JP5708933B2 - Secondary battery system - Google Patents

Secondary battery system Download PDF

Info

Publication number
JP5708933B2
JP5708933B2 JP2011203572A JP2011203572A JP5708933B2 JP 5708933 B2 JP5708933 B2 JP 5708933B2 JP 2011203572 A JP2011203572 A JP 2011203572A JP 2011203572 A JP2011203572 A JP 2011203572A JP 5708933 B2 JP5708933 B2 JP 5708933B2
Authority
JP
Japan
Prior art keywords
secondary battery
active material
lithium ion
ion secondary
organic active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011203572A
Other languages
Japanese (ja)
Other versions
JP2013065469A (en
Inventor
佐藤 正春
正春 佐藤
賢哉 大谷
賢哉 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2011203572A priority Critical patent/JP5708933B2/en
Publication of JP2013065469A publication Critical patent/JP2013065469A/en
Application granted granted Critical
Publication of JP5708933B2 publication Critical patent/JP5708933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は複数の二次電池を備える二次電池システムに関するものである。   The present invention relates to a secondary battery system including a plurality of secondary batteries.

近年、ノートパソコンやデジタルカメラ等の携帯用電子機器を始めとして、自動車やロボット等に搭載される二次電池の開発が進められている。そして、二次電池の中でも高いエネルギー密度を有するリチウムイオン二次電池が注目されている。   2. Description of the Related Art In recent years, secondary batteries mounted on automobiles, robots, and the like, including portable electronic devices such as notebook computers and digital cameras, have been developed. And the lithium ion secondary battery which has a high energy density among secondary batteries attracts attention.

リチウムイオン二次電池において過充電が起こると、活物質の溶出や分解、電極の腐食、さらには金属リチウムの析出やそれに伴う短絡等の結果、発熱や発煙、発火のおそれがある。特に、多数のリチウムイオン二次電池を直列に接続した場合には、各リチウムイオン二次電池の容量やインピーダンスのバラツキ、あるいは充電状態の違いによって特定のリチウムイオン二次電池に電流が集中し、過充電の状態になりやすくなる。そのため、リチウムイオン二次電池では充電状態を監視し、過充電状態になった場合、充電回路とリチウムイオン二次電池との間の接続を遮断する保護回路を設けるのが一般的である。例えば特許文献1には、ヒューズを設けた保護回路を備えた二次電池パックが開示されている。   When overcharging occurs in a lithium ion secondary battery, there is a risk of heat generation, smoke generation, and ignition as a result of elution and decomposition of the active material, corrosion of the electrode, and further deposition of metallic lithium and the accompanying short circuit. In particular, when a large number of lithium ion secondary batteries are connected in series, the current concentrates on a specific lithium ion secondary battery due to variations in the capacity and impedance of each lithium ion secondary battery, or due to differences in the state of charge, Overcharge is likely to occur. Therefore, it is common to provide a protection circuit that monitors the state of charge of a lithium ion secondary battery and cuts off the connection between the charging circuit and the lithium ion secondary battery when the battery is overcharged. For example, Patent Document 1 discloses a secondary battery pack including a protection circuit provided with a fuse.

特開2006−73457号公報JP 2006-73457 A

ところが、特許文献1では、保護回路を備えることで過充電を防止できるという点で一定の効果があると考えられるものの、複数のリチウムイオン二次電池を直列に接続する場合には、各々のリチウムイオン二次電池に保護回路を設けているため、保護回路の部品を設置する空間が必要でコストがかかるという問題があった。   However, in Patent Document 1, although it is considered that there is a certain effect in that overcharge can be prevented by providing a protection circuit, each lithium ion secondary battery is connected in series when a plurality of lithium ion secondary batteries are connected in series. Since the protection circuit is provided in the ion secondary battery, there is a problem that a space for installing the protection circuit component is necessary and costly.

本発明はかかる課題に鑑みてなされたものであり、各々のリチウムイオン二次電池に設けられている保護回路の簡略化が可能であり、小型化が可能な二次電池システムを提供することを目的とする。   The present invention has been made in view of such problems, and it is possible to simplify a protection circuit provided in each lithium ion secondary battery and to provide a secondary battery system that can be miniaturized. Objective.

