JP5709618B2 - Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner - Google Patents

Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner Download PDF

Info

Publication number
JP5709618B2
JP5709618B2 JP2011084912A JP2011084912A JP5709618B2 JP 5709618 B2 JP5709618 B2 JP 5709618B2 JP 2011084912 A JP2011084912 A JP 2011084912A JP 2011084912 A JP2011084912 A JP 2011084912A JP 5709618 B2 JP5709618 B2 JP 5709618B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
tube
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011084912A
Other languages
Japanese (ja)
Other versions
JP2012220069A (en
Inventor
相武 李
相武 李
典宏 米田
典宏 米田
石橋 晃
晃 石橋
拓也 松田
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011084912A priority Critical patent/JP5709618B2/en
Publication of JP2012220069A publication Critical patent/JP2012220069A/en
Application granted granted Critical
Publication of JP5709618B2 publication Critical patent/JP5709618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、熱交換器、それを備えた冷凍サイクル装置、冷蔵庫、および空気調和機に関するものである。   The present invention relates to a heat exchanger, a refrigeration cycle apparatus including the heat exchanger, a refrigerator, and an air conditioner.

従来の冷蔵庫、空気調和機等に用いる冷凍サイクル装置を構成する熱交換器に、フィンチューブ型熱交換器と呼ばれるものがある。この熱交換器は、一定の間隔で配置されてその間を気体(空気)が流れる板状フィンと、この板状フィンに直交して挿入され、内部に冷媒が流れる多数の断面円形の伝熱管とにより構成されている。フィンチューブ型熱交換器の伝熱性能に影響を与える因子としては、冷媒と伝熱管との間の冷媒側熱伝達率、伝熱管とフィンとの間の接触熱伝達率、および空気とフィンとの間の空気側熱伝達率が知られている。冷媒と伝熱管との間の冷媒側熱伝達率を向上するためには、伝熱管の面積拡大と冷媒の攪拌効果が得られる伝熱管の内面溝付により、管内性能を促進されている。また、空気をフィンとの間の空気側熱伝達率を促進する方法としては、隣接する伝熱管の間に板状フィンに切り起こしによるスリット群を設けた。このスリット群は、スリットの側端部が風向きに対して対向するように設けられており、その側端部において空気流の速度境界層および温度境界層を薄くすることにより、伝熱促進が行われ熱交換能力が増大するとされている。伝熱管とフィンとの間の接触熱伝達率は、伝熱管とフィンとの接触状態に影響される。   A heat exchanger constituting a refrigeration cycle apparatus used in a conventional refrigerator, air conditioner or the like is known as a fin tube type heat exchanger. The heat exchanger includes plate-like fins arranged at regular intervals and through which gas (air) flows, and a plurality of circular heat transfer tubes inserted perpendicular to the plate-like fins and through which refrigerant flows. It is comprised by. Factors that affect the heat transfer performance of the finned tube heat exchanger include the refrigerant side heat transfer coefficient between the refrigerant and the heat transfer tube, the contact heat transfer coefficient between the heat transfer tube and the fin, and the air and fin The air side heat transfer coefficient between is known. In order to improve the refrigerant side heat transfer coefficient between the refrigerant and the heat transfer tube, the in-pipe performance is promoted by the expansion of the area of the heat transfer tube and the grooved inner surface of the heat transfer tube that provides the effect of stirring the refrigerant. Moreover, as a method of promoting the air side heat transfer coefficient between the air and the fin, a slit group formed by cutting and raising a plate-like fin between adjacent heat transfer tubes was provided. This slit group is provided so that the side end portion of the slit faces the wind direction, and heat transfer is promoted by thinning the velocity boundary layer and the temperature boundary layer of the air flow at the side end portion. The crack heat exchange capacity is said to increase. The contact heat transfer coefficient between the heat transfer tube and the fin is affected by the contact state between the heat transfer tube and the fin.

冷凍サイクル装置(冷凍サイクル回路)は、圧縮機、凝縮器、膨張弁、蒸発器を順次配管で接続してなる。このような冷凍サイクルの性能を改善するため、従来の技術においては、以下に示すような検討がなされている。
例えば、室外熱交換器の伝熱管を内管と外管とからなる二重構造にして、暖房運転中に室外熱交換器の除霜を行う際、膨張弁から出た低温の液冷媒を内管に流し、圧縮機から吐出する高温のガス冷媒の一部をバイパス管を介して外管に流すことにより、ガス冷媒の熱を室外熱交換器のフィンに効果的に伝え、除霜時間を短縮できることが提案されている(例えば、特許文献1参照)。
また、凝縮器内で凝縮した冷媒をさらに冷却し、飽和温度以下の温度にして絞り装置により蒸発器へ送ると、蒸発器入口における冷媒乾き度が小さくなり、冷凍能力を大きくすることができる内部熱交換器を別途に設けることが提案されている(例えば、特許文献2参照)。
A refrigeration cycle apparatus (refrigeration cycle circuit) is formed by sequentially connecting a compressor, a condenser, an expansion valve, and an evaporator with piping. In order to improve the performance of such a refrigeration cycle, the following studies have been made in the prior art.
For example, when a heat transfer tube of an outdoor heat exchanger has a double structure consisting of an inner tube and an outer tube, when defrosting the outdoor heat exchanger during heating operation, the low-temperature liquid refrigerant from the expansion valve is By flowing a part of the high-temperature gas refrigerant discharged from the compressor to the outer pipe through the bypass pipe, the heat of the gas refrigerant is effectively transferred to the fins of the outdoor heat exchanger, and the defrosting time is reduced. It has been proposed that it can be shortened (see, for example, Patent Document 1).
In addition, when the refrigerant condensed in the condenser is further cooled to a temperature equal to or lower than the saturation temperature and sent to the evaporator by the expansion device, the refrigerant dryness at the inlet of the evaporator is reduced and the refrigeration capacity can be increased. Providing a heat exchanger separately is proposed (for example, refer patent document 2).

特開平8−261585号公報(図1)JP-A-8-261585 (FIG. 1) 特開2009−236396号公報(図1)JP 2009-236396 A (FIG. 1)

しかしながら、上述の従来技術には以下に示すような問題点がある。
特許文献1に記載の技術では、室外熱交換器の全領域の全ての伝熱管を内管と外管とからなる二重構造にしている。そして、除霜を行う前の暖房運転時では膨張弁から出た低温の液冷媒を内管と外管とに同時に流している。このため、内管内の冷媒は、外管と内管との間の冷媒を介して板状フィンとの間で熱交換が行われるので伝熱性能(熱交換能力)が低い、という問題点があった。また、このような熱交換器を冷凍サイクル装置に適用することで、冷凍サイクル性能が低下する、という問題点があった。
However, the above-described prior art has the following problems.
In the technique described in Patent Document 1, all the heat transfer tubes in the entire region of the outdoor heat exchanger have a double structure including an inner tube and an outer tube. And at the time of heating operation before defrosting, the low-temperature liquid refrigerant which came out of the expansion valve is simultaneously flowing into the inner pipe and the outer pipe. For this reason, the refrigerant in the inner pipe has a problem that heat transfer performance (heat exchange capacity) is low because heat exchange is performed between the fins via the refrigerant between the outer pipe and the inner pipe. there were. Moreover, there existed a problem that refrigeration cycle performance fell by applying such a heat exchanger to a refrigeration cycle apparatus.

また、特許文献2の熱交換器においては、空気熱交換器と内部熱交換器を別途に設けているので、室外機の容積を大幅にとり、製造コストも上昇するという問題があった。   Moreover, in the heat exchanger of patent document 2, since the air heat exchanger and the internal heat exchanger were provided separately, there existed a problem that the volume of an outdoor unit was taken significantly and manufacturing cost also rose.

