good surface properties of the present invention, and exhibits a dispersion hardening action as a crystallization phase and a dispersed phase. It has the effect of preventing seizure from occurring on the die during molding.
When the content of Mn is less than 0.7%, the amount of Al—Mn—Fe intermetallic compound becomes too small to obtain sufficient curing characteristics, and seizure to the ironing mold is likely to occur. . When the content of Mn exceeds 1.1%, the amount of Al—Mn—Fe intermetallic compound is excessively increased, workability deteriorates due to a decrease in toughness, and pinholes (PH) are likely to occur. Therefore, the Mn content is preferably in the range of 0.7 to 1.1%.

「Mg」0.9〜1.7%
Mgは、本発明の表面性状が良好な高強度缶ボディ用板材において、固溶体強化作用を有し、圧延加工時に加工硬化性を高めるとともに、SiやCuと共存することで分散硬化と析出硬化作用を発揮し、強度を向上させる。
Mgの含有量が0.9%未満であると、十分な強度が得られない。Mgの含有量が1.7%を超えると、サイドクラックが発生し易くなり、圧延性が低下するとともに、強度が高くなり過ぎて加工性が低下し、缶ボディとして製缶した際に胴切れが生じ易くなる。従って、Mgの含有量は、0.9〜1.7%の範囲内とすることが好ましい。また、最終的に得られる缶ボディ用板材の板厚が、0.23mm以上0.30mm以下の場合には、Mgの含有量について、1.30〜1.7%の範囲がより好ましい。Mgの含有量が1.30%未満では、板厚が0.30mm以下の場合、強度が不足する傾向がある。
"Mg" 0.9-1.7%
Mg has a solid solution strengthening action in the plate material for high-strength can body having a good surface property of the present invention, enhances work hardenability at the time of rolling, and disperse hardening and precipitation hardening action by coexisting with Si and Cu. To improve the strength.
If the Mg content is less than 0.9%, sufficient strength cannot be obtained. If the Mg content exceeds 1.7%, side cracks are likely to occur, the rollability is lowered, the strength is too high, the workability is lowered, and the can is cut as a can body. Is likely to occur. Therefore, the Mg content is preferably in the range of 0.9 to 1.7%. Moreover, when the plate | board thickness of the board | plate material for can bodies finally obtained is 0.23 mm or more and 0.30 mm or less, about the content of Mg, the range of 1.30-1.7% is more preferable. If the Mg content is less than 1.30%, the strength tends to be insufficient when the plate thickness is 0.30 mm or less.

「Si」0.25〜0.45%
Siは、本発明の表面性状が良好な高強度缶ボディ用板材において、同時に含有されるMg等とともに化合物を形成し、析出硬化及び分散硬化作用で強度を向上させる他、Al−Mn−Fe系金属間化合物に含有されて、しごき成形時にダイスに対する焼き付きを防止する効果を有する。
Siの含有量が0.25%未満であると、十分な強度が得られず、また、金属間化合物寸法が大きくなる。Siの含有量が0.45%を越えると、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなり、サイドクラックが生じ易くなり、加工性が劣化する。また、Siの含有量が0.45%を越えると、Al−Mn−Fe系金属間化合物の量が多くなり、さらに、Mg、Cu、Alとの金属間化合物が溶体化できなくなり、靭性が低下し、ピンホールが生じやすくなる。従って、Siの含有量は、0.25〜0.45%の範囲内とすることが好ましい。
"Si" 0.25-0.45%
Si forms a compound together with Mg or the like contained at the same time in the plate material for a high strength can body having a good surface property of the present invention, and improves the strength by precipitation hardening and dispersion hardening action. It is contained in an intermetallic compound and has an effect of preventing seizure against a die during ironing.
If the Si content is less than 0.25%, sufficient strength cannot be obtained, and the intermetallic compound size increases. If the Si content exceeds 0.45%, the strength becomes too high, and when a can body is produced, it becomes easy to be cut out of the cylinder, side cracks are likely to occur, and workability deteriorates. Further, if the Si content exceeds 0.45%, the amount of Al-Mn-Fe intermetallic compound increases, and further, the intermetallic compound with Mg, Cu, Al cannot be solutionized, and the toughness is increased. The pinhole is likely to occur. Therefore, the Si content is preferably in the range of 0.25 to 0.45%.

「Fe」0.35〜0.55%
Feは、本発明の表面性状が良好な高強度缶ボディ用板材において、Al−Mn−Fe系金属間化合物の量を増加させ、結晶の微細化と、しごき成形加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Feの含有量が0.35%未満であると、Al−Mn−Fe系金属間化合物の量が少なくなりすぎ、しごき金型への焼き付が生じやすくなる。Feの含有量が0.55%を超えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Feの含有量は、0.35〜0.55%の範囲内とすることが好ましい。
"Fe" 0.35-0.55%
Fe increases the amount of Al-Mn-Fe intermetallic compound in the plate material for high-strength can bodies with good surface properties according to the present invention, so that the fineness of crystals and seizure to the die during ironing processing. It has the effect of preventing the occurrence.
If the Fe content is less than 0.35%, the amount of the Al—Mn—Fe intermetallic compound becomes too small, and seizure to the ironing die tends to occur. When the content of Fe exceeds 0.55%, the amount of Al—Mn—Fe intermetallic compound becomes too large, workability deteriorates due to a decrease in toughness, and pinholes are likely to occur. Therefore, the Fe content is preferably in the range of 0.35 to 0.55%.

「Cu」0.25〜0.45%
Cuは、本発明の表面性状が良好な高強度缶ボディ用板材において、Mg等と金属間化合物を形成し、固溶硬化、析出硬化及び分散硬化作用で強度を高める効果を有する。
Cuの含有量が0.25%未満であると、充分な強度向上効果が得られない。Cuの含有量が0.45%を越えると、サイドクラックが発生し易くなり、圧延性が低下するとともに、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなる。また、Mg、Si、Alとの金属間化合物が溶体化できなくなり、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Cuの含有量は、0.25〜0.45%の範囲内とすることが好ましい。また、最終的に得られる缶ボディ用板材の板厚が、0.23mm以上0.30mm以下の場合には、Cuの含有量について、0.30〜0.45%の範囲がより好ましい。Cuの含有量が0.30%未満では、板厚が0.30mm以下の場合、強度が不足する傾向がある。
“Cu” 0.25 to 0.45%
Cu forms an intermetallic compound with Mg or the like in the plate material for a high strength can body having a good surface property of the present invention, and has an effect of increasing strength by solid solution hardening, precipitation hardening and dispersion hardening.
If the Cu content is less than 0.25%, a sufficient strength improvement effect cannot be obtained. If the Cu content exceeds 0.45%, side cracks are likely to occur, the rollability is lowered, the strength becomes too high, and the body is easily cut when it is made as a can body. In addition, the intermetallic compound with Mg, Si, and Al cannot be in solution, and the workability deteriorates due to a decrease in toughness, and pinholes are likely to occur. Therefore, the Cu content is preferably in the range of 0.25 to 0.45%. Moreover, when the plate | board thickness of the board | plate material for can bodies finally obtained is 0.23 mm or more and 0.30 mm or less, about 0.30 to 0.45% of range of Cu content is more preferable. If the Cu content is less than 0.30%, the strength tends to be insufficient when the plate thickness is 0.30 mm or less.

「Zn及びTi」Zn:0.05%以上0.30%以下、Ti:0.15%以下
本発明の表面性状が良好な高強度缶ボディ用板材は、質量%でZn:0.05%以上、0.30%以下、Ti:0.15%以下を含有する成分組成とすることができる。
Znは、析出するMg、Si、Cuの金属間化合物を微細化する作用を有するが、Znを含む場合は、原料として使用済みアルミ缶(UBC)やリサイクル材料を有効利用できる。Zn含有量が0.05%未満では原料としてUBCやリサイクル材を使用し難くなる。Zn含有量が0.30%を越えると、耐食性が劣化する。従って、Znの含有量は、0.05%以上0.30%以下とすることが好ましい。
Tiは、本発明の表面性状が良好な高強度缶ボディ用板材において、結晶粒を微細化し、加工性を改善する効果を有する。Tiの含有量が0.15%を越えると、金属間化合物が多くなり過ぎて靭性が低下し、ピンホールが生じやすくなる。従って、Tiの含有量は、0.15%以下とすることが好ましい。
また、本発明に用いるアルミニウム合金においてその他の元素を不純物として0.05%以下含有していても差し支えない。
“Zn and Ti” Zn: 0.05% or more and 0.30% or less, Ti: 0.15% or less The plate material for a high-strength can body having good surface properties according to the present invention is Zn: 0.05% in mass%. As mentioned above, it can be set as the component composition containing 0.30% or less and Ti: 0.15% or less.
Zn has the effect of refining the precipitated intermetallic compounds of Mg, Si, and Cu, but when it contains Zn, used aluminum cans (UBC) and recycled materials can be effectively used as raw materials. If the Zn content is less than 0.05%, it is difficult to use UBC or recycled material as a raw material. When the Zn content exceeds 0.30%, the corrosion resistance deteriorates. Therefore, the Zn content is preferably 0.05% or more and 0.30% or less.
Ti has the effect of refining crystal grains and improving workability in the plate material for a high-strength can body having good surface properties according to the present invention. When the Ti content exceeds 0.15%, the amount of intermetallic compounds increases so much that the toughness decreases and pinholes are likely to occur. Therefore, the Ti content is preferably 0.15% or less.
Further, the aluminum alloy used in the present invention may contain 0.05% or less of other elements as impurities.