本発明者は、電極反応を担う活物質が有機物である有機活物質二次電池について研究を行っている。有機活物質二次電池は、充放電電圧(活物質の酸化還元電圧)で内部抵抗が最も小さく、充放電電圧よりも大きくても小さくても内部抵抗が急激に増大するという傾向がある。そして、本発明者は、この有機活物質二次電池をリチウムイオン二次電池と組み合わせることで、多数直列に接続されたリチウムイオン二次電池の電圧のばらつきを抑える効果があることを明らかにした。   The inventor has been studying an organic active material secondary battery in which an active material responsible for an electrode reaction is an organic material. The organic active material secondary battery has the lowest internal resistance at the charge / discharge voltage (oxidation / reduction voltage of the active material), and the internal resistance tends to increase rapidly regardless of whether it is higher or lower than the charge / discharge voltage. And this inventor clarified that combining this organic active material secondary battery with a lithium ion secondary battery has the effect of suppressing the voltage variation of a large number of lithium ion secondary batteries connected in series. .

本発明に係る二次電池システムはこのような知見に基づきなされたものであって、第1の活物質の電極反応によって充放電し、第1の活物質もしくは電極反応の反応物または生成物がリチウム遷移金属酸化物である複数のリチウムイオン二次電池と、第2の活物質の電極反応によって充放電し、第2の活物質もしくは電極反応の反応物または生成物が有機物である有機活物質二次電池と、を含み、リチウムイオン二次電池と有機活物質二次電池が直列に接続されていることを備えることを特徴とする。   The secondary battery system according to the present invention is made based on such knowledge, and is charged and discharged by the electrode reaction of the first active material, and the reaction product or product of the first active material or the electrode reaction is A plurality of lithium ion secondary batteries that are lithium transition metal oxides and an organic active material that is charged and discharged by an electrode reaction between the second active material and the second active material or a reaction product or product of the electrode reaction is an organic material A lithium-ion secondary battery and an organic active material secondary battery are connected in series.

また、本発明に係る二次電池システムでは、リチウムイオン二次電池が複数個直列に接続され、複数のリチウムイオン二次電池のうち所定のリチウムイオン二次電池と有機活物質二次電池が直列に接続されていることが好ましい。   In the secondary battery system according to the present invention, a plurality of lithium ion secondary batteries are connected in series, and a predetermined lithium ion secondary battery and an organic active material secondary battery among the plurality of lithium ion secondary batteries are connected in series. It is preferable that it is connected to.

また、本発明に係る二次電池システムでは、有機活物質二次電池の第2の活物質もしくは電極反応の反応物または生成物が中性のラジカル化合物であることが好ましい。   In the secondary battery system according to the present invention, it is preferable that the second active material or the reaction product or product of the electrode reaction of the organic active material secondary battery is a neutral radical compound.

また、本発明に係る二次電池システムでは、中性のラジカル化合物がニトロキシルラジカル系安定ラジカル化合物であることが好ましい。   In the secondary battery system according to the present invention, the neutral radical compound is preferably a nitroxyl radical-based stable radical compound.

また、本発明に係る二次電池システムでは、ニトロキシルラジカル系安定ラジカル化合物が2,2,6,6−テトラメチルピペリジン−N−オキシルラジカルを分子構造中に含む化合物であることが好ましい。   In the secondary battery system according to the present invention, the nitroxyl radical-based stable radical compound is preferably a compound containing 2,2,6,6-tetramethylpiperidine-N-oxyl radical in the molecular structure.

また、本発明に係る二次電池システムでは、リチウムイオン二次電池の数が有機活物質二次電池の数より多いことが好ましい。   In the secondary battery system according to the present invention, the number of lithium ion secondary batteries is preferably larger than the number of organic active material secondary batteries.

また、本発明に係る二次電池システムでは、リチウムイオン二次電池の数は、有機活物質二次電池1個に対して100個以下の割合であることが好ましい。   Moreover, in the secondary battery system which concerns on this invention, it is preferable that the number of lithium ion secondary batteries is a ratio of 100 or less with respect to one organic active material secondary battery.