本発明は、上記のような課題を解決するためになされたもので、伝熱性能を向上することができる熱交換器、それを備えた冷凍サイクル装置、冷蔵庫、および空気調和機を得るものである。
また、冷凍サイクル能力を向上することができる冷凍サイクル装置、冷蔵庫、および空気調和機を得るものである。
The present invention has been made to solve the above-described problems, and provides a heat exchanger capable of improving heat transfer performance, a refrigeration cycle apparatus including the heat exchanger, a refrigerator, and an air conditioner. is there.
Moreover, the refrigerating-cycle apparatus, refrigerator, and air conditioner which can improve refrigerating-cycle capability are obtained.

本発明に係る熱交換器は、所定の間隔で並べて配置された複数の板状フィンと、前記板状フィンに直交する方向に挿入した複数の伝熱管とを備え、前記複数の伝熱管の少なくとも一部は、外部伝熱管と内部伝熱管とを有し、前記外部伝熱管と前記内部伝熱管との間を流れる熱媒体と、前記内部伝熱管を流れる熱媒体とが熱交換する二重管により構成され、前記外部伝熱管の内面に、複数の突起を長さ方向に延ばして形成し、前記内部伝熱管の外面に、前記外部伝熱管と前記内部伝熱管との間の流路を仕切る複数の仕切りを、長さ方向に延ばして形成し、前記外部伝熱管の内面に形成した前記突起が延びる方向と管軸方向に平行な直線とがなす角度と、前記内部伝熱管の外面に形成した前記仕切りが延びる方向と管軸方向に平行な直線とがなす角度とが異なり、前記外部伝熱管の内面に形成した前記突起の数が、前記内部伝熱管の外面に形成した前記仕切りの数より多く、前記外部伝熱管の内面に形成した前記突起が延びる方向と管軸方向に平行な直線とがなす角度が、前記内部伝熱管の外面に形成した前記仕切りが延びる方向と管軸方向に平行な直線とがなす角度より大きいものである。 A heat exchanger according to the present invention includes a plurality of plate-like fins arranged side by side at a predetermined interval, and a plurality of heat transfer tubes inserted in a direction orthogonal to the plate-like fins, and at least of the plurality of heat transfer tubes. A part has an external heat transfer tube and an internal heat transfer tube, and a heat exchanger that exchanges heat between a heat medium that flows between the external heat transfer tube and the internal heat transfer tube and a heat medium that flows through the internal heat transfer tube A plurality of protrusions extending in the length direction on the inner surface of the external heat transfer tube, and partitioning the flow path between the external heat transfer tube and the internal heat transfer tube on the outer surface of the internal heat transfer tube A plurality of partitions are formed extending in the length direction, and formed on the outer surface of the internal heat transfer tube and an angle formed by a direction in which the protrusions formed on the inner surface of the external heat transfer tube extend and a straight line parallel to the tube axis direction. The direction in which the partition extends and a straight line parallel to the tube axis direction form Is different from the degree, the number of the formed on the inner surface of the outer heat transfer pipe protrusions, the rather multi than the number of the partition formed on the outer surface of the inner heat transfer tube, wherein the projection extends which is formed on the inner surface of the outer heat transfer tube The angle formed by the direction and the straight line parallel to the tube axis direction is larger than the angle formed by the direction in which the partition formed on the outer surface of the internal heat transfer tube extends and the straight line parallel to the tube axis direction .

本発明は、外部伝熱管の内面に形成した突起が延びる方向と管軸方向に平行な直線とがなす角度と、前記内部伝熱管の外面に形成した突起が延びる方向と管軸方向に平行な直線とがなす角度とが異なるので、熱交換器の伝熱性能を向上することができる。   The present invention provides an angle formed between a direction in which the protrusion formed on the inner surface of the external heat transfer tube extends and a straight line parallel to the tube axis direction, and a direction in which the protrusion formed on the outer surface of the internal heat transfer tube extends in parallel with the tube axis direction. Since the angle formed by the straight line is different, the heat transfer performance of the heat exchanger can be improved.

実施の形態1に係る熱交換器の概要を示す正面図である。It is a front view which shows the outline | summary of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の概要を示す側面図である。It is a side view which shows the outline | summary of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る二重管の構成を示す斜視図である。2 is a perspective view showing a configuration of a double pipe according to Embodiment 1. FIG. 実施の形態1に係る内部伝熱管の概要を示す斜視図である。2 is a perspective view showing an outline of an internal heat transfer tube according to Embodiment 1. FIG. 実施の形態1に係る仕切りおよび突条の角度を模式的に示す図である。It is a figure which shows typically the angle which concerns on Embodiment 1, and the protrusion. 実施の形態1に係る熱交換器の室外機内での配置を示す図である。It is a figure which shows arrangement | positioning in the outdoor unit of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の概要を示す正面図である。It is a front view which shows the outline | summary of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の概要を示す側面図である。It is a side view which shows the outline | summary of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る伝熱管の拡管手段の説明図である。FIG. 3 is an explanatory diagram of a tube expansion means for a heat transfer tube according to Embodiment 1. 実施の形態2に係る空気調和機の概要を示す図である。It is a figure which shows the outline | summary of the air conditioner which concerns on Embodiment 2. FIG.

実施の形態1.
図1は実施の形態1に係る熱交換器の概要を示す正面図である。
図2は実施の形態1に係る熱交換器の概要を示す側面図である。
図1、図2において、1は熱交換器で、所定の間隔で並べて配置された複数の板状フィン2と、板状フィン2に直交する方向に挿通され、拡管(拡径ともいう)することにより板状フィン2に接合される複数の外部伝熱管31と、一部の外部伝熱管31の中に内部伝熱管32を挿入された二重管3とから構成されている。
板状フィン2は、銅若しくは銅合金またはアルミニウム若しくはアルミニウム合金などの金属板からなり(他の実施の形態においても同様である)、空気の流れ方向Aと平行に、かつ図の垂直方向(奥行方向)に所定の間隔で並設されている。また、この板状フィン2には、空気の流れ方向Aに垂直な方向(図の上下方向)に後述の二重管3が複数段かつ1列以上で設けられている。
なお、図1、図2の例では、最下段から2段を二重管3としたが本発明はこれに限るものではない。例えば、全ての伝熱管を二重管3としても良いし、最上段から所定の段数の範囲を二重管3としても良い。また、図1、図2の例では伝熱管(外部伝熱管31、二重管3)を2列配置した場合を説明するが、本発明はこれに限るものではなく、1列または3列以上でも良い。
Embodiment 1 FIG.
1 is a front view showing an outline of a heat exchanger according to Embodiment 1. FIG.
FIG. 2 is a side view showing an outline of the heat exchanger according to the first embodiment.
1 and 2, reference numeral 1 denotes a heat exchanger, which is inserted into a plurality of plate fins 2 arranged side by side at a predetermined interval and in a direction perpendicular to the plate fins 2, and is expanded (also referred to as diameter expansion). Thus, a plurality of external heat transfer tubes 31 joined to the plate-like fins 2 and a double tube 3 in which internal heat transfer tubes 32 are inserted into some of the external heat transfer tubes 31 are configured.
The plate-like fin 2 is made of a metal plate such as copper, copper alloy, aluminum, or aluminum alloy (the same applies to other embodiments), and is parallel to the air flow direction A and in the vertical direction (depth) in the figure. Direction) at a predetermined interval. In addition, the plate-like fins 2 are provided with a plurality of double tubes 3 described later in one or more rows in a direction perpendicular to the air flow direction A (vertical direction in the figure).
In the example of FIGS. 1 and 2, the double pipe 3 is formed from the lowest stage to the second stage, but the present invention is not limited to this. For example, all the heat transfer tubes may be the double tubes 3, or the range from the uppermost stage to a predetermined number of steps may be the double tubes 3. Moreover, although the example of FIG. 1, FIG. 2 demonstrates the case where 2 rows of heat exchanger tubes (external heat exchanger tube 31, double tube 3) are arrange | positioned, this invention is not limited to this, 1 row or 3 rows or more But it ’s okay.

