JP6372984B2 - Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance - Google Patents

Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance Download PDF

Info

Publication number
JP6372984B2
JP6372984B2 JP2013190951A JP2013190951A JP6372984B2 JP 6372984 B2 JP6372984 B2 JP 6372984B2 JP 2013190951 A JP2013190951 A JP 2013190951A JP 2013190951 A JP2013190951 A JP 2013190951A JP 6372984 B2 JP6372984 B2 JP 6372984B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
cold rolling
alloy plate
final
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013190951A
Other languages
Japanese (ja)
Other versions
JP2015055009A (en
Inventor
福増 秀彰
秀彰 福増
原田 俊宏
俊宏 原田
齊藤 充
充 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2013190951A priority Critical patent/JP6372984B2/en
Publication of JP2015055009A publication Critical patent/JP2015055009A/en
Application granted granted Critical
Publication of JP6372984B2 publication Critical patent/JP6372984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Description

本発明は、耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の製造方法に関する。 The present invention relates to the production how the aluminum alloy plate for a can body having excellent fluid-tight communication pinhole resistance.

一般に缶ボディとしては、その開口端部に缶蓋が巻締められる缶や、開口端部にキャップが螺着されるボトル缶等があり、飲料等の内容物が充填、密封され、市場において流通している。このような缶ボディは、従来、JIS3004(AA3004)またはJIS3104(AA3104)などのアルミニウム合金からなる板材に絞り加工およびしごき加工を施すことによって行われるDI加工で形成されている。上述のようなしごき加工は、通常、アルミニウム合金板に複数回に分けて段階的に行われることにより、缶ボディが製缶される。   In general, the can body includes a can with a can lid wound around its open end and a bottle can with a cap screwed into its open end, filled with beverages and other contents, and distributed in the market. doing. Such a can body is conventionally formed by DI processing performed by drawing and ironing a plate material made of an aluminum alloy such as JIS 3004 (AA3004) or JIS3104 (AA3104). The ironing process as described above is usually performed in multiple steps on an aluminum alloy plate, thereby producing a can body.

従来、上述のような缶ボディの流通過程において、例えば、缶ボディの胴部に先鋭体が接触又は衝突したり、あるいは隣接した缶ボディの胴部同士が衝突したり、缶と缶の間に異物が挟まった状態で擦れること等により、流通ピンホールと呼ばれる微小な孔等の破断が発生し、内容物が漏洩する等の問題を生じることがある。
上述のようなピンホールが生じる問題を解決するための有効な手段として、胴部の肉厚を大きくすることが考えられるものの、単に胴部の肉厚を大きくしても缶ボディ材の材料使用量が増大するので、経済的ではなく、缶ボディの重量が増大する問題もある。
そこで、缶胴を構成するアルミニウム合金板の組成を調整し、製造工程の改良を行って缶ボディ用として好適なアルミニウム合金板を開発することがなされている。
Conventionally, in the distribution process of the can body as described above, for example, the sharp body contacts or collides with the body portion of the can body, the body portions of adjacent can bodies collide, or between the cans and the cans. By rubbing in a state where a foreign object is sandwiched, breakage of a minute hole or the like called a distribution pinhole may occur, causing problems such as leakage of contents.
Although it is conceivable to increase the thickness of the barrel as an effective means for solving the above-mentioned problem of pinholes, the material of the can body material can be used even if the barrel thickness is simply increased. Since the amount increases, there is a problem that it is not economical and the weight of the can body increases.
In view of this, an aluminum alloy plate suitable for a can body has been developed by adjusting the composition of the aluminum alloy plate constituting the can body and improving the manufacturing process.

例えば、一例として、質量%でSi:0.2〜0.8%、Fe:0.3〜0.7%、Cu:0.15〜0.5%、Mn:0.4〜1.5%、Mg:0.8〜6.0%及びTi:0.001〜0.15%を含有したアルミニウム合金材からなり、耐力値を300N/mm以上とした缶胴用アルミニウム合金板が提案されている(特許文献1参照)。
特許文献1に記載のアルミニウム合金板では、缶胴の素材成分組成を上述の値としたうえで、樹脂フィルムを被覆することによる熱履歴を経た場合であっても、耐力値240〜300N/mmを得ることができると記載されている。
For example, as an example, Si: 0.2-0.8% by mass, Fe: 0.3-0.7%, Cu: 0.15-0.5%, Mn: 0.4-1.5 %, Mg: 0.8-6.0% and Ti: 0.001-0.15% aluminum alloy sheet for can body proposed with a proof stress of 300 N / mm 2 or more (See Patent Document 1).
In the aluminum alloy plate described in Patent Document 1, the proof stress value is 240 to 300 N / mm even when the material component composition of the can body is set to the above-described value and the thermal history is obtained by coating the resin film. 2 can be obtained.

また、他の例として、質量%でMn:0.7〜1.5%、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Si:0.1〜0.5%、Cu:0.1〜0.3%、Ti:0.1%以下、B:0.1%以下を含有したアルミニウム合金板であり、加工硬化指数の変化曲線の最大n値が0.1以上の缶胴用アルミニウム合金板が提案されている(特許文献2参照)。
特許文献2に記載のアルミニウム合金板は、180〜220℃で5〜30分間保持し、最高到達温度210〜260℃で2分以内保持して行われる塗装焼付け後の強度が250MPa以上であると記載されている。
As other examples, Mn: 0.7 to 1.5%, Mg: 0.8 to 1.5%, Fe: 0.35 to 0.5%, Si: 0.1 to 0% by mass .5%, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.1% or less, an aluminum alloy plate containing a maximum n value of the change curve of work hardening index An aluminum alloy plate for can bodies of 0.1 or more has been proposed (see Patent Document 2).
The aluminum alloy plate described in Patent Document 2 is held at 180 to 220 ° C. for 5 to 30 minutes, and the strength after painting and baking performed by holding at the maximum attained temperature of 210 to 260 ° C. within 2 minutes is 250 MPa or more. Have been described.

更に、他の例として、重量比でMg:0.8〜1.5%、Mn:0.5〜1.5%、Fe:0.35〜0.5%、Si:0.2〜0.35%、Cu:0.1〜0.3%、Ti:0.1%以下、B:0.05%以下を含有したアルミニウム合金板であり、重量比でMn固溶量に対する加工硬化指数の変化曲線のn値の最大値が0.1以上の缶胴用アルミニウム合金板が提案されている(特許文献3参照)。
特許文献3に記載のアルミニウム合金板は、塗装焼付け相当の熱処理後の圧延方向耐力が250MPa以上であると記載されている。
Furthermore, as another example, Mg: 0.8-1.5% by weight ratio, Mn: 0.5-1.5%, Fe: 0.35-0.5%, Si: 0.2-0 .35%, Cu: 0.1-0.3%, Ti: 0.1% or less, B: 0.05% or less aluminum alloy plate, work hardening index with respect to the Mn solid solution amount by weight ratio An aluminum alloy plate for a can body having a maximum n value of 0.1 or more of the change curve is proposed (see Patent Document 3).
The aluminum alloy plate described in Patent Document 3 is described as having a rolling direction yield strength of 250 MPa or more after a heat treatment equivalent to paint baking.