本発明によれば、リチウムイオン二次電池と有機活物質二次電池を直列で接続するため、複数のリチウムイオン二次電池の間で、容量のばらつき、内部インピーダンスのばらつき、または充電状態の違いに起因して、特定の二次電池への電流集中やそれに伴う過充電が起こったとしても、有機活物質二次電池の存在により電圧の上昇を防止することができる。そのため、保護回路の簡略化が可能であり、小型化が可能な二次電池システムを提供することができる。   According to the present invention, since the lithium ion secondary battery and the organic active material secondary battery are connected in series, the capacity variation, the internal impedance variation, or the charge state difference among the plurality of lithium ion secondary batteries. As a result, even if current concentration on a specific secondary battery or overcharge associated therewith occurs, an increase in voltage can be prevented by the presence of the organic active material secondary battery. Therefore, it is possible to provide a secondary battery system in which the protection circuit can be simplified and the size can be reduced.

リチウムイオン二次電池と有機活物質二次電池の電圧−電流曲線を示す図である。It is a figure which shows the voltage-current curve of a lithium ion secondary battery and an organic active material secondary battery. 本発明に係る二次電池システムを示す回路図である。It is a circuit diagram which shows the secondary battery system which concerns on this invention. 本発明に係る二次電池システムを示す回路図である。It is a circuit diagram which shows the secondary battery system which concerns on this invention.

以下において、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

図1は、本発明に用いられるリチウムイオン二次電池と有機活物質二次電池の電圧−電流曲線の図である。リチウムイオン二次電池と有機活物質二次電池は、どちらも活物質の電極反応によって充放電する二次電池である。   FIG. 1 is a diagram of voltage-current curves of a lithium ion secondary battery and an organic active material secondary battery used in the present invention. A lithium ion secondary battery and an organic active material secondary battery are both secondary batteries that are charged and discharged by an electrode reaction of the active material.

二次電池の活物質は、充放電により可逆的に酸化もしくは還元されるため、充電状態、放電状態、あるいはその途中の状態で異なる構造になる。そのため、活物質は、電極反応で化学反応を起こす物質(反応物)となったり、電極反応の結果生じる物質及び中間生成物(生成物)となったりする。   Since the active material of the secondary battery is reversibly oxidized or reduced by charging / discharging, it has different structures depending on the charged state, discharged state, or intermediate state. Therefore, the active material becomes a substance (reactant) that causes a chemical reaction in the electrode reaction, or becomes a substance and an intermediate product (product) generated as a result of the electrode reaction.

リチウムイオン二次電池は、活物質もしくは電極反応の反応物または生成物がリチウム遷移金属酸化物であり、電解質中のリチウムイオンが正極と負極の間を移動することで充放電反応が進行する電池である。リチウム遷移金属酸化物の例としては、LiCoO2、LiMn24、LiNiO2、LiFePO4、Li2FePO4F、LiCO1/3Ni1/3Mn1/32等がそれぞれ単独で、あるいは複数組み合わせて使用される。 A lithium ion secondary battery is a battery in which an active material or a reaction product or product of an electrode reaction is a lithium transition metal oxide, and a lithium ion in an electrolyte moves between a positive electrode and a negative electrode, and a charge / discharge reaction proceeds. It is. Examples of the lithium transition metal oxide include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 , Li 2 FePO 4 F, LiCO 1/3 Ni 1/3 Mn 1/3 O 2 and the like, Alternatively, a plurality of combinations are used.

また、有機活物質二次電池は、活物質もしくは電極反応の反応物または生成物が有機物である電池である。通常、有機活物質二次電池は、活物質と導電剤とを含む正極と、負極と、電解質と、を有している。そして、有機活物質二次電池の充放電電圧は、酸化還元反応が行われる部位の分子構造に依存する。   An organic active material secondary battery is a battery in which an active material or a reaction product or product of an electrode reaction is an organic material. In general, an organic active material secondary battery includes a positive electrode including an active material and a conductive agent, a negative electrode, and an electrolyte. And the charging / discharging voltage of an organic active material secondary battery is dependent on the molecular structure of the site | part in which oxidation-reduction reaction is performed.

なお、リチウムイオン二次電池と有機活物質二次電池の活物質は、1種類の活物質を含有するだけでなく、複数の活物質を含有していてもよい。   In addition, the active material of a lithium ion secondary battery and an organic active material secondary battery may contain not only one type of active material but also a plurality of active materials.