二重管3は、外部伝熱管31と内部伝熱管32とを有し、外部伝熱管31と内部伝熱管32との間の第1の冷媒流路33aを流れる冷媒(熱媒体)と、内部伝熱管32内の第2の冷媒流路33bを流れる冷媒(熱媒体)とが熱交換可能に構成されている。
外部伝熱管31の内面には、複数の突条34を管軸方向に延ばして形成している。この突条34は連続の突起形状を有し、管軸方向に平行な直線と突条34が伸びる方向とが角度を持つように形成されている。
内部伝熱管32の外面には、複数の仕切り33を管軸方向に延ばして形成している。この仕切り33は連続の突起形状を有し、管軸方向に平行な直線と仕切り33が伸びる方向とが角度を持つように形成されている。
外部伝熱管31と内部伝熱管32との接触熱抵抗を低減するため、内部伝熱管32は拡管(拡径ともいう)することが好ましい。この二重管3は、銅若しくは銅合金またはアルミニウム若しくはアルミニウム合金などの金属材料からなり、押し出し材あるいは引抜き材にて形成されている(他の実施の形態においても同様である)。
The double tube 3 has an external heat transfer tube 31 and an internal heat transfer tube 32, a refrigerant (heat medium) flowing through a first refrigerant flow path 33 a between the external heat transfer tube 31 and the internal heat transfer tube 32, and an internal The refrigerant (heat medium) flowing through the second refrigerant flow path 33b in the heat transfer tube 32 is configured to be able to exchange heat.
A plurality of protrusions 34 are formed on the inner surface of the external heat transfer tube 31 so as to extend in the tube axis direction. The protrusion 34 has a continuous protrusion shape, and is formed such that a straight line parallel to the tube axis direction and the direction in which the protrusion 34 extends have an angle.
A plurality of partitions 33 are formed on the outer surface of the internal heat transfer tube 32 so as to extend in the tube axis direction. The partition 33 has a continuous protrusion shape, and is formed such that a straight line parallel to the tube axis direction and the direction in which the partition 33 extends have an angle.
In order to reduce the contact heat resistance between the external heat transfer tube 31 and the internal heat transfer tube 32, the internal heat transfer tube 32 is preferably expanded (also referred to as diameter expansion). The double pipe 3 is made of a metal material such as copper, copper alloy, aluminum, or aluminum alloy, and is formed of an extruded material or a drawing material (the same applies to other embodiments).

なお、本実施の形態では、第1の冷媒流路33aおよび第2の冷媒流路33bに熱媒体として冷媒が流れる場合を説明するが、本発明はこれに限るものではない。例えば熱媒体として水など任意の媒体を用いても良い(他の実施の形態においても同様である)。
なお、本実施の形態における突条34は、本発明における「外部伝熱管の内面に形成した突起」に相当する。
また、本実施の形態における仕切り33は、本発明における「内部伝熱管の外面に形成した突起」に相当する。
In the present embodiment, the case where the refrigerant flows as the heat medium in the first refrigerant channel 33a and the second refrigerant channel 33b will be described, but the present invention is not limited to this. For example, an arbitrary medium such as water may be used as the heat medium (the same applies to other embodiments).
In addition, the protrusion 34 in this Embodiment is corresponded to the "protrusion formed in the inner surface of an external heat exchanger tube" in this invention.
Moreover, the partition 33 in this Embodiment is corresponded to the "protrusion formed in the outer surface of an internal heat exchanger tube" in this invention.

図3は実施の形態1に係る二重管の構成を示す斜視図である。
図4は実施の形態1に係る内部伝熱管の概要を示す斜視図である。
図3、図4に示すように、内部伝熱管32の管外面には、所定の高さと間隔で断面がほぼ四角形状(先端部は若干丸みを付けた形状となっている)の複数の仕切り33が軸方向に設けられている。外部伝熱管31の管内面には、所定の高さと間隔で断面がほぼ四角形状(先端部は若干丸みを付けた形状となっている)の複数の突条34が軸方向に設けられている。
この仕切り33および突条34は、外部伝熱管31の内面と内部伝熱管32の外面の伝熱面積を拡大する。また、仕切り33および突条34は、第2の冷媒流路33bを流れる冷媒の流れに乱れを生じさせる。これにより、第1の冷媒流路33aの冷媒と第2の冷媒流路33bとの間での熱伝達を促進する効果がある。また、第2の冷媒流路33bと板状フィン2との間での熱伝達を促進する効果がある。
なお、仕切り33および突条34の断面形状は四角形状に限定するものではなく、三角形状、台形状、半円形状等、適宜の断面形状とすることができる。
なお、仕切り33および突条34は、伝熱管の長さ方向に連続して形成しても良いし、長さ方向の一部において不連続に形成するようにしても良い。
FIG. 3 is a perspective view showing the configuration of the double pipe according to the first embodiment.
FIG. 4 is a perspective view showing an outline of the internal heat transfer tube according to the first embodiment.
As shown in FIGS. 3 and 4, the outer surface of the internal heat transfer tube 32 has a plurality of partitions having a substantially square cross section (the tip is slightly rounded) at a predetermined height and interval. 33 is provided in the axial direction. On the inner surface of the external heat transfer tube 31, a plurality of protrusions 34 are provided in the axial direction with a predetermined height and interval and a substantially square cross section (the tip is slightly rounded). .
The partition 33 and the protrusion 34 expand the heat transfer area of the inner surface of the external heat transfer tube 31 and the outer surface of the internal heat transfer tube 32. Further, the partition 33 and the protrusion 34 cause a disturbance in the flow of the refrigerant flowing through the second refrigerant flow path 33b. Thereby, there exists an effect which accelerates | stimulates the heat transfer between the refrigerant | coolant of the 1st refrigerant flow path 33a, and the 2nd refrigerant flow path 33b. Moreover, there exists an effect which accelerates | stimulates the heat transfer between the 2nd refrigerant | coolant flow path 33b and the plate-shaped fin 2. FIG.
In addition, the cross-sectional shape of the partition 33 and the protrusion 34 is not limited to a quadrilateral shape, and can be an appropriate cross-sectional shape such as a triangular shape, a trapezoidal shape, or a semicircular shape.
In addition, the partition 33 and the protrusion 34 may be formed continuously in the length direction of the heat transfer tube, or may be formed discontinuously in a part of the length direction.

図5は実施の形態1に係る仕切りおよび突条の角度を模式的に示す図である。
図5に示すように、突条34が延びる方向と管軸方向に平行な直線とがなす角度θ1と、仕切り33が延びる方向と管軸方向に平行な直線とがなす角度θ2とが異なるように形成されている。
なお、突条34が延びる方向と管軸方向に平行な直線とがなす角度θ1が、仕切り33が延びる方向と管軸方向に平行な直線とがなす角度θ2より大きい方が好ましい。外部伝熱管31の内面に沿って流れる冷媒の滞在時間が長くなり、外部伝熱管31と板状フィン2との間の熱伝達率が向上するからである。
なお例えば、突条34の角度θ1と仕切り33の角度θ2とが同じになると、第2の冷媒流路33bでの冷媒の流れに乱れが生じにくくなる。これによって、第1の冷媒流路33aの冷媒と第2の冷媒流路33bとの間での熱伝達と、第2の冷媒流路33bと板状フィン2との間での熱伝達とが促進されにくくなり、伝熱性能(管内伝熱性能)が低下する。
FIG. 5 is a diagram schematically showing the angles of the partitions and protrusions according to the first embodiment.
As shown in FIG. 5, the angle θ1 formed by the direction in which the protrusion 34 extends and the straight line parallel to the tube axis direction are different from the angle θ2 formed by the direction in which the partition 33 extends and the straight line parallel to the tube axis direction. Is formed.
It is preferable that the angle θ1 formed by the direction in which the protrusion 34 extends and the straight line parallel to the tube axis direction is larger than the angle θ2 formed by the direction in which the partition 33 extends and the straight line parallel to the tube axis direction. This is because the residence time of the refrigerant flowing along the inner surface of the external heat transfer tube 31 is increased, and the heat transfer coefficient between the external heat transfer tube 31 and the plate-like fins 2 is improved.
For example, if the angle θ1 of the protrusion 34 and the angle θ2 of the partition 33 are the same, the refrigerant flow in the second refrigerant flow path 33b is less likely to be disturbed. As a result, heat transfer between the refrigerant in the first refrigerant flow path 33a and the second refrigerant flow path 33b and heat transfer between the second refrigerant flow path 33b and the plate-like fins 2 are performed. It becomes difficult to be accelerated, and the heat transfer performance (heat transfer performance in the pipe) decreases.