特開2001−003130号公報JP 2001-003130 A 特開2006−283112号公報JP 2006-283112 A 特開2006−291326号公報JP 2006-291326 A

これら特許文献1〜3に記載の技術によれば、素材耐力の向上、並びに、塗装焼付け後、あるいは、樹脂フィルム貼り付け後の耐力向上を実現することができた。
しかしながら、アルミニウム合金板の素材強度を高くすることも有効であるが、缶胴側壁部の薄肉化により缶の成形性が悪化しているため、アルミニウム合金素材の強度を一定以上に高めた場合、アルミニウム合金素材の成形性が低下し、缶形状への成形自体が困難になってしまう問題がある。
このような背景から、缶胴側壁部の肉厚増加や、アルミニウム合金素材の高強度化以外に、耐流通ピンホール性能を向上させる方法を見出す必要があった。
According to the techniques described in these Patent Documents 1 to 3, it was possible to improve the material yield strength and to improve the yield strength after painting and baking or after attaching the resin film.
However, it is also effective to increase the material strength of the aluminum alloy plate, but because the moldability of the can has deteriorated due to the thinning of the side wall of the can body, when the strength of the aluminum alloy material is increased to a certain level, There is a problem that the formability of the aluminum alloy material is lowered and it becomes difficult to form the can shape itself.
From such a background, it was necessary to find a method for improving the flow-resistant pinhole performance in addition to increasing the thickness of the side wall of the can body and increasing the strength of the aluminum alloy material.

この種の缶胴用アルミニウム合金素材は、合金組成比を調整して得た鋳塊を熱間圧延処理で目的の板厚になるまで加工し、続いて冷間圧延処理と中間焼鈍処理を必要回数施す処理により目的の板厚に加工し、缶胴用のアルミニウム合金板を得ている。また、冷間圧延後に得られた板材はコイル状に巻回して焼鈍炉に収容し、目的の温度管理の元、焼鈍した後、再び巻出して冷間圧延装置に送るようにしている。   This type of aluminum alloy material for can bodies is made by processing the ingot obtained by adjusting the alloy composition ratio until the desired thickness is obtained by hot rolling, followed by cold rolling and intermediate annealing. An aluminum alloy plate for a can body is obtained by processing to a desired plate thickness by a treatment applied several times. Further, the plate material obtained after the cold rolling is wound in a coil shape and accommodated in an annealing furnace, annealed under the target temperature control, then unwound and sent to the cold rolling apparatus.

本発明者が以上のようなアルミニウム合金素材の製造方法について研究した結果、アルミニウム合金素材の加工硬化性が高い場合に、耐流通ピンホール性能が高まる傾向があることを見出した。また、アルミニウム合金素材の加工硬化性を高める製造方法として、中間焼鈍以降の冷間圧延率は低い方が好ましく、また、最終冷間圧延パスにおける圧延直後のコイル温度を低くした方が好ましいことも見出した。
更に研究を進めた結果、最終中間焼鈍以降の冷間圧延率が低くても圧延直後のコイル温度が高い場合は、必ずしも所望の加工硬化性が得られないことがわかった。また、最終冷間圧延パスにおける圧延直後のコイル温度が低くても最終中間焼鈍以降の冷間圧延率が高い場合も必ずしも所望の加工硬化性が得られないことを見出した。
As a result of studying the manufacturing method of the aluminum alloy material as described above, the present inventors have found that when the workability of the aluminum alloy material is high, the distribution-resistant pinhole performance tends to increase. In addition, as a manufacturing method for improving the work hardenability of the aluminum alloy material, it is preferable that the cold rolling rate after the intermediate annealing is low, and it is preferable that the coil temperature immediately after rolling in the final cold rolling pass is lowered. I found it.
As a result of further research, it was found that even if the cold rolling rate after the final intermediate annealing is low, the desired work curability cannot always be obtained when the coil temperature immediately after rolling is high. Further, it has been found that even if the coil temperature immediately after rolling in the final cold rolling pass is low, the desired work curability cannot always be obtained even when the cold rolling rate after the final intermediate annealing is high.

本発明は上述の事情に鑑みなされたもので、アルミニウム合金素材の加工硬化性を高くして耐流通ピンホール性能を高めることができる缶ボディ用アルミニウム合金板の製造方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a manufacturing how the aluminum alloy material of the work hardenability of the raised aluminum alloy sheet for a can body which can increase the fluid tight communication pinhole performance .

上記の課題を解決するため、本発明は以下の構成を採用した。
本発明の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の製造方法は、質量%でSi:0.2〜0.5%、Fe:0.3〜0.7%、Cu:0.2〜0.5%、Mn:0.5〜1.3%、Mg:0.9〜1.5%、Cr:0.001〜0.10%、Zn:0.05〜0.30%、Ti:0.03〜0.10%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊に熱間圧延、冷間圧延を施し、所定板厚とした後、連続焼鈍による最終中間焼鈍を施して中間板材とし、この中間板材にさらに冷間圧延を施して板厚0.220mm以上0.265mm以下、ベーキング後の耐力が265MPa以上295MPa以下のアルミニウム合金板を得る耐流通ピンホール性に優れるアルミニウム合金板の製造方法であって、最終中間焼鈍以降の冷間圧延率が30%以上であって、最終冷間圧延パスにおける圧延直後のコイル温度を80℃以上150℃以下、かつ最終中間焼鈍以降の冷間圧延の条件として、以下の式を満たす条件とすることを特徴とする。
FT≦515−6×CR …(1)式
ただし、(1)式において、CR:最終中間焼鈍以降の冷間圧延率(%)、FT:最終冷間圧延パスにおける圧延直後のコイル温度(℃)とする。
In order to solve the above problems, the present invention employs the following configuration.
The manufacturing method of the aluminum alloy plate for can bodies excellent in circulation pinhole resistance according to the present invention is Si: 0.2 to 0.5%, Fe: 0.3 to 0.7%, Cu: 0.0. 2 to 0.5%, Mn: 0.5 to 1.3%, Mg: 0.9 to 1.5%, Cr: 0.001 to 0.10%, Zn: 0.05 to 0.30% , Ti: 0.03 to 0.10 %, with the balance being Al and inevitable impurities, the aluminum alloy ingot is hot-rolled and cold-rolled to obtain a predetermined plate thickness, followed by continuous annealing. Intermediate annealing is performed to obtain an intermediate plate, and this intermediate plate is further cold-rolled to obtain an aluminum alloy plate having a thickness of 0.220 mm to 0.265 mm and a proof stress after baking of 265 MPa to 295 MPa. This is a method for producing an aluminum alloy plate with excellent The cold rolling rate after the final intermediate annealing is 30% or more, the coil temperature immediately after rolling in the final cold rolling pass is 80 ° C. or higher and 150 ° C. or lower, and the conditions for cold rolling after the final intermediate annealing are as follows: It is characterized by satisfying the following formula.
FT ≦ 515-6 × CR (1) Formula where, in the formula (1), CR: cold rolling rate (%) after the final intermediate annealing, FT: coil temperature immediately after rolling in the final cold rolling pass (° C. ).

本発明の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の製造方法において、前記Tiの含有量が質量%で0.03〜0.04%の範囲であることが好ましい。In the manufacturing method of the aluminum alloy plate for can bodies excellent in circulation pinhole resistance of the present invention, the Ti content is preferably in the range of 0.03 to 0.04% by mass.

以上、詳細に説明したように、本発明によれば、最終中間焼鈍以降の冷間圧延率を30%以上かつFT≦515−6×CRの関係に基づき、最終冷間圧延パス直後のコイル温度との関連で低い範囲に抑制し、前記式に関連付けて最終冷間圧延パス直後のコイル温度を80℃以上150℃以下の範囲に制御することにより、耐流通ピンホール性に優れた缶ボディ用アルミニウム合金板を提供することができる。
前記缶ボディ用のアルミニウム合金板の製造のために、Si、Fe、Cu、Mn、Mg、Cr、Zn、Tiを所定の範囲に規定したアルミニウム合金鋳塊を用いて前記式の条件に基づき最終中間焼鈍以降の冷間圧延率と最終冷間圧延パス直後のコイル温度を制御する必要がある
また、本発明によれば、缶胴部分の強度が高く、耐流通ピンホール性に優れた缶ボディ用アルミニウム合金板を提供することができる。
As described above in detail, according to the present invention, the coil temperature immediately after the final cold rolling pass is based on the relationship of the cold rolling rate after the final intermediate annealing of 30% or more and FT ≦ 515-6 × CR. In relation to the above, the coil temperature immediately after the final cold rolling pass is controlled in the range of 80 ° C. or higher and 150 ° C. or lower in relation to the above formula, so that can body excellent in circulation pinhole resistance An aluminum alloy plate can be provided.
In order to manufacture the aluminum alloy plate for the can body, the final production is performed based on the conditions of the above formula using an aluminum alloy ingot in which Si, Fe, Cu, Mn, Mg, Cr, Zn, and Ti are defined in a predetermined range. It is necessary to control the cold rolling rate after the intermediate annealing and the coil temperature immediately after the final cold rolling pass.
Moreover, according to the present invention, an aluminum alloy plate for a can body can be provided that has a high strength of the can body portion and excellent resistance to distribution pinholes.