図1(A)はリチウムイオン二次電池の電圧−電流曲線の図であり、充放電電圧はVaである。リチウムイオン二次電池は、電圧を上げると内部抵抗が下がり、電流が流れやすくなる。そして、所定の電圧値Vbを超えると急激に電流が流れやすくなる傾向を示す。 1 (A) is the voltage of the lithium ion secondary battery - a view of the current curve, the charge and discharge voltage is V a. When the voltage is increased, the internal resistance of the lithium ion secondary battery decreases, and current easily flows. And when it exceeds predetermined voltage value Vb , the tendency for an electric current to flow rapidly will be shown.

一般に複数のリチウムイオン二次電池を互いに直列に接続して充電すると、それぞれの電池の充電状態や温度などの違いによって印加される電圧が異なり、一部の電池では過充電が引き起こされる。特に、これらの電池は充電が進むと温度が上昇するため、内部抵抗が低下して電池に実質的に印加される電圧がさらに上昇するという悪循環に陥る可能性がある。   In general, when a plurality of lithium ion secondary batteries are connected in series and charged, the applied voltage differs depending on the state of charge, temperature, etc. of each battery, and overcharge is caused in some batteries. In particular, since the temperature of these batteries increases as the charging proceeds, there is a possibility that the internal resistance decreases and the voltage substantially applied to the batteries further increases, resulting in a vicious circle.

図1(B)は2,2,6,6−テトラメチルピペリジン−N−オキシラジカルを分子構造中に含む化合物を活物質とする有機活物質二次電池の電圧−電流曲線の図であり、充放電電圧はVcである。有機活物質二次電池では、Vcで内部抵抗が最も小さいため電流が流れやすくなる。そして、電圧がVcよりも大きい場合でも小さい場合でも、内部抵抗が急激に増大するため電流が流れにくくなるという傾向を示す。 FIG. 1 (B) is a diagram of a voltage-current curve of an organic active material secondary battery using a compound containing 2,2,6,6-tetramethylpiperidine-N-oxy radical in the molecular structure as an active material, The charge / discharge voltage is V c . In the organic active material secondary battery, since the internal resistance is the smallest at V c , current easily flows. And even if the voltage is larger or smaller than V c , there is a tendency that the current hardly flows because the internal resistance rapidly increases.

図2は、本発明に係る二次電池システムを示す回路図の例である。二次電池システム1は、2個の組電池2を備えており、組電池2は互いに直列に接続されている。図中の点線部分は、組電池2を示している。また、本実施形態では、組電池2は、3個のリチウムイオン二次電池3と1個の有機活物質二次電池4を備えている。本実施形態では、リチウムイオン二次電池と有機活物質二次電池の充放電電圧はそれぞれ3.6Vであるため、この二次電池システム1に28.8V以上の電圧を印加することにより、充電が進行する。   FIG. 2 is an example of a circuit diagram showing a secondary battery system according to the present invention. The secondary battery system 1 includes two assembled batteries 2, and the assembled batteries 2 are connected in series with each other. The dotted line portion in the figure indicates the assembled battery 2. In the present embodiment, the assembled battery 2 includes three lithium ion secondary batteries 3 and one organic active material secondary battery 4. In this embodiment, since the charge / discharge voltage of each of the lithium ion secondary battery and the organic active material secondary battery is 3.6 V, charging is performed by applying a voltage of 28.8 V or more to the secondary battery system 1. Progresses.

本発明では、1個以上の有機活物質二次電池4が、リチウムイオン二次電池3と直列に接続されている。この時、複数のリチウムイオン二次電池3にかかる電圧がそれぞれ変動するため、有機活物質二次電池4にVcから外れた電圧が印加される。このとき、図1(B)に示すように、有機活物資二次電池4に流れる電流が小さくなる。その結果、回路全体に流れる電流も小さくなり、リチウムイオン二次電池3の過充電を抑制することができる。したがって、各々のリチウムイオン二次電池3に接続していた従来の保護回路をより簡略化することが可能であり、二次電池システム1全体の小型化が可能となる。 In the present invention, one or more organic active material secondary batteries 4 are connected in series with the lithium ion secondary battery 3. At this time, since the voltages applied to the plurality of lithium ion secondary batteries 3 vary, a voltage deviating from V c is applied to the organic active material secondary battery 4. At this time, as shown in FIG. 1B, the current flowing through the organic active material secondary battery 4 is reduced. As a result, the current flowing through the entire circuit is reduced, and overcharging of the lithium ion secondary battery 3 can be suppressed. Therefore, the conventional protection circuit connected to each lithium ion secondary battery 3 can be further simplified, and the overall size of the secondary battery system 1 can be reduced.