外部伝熱管31の内面に設けた突条34の数と、内部伝熱管32の外面に設けた仕切り33の数とが異なるように形成されている。
なお、突条34の数が、仕切り33の数より多い方が好ましい。外部伝熱管31の内面の突条34と突条34との間に保持する冷媒量が増えて、外部伝熱管31と板状フィン2との間の熱伝達率が向上するからである。
なお例えば、突条34の数と仕切り33の数とが同じになると、第2の冷媒流路33bでの冷媒の流れに乱れが生じにくくなる。これによって、第1の冷媒流路33aの冷媒と第2の冷媒流路33bとの間での熱伝達と、第2の冷媒流路33bと板状フィン2との間での熱伝達とが促進されにくくなり、伝熱性能(管内伝熱性能)が低下する。
The number of protrusions 34 provided on the inner surface of the external heat transfer tube 31 is different from the number of partitions 33 provided on the outer surface of the internal heat transfer tube 32.
In addition, it is preferable that the number of protrusions 34 is larger than the number of partitions 33. This is because the amount of refrigerant retained between the protrusions 34 on the inner surface of the external heat transfer tube 31 is increased, and the heat transfer coefficient between the external heat transfer tube 31 and the plate-like fins 2 is improved.
For example, if the number of protrusions 34 and the number of partitions 33 are the same, the refrigerant flow in the second refrigerant flow path 33b is less likely to be disturbed. As a result, heat transfer between the refrigerant in the first refrigerant flow path 33a and the second refrigerant flow path 33b and heat transfer between the second refrigerant flow path 33b and the plate-like fins 2 are performed. It becomes difficult to be accelerated, and the heat transfer performance (heat transfer performance in the pipe) decreases.

図6は実施の形態1に係る熱交換器の室外機内での配置を示す図である。
図6においては、上述した熱交換器1を、例えば空気調和機の室外機内に配置し、室外熱交換器として用いた場合を示している。図6に示すように、室外機内に配置した熱交換器1においては、空気の流れ方向Aに垂直な方向(図の上下方向)に対して、熱交換器1の上段領域(図の上方向)または熱交換器1の下段領域(図の下方向)は、空気の流れが少ない領域となる。
そこで、本実施の形態においては、上記図1、図2に示したように、空気の流れ方向Aに垂直な方向(図の上下方向)に対し、下段領域(図の下方向)の複数段(例えば2段)について、伝熱管を二重管3により構成した。
二重管3の外部伝熱管31内の冷媒は、板状フィン2の空気との熱交換と、内部伝熱管32内の冷媒との熱交換を同時に行い、熱を吸収する。これにより、空気の流れが少ない領域において管内伝熱性能を向上させている。
なお、ここでは下段領域を二重管3により構成した場合を説明したが、本発明はこれに限るものではなく、最上段から所定段数に配置された伝熱管、および、最下段から所定段数に配置された伝熱管の少なくとも一方を、二重管3により構成しても良い。例えば、図7、図8に示すように、空気の流れ方向Aに垂直な方向(図の上下方向)に対し、上段領域(図の上方向)に複数段(例えば2段)について、伝熱管を二重管3により構成しても良い。
なお、上記の説明では、伝熱管を上下方向に複数段配置した場合を説明したが、本発明はこれに限るものではない。複数の伝熱管を、空気の流れ方向に直交する方向に複数段配置し、最端段から所定段数に配置された伝熱管を二重管3により構成するようにすれば良い。
FIG. 6 is a diagram showing the arrangement of the heat exchanger according to Embodiment 1 in the outdoor unit.
In FIG. 6, the case where the heat exchanger 1 mentioned above is arrange | positioned, for example in the outdoor unit of an air conditioner, is used as an outdoor heat exchanger. As shown in FIG. 6, in the heat exchanger 1 arranged in the outdoor unit, the upper region of the heat exchanger 1 (upward direction in the figure) with respect to the direction perpendicular to the air flow direction A (up and down direction in the figure). ) Or the lower region of the heat exchanger 1 (downward in the figure) is a region where the flow of air is small.
Therefore, in the present embodiment, as shown in FIGS. 1 and 2, a plurality of stages in the lower region (downward direction in the figure) with respect to the direction perpendicular to the air flow direction A (upward and downward direction in the figure). About (for example, 2 steps | paragraphs), the heat exchanger tube was comprised with the double tube 3. FIG.
The refrigerant in the external heat transfer tube 31 of the double tube 3 simultaneously performs heat exchange with the air in the plate-like fins 2 and heat exchange with the refrigerant in the internal heat transfer tube 32 to absorb heat. Thereby, the heat transfer performance in the pipe is improved in a region where the air flow is small.
In addition, although the case where the lower stage region is constituted by the double pipe 3 has been described here, the present invention is not limited to this, and the heat transfer pipes arranged in a predetermined number of stages from the uppermost stage and the predetermined number of stages from the lowermost stage. At least one of the arranged heat transfer tubes may be constituted by the double tube 3. For example, as shown in FIGS. 7 and 8, the heat transfer tube has a plurality of stages (for example, two stages) in the upper region (upward direction in the figure) with respect to the direction perpendicular to the air flow direction A (upward and downward direction in the figure). May be constituted by a double pipe 3.
In the above description, the case where a plurality of heat transfer tubes are arranged in the vertical direction has been described, but the present invention is not limited to this. A plurality of heat transfer tubes may be arranged in a plurality of stages in a direction orthogonal to the air flow direction, and the heat transfer tubes arranged in a predetermined number of stages from the endmost stage may be configured by the double pipe 3.

次に、上記のような外部伝熱管31の拡径手順、および板状フィン2に設けられた取付穴(長穴)25への取付手順の一例について説明する。
図9は実施の形態1に係る伝熱管の拡管手段の説明図である。
図9に示すように、プレス加工された板状フィン2のフィンカラー部24には長穴の取付穴25が設けられており、各板状フィン2はフィンカラー部24を同じ向きに揃えて治具等で保持されている。そして、各板状フィン2の取付穴25に、前述した外部伝熱管31を挿入し、その後、超硬合金等の金属材料からなる拡管ビュレット玉100を用いた拡管装置で、拡管ビュレット玉100を機械的な方法により外部伝熱管31の内に押し込む。そうすると、外部伝熱管31は拡径し、外部伝熱管31は順次各板状フィン2に接合していき、一体的に固定される。その後、内部伝熱管32を外部伝熱管31に挿入する。外部伝熱管と内部伝熱管との接触熱抵抗を低減するため、内部伝熱管は拡管(拡径ともいう)することが好ましい。
Next, an example of the procedure for expanding the diameter of the external heat transfer tube 31 as described above and the procedure for attaching the mounting hole (long hole) 25 provided in the plate-like fin 2 will be described.
FIG. 9 is an explanatory view of the expansion means of the heat transfer tube according to the first embodiment.
As shown in FIG. 9, the fin collar portion 24 of the pressed plate-like fin 2 is provided with a long mounting hole 25, and each plate-like fin 2 has the fin collar portion 24 aligned in the same direction. It is held with a jig. And the external heat exchanger tube 31 mentioned above is inserted in the attachment hole 25 of each plate-like fin 2, and the tube expansion bullet ball 100 is then used with the tube expansion device using the tube expansion bullet ball 100 made of a metal material such as cemented carbide. It is pushed into the external heat transfer tube 31 by a mechanical method. Then, the diameter of the external heat transfer tube 31 is increased, and the external heat transfer tube 31 is sequentially joined to each plate-like fin 2 and fixed integrally. Thereafter, the internal heat transfer tube 32 is inserted into the external heat transfer tube 31. In order to reduce the contact heat resistance between the external heat transfer tube and the internal heat transfer tube, the internal heat transfer tube is preferably expanded (also referred to as diameter expansion).