図1は本発明に係る缶ボディ用アルミニウム合金板をDI加工して缶ボディを製造する工程について説明するもので、図1(a)は板材(ブランク)の斜視図、図1(b)はしぼり加工後のカップ状缶体の斜視図、図1(c)は再しぼり加工後のカップ状缶体の斜視図、図1(d)はしごき加工後の有底筒状缶体の斜視図、図1(e)は缶ボディの斜視図。FIG. 1 illustrates a process for manufacturing a can body by DI processing of an aluminum alloy plate for a can body according to the present invention. FIG. 1 (a) is a perspective view of a plate material (blank), and FIG. FIG. 1C is a perspective view of the cup-shaped can body after the re-drawing process, and FIG. 1D is a perspective view of the bottomed cylindrical can body after the ironing process. FIG.1 (e) is a perspective view of a can body. 図2は本発明に係る缶ボディ用アルミニウム合金板の製造方法を実施する場合の冷間仕上がり温度と冷間圧延率の関係を示す図。FIG. 2 is a diagram showing the relationship between the cold finish temperature and the cold rolling rate when the can body aluminum alloy sheet manufacturing method according to the present invention is carried out.

本発明に係る耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の一実施形態について以下に説明する。
本実施形態の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板は、一例として、質量%で、Si:0.2以上0.5%以下、Fe:0.3以上0.7%以下、Cu:0.2%以上0.5%、Mn:0.5%以上1.3%以下、Mg:0.9%以上1.5%以下、Cr:0.001%以上0.10%以下、Zn:0.05%以上0.30%以下、Ti:0.05%以上0.10%以下を含有し、残部が不可避不純物を含むAlからなる組成を有することが好ましい。
本実施形態の缶ボディ用アルミニウム合金板の板厚は、0.220mm以上0.265mm以下の範囲であることが好ましい。また、缶ボディ用アルミニウム合金板は、ベーキング後(210℃、10分)の素材耐力として、265MPa以上295MPa以下の範囲が好ましい。
One embodiment of an aluminum alloy plate for a can body having excellent flow-resistant pinhole properties according to the present invention will be described below.
As an example, the aluminum alloy plate for can bodies having excellent flow-resistant pinhole resistance according to the present embodiment is, by mass, Si: 0.2 to 0.5%, Fe: 0.3 to 0.7%, Cu: 0.2% to 0.5%, Mn: 0.5% to 1.3%, Mg: 0.9% to 1.5%, Cr: 0.001% to 0.10% Zn: 0.05% or more and 0.30% or less, Ti: 0.05% or more and 0.10% or less, and the balance is preferably composed of Al containing inevitable impurities.
It is preferable that the plate | board thickness of the aluminum alloy plate for can bodies of this embodiment is the range of 0.220 mm or more and 0.265 mm or less. Moreover, the aluminum alloy plate for can bodies is preferably in a range of 265 MPa to 295 MPa as a material yield strength after baking (210 ° C., 10 minutes).

前記缶ボディ用アルミニウム合金板の板厚を0.220mm以上とするのは、缶体に必要な強度を得るためであり、缶形状を保つために必要な缶胴厚を得るためである。板厚を0.220mm未満にすると、缶体に必要な強度を得ることが難しくなり、缶形状を保つことが難しくなる。前記缶ボディ用アルミニウム合金板の板厚を0.260mm以下とするのは、缶重量の増加を抑制し、経済的に生産できるようにするためである。板厚が0.260mmを超えるようであると、缶体の重量増加になり、缶体のコストが上昇し、経済的ではなくなる。   The reason why the thickness of the aluminum alloy plate for can bodies is 0.220 mm or more is to obtain the strength necessary for the can body and to obtain the can body thickness necessary for maintaining the can shape. If the plate thickness is less than 0.220 mm, it becomes difficult to obtain the strength necessary for the can body, and it becomes difficult to maintain the can shape. The reason why the thickness of the aluminum alloy plate for the can body is set to 0.260 mm or less is to suppress an increase in the weight of the can and to enable economical production. If the plate thickness exceeds 0.260 mm, the weight of the can body increases, the cost of the can body increases, and it is not economical.

[成分組成]
以下、本発明の缶ボディ用アルミニウム合金板において限定する成分組成について説明する。なお、以下に記載する各元素の含有量は、特に規定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。従って、例えば0.2〜0.5%との表記は0.2%以上0.5%以下を意味する。
[Ingredient composition]
Hereinafter, the component composition limited in the aluminum alloy plate for can bodies of this invention is demonstrated. In addition, content of each element described below is mass% unless otherwise specified, and includes an upper limit and a lower limit unless otherwise specified. Therefore, for example, the notation of 0.2 to 0.5% means 0.2% or more and 0.5% or less.

「Si」0.2〜0.5%
Siは、本発明の缶ボディ用アルミニウム合金板において、同時に含有されるMg等とともに金属間化合物を形成し、固溶硬化、析出硬化及び分散硬化作用で強度を向上させる他、Al−Mn−Fe系金属間化合物に含有されて、しごき成形時にダイスに対する焼き付きを防止する効果を有する。
Siの含有量が0.2%未満であると、十分な強度が得られず、また、所望の潤滑特性を確保できなくなる。Siの含有量が0.5%を越えると、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなり、加工性が劣化する。また、Mn、FeおよびMg、Cu、Alとの金属間化合物が溶体化できなくなり、靭性が低下し、ピンホールが生じやすくなる。従って、Siの含有量は、0.20〜0.5%の範囲内とすることが好ましい。また、この範囲内でも、Siの含有量は0.29〜0.33%の範囲を選択できる。
"Si" 0.2-0.5%
In the aluminum alloy plate for can bodies of the present invention, Si forms an intermetallic compound together with Mg or the like contained at the same time, and improves the strength by solid solution hardening, precipitation hardening and dispersion hardening, and Al-Mn-Fe. It is contained in the intermetallic compound and has the effect of preventing seizure against the die during ironing.
If the Si content is less than 0.2%, sufficient strength cannot be obtained, and desired lubrication characteristics cannot be ensured. When the Si content exceeds 0.5%, the strength becomes excessively high, and when the can body is made, it becomes easy to be cut out of the cylinder and the workability deteriorates. In addition, intermetallic compounds of Mn, Fe, Mg, Cu, and Al cannot be solutionized, and the toughness is lowered and pinholes are easily generated. Therefore, the Si content is preferably in the range of 0.20 to 0.5%. Even within this range, the Si content can be selected in the range of 0.29 to 0.33%.