本実施形態の表面性状が良好な高強度缶ボディ用板材の製造方法においては、例えば、前記組成のアルミニウム合金スラブを溶製し、このスラブに対し均質化処理と均熱処理を施した後、図1に示す順序に従って加工することにより目的の表面性状が良好な高強度缶ボディ用板材を得る。
図1に示す工程においては、図1(A)に概要を示す熱間粗圧延機1を用いて板厚16mm程度まで熱間粗圧延した後、図1(B)に概要を示す熱間仕上圧延機2を用いて板厚2mm程度まで熱間圧延し、次に、図1(C)に概要を示す冷間圧延装置3において冷間圧延し、次に図1(D)に概要を示す連続焼鈍炉4において焼鈍し、図1(E)に示す如く冷間圧延装置5において再度目的の板厚まで冷間圧延し、最後に図1(F)に示すように目的の厚さの板材をコイル状に巻回してなるコイル6を得ることができる。
In the method for producing a plate material for a high-strength can body having a good surface property according to the present embodiment, for example, an aluminum alloy slab having the above composition is melted and subjected to homogenization treatment and soaking treatment. By processing according to the order shown in 1, a plate material for a high-strength can body having a good target surface property is obtained.
In the process shown in FIG. 1, hot roughing is performed to a thickness of about 16 mm using the hot roughing mill 1 shown in FIG. 1A, and then hot finishing is shown in FIG. 1B. It hot-rolls to about 2 mm in thickness using the rolling mill 2, and then cold-rolls in the cold rolling apparatus 3 which shows an outline in FIG.1 (C), and shows an outline in FIG.1 (D) next. Annealing is performed in the continuous annealing furnace 4, cold rolling is performed again to a target plate thickness in the cold rolling apparatus 5 as shown in FIG. 1E, and finally a plate material having a target thickness as shown in FIG. Can be obtained.

図1(A)に示す熱間粗圧延機1は、例えば上下のワークロール10、11およびバックアップロール12、13と、複数の搬送ローラが配列された搬送路14を備え、搬送されてきたアルミニウム合金の板材15をワークロール10、11間を通過させて目的の厚さに圧延する装置である。なお、図1(A)において搬送路14は左側のみ記載されているが、実際には右側にも設置されていて、左右両側の搬送路から交代交代に繰り返しワークロール10、11に供給して順次粗圧延することにより、熱間粗圧延機1は必要な厚さまで板材15を圧延することができる。
図1(B)に示す熱間仕上圧延機2は、例えば上下のワークロール16、17およびバックアップロール18、19と、これらロールの入側に設置されたリール型の送出巻取装置20と、出側に設置されたリール型の送出巻取装置21とを具備してなる。この熱間仕上圧延機2は、送出巻取装置20から送り出してワークロール16、17間を通過させて熱間圧延した板材を送出巻取装置21で巻き取る操作と、送出巻取装置21から再度ワークロール16、17間を通過させて熱間圧延した板材を送出巻取装置20で巻き取る操作を繰り返し必要回数行うとともに、圧延操作の度に徐々にワークロール16、17間の間隔を調節することにより、アルミニウム合金の板材を目的の板厚まで熱間圧延する装置である。
The hot rough rolling mill 1 shown in FIG. 1 (A) includes, for example, upper and lower work rolls 10 and 11 and backup rolls 12 and 13 and a transport path 14 in which a plurality of transport rollers are arranged, and has been transported aluminum. This is an apparatus for rolling an alloy plate 15 to a desired thickness by passing between work rolls 10 and 11. In FIG. 1 (A), the conveyance path 14 is shown only on the left side, but actually it is also installed on the right side, and it is repeatedly supplied alternately to the work rolls 10 and 11 from the left and right conveyance paths. By sequentially performing rough rolling, the hot rough rolling mill 1 can roll the plate material 15 to a required thickness.
The hot finish rolling mill 2 shown in FIG. 1 (B) includes, for example, upper and lower work rolls 16 and 17 and backup rolls 18 and 19, and a reel-type delivery winding device 20 installed on the entry side of these rolls, And a reel-type delivery take-up device 21 installed on the delivery side. The hot finish rolling mill 2 is configured to wind the sheet material that is hot-rolled from the feed winder 20 and passed between the work rolls 16 and 17 by the feed winder 21, and from the feed winder 21. The operation of winding the sheet material hot-rolled again by passing between the work rolls 16 and 17 with the feed winder 20 is repeated as many times as necessary, and the interval between the work rolls 16 and 17 is gradually adjusted for each rolling operation. By doing so, it is an apparatus for hot rolling an aluminum alloy plate material to a target plate thickness.

図1(C)に示す冷間圧延装置3は例えば上下のワークロール22、23およびバックアップロール24、25と、これらロールの入側に設置されたリール型の送出巻取装置26と、出側に設置されたリール型の送出巻取装置27とを具備してなる。この冷間圧延機3は、送出巻取装置26から送り出してワークロール22、23間を通過させて冷間圧延した板材を送出巻取装置27で巻き取る操作と、送出巻取装置27から再度ワークロール22、23間を通過させて冷間圧延した板材を送出巻取装置26で巻き取る操作を繰り返し必要回数行うとともに、圧延操作の度に徐々にワークロール22、23の間隔を調節することにより、アルミニウム合金の板材を目的の板厚まで順次圧延する装置である。   1C includes, for example, upper and lower work rolls 22 and 23 and backup rolls 24 and 25, a reel-type delivery winding device 26 installed on the entry side of these rolls, and an exit side. And a reel-type delivery take-up device 27 installed in the machine. The cold rolling mill 3 performs an operation of winding the sheet material, which is fed from the take-up take-up device 26 and passed between the work rolls 22, 23, by the take-up take-up device 27, and again from the take-up take-up device 27. The operation of winding the sheet material cold-rolled by passing between the work rolls 22 and 23 with the feed winder 26 is repeated as many times as necessary, and the interval between the work rolls 22 and 23 is gradually adjusted for each rolling operation. Thus, the aluminum alloy plate material is sequentially rolled to the target plate thickness.

図1(D)に示す連続焼鈍炉4は、加熱ゾーン30と冷却ゾーン31とを備えた焼鈍炉32と、この焼鈍炉32に板材を送り込むための送出装置33およびアキュムレータ34と、焼鈍炉32から板材を引き出して巻き取るためのアキュムレータ35および巻取装置36とを備えて構成されている。この連続焼鈍炉4は急速加熱と急速冷却および高温での短時間の焼鈍ができる装置として知られている装置である。
図1(E)に示す冷間圧延装置5は先の冷間圧延装置3と同等構成であるが、ワークロール22、23の間隔を調節して冷間圧延装置3より薄い板材に冷間圧延できるように構成されている。
図1に概要を示す各装置を主体として用い、以下に詳述する工程を順次実施することにより、目的の表面性状が良好な高強度缶ボディ用板材を製造することができる。
A continuous annealing furnace 4 shown in FIG. 1D includes an annealing furnace 32 having a heating zone 30 and a cooling zone 31, a feeding device 33 and an accumulator 34 for feeding a plate material to the annealing furnace 32, and an annealing furnace 32. And an accumulator 35 and a winding device 36 for pulling out and winding the plate material. The continuous annealing furnace 4 is an apparatus known as an apparatus capable of rapid heating, rapid cooling, and annealing at a high temperature for a short time.
The cold rolling device 5 shown in FIG. 1 (E) has the same configuration as that of the previous cold rolling device 3, but it is cold rolled into a sheet material thinner than the cold rolling device 3 by adjusting the interval between the work rolls 22 and 23. It is configured to be able to.
By using each device outlined in FIG. 1 as a main body and sequentially carrying out the steps described in detail below, a plate material for a high-strength can body with good target surface properties can be produced.