以上のように本実施の形態においては、複数の伝熱管の少なくとも一部は、外部伝熱管31と内部伝熱管32とを有し、外部伝熱管31と内部伝熱管32との間を流れる熱媒体と、内部伝熱管32を流れる熱媒体とが熱交換する二重管3により構成されている。そして、外部伝熱管31の内面に複数の突条34を形成し、内部伝熱管32の外面に複数の仕切り33を形成し、突条34が延びる方向と管軸方向に平行な直線とがなす角度と、仕切り33が延びる方向と管軸方向に平行な直線とがなす角度とが異なるようにした。
このため、外部伝熱管31と内部伝熱管32との間の冷媒が接触する伝熱面積を増加することができる。また、外部伝熱管31と内部伝熱管32との間を流れる冷媒の流れに乱れを生じさせることができる。よって、第1の冷媒流路33aの冷媒と第2の冷媒流路33bとの間での熱伝達を促進する効果がある。また、第2の冷媒流路33bと板状フィン2との間での熱伝達を促進する効果がある。したがって、外部伝熱管31の媒体と内部伝熱管32の媒体との熱交換の伝熱性能を向上させることができる。
As described above, in the present embodiment, at least a part of the plurality of heat transfer tubes has the external heat transfer tubes 31 and the internal heat transfer tubes 32, and the heat flowing between the external heat transfer tubes 31 and the internal heat transfer tubes 32. The medium and the heat medium flowing through the internal heat transfer tube 32 are configured by the double tube 3 that exchanges heat. And the some protrusion 34 is formed in the inner surface of the external heat exchanger tube 31, the some partition 33 is formed in the outer surface of the internal heat exchanger tube 32, and the direction where the protrusion 34 extends, and the straight line parallel to a pipe-axis direction make | form. The angle is different from the angle formed by the direction in which the partition 33 extends and the straight line parallel to the tube axis direction.
For this reason, the heat transfer area which the refrigerant | coolant between the external heat exchanger tube 31 and the internal heat exchanger tubes 32 contacts can be increased. Further, the refrigerant flow flowing between the external heat transfer tube 31 and the internal heat transfer tube 32 can be disturbed. Therefore, there is an effect of promoting heat transfer between the refrigerant in the first refrigerant flow path 33a and the second refrigerant flow path 33b. Moreover, there exists an effect which accelerates | stimulates the heat transfer between the 2nd refrigerant | coolant flow path 33b and the plate-shaped fin 2. FIG. Therefore, the heat transfer performance of heat exchange between the medium of the external heat transfer tube 31 and the medium of the internal heat transfer tube 32 can be improved.

また本実施の形態においては、突条34の数と、仕切り33の数とが異なる。例えば、突条34の数が、仕切り33の数より多くする。
このため、外部伝熱管31の内面の突条34と突条34との間に保持する冷媒量が増えて、外部伝熱管31と板状フィン2との間の熱伝達率を向上させることができ、熱交換器1の伝熱性能を向上させることができる。
In the present embodiment, the number of ridges 34 and the number of partitions 33 are different. For example, the number of protrusions 34 is made larger than the number of partitions 33.
For this reason, the refrigerant | coolant amount hold | maintained between the protrusion 34 and the protrusion 34 of the inner surface of the external heat exchanger tube 31 increases, and the heat transfer rate between the external heat exchanger tube 31 and the plate-shaped fin 2 can be improved. The heat transfer performance of the heat exchanger 1 can be improved.

また本実施の形態においては、突条34が延びる方向と管軸方向に平行な直線とがなす角度が、仕切り33が延びる方向と管軸方向に平行な直線とがなす角度より大きくしている。
このため、外部伝熱管31の内面に沿って流れる冷媒の滞在時間が長くなり、外部伝熱管31と板状フィン2との間の熱伝達率を向上させることができ、熱交換器1の伝熱性能を向上させることができる。
In the present embodiment, the angle formed by the direction in which the protrusion 34 extends and the straight line parallel to the tube axis direction is larger than the angle formed by the direction in which the partition 33 extends and a straight line parallel to the tube axis direction. .
For this reason, the residence time of the refrigerant flowing along the inner surface of the external heat transfer tube 31 is lengthened, the heat transfer rate between the external heat transfer tube 31 and the plate-like fins 2 can be improved, and the heat transfer of the heat exchanger 1 is improved. Thermal performance can be improved.

また本実施の形態においては、複数の伝熱管は、上下方向に複数段配置され、最上段から所定段数に配置された伝熱管、および、最下段から所定段数に配置された伝熱管、の少なくとも一方を、二重管3により構成した。
このため、板状フィン2を流通する空気の流れが少ない領域において、伝熱性能を向上させることができる。
また、複数の伝熱管のうち一部の伝熱管を二重管3とすることで、全ての伝熱管を二重管3とする場合と比較して製造コストを低減することができる。
In the present embodiment, the plurality of heat transfer tubes are arranged in a plurality of stages in the vertical direction, and at least of the heat transfer tubes arranged in a predetermined number of stages from the uppermost stage and the heat transfer pipes arranged in a predetermined number of stages from the lowermost stage. One was constituted by a double tube 3.
For this reason, heat transfer performance can be improved in a region where the flow of air flowing through the plate-like fins 2 is small.
Moreover, by making some of the plurality of heat transfer tubes into the double tubes 3, the manufacturing cost can be reduced as compared with the case where all the heat transfer tubes are made into the double tubes 3.

実施の形態2.
図10は実施の形態2に係る空気調和機の概要を示す図である。
図10において、本実施の形態の空気調和機は、圧縮機10、四方弁11、ガス配管12、室内熱交換器13、液配管14、第1膨張弁15、第2膨張弁16、室外熱交換器17を順次配管で接続してなる冷凍サイクル回路を備えている。また、室内熱交換器13、および室外熱交換器17の近傍には、それぞれファン18が設けられている。
なお、本実施の形態における冷凍サイクル回路は、本発明における「冷凍サイクル装置」に相当する。
また、本実施の形態における第1膨張弁15、第2膨張弁16は、本発明における「膨張手段」に相当する。
Embodiment 2. FIG.
FIG. 10 is a diagram showing an outline of the air conditioner according to the second embodiment.
10, the air conditioner of the present embodiment includes a compressor 10, a four-way valve 11, a gas pipe 12, an indoor heat exchanger 13, a liquid pipe 14, a first expansion valve 15, a second expansion valve 16, and outdoor heat. A refrigeration cycle circuit in which the exchanger 17 is sequentially connected by piping is provided. In addition, fans 18 are provided in the vicinity of the indoor heat exchanger 13 and the outdoor heat exchanger 17, respectively.
The refrigeration cycle circuit in the present embodiment corresponds to the “refrigeration cycle apparatus” in the present invention.
Further, the first expansion valve 15 and the second expansion valve 16 in the present embodiment correspond to “expansion means” in the present invention.