「Fe」0.3〜0.7%
Feは、本発明の缶ボディ用アルミニウム合金板において、Al−Mn−Fe系金属間化合物の析出量を増加させ、結晶の微細化と、しごき成形加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Feの含有量が0.3%未満であると、Al−Mn−Fe系金属間化合物の析出量が少なくなりすぎ、しごき金型への焼き付きが生じやすくなる。Feの含有量が0.7%を超えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Feの含有量は、0.3〜0.7%の範囲内とすることが好ましい。また、この範囲内でも、Feの含有量は0.43〜0.45%の範囲を選択できる。
"Fe" 0.3-0.7%
Fe increases the precipitation amount of Al-Mn-Fe intermetallic compounds in the aluminum alloy sheet for can bodies of the present invention, and prevents the formation of fine crystals and seizure to the die during ironing processing. Has the effect of
If the Fe content is less than 0.3%, the amount of Al—Mn—Fe intermetallic compound deposited becomes too small, and seizure to the ironing mold tends to occur. If the Fe content exceeds 0.7%, the amount of the Al—Mn—Fe intermetallic compound is excessively increased, the workability is deteriorated due to a decrease in toughness, and pinholes are easily generated. Therefore, the Fe content is preferably in the range of 0.3 to 0.7%. Even within this range, the Fe content can be selected in the range of 0.43 to 0.45%.

「Cu」0.2〜0.5%
Cuは、本発明の缶ボディ用アルミニウム合金板において、Mg等と金属間化合物を形成し、固溶硬化、析出硬化及び分散硬化作用で強度を高める効果を有する。
Cuの含有量が0.2%未満であると、充分な強度向上効果が得られない。Cuの含有量が0.5%を越えると、サイドクラックが発生し易くなり、圧延性が低下するとともに、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなる。また、Mg、Si、Alとの金属間化合物が溶体化できなくなり、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Cuの含有量は、0.2〜0.5%の範囲内とすることが好ましい。また、この範囲内でも、Cuの含有量は0.27〜0.4%の範囲を選択できる。
"Cu" 0.2-0.5%
Cu forms an intermetallic compound with Mg or the like in the aluminum alloy plate for a can body of the present invention, and has an effect of increasing strength by solid solution hardening, precipitation hardening, and dispersion hardening.
If the Cu content is less than 0.2%, a sufficient strength improvement effect cannot be obtained. If the Cu content exceeds 0.5%, side cracks are likely to occur, the rollability is lowered, the strength is too high, and the body is likely to be cut when it is made as a can body. In addition, the intermetallic compound with Mg, Si, and Al cannot be in solution, and the workability deteriorates due to a decrease in toughness, and pinholes are likely to occur. Therefore, the Cu content is preferably in the range of 0.2 to 0.5%. Even within this range, the Cu content can be selected in the range of 0.27 to 0.4%.

「Mn」0.5〜1.3%
Mnは、本発明の缶ボディ用アルミニウム合金板において、Al−Mn−Fe系金属間化合物を形成し、晶出相及び分散相となって分散硬化作用を発揮するとともに、しごき成型加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Mnの含有量が0.5%未満であると、Al−Mn−Fe系金属間化合物の量が少なくなりすぎて充分な硬化特性が得られず、しごき金型への焼き付きが生じやすくなる。Mnの含有量が1.3%を越えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Mnの含有量は、0.5〜1.3%の範囲内とすることが好ましい。また、この範囲内でも、Mnの含有量は0.98〜1.0%の範囲を選択できる。
"Mn" 0.5-1.3%
In the aluminum alloy plate for can bodies of the present invention, Mn forms an Al-Mn-Fe intermetallic compound, becomes a crystallization phase and a dispersed phase, exhibits a dispersion hardening action, and is used as a die during ironing molding processing. On the other hand, it has the effect of preventing seizure.
If the Mn content is less than 0.5%, the amount of the Al—Mn—Fe intermetallic compound becomes too small to obtain sufficient curing characteristics, and seizure to the ironing mold tends to occur. When the content of Mn exceeds 1.3%, the amount of Al—Mn—Fe intermetallic compound becomes too large, workability deteriorates due to a decrease in toughness, and pinholes are likely to occur. Therefore, the Mn content is preferably in the range of 0.5 to 1.3%. Even within this range, the Mn content can be selected in the range of 0.98 to 1.0%.

「Mg」0.9〜1.5%
Mgは、本発明の缶ボディ用アルミニウム合金板において、固溶体強化作用を有し、圧延加工時に加工硬化性を高めるとともに、SiやCuと共存することで分散硬化と析出硬化作用を発揮し、強度を向上させる。
Mgの含有量が0.9%未満だと、十分な強度が得られない。Mgの含有量が1.5%を超えると、サイドクラックが発生し易くなり、圧延性が低下するとともに、強度が高くなり過ぎて加工性が低下し、缶ボディとして製缶した際に胴切れが生じ易くなる。従って、Mgの含有量は、0.9〜1.5%の範囲内とすることが好ましい。また、この範囲内でも、Mgの含有量は1.12〜1.38%の範囲を選択できる。
「Cr」0.001〜0.10%
Crは、本発明の缶ボディ用アルミニウム合金板において、結晶の微細化としごき成形加工時にダイスに対する焼き付きを防止する効果を発揮する。Crの含有量は、0.001%未満では所望の効果が得られず、0.10質量%を越えると脆くなり加工性が劣化する。また、この範囲内でも、Crの含有量は0.02〜0.03%の範囲を選択できる。
"Mg" 0.9-1.5%
In the aluminum alloy plate for can bodies of the present invention, Mg has a solid solution strengthening action, enhances work hardening at the time of rolling, and exhibits dispersion hardening and precipitation hardening action by coexisting with Si and Cu. To improve.
If the Mg content is less than 0.9%, sufficient strength cannot be obtained. If the Mg content exceeds 1.5%, side cracks are likely to occur, the rollability is reduced, the strength is too high and the workability is lowered, and the can body is cut when it is made as a can body. Is likely to occur. Therefore, the Mg content is preferably in the range of 0.9 to 1.5%. Even within this range, the Mg content can be selected from a range of 1.12 to 1.38%.
"Cr" 0.001-0.10%
In the aluminum alloy plate for a can body of the present invention, Cr exhibits the effect of preventing crystal seizure and die seizure during ironing. If the Cr content is less than 0.001%, the desired effect cannot be obtained, and if it exceeds 0.10% by mass, it becomes brittle and the workability deteriorates. Even within this range, the Cr content can be selected in the range of 0.02 to 0.03%.

「Zn」Zn:0.05〜0.30%
Znは、本発明の缶ボディ用アルミニウム合金板において、析出するMg、Si、Cuの金属間化合物を微細化する作用を有する。またZnを含む場合は、原料として使用済みアルミ缶やリサイクル材料を有効利用できる。その含有量が0.05%未満では、所望の微細化効果が得られない。Znの含有量が0.30%を越えると、耐食性が劣化する。従って、Znの含有量は、0.05〜0.30%の範囲内とすることが好ましい。また、この範囲内でも、Znの含有量は0.14〜0.16%の範囲を選択できる。
「Ti」Ti:0.03〜0.10
Tiは、本発明の缶ボディ用アルミニウム合金板において、結晶粒を微細化し、加工性を改善する効果を有する。しかし、Tiの含有量が0.10%を越えると、粗大な金属間化合物を生成して加工性が逆に低下するとともに、靭性が低下しピンホールが生じやすくなる。従って、Tiの含有量は、0.03〜0.10%とすることが好ましい。また、この範囲内でも、Tiの含有量は0.03〜0.04%の範囲を選択できる。

“Zn” Zn: 0.05 to 0.30%
Zn has the effect | action which refines | miniaturizes the intermetallic compound of Mg, Si, and Cu which precipitates in the aluminum alloy plate for can bodies of this invention. When Zn is contained, used aluminum cans and recycled materials can be effectively used as raw materials. If the content is less than 0.05%, a desired fine effect cannot be obtained. When the Zn content exceeds 0.30%, the corrosion resistance deteriorates. Therefore, the Zn content is preferably in the range of 0.05 to 0.30%. Even within this range, the Zn content can be selected in the range of 0.14 to 0.16%.
“Ti” Ti: 0.03 to 0.10 %
Ti has the effect of refining crystal grains and improving workability in the aluminum alloy plate for can bodies of the present invention. However, if the Ti content exceeds 0.10%, a coarse intermetallic compound is produced and workability is reduced, and toughness is lowered and pinholes are likely to occur. Therefore, the Ti content is preferably 0.03 to 0.10 % . Even within this range, the content of Ti can be selected in the range of 0.03 to 0.04%.