「溶解・鋳造」
前述の組成のアルミニウム合金を溶解後、一般的な手法で除滓、成分調整、脱ガス、溶湯ろ過、微細化材添加などの処理を行う。脱ガスは、溶解炉、保持炉やインライン溶湯処理装置で行い、最終的な水素濃度は、0.15cc/100g以下とすることが好ましく、0.10〜0.12cc/100gとすることがより好ましい。その後、半連続鋳造によりスラブに鋳造する。
インライン溶湯処理装置の脱ガスに塩素ガスを使用してもよいが、塩素ガスは使用しない方がフローライン状欠陥が生じにくくなるのでより好ましい。また、鋳造組織の微細化のため、Al−Ti−B等の微細化材を使用してもよいが、使用しない方がフローライン状欠陥がより生じにくくなるのでより好ましい。鋳造工程において製造するスラブ厚さは500〜600mm程度とすることができる。
"Melting / Casting"
After the aluminum alloy having the above-described composition is melted, treatments such as dehumidification, component adjustment, degassing, molten metal filtration, and addition of a fine material are performed by a general method. Degassing is performed in a melting furnace, a holding furnace, or an in-line molten metal processing apparatus, and the final hydrogen concentration is preferably 0.15 cc / 100 g or less, more preferably 0.10 to 0.12 cc / 100 g. preferable. Thereafter, the slab is cast by semi-continuous casting.
Chlorine gas may be used for degassing the in-line molten metal treatment apparatus, but it is more preferable not to use chlorine gas because flow line defects are less likely to occur. Further, for the refinement of the cast structure, a refined material such as Al—Ti—B may be used, but it is more preferable not to use it because a flow line defect is less likely to occur. The slab thickness produced in the casting process can be about 500 to 600 mm.

「均質化・均熱処理」
前記アルミニウム合金を鋳造して所定の大きさのスラブを得た後、スラブの状態で均質化処理を施す。均質化処理では、加熱炉において加熱するなど、一般的な方法でスラブを下限温度以上、かつ、上限温度以下の温度範囲内に加熱し、同温度範囲内で下限時間以上、かつ、上限時間以下に保持する。
均質化処理に専用炉を用いた場合には、上記の保持終了後一旦常温付近まで冷却する。その後、面削を行った後、均熱炉で均熱温度の下限以上、かつ、上限以下の温度範囲まで再加熱し、同温度範囲で下限時間以上保持した後、炉から取出し熱間圧延を開始する。
均質化処理と均熱兼用炉を用いた場合は、面削後のスラブを均質化処理温度範囲まで加熱し、均質化処理温度範囲での保持を終了した後、均熱温度の上限以下、かつ、下限以上まで冷却し、同温度範囲で下限時間以上保持した後、炉から取出し熱間圧延を開始する。
アルミニウムに含有されるSi、Mn、Cu、Mgなどの元素は、400〜580℃付近の温度範囲で、その平衡固溶量が大きく変化する。したがって、均熱温度範囲での保持時間が短すぎると、熱間圧延開始時の固溶量のばらつきが大きくなり、最終製品の機械的性質のばらつきが大きくなる。
均質化処理時間および均熱時間の合計は、両処理で均熱処理の下限温度以上に保持される時間の総計を示す。従って、均質化処理を専用炉を使用して実施した場合、均質化後常温付近まで冷却する際に、均熱温度の下限以下まで冷却されるまでの時間を含む。
"Homogenization and soaking process"
The aluminum alloy is cast to obtain a slab of a predetermined size, and then homogenized in the slab state. In the homogenization treatment, the slab is heated to a temperature range not lower than the lower limit temperature and not higher than the upper limit temperature by a general method such as heating in a heating furnace, and within the same temperature range, not lower than the lower limit time and not higher than the upper limit time. Hold on.
When a dedicated furnace is used for the homogenization treatment, it is once cooled to near room temperature after the completion of the above holding. Then, after chamfering, reheat to a temperature range above the lower limit of the soaking temperature and below the upper limit in a soaking furnace, hold it for at least the lower limit time in the same temperature range, then take out hot rolling from the furnace Start.
When a homogenization treatment and soaking furnace are used, the slab after chamfering is heated to the homogenization treatment temperature range, and after holding in the homogenization treatment temperature range, the upper limit of the soaking temperature is below, and Then, after cooling to the lower limit or more and holding the same temperature range for the lower limit time or more, the hot rolling is taken out from the furnace.
Elements such as Si, Mn, Cu, and Mg contained in aluminum greatly change their equilibrium solid solution amount in a temperature range of about 400 to 580 ° C. Therefore, if the holding time in the soaking temperature range is too short, the dispersion of the solid solution amount at the start of hot rolling becomes large, and the dispersion of the mechanical properties of the final product becomes large.
The total of the homogenization treatment time and the soaking time indicates the total time that is maintained above the lower limit temperature of soaking in both treatments. Accordingly, when the homogenization treatment is performed using a dedicated furnace, the time until cooling to below the lower limit of the soaking temperature is included when cooling to near room temperature after homogenization.

均質化処理温度について具体的には、555〜580℃の範囲とすることが好ましい。均質化処理温度が555℃未満では溶質成分の溶体化が不十分となり易く、580℃を超える温度ではフローライン状欠陥の発生率が高くなる。
均質化処理時間について具体的には、1時間以上12時間以下の範囲であることが好ましく、4時間以上8時間以下の範囲であることがより好ましい。均質化処理時間が1時間未満では溶質成分の溶体化が不十分になる傾向となり、晶出相のα化が不十分で耐焼き付き性が不十分となる傾向がある。均質化処理時間が12時間を超えた場合、効果は飽和し、時間の無駄になるので、均質化処理時間は12時間以内であることが好ましい。
Specifically, the homogenization temperature is preferably in the range of 555 to 580 ° C. When the homogenization temperature is less than 555 ° C., the solute component is not sufficiently solutioned, and when the temperature exceeds 580 ° C., the occurrence rate of flow line defects increases.
Specifically, the homogenization treatment time is preferably in the range of 1 hour to 12 hours, more preferably in the range of 4 hours to 8 hours. If the homogenization treatment time is less than 1 hour, the solution of the solute component tends to be insufficient, the crystallization phase is not sufficiently α-ized, and the seizure resistance tends to be insufficient. When the homogenization treatment time exceeds 12 hours, the effect is saturated and time is wasted. Therefore, the homogenization treatment time is preferably within 12 hours.

均熱温度について具体的には、535〜555℃の範囲であることが好ましい。均熱温度が535℃未満では成分元素の固溶量が安定せず、最終製品の機械的性質等がばらくつ傾向となる。均熱温度が555℃を超えるとフローライン状欠陥の発生率が高くなる。
均熱時間について具体的には、1時間以上行うことが好ましい。均熱時間が1時間未満であると、成分元素の固溶量が安定せず、最終製品の機械的性質等がばらつくおそれがある。
更に本実施形態では、均質化処理時間と均熱時間の合計時間(535℃〜580℃の温度範囲に保持される時間)を40時間以下とすることが好ましい。この合計時間が40時間を超えるようであると、フローライン状欠陥の発生率が高くなる。
Specifically, the soaking temperature is preferably in the range of 535 to 555 ° C. When the soaking temperature is less than 535 ° C., the solid solution amount of the component elements is not stable, and the mechanical properties of the final product tend to vary. When the soaking temperature exceeds 555 ° C., the rate of occurrence of flow line defects increases.
Specifically, the soaking time is preferably 1 hour or longer. If the soaking time is less than 1 hour, the solid solution amount of the component elements is not stable, and the mechanical properties and the like of the final product may vary.
Furthermore, in the present embodiment, it is preferable that the total time of the homogenization treatment time and the soaking time (the time in which the temperature is maintained in the temperature range of 535 ° C. to 580 ° C.) be 40 hours or less. If this total time seems to exceed 40 hours, the incidence of flow line defects increases.

「熱間圧延」
前記均熱処理後、炉から取出したスラブは通常直ちに熱間圧延を開始するが、スラブ温度が500℃未満にならなければ、熱延開始を遅延しても良い。熱間圧延のパス数は、スラブ厚さ、仕上厚さ、スラブ幅、合金組成などに依存するが、十数パス〜二十数パスの範囲が一般的である。
熱間圧延では、圧延材が厚い間は、通常圧延機の前後に搬送テーブルが設置された1スタンドの可逆式圧延機(図1(A)に示す構成の熱間粗圧延機1)を用いて圧延する。しかし、板が薄くなると、必要な搬送テーブル長が長くなり、板の自重によるたるみも大きくなり、板の冷却も生じやすくなる。このため、搬送テーブルで保持するためには、板厚が十数mm以上必要である。この最低板厚は、コイル重量や板幅に依存するが、工業的に用いられている重量・幅の場合、16mm程度以上であることが好ましい。
上述の厚さよりもアルミニウム合金の板材が薄くなった場合に、図1(B)に示す構成の熱間仕上圧延機2で熱間圧延を行う。
"Hot rolling"
After the soaking process, the slab taken out from the furnace usually starts hot rolling immediately, but if the slab temperature does not become less than 500 ° C., the start of hot rolling may be delayed. The number of hot rolling passes depends on the slab thickness, finish thickness, slab width, alloy composition, and the like, but is generally in the range of tens of passes to tens of passes.
In hot rolling, while the rolled material is thick, a one-stand reversible rolling mill (hot rough rolling mill 1 having the configuration shown in FIG. 1A) in which a conveyance table is installed before and after the normal rolling mill is used. And roll. However, when the plate is thinned, the necessary transport table length is increased, the slack due to the weight of the plate is increased, and the plate is likely to be cooled. For this reason, in order to hold | maintain with a conveyance table, plate | board thickness needs to be 10 or more mm. The minimum plate thickness depends on the coil weight and plate width, but is preferably about 16 mm or more in the case of the weight and width used industrially.
When the aluminum alloy sheet becomes thinner than the above thickness, hot rolling is performed by the hot finish rolling mill 2 having the configuration shown in FIG.