本実施の形態における冷凍サイクル回路の室外熱交換器17は、上記実施の形態1で説明した伝熱管の一部に二重管3を用いた熱交換器1により構成している。
室外熱交換器17は、二重管3の第1の冷媒流路33aの一端は四方弁11と接続され、他端が圧縮機10の吸入側に接続されている。また、二重管3の第2の冷媒流路33bの一端が第1膨張弁15と接続され、他端が第2膨張弁16と接続されている。
なお、熱交換器1の複数の伝熱管のうち二重管3を配置する一部領域としては、凝縮器の出口領域または蒸発器の出口領域が好ましい。凝縮器の出口は単相領域で、外部伝熱管31と内部伝熱管32との間の環状部に冷媒が流れると冷媒速度が速くなり、管内性能が改善でき、熱交換能力を増大することができる熱交換器が得られるからである。
The outdoor heat exchanger 17 of the refrigeration cycle circuit in the present embodiment is configured by the heat exchanger 1 using the double pipe 3 as a part of the heat transfer tube described in the first embodiment.
In the outdoor heat exchanger 17, one end of the first refrigerant flow path 33 a of the double pipe 3 is connected to the four-way valve 11, and the other end is connected to the suction side of the compressor 10. One end of the second refrigerant flow path 33 b of the double pipe 3 is connected to the first expansion valve 15, and the other end is connected to the second expansion valve 16.
In addition, as a partial area | region which arrange | positions the double tube 3 among the some heat exchanger tubes of the heat exchanger 1, the exit area | region of a condenser or the exit area | region of an evaporator is preferable. The outlet of the condenser is a single-phase region, and when the refrigerant flows through the annular portion between the external heat transfer tube 31 and the internal heat transfer tube 32, the refrigerant speed increases, the internal performance can be improved, and the heat exchange capacity can be increased. It is because the heat exchanger which can be obtained is obtained.

このような構成により、暖房運転においては、図10の実線矢印で示すように、圧縮機10から吐出された冷媒は、四方弁11を介して室内熱交換器13(凝縮器)に送られて、ファン18によって供給される室内空気と熱交換を行って凝縮される。そして、第1膨張弁15で減圧された冷媒は、室外熱交換器17の二重管3の第2の冷媒流路33bを流通する。二重管3の第2の冷媒流路33bを流通する冷媒は、第1の冷媒流路33aを流通する低温の冷媒(後述)と熱交換することで乾き度が小さくなる。
その後、第2膨張弁16でさらに減圧され、蒸発器となる室外熱交換器17の伝熱管(二重管3以外)を流通し、ファン18によって供給される室外空気と板状フィン2を介して熱交換を行って加熱蒸発され、低温・低圧のガス冷媒となる。その後、四方弁11を介して、室外熱交換器17の二重管3の第1の冷媒流路33aを流通し、第2の冷媒流路33bを流通する冷媒と熱交換すると共に、ファン18によって供給される室外空気と板状フィン2を介して熱交換する。その後、圧縮機10に吸入される。
With such a configuration, in the heating operation, as indicated by the solid line arrow in FIG. 10, the refrigerant discharged from the compressor 10 is sent to the indoor heat exchanger 13 (condenser) via the four-way valve 11. The heat is exchanged with room air supplied by the fan 18 to be condensed. The refrigerant depressurized by the first expansion valve 15 flows through the second refrigerant flow path 33 b of the double pipe 3 of the outdoor heat exchanger 17. The degree of dryness of the refrigerant flowing through the second refrigerant flow path 33b of the double pipe 3 is reduced by exchanging heat with a low-temperature refrigerant (described later) flowing through the first refrigerant flow path 33a.
After that, the pressure is further reduced by the second expansion valve 16 and flows through the heat transfer pipe (other than the double pipe 3) of the outdoor heat exchanger 17 serving as an evaporator, through the outdoor air supplied by the fan 18 and the plate-like fins 2. Then, heat exchange is performed to evaporate and become a low-temperature and low-pressure gas refrigerant. Thereafter, the first refrigerant flow path 33a of the double pipe 3 of the outdoor heat exchanger 17 is circulated through the four-way valve 11 to exchange heat with the refrigerant flowing through the second refrigerant flow path 33b. Heat is exchanged with the outdoor air supplied through the plate-like fins 2. Thereafter, it is sucked into the compressor 10.

このように、暖房運転時においては、二重管3の第1の冷媒流路33aには、室外熱交換器17(蒸発器)の出口から出る冷媒が流れ、二重管3の第2の冷媒流路33bには、第1膨張弁15の出口から出る冷媒が流れることで、第1の冷媒流路33bと第2の冷媒流路33bの間の冷媒が熱交換する。これにより、室外熱交換器17(蒸発器)入口における冷媒乾き度が小さくなり、冷凍サイクル能力を向上することができる。   In this way, during the heating operation, the refrigerant flowing out from the outlet of the outdoor heat exchanger 17 (evaporator) flows through the first refrigerant flow path 33a of the double pipe 3 and the second pipe 3 The refrigerant flowing from the outlet of the first expansion valve 15 flows through the refrigerant flow path 33b, whereby the refrigerant between the first refrigerant flow path 33b and the second refrigerant flow path 33b exchanges heat. Thereby, the dryness of the refrigerant at the inlet of the outdoor heat exchanger 17 (evaporator) is reduced, and the refrigeration cycle capacity can be improved.

冷房運転においては、図10の点線矢印で示すように、圧縮機10から吐出された冷媒は、四方弁11を介して室外熱交換器17(凝縮器)に送られて、ファン18によって供給される室外空気と板状フィン2を介して熱交換を行って凝縮される。その後、第2膨張弁16で減圧された冷媒は、室外熱交換器17の二重管3の第2の冷媒流路33bを流通する。二重管3の第2の冷媒流路33bを流通する冷媒は、第1の冷媒流路33aを流通する低温の冷媒(後述)と熱交換することで乾き度が小さくなる。
その後、第1膨張弁15でさらに減圧され、蒸発器となる室内熱交換器13を流通し、ファン18によって供給される室内空気と熱交換を行って加熱蒸発され、低温・低圧のガス冷媒となる。その後、四方弁11を介して、室外熱交換器17の二重管3の第1の冷媒流路33aを流通し、第2の冷媒流路33bを流通する冷媒と熱交換すると共に、ファン18によって供給される室外空気と板状フィン2を介して熱交換する。その後、圧縮機10に吸入される。
In the cooling operation, as indicated by the dotted arrows in FIG. 10, the refrigerant discharged from the compressor 10 is sent to the outdoor heat exchanger 17 (condenser) via the four-way valve 11 and supplied by the fan 18. Heat is exchanged through the outdoor air and the plate-like fins 2 for condensation. Thereafter, the refrigerant decompressed by the second expansion valve 16 flows through the second refrigerant flow path 33 b of the double pipe 3 of the outdoor heat exchanger 17. The degree of dryness of the refrigerant flowing through the second refrigerant flow path 33b of the double pipe 3 is reduced by exchanging heat with a low-temperature refrigerant (described later) flowing through the first refrigerant flow path 33a.
Thereafter, the pressure is further reduced by the first expansion valve 15, flows through the indoor heat exchanger 13 serving as an evaporator, heat-evaporates by exchanging heat with the indoor air supplied by the fan 18, and low-temperature / low-pressure gas refrigerant Become. Thereafter, the first refrigerant flow path 33a of the double pipe 3 of the outdoor heat exchanger 17 is circulated through the four-way valve 11 to exchange heat with the refrigerant flowing through the second refrigerant flow path 33b. Heat is exchanged with the outdoor air supplied through the plate-like fins 2. Thereafter, it is sucked into the compressor 10.