[アルミニウム合金板の製造方法]
本発明に係る缶ボディ用アルミニウム合金板は、この種のアルミニウム合金板を製造する場合に適用される通常の溶解、鋳造、熱間圧延、冷間圧延により得られる。
冷間圧延のパスの途中の所定の板厚において、連続焼鈍による最終中間焼鈍を施し、次に冷間圧延を施して目的の板厚0.220mm以上0.265mm以下の缶ボディ用アルミニウム合金板を得る。
連続焼鈍による最終中間焼鈍の条件としては、400℃以上600℃以下の温度に1秒以上2分以下加熱し、次いで10〜200℃/sの範囲の冷却速度で冷却することが好ましい。
中間焼鈍の温度が400℃未満、焼鈍時間が1秒以下では、再結晶組織が不均質となる場合があり好ましくない。また、400℃以上かつ1秒以上とすることによりSi、Cu、Mgなどが溶体化され析出硬化性が付与されるために、充分なベーキング後(210℃、10分)の素材耐力が得られる。中間焼鈍の温度が600℃を超えると、板材表面の酸化が進行しやすくなり好ましくない。焼鈍時間が2分を超えると生産性が低下する。従って、中間焼鈍の温度は、400℃以上600℃以下の範囲内とすることが好ましく、焼鈍時間は1秒以上2分以下の範囲とすることが好ましい。中間焼鈍の冷却速度が10℃/s以下では、生産性が低下し、また中間焼鈍において溶体化したSi、Cu、Mgなどの冷却過程での析出が生じやすくなるため好ましくない。中間焼鈍の冷却速度が200℃/sを超えると板材に歪が生じやすくなる。従って、中間焼鈍の冷却速度は10℃/s以上200℃/s以下であることが好ましい。また、必要に応じて、前記中間焼鈍以前の冷間圧延のパスの途中において焼鈍を施してもよい。中間焼鈍を複数回施す場合もあるが、上述の条件を最終中間焼鈍時の条件として規定することが好ましい。
[Method for producing aluminum alloy sheet]
The aluminum alloy plate for can bodies according to the present invention can be obtained by ordinary melting, casting, hot rolling, and cold rolling applied when manufacturing this type of aluminum alloy plate.
An aluminum alloy sheet for can bodies having a target sheet thickness of 0.220 mm or more and 0.265 mm or less by performing final intermediate annealing by continuous annealing at a predetermined sheet thickness during a cold rolling pass. Get.
As conditions for final intermediate annealing by continuous annealing, it is preferable to heat to a temperature of 400 ° C. or more and 600 ° C. or less for 1 second or more and 2 minutes or less, and then cool at a cooling rate in the range of 10 to 200 ° C./s.
If the intermediate annealing temperature is less than 400 ° C. and the annealing time is 1 second or less, the recrystallized structure may become inhomogeneous, which is not preferable. Further, by setting the temperature to 400 ° C. or higher and 1 second or longer, Si, Cu, Mg, etc. are dissolved and precipitation hardenability is imparted, so that sufficient material strength after baking (210 ° C., 10 minutes) can be obtained. . When the temperature of the intermediate annealing exceeds 600 ° C., oxidation of the plate material surface tends to proceed, which is not preferable. When the annealing time exceeds 2 minutes, the productivity decreases. Therefore, the intermediate annealing temperature is preferably in the range of 400 ° C. to 600 ° C., and the annealing time is preferably in the range of 1 second to 2 minutes. When the cooling rate of the intermediate annealing is 10 ° C./s or less, the productivity is lowered, and precipitation in the cooling process of Si, Cu, Mg, etc. that are solutionized in the intermediate annealing tends to occur. When the cooling rate of the intermediate annealing exceeds 200 ° C./s, the plate material is likely to be distorted. Therefore, the cooling rate of the intermediate annealing is preferably 10 ° C./s or more and 200 ° C./s or less. Moreover, you may anneal as needed in the middle of the pass of the cold rolling before the said intermediate annealing. Although the intermediate annealing may be performed a plurality of times, it is preferable to define the above-mentioned conditions as conditions for the final intermediate annealing.

また、前記製造工程において、最終中間焼鈍以降の冷間圧延率を30%以上とすることが好ましく、最終冷間圧延パスにおける圧延直後のコイル温度を80℃以上150℃以下とすることが好ましく、更に、前記最終中間焼鈍以降の冷間圧延の条件として以下の(1)式を満足することが好ましい。ただし、以下の(1)式において、CR:最終中間焼鈍以降の冷間圧延率(%)、FT:最終冷間圧延パスにおける圧延直後のコイル温度(℃)と規定することが好ましい。なお、最終中間焼鈍以降の冷間圧延率(%)とは、{1−(最終冷間圧延パス後の板厚/最終中間焼鈍における板厚)}×100で示される。
FT≦515−6×CR …(1)式
In the manufacturing process, the cold rolling rate after the final intermediate annealing is preferably 30% or more, and the coil temperature immediately after rolling in the final cold rolling pass is preferably 80 ° C. or more and 150 ° C. or less, Furthermore, it is preferable that the following formula (1) is satisfied as a condition for cold rolling after the final intermediate annealing. However, in the following formula (1), it is preferable to define CR: cold rolling rate (%) after final intermediate annealing and FT: coil temperature (° C.) immediately after rolling in the final cold rolling pass. Note that the cold rolling rate (%) after the final intermediate annealing is represented by {1- (plate thickness after the final cold rolling pass / plate thickness in the final intermediate annealing)} × 100.
FT ≦ 515-6 × CR (1) formula

前記最終中間焼鈍以降の冷間圧延率を30%以上とし、かつ、前述の(1)式に基づいて前記最終冷間圧延直後のコイル温度との関係で範囲規定することにより、缶体に必要な強度を得ると同時に、耐流通ピンホール性能を得るために有効な加工硬化性を得ることができる。
前記最終冷間圧延直後に板材を巻き取った際のコイル温度を80℃以上の温度にすることが望ましい。前記コイル温度を80℃未満にすると、圧延速度を遅くする必要があり、経済的な圧延ができなくなるおそれがある。
Necessary for the can by setting the cold rolling rate after the final intermediate annealing to 30% or more and defining the range in relation to the coil temperature immediately after the final cold rolling based on the above-mentioned formula (1) At the same time as obtaining high strength, it is possible to obtain effective work curability for obtaining flow-resistant pinhole performance.
It is desirable that the coil temperature when the plate material is wound immediately after the final cold rolling is a temperature of 80 ° C. or higher. If the coil temperature is less than 80 ° C., it is necessary to slow the rolling speed, and there is a possibility that economical rolling cannot be performed.

前記最終冷間圧延直後に板材を巻き取った際のコイル温度を150℃以下の温度にすることが望ましい。コイル温度として150℃を超える温度に設定すると、圧延油の発火の危険性が増大する問題がある。   It is desirable that the coil temperature when the plate material is wound immediately after the final cold rolling is set to a temperature of 150 ° C. or lower. If the coil temperature is set to a temperature exceeding 150 ° C., there is a problem that the risk of ignition of the rolling oil increases.