なお、本実施形態では、有機活物質二次電池は複数のリチウムイオン二次電池の一端に接続されているが、複数のリチウムイオン二次電池の間に接続されていても良い。   In the present embodiment, the organic active material secondary battery is connected to one end of the plurality of lithium ion secondary batteries, but may be connected between the plurality of lithium ion secondary batteries.

また、本実施形態では、リチウムイオン二次電池が複数個直列に接続され、複数のリチウムイオン二次電池のうち所定のリチウムイオン二次電池と有機活物質二次電池が直列に接続されている。リチウムイオン二次電池と有機活物質二次電池の数は特に限定されないが、リチウムイオン二次電池の数が有機活物質二次電池の数より多いことが好ましい。この場合には、二次電池システムの全体のエネルギー密度が向上する。   In this embodiment, a plurality of lithium ion secondary batteries are connected in series, and a predetermined lithium ion secondary battery and an organic active material secondary battery among the plurality of lithium ion secondary batteries are connected in series. . The number of lithium ion secondary batteries and organic active material secondary batteries is not particularly limited, but the number of lithium ion secondary batteries is preferably larger than the number of organic active material secondary batteries. In this case, the overall energy density of the secondary battery system is improved.

また、リチウムイオン二次電池の数は、有機活物質二次電池1個に対して100個以下の割合であることが好ましい。この場合には、本発明の効果が顕著である。   Moreover, it is preferable that the number of lithium ion secondary batteries is a ratio of 100 or less to one organic active material secondary battery. In this case, the effect of the present invention is remarkable.

また、リチウムイオン二次電池と有機活物質二次電池の充放電電圧の差は特に定められるものではないが、0.5V以下が好ましい。この場合には、本発明の効果が顕著である。   Further, the difference in charge / discharge voltage between the lithium ion secondary battery and the organic active material secondary battery is not particularly defined, but is preferably 0.5 V or less. In this case, the effect of the present invention is remarkable.

また、有機活物質二次電池の電極反応の反応物または生成物は中性のラジカル化合物であることが好ましい。この場合には、充放電反応の進行が容易になる。中性のラジカル化合物の例としては、各種のニトロキシラジカル、窒素ラジカル、酸素ラジカル、チオアミニルラジカル、硫黄ラジカル、ホウ素ラジカル等が挙げられるが、特にニトロキシラジカル系安定ラジカル化合物が好ましい。   In addition, the reaction product or product of the electrode reaction of the organic active material secondary battery is preferably a neutral radical compound. In this case, the progress of the charge / discharge reaction is facilitated. Examples of neutral radical compounds include various nitroxy radicals, nitrogen radicals, oxygen radicals, thioaminyl radicals, sulfur radicals, boron radicals and the like, with nitroxy radical-based stable radical compounds being particularly preferred.

そして、ニトロキシラジカル系安定ラジカル化合物の中でも、充放電反応が安定であることから特に2,2,6,6−テトラメチルピペリジン−N−オキシルラジカル構造を分子構造中に含む化合物であることが好ましい。このような、2,2,6,6−テトラメチルピペリジン−N−オキシルラジカル構造を含む分子としては例えば化学式(1)〜(6)で表わされる高分子化合物やこれらを繰り返し単位の一部とする共重合体などがある。   Among the nitroxy radical-based stable radical compounds, since the charge / discharge reaction is stable, the compound may contain a 2,2,6,6-tetramethylpiperidine-N-oxyl radical structure in the molecular structure. preferable. Examples of such a molecule containing a 2,2,6,6-tetramethylpiperidine-N-oxyl radical structure include, for example, polymer compounds represented by chemical formulas (1) to (6) and those having a part of the repeating unit. Such as a copolymer.