熱間仕上圧延の最終パスの圧下率は、最終パス後板材を巻き取った直後のコイル温度をT℃とした場合、(85−0.08×T)%以下であることが必要である。この条件を外れるとフローライン状欠陥の発生率が高くなる。
熱間圧延最終パス後コイルに巻き取った直後のコイル温度は、270℃以上460℃以下であることが必要である。熱間圧延後冷間圧延する途中には、コイル破断を防止するために板の端部をトリムする必要がある。後述のように、冷間圧下率が高いほど、必要なトリム回数が多くなるが、熱間圧延最終パス後にコイルに巻き取った直後のコイル温度が270℃未満であると、さらに必要なトリム回数が多くなる。より好ましくは、巻取り後にコイルを冷却した後に、板厚の10%以上が再結晶していることが好ましい。一方、熱間圧延最終パス後コイルに巻き取った直後のコイル温度が460℃を超えると、熱間圧延後コイルを冷却するまでの表面酸化が著しくなり、表面外観が悪くなる。
The rolling reduction of the final pass of hot finish rolling needs to be (85−0.08 × T)% or less when the coil temperature immediately after winding the plate material after the final pass is T ° C. If this condition is not met, the rate of occurrence of flow line defects increases.
The coil temperature immediately after winding the coil after the final hot rolling pass needs to be 270 ° C. or higher and 460 ° C. or lower. During the cold rolling after hot rolling, it is necessary to trim the end of the plate in order to prevent coil breakage. As will be described later, the higher the cold rolling reduction, the greater the number of necessary trims. However, if the coil temperature immediately after winding the coil after the final hot rolling pass is less than 270 ° C., the further necessary number of trims Will increase. More preferably, 10% or more of the plate thickness is recrystallized after the coil is cooled after winding. On the other hand, when the coil temperature immediately after being wound on the coil after the final pass of hot rolling exceeds 460 ° C., surface oxidation until the coil is cooled after hot rolling becomes remarkable, and the surface appearance deteriorates.

熱間圧延の最終パスでコイルに巻き取る直前に、板の両端をトリマーで切断し、端面を整えることにより、以降の冷間圧延中の端面からのクラックの発生を防止出来る。
熱間圧延後の板厚は1.3mm以上12mm以下であることが必要である。板厚が1.3mm未満であると、巻取後のコイル温度が低くなり過ぎ、必要圧下率の冷間圧延を施すと最終板が薄くなりすぎる。板厚が12mmを超えると巻取が困難となる。
Immediately before winding the coil in the final pass of the hot rolling, the both ends of the plate are cut with a trimmer and the end surfaces are trimmed, thereby preventing the occurrence of cracks from the end surfaces during the subsequent cold rolling.
The plate thickness after hot rolling needs to be 1.3 mm or more and 12 mm or less. If the plate thickness is less than 1.3 mm, the coil temperature after winding becomes too low, and the final plate becomes too thin when cold rolling is performed at the required reduction rate. If the plate thickness exceeds 12 mm, winding becomes difficult.

「圧延機両側に巻取装置がある熱間圧延機を使用する場合」
本実施形態において、フローライン状欠陥の発生を抑制するためには、熱間圧延の最終パスで圧下率の上限を規制しなければならい。
例えば、巻取装置が片側にだけに設置された粗圧延/仕上圧延兼用熱間圧延機を用いた場合、搬送テーブル上で保持出来る板厚に最小値が存在するために、熱間圧延で圧延可能な最小板厚が増加することになる。このため、熱間圧延後の冷間圧下率が増加する。更に、最終製品板厚の低下の影響もあり、従来に比べ、冷間圧延のパス数が増加したり、冷間圧延のパス間に行うトリム回数の必要量が増加するという問題が生じる。
また、熱間圧延最終パスの圧下率は巻取温度を低くした方が大きく出来るが、巻取直後の温度を低くするためには、圧延速度を落とす必要があり、熱間圧延の生産性が低下する。更に、巻取直後の温度を低くすると、圧延に必要な荷重が増加するので、圧延板の板幅が広い場合、圧延機の許容荷重を超える場合が生じ、前記の許容圧下率以下であっても、圧延できない場合が生じる。
“When using a hot rolling mill with winding devices on both sides of the rolling mill”
In this embodiment, in order to suppress the occurrence of flow line defects, the upper limit of the rolling reduction must be regulated in the final pass of hot rolling.
For example, when a rough rolling / finish rolling combined hot rolling mill with a winding device installed only on one side is used, there is a minimum value for the plate thickness that can be held on the transfer table, so rolling is performed by hot rolling. The minimum possible plate thickness will increase. For this reason, the cold rolling reduction after hot rolling increases. Furthermore, due to the influence of a reduction in the final product sheet thickness, there arises a problem that the number of passes of cold rolling is increased or the required number of trims to be performed between passes of cold rolling is increased as compared with the conventional case.
The rolling reduction of the final hot rolling pass can be increased by lowering the coiling temperature, but in order to lower the temperature immediately after winding, it is necessary to lower the rolling speed, and the hot rolling productivity is reduced. descend. Furthermore, if the temperature immediately after winding is lowered, the load required for rolling increases, so if the width of the rolled sheet is wide, it may exceed the allowable load of the rolling mill, and is below the above-mentioned allowable reduction ratio. However, there are cases where rolling is not possible.

これらの理由で、生産性や歩留りの低下を防止するためには、圧延機の両側に巻取装置がある熱間圧延機(図1(B)に示す熱間仕上圧延機2)を使用するか、それ以外は、複数スタンドのタンデム式熱間圧延機を使用し、熱間圧延仕上板厚を小さくすることが好ましい。しかし、本実施形態の製造方法では、後述する最終冷間圧延率を好ましくは60%以上、例えば、90%程度と高くするために、熱間圧延条件を制御して、立方体集合組織を発達させることは目的としていない。
従って、タンデム式熱間圧延機を使用する場合でも、3〜4スタンドは、必ずしも必要でなく、2スタンドで十分目的が達成できる。また、熱間圧延機の両側に巻取装置を有する仕上圧延機を使用する場合でも、仕上圧延専用の圧延機とする必要はなく、粗圧延/仕上圧延兼用熱間圧延機の両側に巻取り装置を設置することでも目的を達成できる。
従って、本実施形態の製造方法を採用するならば、必要な生産量に応じて、最小の設備で缶ボディ材を製造することが出来る。
以下には、圧延機両側に巻取装置がある熱間圧延機(図1(B)に示す構成の熱間仕上圧延機2に相当)を使用する場合に好適な条件について説明する。なお、粗圧延/仕上圧延兼用熱間圧延機を用いた場合については、巻取装置を使用した圧延を仕上圧延と呼ぶ。
For these reasons, in order to prevent a decrease in productivity and yield, a hot rolling mill having a winding device on both sides of the rolling mill (hot finishing rolling mill 2 shown in FIG. 1B) is used. Otherwise, it is preferable to use a multi-stand tandem hot rolling mill to reduce the thickness of the hot rolled finish plate. However, in the manufacturing method of the present embodiment, in order to increase the final cold rolling rate, which will be described later, preferably to 60% or higher, for example, about 90%, the hot rolling conditions are controlled to develop a cube texture. That is not the purpose.
Accordingly, even when a tandem hot rolling mill is used, 3 to 4 stands are not always necessary, and two stands can sufficiently achieve the object. Moreover, even when a finishing mill having a winding device on both sides of a hot rolling mill is used, it is not necessary to use a rolling mill dedicated to finishing rolling, and winding is performed on both sides of a rough rolling / finishing combined hot rolling mill. The purpose can also be achieved by installing a device.
Therefore, if the manufacturing method of this embodiment is adopted, the can body material can be manufactured with the minimum equipment according to the required production amount.
Below, conditions suitable when using a hot rolling mill having a winding device on both sides of the rolling mill (corresponding to the hot finishing rolling mill 2 having the configuration shown in FIG. 1B) will be described. In addition, about the case where a rough rolling / finish rolling combined use hot rolling mill is used, the rolling using a winding device is called finish rolling.