[DI加工による製缶工程]
以下、図1を用いて、缶ボディ用アルミニウム合金板にDI加工を施して製缶し、缶ボディを得る工程の一例について概略説明する。
まず、図1(a)に示すように、缶ボディ用アルミニウム合金材に打ち抜き加工を施し、直径D1の円板状の板材(ブランク)5を得る。
ついで、この円板状の板材5に絞り加工を施し、図1(b)に示すような、外径D2のカップ状缶体6を形成する。
次いで、このカップ状缶体6に再絞り加工を施し、図1(c)に示すような外径D3のカップ状缶体7とする。D1とD3の比は、例えば2.0〜2.7とされる。
[Can manufacturing process by DI processing]
Hereinafter, an example of a process for obtaining a can body by performing DI processing on an aluminum alloy plate for a can body to produce a can body will be schematically described with reference to FIG.
First, as shown in FIG. 1 (a), a can body aluminum alloy material is punched to obtain a disk-shaped plate material (blank) 5 having a diameter D1.
Next, the disk-shaped plate material 5 is drawn to form a cup-shaped can body 6 having an outer diameter D2 as shown in FIG.
Next, the cup-shaped can body 6 is redrawn to obtain a cup-shaped can body 7 having an outer diameter D3 as shown in FIG. The ratio between D1 and D3 is, for example, 2.0 to 2.7.

次いで、しごき加工を施し、図1(d)に示すような有底筒状缶体8を形成する。この有底筒状缶体8の開口端部は、その缶軸方向に波打つような凹凸形状とされる。
次いで、図1(d)に示す有底筒状缶体8の開口端部を切断して、缶軸方向における大きさ、つまり高さをその全周に亙って同等に加工し、胴部11と底部12とを有する図1(e)に示す横断面円形の缶ボディ10を得ることができる。
Next, ironing is performed to form a bottomed cylindrical can body 8 as shown in FIG. The open end portion of the bottomed cylindrical can body 8 has an uneven shape that undulates in the direction of the can axis.
Next, the open end portion of the bottomed cylindrical can body 8 shown in FIG. 1 (d) is cut, and the size in the can axis direction, that is, the height is processed equally over the entire circumference, A can body 10 having a circular cross section shown in FIG.

以上説明したように、本実施形態の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板によれば、板厚を0.220mm以上0.260mm以下と薄く構成し、最終中間焼鈍以降の冷間圧延率を30%以上に設定し、最終冷間圧延パスにおける圧延直後のコイル温度を80℃以上150℃以下に設定し、更に、前記最終中間焼鈍以降の冷間圧延の条件として以下の「FT≦515−6×CR …(1)式」を満足するようにしているので、缶胴側壁部の肉厚増加による経済性の低下や缶ボディの重量の増加を抑制し、かつアルミ材の高強度化による成形性の低下を抑制しつつ、適度なベーキング後の耐力が得られ、かつ胴部の突き刺し強度を向上でき、胴部に流通ピンホールが生じるのを抑制することができる。   As described above, according to the aluminum alloy plate for a can body excellent in flow resistance pinhole property of the present embodiment, the plate thickness is thinly formed as 0.220 mm or more and 0.260 mm or less, and the cold after the final intermediate annealing is performed. The rolling rate is set to 30% or more, the coil temperature immediately after rolling in the final cold rolling pass is set to 80 ° C. or higher and 150 ° C. or lower, and the conditions of cold rolling after the final intermediate annealing are as follows: ≦ 515-6 × CR (1) ”is satisfied, so that it is possible to suppress a decrease in economy and an increase in the weight of the can body due to an increase in the wall thickness of the can body side wall, and a high aluminum material. While suppressing a decrease in formability due to strengthening, it is possible to obtain a moderate yield strength after baking, to improve the piercing strength of the barrel portion, and to prevent the occurrence of distribution pinholes in the barrel portion.

従って、本発明の缶ボディ用アルミニウム合金板を用いることにより、製造コストを増大させることなく、耐流通ピンホール性に優れた缶ボディを製造することができる。   Therefore, by using the aluminum alloy plate for a can body of the present invention, a can body having excellent circulation pinhole resistance can be produced without increasing the production cost.

[ベーキング後の素材耐力(210℃×10分)]
DI加工後の缶ボディは、洗浄、化成処理後の乾燥時、外面印刷または内面塗装後の焼付け処理によって180〜230℃の温度に加熱される。この加熱により、一般に、缶底部や胴部の強度が変化する。この、加熱後の強度は、DI成形時の歪量によって異なる。缶ボディの底部はDI成形時の歪みが小さいため、その加熱後の強度はDI加工前の素材であるアルミニウム合金板を加熱した後の強度とほぼ等しくなる。このため、底部の強度の目安として、素材であるアルミニウム合金板をベーキング(加熱)した後の強度を用いることができる。本発明では、このための加熱条件を、210℃×10分としている。
[Material strength after baking (210 ° C x 10 minutes)]
The can body after DI processing is heated to a temperature of 180 to 230 ° C. by drying after cleaning and chemical conversion treatment, or by baking treatment after external printing or internal coating. This heating generally changes the strength of the can bottom and the trunk. The strength after heating differs depending on the amount of strain during DI molding. Since the bottom of the can body has a small distortion during DI molding, the strength after heating is almost equal to the strength after heating the aluminum alloy plate which is a material before DI processing. For this reason, the intensity | strength after baking (heating) the aluminum alloy plate which is a raw material can be used as a standard of the intensity | strength of a bottom part. In the present invention, the heating condition for this is 210 ° C. × 10 minutes.

本発明の缶ボディ用アルミニウム合金板の、ベーキング後の素材耐力は、上記条件でベーキングを行った後の耐力で、265MPa以上295MPa以下であることが好ましい。
上述の条件でベーキングした後の素材耐力が265MPa未満であると、DI加工及び塗装焼付けによる製缶後の缶ボディの十分な耐圧強度が得られなくなる。
また、上述の条件でベーキングした後の素材耐力が295MPaを超えるようであると、缶形状への成形が難しくなるため、295MPa以下が望ましい。
The material yield strength after baking of the aluminum alloy plate for can bodies of the present invention is preferably 265 MPa or more and 295 MPa or less as the yield strength after baking under the above conditions.
If the material yield strength after baking under the above-mentioned conditions is less than 265 MPa, sufficient pressure strength of the can body after canning by DI processing and paint baking cannot be obtained.
Moreover, since it will become difficult to shape | mold into a can shape if the raw material yield strength after baking on the above-mentioned conditions seems to exceed 295 MPa, 295 MPa or less is desirable.

以下、実施例を示して、本発明の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板を更に詳しく説明するが、本発明はこの実施例に限定されるものでは無い。
本実施例では、下記表1に示す各成分組成及び製造条件にて、以下の工程でNo.1〜No.15の缶ボディ用アルミニウム合金板を作製し、後述の各項目について評価を行った。
Hereinafter, although an Example is shown and the aluminum alloy plate for can bodies excellent in the distribution | circulation resistance pinhole property of this invention is demonstrated in more detail, this invention is not limited to this Example.
In the present example, No. 1 to No. 15 aluminum alloy plates for can bodies were produced in the following steps under the respective component compositions and production conditions shown in Table 1 below, and evaluation was performed for each item described below. .