このように、冷房運転時においては、二重管3の第1の冷媒流路33aには、室内熱交換器13(蒸発器)の出口から出る冷媒が流れ、二重管3の第2の冷媒流路33bには、第2膨張弁15を介して室外熱交換器17(凝縮器)出口から出る冷媒が流れることで、第1の冷媒流路33bと第2の冷媒流路33bの間の冷媒が熱交換する。これにより、室内熱交換器13(蒸発器)入口における冷媒乾き度が小さくなり、冷凍サイクル能力を向上することができる。   Thus, during the cooling operation, the refrigerant flowing out from the outlet of the indoor heat exchanger 13 (evaporator) flows through the first refrigerant flow path 33a of the double pipe 3 and the second pipe 3 The refrigerant flowing from the outlet of the outdoor heat exchanger 17 (condenser) through the second expansion valve 15 flows through the refrigerant flow path 33b, so that the space between the first refrigerant flow path 33b and the second refrigerant flow path 33b. The refrigerant exchanges heat. Thereby, the dryness of the refrigerant at the inlet of the indoor heat exchanger 13 (evaporator) is reduced, and the refrigeration cycle capacity can be improved.

以上のように本実施の形態においては、凝縮器の出口からの冷媒を二重管3により冷却した後、蒸発器へ流通させている。
このため、蒸発器入口における冷媒の乾き度が小さくなり、蒸発器出口における冷媒の過熱度が大きくなり、冷凍サイクル能力を向上させることができる。
また、二重管3の第1の冷媒流路33aと第2の冷媒流路33bとの間で熱交換することで、伝熱管の内部に熱交換器を形成できる。これにより、伝熱管の内部の熱交換器と、板状フィン2による空気熱交換器とを一体化することができ、製造コストを低減することができる。また、熱交換器の容積を縮小することができる。高効率・高密度の熱交換器を得ることができる。
As described above, in the present embodiment, the refrigerant from the outlet of the condenser is cooled by the double pipe 3 and then circulated to the evaporator.
For this reason, the dryness of the refrigerant | coolant in an evaporator inlet_port | entrance becomes small, the superheat degree of the refrigerant | coolant in an evaporator exit becomes large, and it can improve a refrigerating-cycle capability.
Further, by exchanging heat between the first refrigerant flow path 33a and the second refrigerant flow path 33b of the double pipe 3, a heat exchanger can be formed inside the heat transfer pipe. Thereby, the heat exchanger inside a heat exchanger tube and the air heat exchanger by the plate-shaped fin 2 can be integrated, and manufacturing cost can be reduced. Moreover, the volume of the heat exchanger can be reduced. A highly efficient and high density heat exchanger can be obtained.

なお、本実施の形態では、室外熱交換器17に、二重管3を有する熱交換器1を用いた場合を説明したが、本発明はこれに限るものではない。凝縮器および蒸発器の少なくとも一方を、上記熱交換器1により構成するようにしても良い。   In this embodiment, the case where the heat exchanger 1 having the double pipe 3 is used as the outdoor heat exchanger 17 has been described. However, the present invention is not limited to this. You may make it comprise at least one of a condenser and an evaporator with the said heat exchanger 1. FIG.

なお、本実施の形態においては、冷凍サイクル回路を有する空気調和機について説明したが、これに限らず、上記の冷凍サイクル装置を有する冷蔵庫などの任意の機器についても適用することができる。なお、冷蔵庫に用いる冷凍サイクル回路では四方弁11を省略し、蒸発器として作用する熱交換器に上記二重管3を有する熱交換器1を用いる用にする。   In addition, in this Embodiment, although the air conditioner which has a refrigerating cycle circuit was demonstrated, it is applicable not only to this but arbitrary apparatuses, such as a refrigerator which has said refrigeration cycle apparatus. In the refrigeration cycle circuit used in the refrigerator, the four-way valve 11 is omitted, and the heat exchanger 1 having the double pipe 3 is used as a heat exchanger that acts as an evaporator.

なお、上記各実施の形態において、熱交換器1を流通する作動流体としては、HC単一冷媒またはHCを含む混合冷媒、あるいは、R32、R410A、R407C、テトラフルオロプロペンと、このテトラフルオロプロペンよりも沸点の低いHFC系冷媒とからなる非共沸混合冷媒または二酸化炭素などの冷媒を使用することができる。   In each of the above embodiments, the working fluid flowing through the heat exchanger 1 is a single HC refrigerant or a mixed refrigerant containing HC, or R32, R410A, R407C, tetrafluoropropene, and tetrafluoropropene. Also, a non-azeotropic refrigerant mixture composed of an HFC refrigerant having a low boiling point or a refrigerant such as carbon dioxide can be used.

1 熱交換器、2 板状フィン、3 二重管、10 圧縮機、11 四方弁、12 ガス配管、13 室内熱交換器、14 液配管、15 第1膨張弁、16 第2膨張弁、17 室外熱交換器、18 ファン、24 フィンカラー部、25 取付穴、31 外部伝熱管、32 内部伝熱管、33 仕切り、33a 第1の冷媒流路、33b 第2の冷媒流路、34 突条、100 拡管ビュレット玉。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Plate fin, 3 Double pipe, 10 Compressor, 11 Four-way valve, 12 Gas piping, 13 Indoor heat exchanger, 14 Liquid piping, 15 1st expansion valve, 16 2nd expansion valve, 17 Outdoor heat exchanger, 18 fan, 24 fin collar part, 25 mounting hole, 31 external heat transfer pipe, 32 internal heat transfer pipe, 33 partition, 33a first refrigerant flow path, 33b second refrigerant flow path, 34 ridge, 100 Expanded burette ball.

Claims (8)