熱間仕上圧延開始温度は、具体的には380℃以上480℃以下の範囲であることが好ましく、420℃以上480℃以下の範囲であることがより好ましい。熱間仕上圧延開始温度が380℃未満では、最終巻取温度が低くなり、連続焼鈍を施すまでに必要なトリム回数が増加する。熱間仕上圧延開始温度が480℃を超えるようになると熱間圧延後コイルを冷却するまでの表面酸化が著しくなり、表面外観が悪くなる。
熱間仕上圧延開始板厚は、具体的には16〜30mmの範囲であることが好ましい。熱間仕上圧延開始板厚が16mm未満ではテーブルの上での弛みが大きくなり、板幅が大きい材料を使用できない。熱間仕上圧延開始板厚が30mmを超えるようであると、第一パス後の板厚が大きくなり過ぎ、コイルに巻き取ることが困難になる。
以上のことから、熱間仕上圧延1パス当たりの圧下率は35%以上、60%以下の範囲であることが好ましい。
Specifically, the hot finish rolling start temperature is preferably in the range of 380 ° C. or higher and 480 ° C. or lower, and more preferably in the range of 420 ° C. or higher and 480 ° C. or lower. If the hot finish rolling start temperature is less than 380 ° C., the final coiling temperature is lowered, and the number of trims required until continuous annealing is increased. When the hot finish rolling start temperature exceeds 480 ° C., surface oxidation until the coil is cooled after hot rolling becomes remarkable, and the surface appearance is deteriorated.
Specifically, the hot finish rolling start plate thickness is preferably in the range of 16 to 30 mm. When the hot finish rolling start plate thickness is less than 16 mm, the slack on the table becomes large, and a material having a large plate width cannot be used. If the hot finish rolling start plate thickness exceeds 30 mm, the plate thickness after the first pass becomes too large, and it is difficult to wind the coil around the coil.
From the above, it is preferable that the rolling reduction per pass of hot finish rolling is in the range of 35% or more and 60% or less.

「第一冷間圧延」
熱間圧後冷却した後、圧下率40%以上(より好ましくは60%を超える)冷間圧延を施す。特許文献1(特許第3644849号)に記載の技術では、25%以下、特許文献2(特許第3871462号)に記載の技術では60%以下、特許文献3(特許第3871473号)に記載の技術では、50%以下の冷間圧延率を提案している。
これらの特許に記載の提案において、熱間圧延後に比較的低圧下の冷間圧延を施すのは、既述のようにその後の焼鈍時に立方体集合組織の発達を促進することを目的としている。そして、このような目的のために、熱間圧延後は部分的に再結晶した状態が好ましいことを提案している。
本発明者の検討結果では、これら特許文献に記載のような製造方法とした場合、結晶粒が粗大化し、缶ボディを製造する際のしごき成形時に破断が生じやすくなる。また、このような製造条件とした場合、熱延板の板厚方向で再結晶率がばらつくため、中間焼鈍を行ったあとの結晶粒径も板厚方向で変化し、均一な組織が得られない。また、コイルの前後端でも熱間圧延速度を低くせざるを得ないため、定常速度が得られる長手中央部とは異方性が異なるようになる。このため歩留まりが低下するという問題がある。
本実施形態では、第一冷間圧延の圧下率は40%以上、好ましくは60%を超える圧延率としている。このため、板厚方向やコイル長手方向で熱間圧延後の再結晶率にばらつきがあっても、中間焼鈍後に均質な組織が得られる。また、異方性の長手方向ばらつきも小さく、歩留まりが向上する。
"First cold rolling"
After cooling after hot pressing, cold rolling is performed at a rolling reduction of 40% or more (more preferably more than 60%). The technique described in Patent Document 1 (Patent No. 364449) is 25% or less, the technique described in Patent Document 2 (Patent No. 3871462) is 60% or less, and the technique described in Patent Document 3 (Patent No. 3871473). Proposes a cold rolling rate of 50% or less.
In the proposals described in these patents, the cold rolling under a relatively low pressure after the hot rolling is intended to promote the development of the cube texture during the subsequent annealing as described above. For such purposes, it is proposed that a partially recrystallized state is preferable after hot rolling.
As a result of the study by the present inventors, when the manufacturing method as described in these patent documents is adopted, the crystal grains become coarse and breakage is likely to occur during ironing when manufacturing the can body. In addition, under such manufacturing conditions, the recrystallization rate varies in the thickness direction of the hot-rolled sheet, so the crystal grain size after intermediate annealing also changes in the sheet thickness direction, and a uniform structure is obtained. Absent. Further, since the hot rolling speed has to be lowered even at the front and rear ends of the coil, the anisotropy differs from the longitudinal central portion where the steady speed is obtained. For this reason, there exists a problem that a yield falls.
In the present embodiment, the rolling reduction of the first cold rolling is 40% or more, preferably over 60%. For this reason, even if there is variation in the recrystallization rate after hot rolling in the plate thickness direction or the coil longitudinal direction, a homogeneous structure can be obtained after intermediate annealing. Moreover, anisotropic longitudinal variation is small, and the yield is improved.

第一冷間圧延の圧下率について、66%超〜88%の範囲では、熱間圧延最終パスに中間トリムを行った後、連続焼鈍を行うまでの間(例えば連続焼鈍直前)に、中間トリムが必要となる。
第一冷間圧延の圧下率について、88%超〜91%の範囲では、熱間圧延最終パスに2回トリムを行った後、連続焼鈍を行うまでの間に、1回の中間トリムが必要となる。
第一冷間圧延の圧下率について、91%超の範囲では、熱間圧延最終パスにトリムを行った後、連続焼鈍を行うまでの間に、3回以上の中間トリムまたは追加の中間焼鈍が必要となる。
Regarding the reduction ratio of the first cold rolling, in the range of more than 66% to 88%, the intermediate trim is performed after the intermediate trim is performed on the final pass of the hot rolling and before the continuous annealing is performed (for example, immediately before the continuous annealing). Is required.
Regarding the reduction ratio of the first cold rolling, if it is in the range of over 88% to 91%, one intermediate trim is required after performing the second hot rolling to the continuous annealing. It becomes.
When the reduction ratio of the first cold rolling is in the range of more than 91%, there are three or more intermediate trims or additional intermediate annealings after trimming in the final pass of hot rolling until continuous annealing. Necessary.

「連続焼鈍、最終冷間圧延」
連続焼鈍を行う場合の条件として、平均加熱速度10〜50℃/sで400℃以上600℃以下の所定温度まで加熱し、その後、平均冷却速度30〜150℃/sで常温から100℃以下の所定の温度まで冷却する。
この後、最終冷間圧延は圧下率55%以上70%以下で行う。また、最終冷間圧延は1パスで圧延し、巻取温度は80℃以上140℃以下の範囲とすることが好ましい。
"Continuous annealing, final cold rolling"
As a condition for performing continuous annealing, heating is performed at an average heating rate of 10 to 50 ° C./s to a predetermined temperature of 400 ° C. or more and 600 ° C. or less, and then at an average cooling rate of 30 to 150 ° C./s from normal temperature to 100 ° C. Cool to a predetermined temperature.
Thereafter, the final cold rolling is performed at a rolling reduction of 55% to 70%. The final cold rolling is preferably performed in one pass, and the winding temperature is preferably in the range of 80 ° C to 140 ° C.

「缶ボディ用アルミニウム合金板の板厚」
本実施形態により最終的に得られる表面性状が良好な高強度缶ボディ用板材の板厚は、0.230mm以上0.4mm以下の範囲である。
板厚が0.230mm未満であると、製缶して缶ボディとした際の十分な耐圧強度が得られ難くなる。また、板厚が0.4mmを超えるようであると、缶ボディの底部の重量が重くなり、製造コストが上昇して経済的でなくなる。表面性状が良好な高強度缶ボディ用板材の板厚は、0.230mm以上0.3mm以下の範囲がより好ましく、0.230mm以上0.27mm以下の範囲が更に好ましい。
"Thickness of aluminum alloy sheet for can body"
The plate thickness of the plate material for a high-strength can body having a good surface property finally obtained by the present embodiment is in the range of 0.230 mm to 0.4 mm.
When the plate thickness is less than 0.230 mm, it becomes difficult to obtain sufficient pressure resistance when canned and made into a can body. On the other hand, if the plate thickness exceeds 0.4 mm, the weight of the bottom of the can body becomes heavy, and the manufacturing cost increases, which is not economical. The plate thickness of the plate material for a high-strength can body having good surface properties is more preferably in the range of 0.230 mm to 0.3 mm, and still more preferably in the range of 0.230 mm to 0.27 mm.

以下、実施例を示して、本発明に係る表面性状が良好な高強度缶ボディ用板材の製造方法について更に詳しく説明するが、本発明は以下の実施例に限定されるものでは無い。
Al−0.3%Si−0.43%Fe−0.38%Cu−0.99%Mn−1.48%Mg−0.03%Cr−0.18%Zn−0.04%Tiなる組成のアルミニウム合金を溶解し、脱ガスおよび溶湯ろ過後、半連続鋳造により厚さ600mm、幅1100mm、長さ4.5mのスラブに鋳造した。
インライン脱ガスには、回転ノズルを有する装置を使用して、Ar吹き込みによって実施した。Ar中への塩素添加は行わなかった。また、合金中のTiは、主として原料UBCおよびスクラップ中に含まれていたものであり、一部の試料では、保持炉で成分調整用に添加した。しかし、移送桶で微細化のロッドタイプAl−Ti−B合金の添加は行わなかった。インライン脱ガス後に採取したサンプルの分析によると、いずれのサンプルも水素量は、0.10〜0.12cc/100gの範囲内であった。
EXAMPLES Hereinafter, although an Example is shown and the manufacturing method of the board | plate material for high-strength can bodies with the favorable surface property based on this invention is demonstrated in detail, this invention is not limited to a following example.
Al-0.3% Si-0.43% Fe-0.38% Cu-0.99% Mn-1.48% Mg-0.03% Cr-0.18% Zn-0.04% Ti The aluminum alloy having the composition was melted, degassed and filtered with a molten metal, and then cast into a slab having a thickness of 600 mm, a width of 1100 mm, and a length of 4.5 m by semi-continuous casting.
In-line degassing was performed by Ar blowing using an apparatus with a rotating nozzle. Chlorine was not added into Ar. Further, Ti in the alloy was mainly contained in the raw material UBC and scrap, and in some samples, it was added for component adjustment in a holding furnace. However, addition of a refined rod-type Al-Ti-B alloy with a transfer rod was not performed. According to the analysis of samples taken after in-line degassing, the hydrogen content of all samples was in the range of 0.10 to 0.12 cc / 100 g.