[缶ボディ用アルミニウム合金板作製工程]
下記表1に示す成分のアルミニウム合金を溶解し、この溶湯を常法により脱ガス、介在物除去を行い、半連続鋳造により厚さ550mm、幅1.5m、長さ4.5mのスラブに鋳造した。次いで、スラブに565℃で均熱化処理を施した後、熱間圧延を施した。その後、0.38mm〜1.15mmの範囲内の所定の板厚まで冷間圧延した。その後、420℃以上600℃以下の温度に1秒以上60秒以下に加熱し、次いで10℃/s以上100℃/s以下の冷却速度で冷却する連続焼鈍(IA−CAL)を施し、さらに0.23mmの最終板厚まで冷間圧延してNo.1〜No.15の試料を得た。
最終冷間圧延終了直後のコイル温度(℃)とは、最終冷間圧延パス終了直後のコイルの端面側から接触式温度計にて計測した温度を示す。

[Production process of aluminum alloy plate for can body]
The aluminum alloy of the components shown in Table 1 below is melted, and this molten metal is degassed and inclusions removed by a conventional method, and cast into a slab having a thickness of 550 mm, a width of 1.5 m, and a length of 4.5 m by semi-continuous casting. did. Next, the slab was subjected to a soaking treatment at 565 ° C. and then hot-rolled. Then, it cold-rolled to the predetermined plate | board thickness in the range of 0.38mm-1.15mm. Then, continuous annealing (IA-CAL) is performed by heating to a temperature of 420 ° C. or more and 600 ° C. or less for 1 second or more and 60 seconds or less, and then cooling at a cooling rate of 10 ° C./s or more and 100 ° C./s or less. Cold-rolled to a final plate thickness of 23 mm. 1-No. Fifteen samples were obtained.
The coil temperature (° C.) immediately after the end of the final cold rolling indicates the temperature measured with a contact thermometer from the end face side of the coil immediately after the end of the final cold rolling pass.

また、缶ボディ用アルミニウム合金板の各試料について、210℃で10分の加熱(ベーキング)を施した後に、JISZ2241に従ってJIS13B号試験片を採取し、引張方向が圧延方向と平行になるように引張試験に供し、0.2%耐力を求めた。0.2%耐力点から、破断直前までを対象として、真応力の対数および真ひずみ対数の間の直線回帰における傾きをn値として求め、このn値を加工硬化性の指標に用いた。   In addition, each sample of aluminum alloy plate for can body was heated (baked) at 210 ° C. for 10 minutes, and then a JIS No. 13B test piece was taken according to JISZ2241, and pulled so that the tensile direction was parallel to the rolling direction. It used for the test and calculated | required 0.2% yield strength. The slope in the linear regression between the logarithm of the true stress and the logarithm of the true strain was obtained as an n value from the 0.2% proof stress point to just before the break, and this n value was used as an index of work hardening.

[缶ボディの製缶と突き刺し強度の測定]
上述の工程で得られた各実施例及び比較例の缶ボディ用アルミニウム合金板を打ち抜き、直径が149mmとされた円板状の板材(図1(a)参照)を得た。この円板状の板材にDI加工を施し、胴部の最薄部肉厚T2が0.09mmの肉厚になるまで絞り加工及びしごき加工を行い、各実施例及び比較例の缶ボディ(350cc缶)を得た。
[Measurement of can body making and piercing strength]
The aluminum alloy plates for can bodies of the examples and comparative examples obtained in the above-described steps were punched out to obtain a disk-shaped plate material having a diameter of 149 mm (see FIG. 1 (a)). This disk-shaped plate material is subjected to DI processing, and drawing and ironing are performed until the thinnest part thickness T2 of the body reaches 0.09 mm. Can).

得られた缶ボディの胴部のうち、接地部から缶軸方向上方に60mmはなれ、かつ缶底の圧延方向から0°、45°、90°だけ傾いた各位置より板を切り出し、突き刺し強度の測定用の試料とした。缶胴部より切り出した試料に対し、曲率半径(先端半径)0.5mmとした押圧子によって試料板面に垂直な方向に押圧し、孔があいた際の押圧力を測定した。押圧子で押圧する部位を中心として、半径10mmより離れた位置の変形を金型により拘束して前記押圧子で突き刺すようにして突き刺し試験を行い、突き刺し強度を求めた。押圧子の板面に垂直な方向への移動速度は5mm/分に設定した。   Of the body part of the can body obtained, the plate is cut out from each position inclined 60 ° upward from the grounding part in the can axis direction and inclined by 0 °, 45 °, 90 ° from the rolling direction of the can bottom, and the piercing strength is A sample for measurement was used. The sample cut out from the can body was pressed in a direction perpendicular to the sample plate surface with a presser having a curvature radius (tip radius) of 0.5 mm, and the pressing force when a hole was formed was measured. A puncture test was carried out to determine the puncture strength, with the deformation at a position away from a radius of 10 mm centered on the portion pressed by the presser and restrained by a mold and pierced by the presser. The moving speed of the presser in the direction perpendicular to the plate surface was set to 5 mm / min.

各実施例、比較例の組成成分、製造条件並びに評価試験結果を表1〜表2に示す。
なお、表1の中間焼鈍の欄に示すIA−CALとは、アルミニウム合金板作製工程において、冷間圧延と冷間圧延との間で連続中間焼鈍を行なったことを示している。
Tables 1 and 2 show the composition components, production conditions, and evaluation test results of each example and comparative example.
In addition, IA-CAL shown in the column of the intermediate annealing of Table 1 has shown having performed the continuous intermediate annealing between cold rolling and cold rolling in the aluminum alloy plate preparation process.

Figure 0006372984
Figure 0006372984

Figure 0006372984
Figure 0006372984

表1〜表2に示す結果から、本発明において望ましい条件、即ち、冷間圧延を施した後、連続焼鈍による最終中間焼鈍を施して中間板材とし、この中間板材を冷間圧延により0.220〜0.265mmのアルミニウム合金板とする製造方法であって、最終中間焼鈍後の冷間圧延率を30%以上として、最終冷間圧延パスのコイル温度を80〜150℃、かつ、最終中間焼鈍以降の冷間圧延の条件として、以下の式を満たす条件とすることで耐流通ピンホール性に優れた缶ボディ用アルミニウム合金板を製造できることがわかる。FT≦515−6×CR …(1)式   From the results shown in Tables 1 and 2, the desired condition in the present invention, that is, after cold rolling, final intermediate annealing by continuous annealing is performed to obtain an intermediate plate material, and this intermediate plate material is 0.220 by cold rolling. A method for producing an aluminum alloy sheet having a thickness of ˜0.265 mm, wherein the cold rolling rate after the final intermediate annealing is 30% or more, the coil temperature of the final cold rolling pass is 80 to 150 ° C., and the final intermediate annealing It turns out that the aluminum alloy plate for can bodies excellent in circulation pinhole resistance can be manufactured by setting it as the conditions which satisfy | fill the following formula | equation as conditions of subsequent cold rolling. FT ≦ 515-6 × CR (1) formula

これらに対し試料No.6(比較例1)の試料は、FT>515−6×CRの関係とした試料であり、n値が小さくなり、突き刺し強度も低下した。
また、試料No.9(比較例2)の試料は、FT>515−6×CRの関係とした試料であり、n値が小さくなり、突き刺し強度も低下した。
試料No.11(比較例3)の試料は、FT>515−6×CRの関係とした試料であり、n値が小さくなり、突き刺し強度も低下した。
以上の結果から、耐流通ピンホール性に優れた缶ボディ用アルミニウム合金板を製造するために、FT≦515−6×CRの関係を満足するように、最終冷間圧延後のコイル温度と最終中間焼鈍後の冷間圧延率を制御することが重要であることがわかる。
On the other hand, the sample No. 6 (Comparative Example 1) was a sample having a relationship of FT> 515-6 × CR, the n value was decreased, and the piercing strength was also decreased.
Moreover, the sample of sample No. 9 (comparative example 2) was a sample having a relationship of FT> 515-6 × CR, the n value was decreased, and the piercing strength was also decreased.
The sample of Sample No. 11 (Comparative Example 3) was a sample having a relationship of FT> 515-6 × CR, the n value was decreased, and the piercing strength was also decreased.
From the above results, in order to produce an aluminum alloy plate for can bodies having excellent circulation pinhole resistance, the coil temperature after final cold rolling and the final value are satisfied so as to satisfy the relationship of FT ≦ 515-6 × CR. It can be seen that it is important to control the cold rolling rate after the intermediate annealing.