所定の間隔で並べて配置された複数の板状フィンと、
前記板状フィンに直交する方向に挿入した複数の伝熱管と
を備え、
前記複数の伝熱管の少なくとも一部は、
外部伝熱管と内部伝熱管とを有し、前記外部伝熱管と前記内部伝熱管との間を流れる熱媒体と、前記内部伝熱管を流れる熱媒体とが熱交換する二重管により構成され、
前記外部伝熱管の内面に、複数の突起を長さ方向に延ばして形成し、
前記内部伝熱管の外面に、前記外部伝熱管と前記内部伝熱管との間の流路を仕切る複数の仕切りを、長さ方向に延ばして形成し、
前記外部伝熱管の内面に形成した前記突起が延びる方向と管軸方向に平行な直線とがなす角度と、前記内部伝熱管の外面に形成した前記仕切りが延びる方向と管軸方向に平行な直線とがなす角度とが異なり、
前記外部伝熱管の内面に形成した前記突起の数が、前記内部伝熱管の外面に形成した前記仕切りの数より多く、
前記外部伝熱管の内面に形成した前記突起が延びる方向と管軸方向に平行な直線とがなす角度が、前記内部伝熱管の外面に形成した前記仕切りが延びる方向と管軸方向に平行な直線とがなす角度より大きい
ことを特徴とする熱交換器。
A plurality of plate-like fins arranged side by side at a predetermined interval;
A plurality of heat transfer tubes inserted in a direction perpendicular to the plate fins,
At least some of the plurality of heat transfer tubes are
It has an external heat transfer tube and an internal heat transfer tube, and is constituted by a double tube that exchanges heat between a heat medium that flows between the external heat transfer tube and the internal heat transfer tube, and a heat medium that flows through the internal heat transfer tube,
On the inner surface of the external heat transfer tube, a plurality of protrusions are formed extending in the length direction,
On the outer surface of the internal heat transfer tube, a plurality of partitions that partition the flow path between the external heat transfer tube and the internal heat transfer tube are formed extending in the length direction,
An angle formed by a direction in which the protrusion formed on the inner surface of the external heat transfer tube extends and a straight line parallel to the tube axis direction, and a straight line parallel to the direction in which the partition formed on the outer surface of the internal heat transfer tube extends and the tube axis direction Unlike the angle between
The number of the projections formed on the inner surface of the outer heat transfer tubes, Many than the number of the partition formed on the outer surface of the inner heat transfer tube,
The angle formed between the direction in which the protrusions formed on the inner surface of the external heat transfer tube extend and the straight line parallel to the tube axis direction is a straight line parallel to the direction in which the partition formed on the outer surface of the internal heat transfer tube extends and the tube axis direction. A heat exchanger characterized by being larger than the angle formed by .
前記複数の伝熱管は、空気の流れ方向に直交する方向に複数段配置され、最端段から所定段数の範囲に配置された伝熱管を前記二重管により構成した
ことを特徴とする請求項1載の熱交換器。
The plurality of heat transfer tubes are arranged in a plurality of stages in a direction orthogonal to the air flow direction, and the heat transfer tubes arranged in a range of a predetermined number of stages from the endmost stage are constituted by the double pipes. 1 Symbol heat exchanger of the mounting.
前記複数の伝熱管は、上下方向に複数段配置され、最上段から所定段数の範囲に配置された伝熱管、および、最下段から所定段数の範囲に配置された伝熱管、の少なくとも一方を、前記二重管により構成した
ことを特徴とする請求項1又は2に記載の熱交換器。
The plurality of heat transfer tubes are arranged in a plurality of stages in the vertical direction, and at least one of the heat transfer tubes arranged in the range of the predetermined number of stages from the uppermost stage and the heat transfer tubes arranged in the range of the predetermined number of stages from the lowermost stage, The heat exchanger according to claim 1 or 2 , wherein the heat exchanger is constituted by the double pipe.
圧縮機、凝縮器、膨張手段、蒸発器を順次配管で接続して冷媒を循環させる冷凍サイクル装置であって、
前記凝縮器および前記蒸発器の少なくとも一方を、請求項1〜の何れかに記載の熱交換器により構成した
ことを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus for circulating a refrigerant by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator with piping,
A refrigeration cycle apparatus, wherein at least one of the condenser and the evaporator is configured by the heat exchanger according to any one of claims 1 to 3 .
圧縮機、凝縮器、膨張手段、蒸発器を順次配管で接続して冷媒を循環させる冷凍サイクル装置であって、
前記蒸発器を、請求項1〜の何れかに記載の熱交換器により構成し、
前記二重管により構成した伝熱管の、前記内部伝熱管内の冷媒流路には、前記膨張手段出口からの冷媒が流通し、
前記二重管により構成した伝熱管の、前記外部伝熱管と前記内部伝熱管との間の冷媒流路には、前記蒸発器出口からの冷媒が流通する
ことを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus for circulating a refrigerant by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator with piping,
The evaporator is constituted by the heat exchanger according to any one of claims 1 to 3 ,
The refrigerant from the outlet of the expansion means flows through the refrigerant flow path in the internal heat transfer pipe of the heat transfer pipe constituted by the double pipe,
A refrigeration cycle apparatus, wherein a refrigerant from the evaporator outlet flows through a refrigerant flow path between the external heat transfer tube and the internal heat transfer tube of the heat transfer tube constituted by the double tube.
圧縮機、凝縮器、膨張手段、蒸発器を順次配管で接続して冷媒を循環させる冷凍サイクル装置であって、
前記凝縮器を、請求項1〜の何れかに記載の熱交換器により構成し、
前記二重管により構成した伝熱管の、前記内部伝熱管内の冷媒流路には、前記凝縮器出口からの冷媒が流通し、
前記二重管により構成した伝熱管の、前記外部伝熱管と前記内部伝熱管との間の冷媒流路には、前記蒸発器出口からの冷媒が流通する
ことを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus for circulating a refrigerant by sequentially connecting a compressor, a condenser, an expansion means, and an evaporator with piping,
The condenser is constituted by the heat exchanger according to any one of claims 1 to 3 ,
The refrigerant from the condenser outlet flows through the refrigerant flow path in the internal heat transfer pipe of the heat transfer pipe constituted by the double pipe,
A refrigeration cycle apparatus, wherein a refrigerant from the evaporator outlet flows through a refrigerant flow path between the external heat transfer tube and the internal heat transfer tube of the heat transfer tube constituted by the double tube.
請求項の何れかに記載の冷凍サイクル装置を備えたことを特徴とする冷蔵庫。 A refrigerator comprising the refrigeration cycle apparatus according to any one of claims 4 to 6 . 請求項の何れかに記載の冷凍サイクル装置を備えたことを特徴とする空気調和機。 An air conditioner comprising the refrigeration cycle apparatus according to any one of claims 4 to 6 .
JP2011084912A 2011-04-06 2011-04-06 Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner Active JP5709618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084912A JP5709618B2 (en) 2011-04-06 2011-04-06 Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084912A JP5709618B2 (en) 2011-04-06 2011-04-06 Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner

Publications (2)

Publication Number Publication Date
JP2012220069A JP2012220069A (en) 2012-11-12
JP5709618B2 true JP5709618B2 (en) 2015-04-30

Family

ID=47271793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084912A Active JP5709618B2 (en) 2011-04-06 2011-04-06 Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner

Country Status (1)

Country Link
JP (1) JP5709618B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101350349B1 (en) * 2013-09-25 2014-01-13 (주)보영테크 Double pipe of semiconductor manufacturing process
KR20230139445A (en) * 2022-03-28 2023-10-05 엘지전자 주식회사 Heat exchanger

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873355U (en) * 1971-12-14 1973-09-12
JPS52112159A (en) * 1976-03-17 1977-09-20 Toshiba Corp Heat exchanger
JPS571386U (en) * 1980-05-30 1982-01-06
JPS5821778U (en) * 1981-08-03 1983-02-10 株式会社東芝 Heat exchanger
JPS5893676U (en) * 1981-12-17 1983-06-24 カルソニックカンセイ株式会社 Double pipe oil cooler with built-in radiator
JPS6275375U (en) * 1985-10-30 1987-05-14
JPH05164483A (en) * 1991-12-19 1993-06-29 Toshiba Corp Double pipe type heat exchanger
JPH09138034A (en) * 1995-11-14 1997-05-27 Sanyo Electric Co Ltd Heat exchanger
JPH11132595A (en) * 1997-10-29 1999-05-21 Denso Corp Refrigeration cycle heat exchanger
JP2005030619A (en) * 2003-07-07 2005-02-03 Hitachi Cable Ltd Double tube, and double tube type heat exchanger using it
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
JP2009092269A (en) * 2007-10-04 2009-04-30 Denso Corp Double tube-type heat exchanger
JP2009162396A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger

Also Published As

Publication number Publication date
JP2012220069A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
CN101031754B (en) Air conditioner and method of producing air conditioner
JP4749373B2 (en) Air conditioner
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
EP3156752B1 (en) Heat exchanger
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP2008261518A (en) Heat exchanger and air conditioner comprising the same
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
JP2008232600A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2006234264A (en) Fin and tube-type heat exchanger
JP2010249374A (en) Fin tube type heat exchanger and air conditioning/refrigerating device
JP5709618B2 (en) Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner
JP5627635B2 (en) Air conditioner
JP6575895B2 (en) Heat exchanger
JP6053693B2 (en) Air conditioner
JP5646257B2 (en) Refrigeration cycle equipment
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP6102724B2 (en) Heat exchanger
JP6104357B2 (en) Heat exchange device and refrigeration cycle device provided with the same
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
EP3115730B1 (en) Refrigeration cycle device
JP5072983B2 (en) Fin tube type heat exchanger and air conditioner using the same
JP6765451B2 (en) How to make a heat exchanger
JP2010230300A (en) Heat exchanger and air conditioner having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250