次いで、前記スラブを面削後、均質化・均熱兼用炉を用いて均質化処理と均熱処理を施した。後述の試験結果を示す表1に記載する均質化処理および均熱温度は設定温度である。
前記スラブを加熱し、均質化温度設定値−5℃に達した後、均熱温度に降温を開始するまでは、いずれの場合もスラブ温度は均質化設定温度の±5℃以内であった。また、均質化温度から降温を開始し、均熱温度設定値+5℃に達した後、スラブを炉から取出すまでは、スラブ温度は均熱温度設定値±5℃以内であった。
Next, after chamfering the slab, homogenization and soaking were performed using a homogenizing and soaking furnace. The homogenization treatment and soaking temperature described in Table 1 showing the test results described later are set temperatures.
After the slab was heated and reached the homogenization temperature set value of −5 ° C., the slab temperature was within ± 5 ° C. of the homogenization set temperature in all cases until the temperature was lowered to the soaking temperature. Further, the temperature reduction started from the homogenization temperature, and after reaching the soaking temperature set value + 5 ° C., the slab temperature was within the soaking temperature set value ± 5 ° C. until the slab was taken out from the furnace.

均質化処理時間は、スラブの加熱を開始し、スラブが均質化温度設定温度−10℃に達してから、均熱温度に降温を開始し、均質化温度設定値−10℃または均熱温度+10℃のいずれか高い方の温度より低くなるにまでの時間とした。均熱時間は、均質化温度から均熱温度へ降温を開始後、均熱温度+10℃以下になった時から、スラブを炉から取出すまでの時間とした。均質化処理時間と均熱時間の合計は、両処理で均熱処理の下限温度以上に保持される時間の総計を示すので、スラブの加熱を開始し、均熱温度の下限535℃に達してからスラブを炉から取り出すまでの時間に相当する。
均熱後、炉から取出したスラブに熱間圧延を施した。炉から取出してから熱間圧延第一パスを開始するまでの時間は4〜5分であった。熱間圧延された板は圧延後にコイル状に巻き取る直前に、端部をトリマーによりトリムした。熱間圧延後巻き取ったコイルを常温まで冷却後冷間圧延を施した。中間トリム数が2回の場合、板厚が2.2〜2.8mmで1度目の中間トリムを施した。トリム回数が2回または1回の場合については、連続焼鈍炉に設置された入側トリマーで、板材を加熱する直前にトリムを施した。
The homogenization treatment time starts the heating of the slab, and after the slab reaches the homogenization temperature set temperature −10 ° C., the temperature lowering to the soaking temperature starts, and the homogenization temperature set value −10 ° C. or the soaking temperature +10 It was set as time until it became lower than the higher one of ° C. The soaking time was defined as the time from when the soaking temperature was lowered to 10 ° C. or lower after the temperature was lowered from the homogenizing temperature to the soaking temperature until the slab was taken out from the furnace. The total of the homogenization time and the soaking time indicates the total time that is maintained above the lower limit temperature of soaking in both treatments, so the slab heating is started and the lower limit of the soaking temperature reaches 535 ° C. This corresponds to the time until the slab is removed from the furnace.
After soaking, the slab taken out from the furnace was hot-rolled. The time from taking out from the furnace to starting the first hot rolling pass was 4 to 5 minutes. The hot-rolled plate was trimmed with a trimmer at the end just before winding into a coil after rolling. The coil wound up after hot rolling was cooled to room temperature and then cold rolled. When the number of intermediate trims was two, the first intermediate trim was applied with a plate thickness of 2.2 to 2.8 mm. In the case where the number of times of trimming was two or one, the trimming was performed immediately before heating the plate material with the entry side trimmer installed in the continuous annealing furnace.

中間焼鈍には連続焼鈍炉を用いた。板材は連続焼鈍炉の加熱ゾーンを通過する約20sの間に、常温から500℃まで加熱され、その直後冷却ゾーンを通過する約10秒の間に70℃以下まで冷却される。中間焼鈍後、2スタンド・タンデム式冷間圧延機を用い1パスで最終板厚まで冷間圧延した。
フローライン状欠陥は、DI成形し、脱脂した後の缶の表面を観察して判定した。
まず、目視で元板の圧延方向に沿った線状の欠陥が生じていないかどうかを確認した。フローライン状欠陥は、幅が十数〜数百μm、長さは、長いものは成形前のブランクの端から端までに相当する長さを有する。目視観察では、長さが約1mm以上あり線状欠陥と識別できるものを検出した。フローライン状欠陥は、汚れや熱延ロールコーティングの不均一転写が原因のフローラインと外観が類似している。そこで、念のために、線状欠陥部を切り出し、光学顕微鏡で観察し、フローライン状欠陥であることを確認した。
図2にNo.5の試料で発生したフローライン状欠陥を拡大した写真を示し、図3にフローライン状欠陥の一例を示す。図2に示す写真の如く鱗片状の組織が観察され、写真に示すように鱗片の一部が剥離している。フローライン状欠陥でも、その全長に沿って、鱗片状の表層がほとんど剥離した部分が存在する。そのような部位は、表面傷が原因のフローラインと類似の形態となる。しかし、フローライン状欠陥では、鱗片組織が少なくとも部分的に残存するので、鱗片状部位が認められることを光学顕微鏡で確認した。また、図3に示す如くカップ型の缶体側面にU字形に生成する部分がフローライン状欠陥の一例である。
各条件について、各1万缶の缶を観察し、検出したフローライン状欠陥の缶数を以下の表1〜表3に示した。
また、結晶粒径は、板材の表面をバフ研磨後、電解研磨し、鏡面とした後、バーカー氏液で陽極酸化処理し、光学顕微鏡で偏光観察して求めた。そして、板幅方向の平均切辺長が25μm以下の場合を○、25μmを超える場合を△、30μmを超える場合を×とした。
A continuous annealing furnace was used for the intermediate annealing. The plate material is heated from room temperature to 500 ° C. during about 20 seconds passing through the heating zone of the continuous annealing furnace, and immediately thereafter cooled to 70 ° C. or less in about 10 seconds passing through the cooling zone. After the intermediate annealing, it was cold-rolled to the final thickness in one pass using a 2 stand tandem cold rolling mill.
The flow line defect was determined by observing the surface of the can after DI molding and degreasing.
First, it was visually confirmed whether or not a linear defect along the rolling direction of the base plate had occurred. The flow line defect has a width corresponding to from ten to several hundred μm and a long length corresponding to the end of the blank before forming. In the visual observation, those having a length of about 1 mm or more and distinguishable from linear defects were detected. Flow line defects are similar in appearance to flow lines due to dirt and non-uniform transfer of hot rolled roll coating. Therefore, as a precaution, the linear defect portion was cut out and observed with an optical microscope to confirm that it was a flow line defect.
FIG. 2 shows an enlarged photograph of the flow line defect generated in the sample No. 5, and FIG. 3 shows an example of the flow line defect. A scale-like structure is observed as shown in the photograph in FIG. 2, and a part of the scale is peeled off as shown in the photograph. Even in the case of a flow line defect, there is a portion along which the scaly surface layer is almost peeled off along its entire length. Such a site has a form similar to a flow line caused by surface flaws. However, since the scaly tissue remained at least partially in the flow line defect, it was confirmed with an optical microscope that scaly sites were observed. Moreover, as shown in FIG. 3, the part produced | generated in a U shape on the cup-shaped can side surface is an example of a flow line-like defect.
For each condition, 10,000 cans were observed, and the number of detected flow line defects was shown in Tables 1 to 3 below.
The crystal grain size was determined by buffing the surface of the plate material, electrolytically polishing to give a mirror surface, anodizing with Barker's solution, and observing the polarization with an optical microscope. Then, the case where the average edge length in the plate width direction is 25 μm or less is evaluated as “◯”, the case where it exceeds 25 μm is Δ, and the case where it exceeds 30 μm is ×.