以上、表1と表2に記載の試料のうち、No.1〜14の試料について、図2に最終冷間圧延パス直後の圧延直後の温度FT(℃)と最終中間焼鈍以降の冷間圧延率CR(%)の関係を示した。
図2に示す関係から明らかなように、上述の(1)式、FT≦515−6×CRに示す関係を満足させることにより、表1に示す組成比であって、表2に示すように板厚0.220mm以上0.265mm以下、具体的には、板厚0.229mm以上0.231mm以下のアルミニウム合金板において、突き刺し強度に優れ、所望の加工硬化性を発揮する缶ボディ用アルミニウム合金板を製造できることがわかる。
また、No.15の試料は冷間圧延率25%の試料であるが、冷間圧延率が不足したため、十分なベーキング後耐力が得られなかった。
As described above, among the samples shown in Tables 1 and 2, with respect to the samples Nos. 1 to 14, FIG. 2 shows the temperature FT (° C.) immediately after rolling immediately after the final cold rolling pass and cold rolling after the final intermediate annealing. The relationship of rate CR (%) was shown.
As is clear from the relationship shown in FIG. 2, the composition ratio shown in Table 1 is satisfied by satisfying the relationship shown in the above equation (1), FT ≦ 515-6 × CR, as shown in Table 2. Aluminum alloy for a can body that has excellent piercing strength and exhibits desired work-hardening properties in an aluminum alloy plate having a thickness of 0.220 mm to 0.265 mm, specifically, a thickness of 0.229 mm to 0.231 mm It can be seen that the plate can be manufactured.
Moreover, although the sample of No. 15 was a sample with a cold rolling rate of 25%, the cold rolling rate was insufficient, and thus sufficient post-baking proof stress could not be obtained.

5…板材(ブランク)、6…カップ状缶体、7…カップ状缶体、8…有底筒状缶体、
10…缶ボディ、11…胴部、12…底部。
5 ... Plate material (blank), 6 ... Cup-shaped can body, 7 ... Cup-shaped can body, 8 ... Bottomed cylindrical can body,
10 ... can body, 11 ... body, 12 ... bottom.

Claims (2)

質量%でSi:0.2〜0.5%、Fe:0.3〜0.7%、Cu:0.2〜0.5%、Mn:0.5〜1.3%、Mg:0.9〜1.5%、Cr:0.001〜0.10%、Zn:0.05〜0.30%、Ti:0.03〜0.10%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊に熱間圧延、冷間圧延を施し、所定板厚とした後、連続焼鈍による最終中間焼鈍を施して中間板材とし、この中間板材にさらに冷間圧延を施して板厚0.220mm以上0.265mm以下、ベーキング後の耐力が265MPa以上295MPa以下のアルミニウム合金板を得る耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の製造方法であって、
前記最終中間焼鈍以降の冷間圧延率が30%以上であって、最終冷間圧延パスにおける圧延直後のコイル温度を80℃以上150℃以下、かつ最終中間焼鈍以降の冷間圧延の条件として、以下の式を満たす条件とすることを特徴とする耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の製造方法。
FT≦515−6×CR …(1)式
ただし、(1)式において、CR:最終中間焼鈍以降の冷間圧延率(%)、FT:最終冷間圧延パスにおける圧延直後のコイル温度(℃)とする。
In mass%, Si: 0.2 to 0.5%, Fe: 0.3 to 0.7%, Cu: 0.2 to 0.5%, Mn: 0.5 to 1.3%, Mg: 0 .9 to 1.5%, Cr: 0.001 to 0.10 % , Zn: 0.05 to 0.30 %, Ti: 0.03 to 0.10 % , the balance being Al and inevitable The aluminum alloy ingot made of impurities is hot-rolled and cold-rolled to obtain a predetermined plate thickness, and then subjected to final intermediate annealing by continuous annealing to obtain an intermediate plate material, which is further subjected to cold rolling. A method for producing an aluminum alloy plate for a can body having a thickness of 0.220 mm or more and 0.265 mm or less and having a resistance to pinhole resistance that provides an aluminum alloy plate having a proof stress after baking of 265 MPa or more and 295 MPa or less,
The cold rolling rate after the final intermediate annealing is 30% or more, the coil temperature immediately after rolling in the final cold rolling pass is 80 ° C. or more and 150 ° C. or less, and the conditions for cold rolling after the final intermediate annealing are as follows: The manufacturing method of the aluminum alloy plate for can bodies which is excellent in distribution | distribution pinhole property characterized by setting it as the conditions which satisfy | fill the following formula | equation.
FT ≦ 515-6 × CR (1) Formula where, in the formula (1), CR: cold rolling rate (%) after the final intermediate annealing, FT: coil temperature immediately after rolling in the final cold rolling pass (° C. ).
前記Tiの含有量が質量%で0.03〜0.04%の範囲であることを特徴とする請求項1に記載の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の製造方法。 The method for producing an aluminum alloy plate for a can body having excellent circulation pinhole resistance according to claim 1, wherein the content of Ti is in the range of 0.03 to 0.04% by mass.
JP2013190951A 2013-09-13 2013-09-13 Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance Active JP6372984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013190951A JP6372984B2 (en) 2013-09-13 2013-09-13 Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013190951A JP6372984B2 (en) 2013-09-13 2013-09-13 Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance

Publications (2)

Publication Number Publication Date
JP2015055009A JP2015055009A (en) 2015-03-23
JP6372984B2 true JP6372984B2 (en) 2018-08-15

Family

ID=52819621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013190951A Active JP6372984B2 (en) 2013-09-13 2013-09-13 Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance

Country Status (1)

Country Link
JP (1) JP6372984B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022160409A1 (en) * 2021-01-28 2022-08-04 永杰新材料股份有限公司 Processing method for battery aluminum foil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694859B2 (en) * 2000-09-29 2005-09-14 古河スカイ株式会社 Aluminum alloy hard plate for can lid and manufacturing method thereof
JP4011293B2 (en) * 2001-01-19 2007-11-21 三菱アルミニウム株式会社 Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP5715413B2 (en) * 2010-12-28 2015-05-07 三菱アルミニウム株式会社 Method for producing plate material for high-strength can body with good surface properties

Also Published As

Publication number Publication date
JP2015055009A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
WO2014168147A1 (en) Aluminum alloy sheet for press forming, process for manufacturing same, and press-formed product thereof
CN101999009B (en) Steel sheet for high-strength container, and method for manufacturing therefor
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
KR102020718B1 (en) Steel sheet for crown cap and method for producing the same
JP5923665B2 (en) Highly formable intergranular corrosion-resistant AlMg strip
KR101923839B1 (en) Steel sheets for cans and methods for manufacturing the same
JP4829988B2 (en) Aluminum alloy plate for packaging container lid
WO2019159810A1 (en) Method for manufacturing aluminum alloy member
JP5247995B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247994B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP2007197817A (en) Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2016141886A (en) Aluminum alloy sheet for can top
JP6372984B2 (en) Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP5676870B2 (en) Aluminum alloy plate for can body having excellent redrawability and method for producing the same
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP4763976B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP5456398B2 (en) Aluminum alloy plate for can body having excellent circulation pinhole resistance and method for producing the same
JP5456418B2 (en) Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof
JP5335189B2 (en) Aluminum alloy plate for cap and method for producing the same
CA2975068C (en) Steel sheet for crown cap, method for manufacturing steel sheet for crown cap, and crown cap
JP6532149B2 (en) Aluminum alloy sheet for can body and method of manufacturing the same
JP2009001858A (en) Aluminum alloy sheet for can body having excellent circulation pinhole resistance
JP5498757B2 (en) Aluminum alloy plate for cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6372984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250