表1から表3に示す結果において、No.1〜No.5の試料は、均質化処理温度が異なる。No.1〜3の試料はいずれも本発明例であるが、No.4、5の試料は本発明で規定する範囲より高く、フローライン状欠陥が発生した。
No.6〜9の試料は、均質化処理時間または均熱時間が長く、均熱+均質化時間が長い場合である。No.6〜8の試料は本発明の範囲内であるが、No.9の試料は本発明の範囲より長く、フローライン状欠陥が発生した。
No.10、11の試料は均熱温度が高い場合である。No.10の試料は本発明の範囲内であるが、No.11の試料は本発明の範囲より高く、フローライン状欠陥が発生した。
No.12〜18の試料は、熱間圧延の最終パスの圧下率と熱間圧延終了直後のコイル温度を変えた場合である。No.12〜14の試料は、最終パスの圧下率と熱間圧延終了直後のコイル温度との関係が、本発明の関係を満足する場合である。No.15〜18の試料は、最終パスの圧下率が、本発明の最終パス圧下率と熱間圧延終了直後のコイル温度との関係を満足する場合より高い場合で、いずれもフローライン状欠陥が発生した。
No.19の試料は熱間圧延終了後のコイル温度を470℃とした試料であるが、表面酸化が著しくなり、外観が白色に近い色を呈するようになった。
In the results shown in Tables 1 to 3, no. 1-No. Sample 5 has a different homogenization temperature. No. The samples 1 to 3 are all examples of the present invention. Samples 4 and 5 were higher than the range defined in the present invention, and flow line defects were generated.
No. Samples 6 to 9 are cases where the homogenization treatment time or soaking time is long and soaking + homogenization time is long. No. Samples 6-8 are within the scope of the present invention. Sample 9 was longer than the range of the present invention, and flow line defects were generated.
No. Samples 10 and 11 are cases where the soaking temperature is high. No. Ten samples are within the scope of the present invention. Eleven samples were higher than the scope of the present invention, and flow line defects were generated.
No. Samples 12 to 18 are cases where the rolling reduction of the final pass of hot rolling and the coil temperature immediately after the end of hot rolling were changed. No. Samples 12 to 14 are cases where the relationship between the rolling reduction of the final pass and the coil temperature immediately after the end of hot rolling satisfies the relationship of the present invention. No. Samples 15 to 18 are those in which the final pass reduction ratio is higher than the case where the relationship between the final pass reduction ratio of the present invention and the coil temperature immediately after the end of hot rolling is satisfied. did.
The sample No. 19 was a sample in which the coil temperature after hot rolling was 470 ° C., but the surface oxidation became remarkable and the appearance became a color close to white.

No.20の試料は、第一冷間圧延の圧下率が91.4%と高い場合で、2.5mmで中間トリムを行ったが、第一冷間圧延の最終パスで破断を生じた。
No.21の試料は第一冷間圧延の圧下率が87.4%と低い場合で、連続焼鈍炉入側でトリムを行うだけで製造可能であった。
No.22の試料も第一冷間圧延の圧下率が87.4%と低いが、熱間圧延終了後コイル温度が260℃と本発明の範囲内より低く、第一冷間圧延の最終パスで破断を生じた。
No. Sample No. 20 was subjected to intermediate trimming at 2.5 mm when the rolling reduction of the first cold rolling was as high as 91.4%, but breakage occurred in the final pass of the first cold rolling.
No. Sample No. 21 was produced when the rolling reduction of the first cold rolling was as low as 87.4%, and only by performing trimming on the inlet side of the continuous annealing furnace.
The sample No. 22 also has a low rolling reduction of 17.4% in the first cold rolling, but after the hot rolling, the coil temperature is 260 ° C., which is lower than the range of the present invention, and the final pass of the first cold rolling. Ruptured.

No.23〜31の試料は、熱間圧延機の両側に巻取り装置を設置した熱間仕上圧延機を用いた場合である。No.23〜26の試料は、熱間圧延の最終パスの圧下率と熱間圧延終了直後のコイル温度を変えた場合である。最終パスの圧下率が、本発明の最終パス圧下率と熱間圧延終了直後のコイル温度との関係を満足する場合より高い場合(No.24、26の試料)は、フローライン状欠陥が発生した。
No.27、28の試料は、第一冷間圧延の圧下率が66%より低い場合で、中間トリムなしで製造が可能であった。No.29の試料は、第一冷間圧延の圧下率が66%より高い場合で、中間トリムなしで製造しようとしたが、連続焼鈍時に炉内で破断したため、製造を中止した。
No.30の試料は、第一冷間圧延の圧下率が40%より低い場合で、結晶粒が粗大となった。
No.31の試料は、好ましい第一冷間圧延の圧延率である60%を下回る圧延率とした試料であるが、中間トリムなしの場合に結晶粒径が若干大きくなったが製造することはできた。
なお、表1〜3に示す試料No.1〜22の試料は、片側だけに巻取装置が設置された粗圧延/仕上圧延兼用熱間圧延機を用いた例(熱間仕上圧延機パス回数0回)であり、No.23〜31の試料は、圧延機の両側に巻取装置を備えた専用の熱間仕上圧延機を使用した例(熱間仕上圧延機パス回数1〜4回)である。
No. Samples 23 to 31 are obtained by using a hot finish rolling mill in which winding devices are installed on both sides of the hot rolling mill. No. Samples 23 to 26 are cases where the rolling reduction of the final pass of hot rolling and the coil temperature immediately after the end of hot rolling were changed. When the final pass reduction ratio is higher than the case where the relationship between the final pass reduction ratio of the present invention and the coil temperature immediately after completion of hot rolling is satisfied (samples Nos. 24 and 26), flow line defects are generated. did.
No. Samples 27 and 28 were able to be manufactured without intermediate trim when the reduction ratio of the first cold rolling was lower than 66%. No. Sample No. 29 was intended to be produced without intermediate trim when the rolling reduction of the first cold rolling was higher than 66%, but production was stopped because it broke in the furnace during continuous annealing.
No. Sample No. 30 was a case where the rolling reduction of the first cold rolling was lower than 40%, and the crystal grains became coarse.
The sample of No. 31 is a sample having a rolling rate lower than 60%, which is the preferred cold rolling rate of the first cold rolling. did it.
Samples Nos. 1 to 22 shown in Tables 1 to 3 are examples using a hot rolling mill for both rough rolling / finish rolling in which a winding device is installed only on one side (number of hot finishing mill passes). No. 23 to 31 is an example in which a dedicated hot finish rolling mill equipped with a winding device on both sides of the rolling mill is used (number of hot finishing mill passes 1 to 4 times). It is.

1…熱間粗圧延機、2…熱間仕上圧延機、3、5…冷間圧延装置、4…連続焼鈍炉、6…コイル、30…加熱ゾーン、31…冷却ゾーン、32…焼鈍炉。   DESCRIPTION OF SYMBOLS 1 ... Hot rough rolling mill, 2 ... Hot finish rolling mill, 3, 5 ... Cold rolling apparatus, 4 ... Continuous annealing furnace, 6 ... Coil, 30 ... Heating zone, 31 ... Cooling zone, 32 ... Annealing furnace.

Claims (4)

質量%で、Mn:0.7〜1.1%、Mg:0.9〜1.7%、Si:0.25〜0.45%、Fe:0.35〜0.55%、Cu:0.25〜0.45%、Zn:0.05〜0.30%、Ti:0.15%以下を含有し、残部が不可避不純物とアルミニウムの組成を有するアルミニウム合金の鋳塊を均質化処理と均熱処理した後、熱間圧延と冷間圧延を施し、連続焼鈍した後、最終冷間圧延して板厚0.23mm以上0.4mm以下の表面性状が良好な高強度缶ボディ用板材を製造する方法であって、
前記均質化処理を555〜580℃の温度で1〜12時間行い、前記均熱処理を535〜555℃の温度で1時間以上行い、均質化処理時間と均熱処理時間の合計時間を40時間以下にするとともに、
前記均質化処理と前記均熱処理をそれぞれ専用炉で行う場合、前記均質化温度に昇温する時間と前記均質化温度から降温する時間のうち、前記均熱温度の下限である535℃以上であった時間を前記均質化処理時間と均熱処理時間の合計時間の一部として含み、
前記均質化処理と前記均熱処理を兼用炉で行う場合、前記均質化処理時間と均熱時間の合計時間を前記均熱温度下限の535℃に達してから前記鋳塊を取り出すまでの時間とし、
前記熱間圧延最終パスの圧下率を(85−0.08T)%以下(ただしTは、熱間圧延最終パス後、熱間圧延機から巻取直後の温度℃を示す)に設定し、熱間圧延機から巻取直後のコイル温度を270℃以上460℃以下、熱間圧延後連続焼鈍までの第一冷間圧延圧下率を40%以上、連続焼鈍後、最終板厚までの最終冷間圧延圧下率を55%以上70%以下とすることを特徴とする表面性状が良好な高強度缶ボディ用板材の製造方法。
In mass%, Mn: 0.7 to 1.1%, Mg: 0.9 to 1.7%, Si: 0.25 to 0.45%, Fe: 0.35 to 0.55%, Cu: Homogenizing an ingot of aluminum alloy containing 0.25 to 0.45%, Zn: 0.05 to 0.30%, Ti: 0.15% or less, and the balance having the composition of inevitable impurities and aluminum After soaking and heat-treating, hot rolling and cold rolling are performed, and after continuous annealing, a final cold rolling is performed to obtain a plate material for a high-strength can body having a good surface property of 0.23 mm or more and 0.4 mm or less. A method of manufacturing comprising:
The homogenization treatment is performed at a temperature of 555 to 580 ° C. for 1 to 12 hours, the soaking treatment is performed at a temperature of 535 to 555 ° C. for 1 hour or more, and the total time of the homogenization treatment time and the soaking treatment time is 40 hours or less. And
When the homogenization treatment and the soaking treatment are each performed in a dedicated furnace, the temperature is 535 ° C. or more, which is the lower limit of the soaking temperature, among the time to raise the temperature to the homogenization temperature and the time to lower the temperature from the homogenization temperature. A part of the total time of the homogenization treatment time and the soaking time,
When performing the homogenization treatment and the soaking process in a dual-purpose furnace, the total time of the homogenization treatment time and the soaking time is the time from reaching the lower soaking temperature lower limit of 535 ° C. until the ingot is taken out,
The rolling reduction of the final hot rolling pass is set to (85-0.08T)% or less (where T is the temperature ° C immediately after winding from the hot rolling mill after the hot rolling final pass) The coil temperature immediately after winding from the cold rolling mill is 270 ° C. or more and 460 ° C. or less, the first cold rolling reduction ratio after hot rolling to continuous annealing is 40% or more, the final cold to the final sheet thickness after continuous annealing A method for producing a plate material for a high-strength can body having a good surface property, wherein the rolling reduction ratio is 55% or more and 70% or less.
前記均質化処理と前記均熱処理を兼用炉で行う場合、前記均質化温度よりも前記均熱温度を10℃以上低い温度に設定し、前記鋳塊の昇温時に前記鋳塊の温度を前記均質化温度−10℃に到達させた時点から、前記均質化温度としている時間を経て、前記鋳塊の温度を前記均質化温度から前記均熱温度に降温時に前記均質化温度−10℃または前記均熱温度+10℃の高い方の温度とした時点までを前記均質化処理時間とし、前記均熱時間は、前記鋳塊の温度を前記均質化温度から前記均熱温度に降温開始後、前記均熱温度+10℃以下になった時点から、前記鋳塊を前記兼用炉から取り出すまでの時間とすることを特徴とする請求項1に記載の表面性状が良好な高強度缶ボディ用板材の製造方法。   When the homogenization treatment and the soaking treatment are performed in a dual-purpose furnace, the soaking temperature is set to a temperature that is 10 ° C. or more lower than the homogenization temperature, and the temperature of the ingot is increased when the ingot is heated. After reaching the homogenization temperature −10 ° C., the homogenization temperature −10 ° C. or the soaking temperature is lowered when the temperature of the ingot is lowered from the homogenization temperature to the soaking temperature. The homogenization time is defined as the time at which the heat temperature is increased to a higher temperature of 10 ° C., and the soaking time is the soaking temperature after the temperature of the ingot starts to be lowered from the homogenizing temperature to the soaking temperature. The method for producing a plate material for a high-strength can body with good surface properties according to claim 1, characterized in that the time from when the temperature becomes + 10 ° C or lower to when the ingot is taken out from the dual-purpose furnace is used. 前記熱間圧延において最後2パス以上4パス以下の熱間仕上パスを、圧延機の両側に巻取装置を有する熱間圧延機を用い、圧延後の板材を巻取機でコイル状に巻き取りしながら圧延する方法であって、前記熱間圧延における熱間仕上パス開始板厚を18mm以上30mm以下で行い、前記冷間圧延における第一冷間圧延圧下率を88%以下とすることを特徴とする請求項1または2に記載の表面性状が良好な高強度缶ボディ用板材の製造方法。   In the hot rolling, a hot finishing pass of the last 2 passes or more and 4 passes or less is used, a hot rolling mill having a winding device on both sides of the rolling mill is used, and the rolled plate material is wound into a coil by the winding machine. A hot finishing pass start plate thickness in the hot rolling is 18 mm or more and 30 mm or less, and a first cold rolling reduction in the cold rolling is 88% or less. The manufacturing method of the board | plate material for high-strength can bodies with favorable surface property of Claim 1 or 2. Mg:1.30〜1.7%、Cu:0.30%〜0.45%の範囲とすることを特徴とする請求項1〜3のいずれか一項に記載の表面性状が良好な高強度缶ボディ用板材の製造方法。   The surface property according to any one of claims 1 to 3, wherein Mg: 1.30 to 1.7% and Cu: 0.30% to 0.45% are included. A method for manufacturing a plate material for a strong can body.
JP2010293274A 2010-12-28 2010-12-28 Method for producing plate material for high-strength can body with good surface properties Active JP5715413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293274A JP5715413B2 (en) 2010-12-28 2010-12-28 Method for producing plate material for high-strength can body with good surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293274A JP5715413B2 (en) 2010-12-28 2010-12-28 Method for producing plate material for high-strength can body with good surface properties

Publications (2)

Publication Number Publication Date
JP2012140664A JP2012140664A (en) 2012-07-26
JP5715413B2 true JP5715413B2 (en) 2015-05-07

Family

ID=46677223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293274A Active JP5715413B2 (en) 2010-12-28 2010-12-28 Method for producing plate material for high-strength can body with good surface properties

Country Status (1)

Country Link
JP (1) JP5715413B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084473A (en) * 2012-10-19 2014-05-12 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body and production method thereof
JP2015045076A (en) * 2013-08-29 2015-03-12 三菱アルミニウム株式会社 Aluminum alloy sheet for beverage can body excellent in surface property
JP6372984B2 (en) * 2013-09-13 2018-08-15 三菱アルミニウム株式会社 Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance
DE102013221710A1 (en) 2013-10-25 2015-04-30 Sms Siemag Aktiengesellschaft Aluminum hot strip rolling mill and method for hot rolling an aluminum hot strip
ES2709181T3 (en) 2015-07-20 2019-04-15 Novelis Inc AA6XXX aluminum alloy sheet with high anodized quality and method to manufacture the same
JP6718701B2 (en) * 2016-03-11 2020-07-08 三菱アルミニウム株式会社 Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
JP6208389B1 (en) * 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
US11433441B2 (en) 2016-08-30 2022-09-06 Kaiser Aluminum Warrick, Llc Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet
JP6311206B2 (en) * 2017-04-21 2018-04-18 三菱アルミニウム株式会社 Inspection method of aluminum alloy plates for beverage can bodies with excellent surface properties
CN113477743B (en) * 2021-09-08 2021-11-30 山东宏桥新型材料有限公司 Aluminum alloy pop can body and processing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127850A (en) * 1994-11-01 1996-05-21 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for forming low in edge ratio
JPH09316615A (en) * 1996-05-23 1997-12-09 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body low in earing ratio
JP3644819B2 (en) * 1998-03-06 2005-05-11 古河スカイ株式会社 Method for producing aluminum alloy plate for can body
JP3871473B2 (en) * 1999-07-26 2007-01-24 古河スカイ株式会社 Method for producing aluminum alloy plate for can body
JP2003277865A (en) * 2002-03-26 2003-10-02 Kobe Steel Ltd Aluminum alloy sheet for di can
JP3868839B2 (en) * 2002-03-29 2007-01-17 三菱アルミニウム株式会社 Method for producing aluminum alloy plate for bottle-type beverage can
JP5247996B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance

Also Published As

Publication number Publication date
JP2012140664A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5715413B2 (en) Method for producing plate material for high-strength can body with good surface properties
JP7163304B2 (en) Casting of recycled aluminum scrap
KR101156956B1 (en) In-line method of making heat-treated and annealed aluminum alloy sheet
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
US20050211350A1 (en) In-line method of making T or O temper aluminum alloy sheets
CN103946404B (en) Press formability and the excellent aluminium alloy plate of shape freezing and its manufacturing method
TW201807210A (en) Al-mg-Si-based alloy material, Al-Mg-Si-based alloy plate, and method for manufacturing Al-Mg-Si-based alloy plate
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
US10253403B2 (en) Method of manufacturing grain-refined aluminum-zinc-magnesium-copper alloy sheet
EP3098329B1 (en) A method of making an aluminium metal foil product
US20090159160A1 (en) Method for making high strength aluminum alloy sheet and products made by same
WO2008078399A1 (en) Method of producing aluminum alloy sheet
EP3956489B1 (en) Method for producing aluminum can sheet
JP2017133054A (en) High strength aluminum alloy sheet excellent in moldability and manufacturing method therefor
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
EP3827109B1 (en) Method of manufacturing an al-mg-mn alloy plate product
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
EP4306668A1 (en) Method of producing aluminum can sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R150 Certificate of patent or registration of utility model

Ref document number: 5715413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250