Figure 0005708933
Figure 0005708933

図3は、本発明に係る二次電池システムを示す回路図の別の例である。図3では、図2と異なり、組電池2は並列に接続されている。この場合でも、リチウムイオン二次電池3の過充電を抑制することができる。   FIG. 3 is another example of a circuit diagram showing a secondary battery system according to the present invention. In FIG. 3, unlike FIG. 2, the assembled battery 2 is connected in parallel. Even in this case, the overcharge of the lithium ion secondary battery 3 can be suppressed.

なお、本発明では、必要に応じて、二次電池システムに電圧制御回路や電池残量監視回路、表示回路等を備えても良い。   In the present invention, the secondary battery system may be provided with a voltage control circuit, a battery remaining amount monitoring circuit, a display circuit, and the like as necessary.

次に、上記の有機活物質二次電池の製造方法の一例を詳述する。   Next, an example of the manufacturing method of said organic active material secondary battery is explained in full detail.

まず、正極を形成する。例えば、活物質と導電剤と結着剤とを混合し、有機溶剤を加えてスラリーとし、該スラリーを正極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。   First, a positive electrode is formed. For example, an active material, a conductive agent, and a binder are mixed, an organic solvent is added to form a slurry, and the slurry is applied on the positive electrode current collector by an arbitrary coating method and dried to form a positive electrode. To do.

ここで、導電剤としては、特に限定されるものでなく、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子等が挙げられる。また、導電剤を2種類以上混合して用いてもよい。なお、正極中の導電剤の含有率は10〜80質量%が望ましい。   Here, the conductive agent is not particularly limited, and examples thereof include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, and carbon nanohorn, Examples thereof include conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene. Further, two or more kinds of conductive agents may be mixed and used. In addition, as for the content rate of the electrically conductive agent in a positive electrode, 10-80 mass% is desirable.

また、結着剤についても、特に限定されるものではなく、例えば、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂が挙げられる。   The binder is not particularly limited, and examples thereof include various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, and carboxymethyl cellulose.

また、有機溶剤についても、特に限定されるものではなく、例えば、ジメチルスルホキシド、ジメチルホルムアミド、N−メチル−2−ピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ−ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等が挙げられる。   Further, the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and γ-butyrolactone, acetonitrile. , Non-aqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone, and protic solvents such as methanol and ethanol.

また、有機溶剤の種類及びその配合量、並びに結着剤の種類及びその配合量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。   Further, the type of organic solvent and its blending amount, the type of binder and its blending amount, etc. can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.

次に、電解質を用意する。電解質は、正極(活物質)と対向電極である負極との間に介在して両電極間の荷電担体輸送を行うが、このような電解質としては、例えば室温で10-5〜10-1S/cmのイオン伝導度を有するものを使用し、例えば、電解質塩を有機溶剤に溶解させた電解液を使用する。ここで、電解質塩としては、例えば、LiPF6、LiClO4、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiC(CF3SO23、LiC(C25SO23等が挙げられる。 Next, an electrolyte is prepared. The electrolyte is interposed between the positive electrode (active material) and the negative electrode as the counter electrode, and transports charge carriers between the two electrodes. As such an electrolyte, for example, 10 −5 to 10 −1 S at room temperature. For example, an electrolyte solution in which an electrolyte salt is dissolved in an organic solvent is used. Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2). ) 3 , LiC (C 2 F 5 SO 2 ) 3 and the like.

また、有機溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等が挙げられる。   Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, and N-methyl-2-pyrrolidone. Can be mentioned.

なお、電解質には、固体電解質を使用してもよい。固体電解質に用いられる高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−モノフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体や、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体、アクリロニトリル−エチルメタクリレート共重合体、アクリロニトリル−エチルアクリレート共重合体、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−ビニルアセテート共重合体等のアクリロニトリル系重合体や、ポリエチレンオキサイド、エチレンオキサイド−プロピレンオキサイド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等が挙げられる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質として使用してもよい。あるいは、電解質塩を含有させた高分子化合物のみをそのまま電解質に使用してもよい。   A solid electrolyte may be used as the electrolyte. Examples of the polymer compound used for the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride. Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate Copolymer, Acrylonitrile-methyl acrylate copolymer, Acrylonitrile-ethyl methacrylate copolymer, Acrylonitrile-ethyl acrylate copolymer, Acrylonitrile-methacrylic acid copolymer, Acrylonitrile-a Acrylic acid copolymer, an acrylonitrile - acrylonitrile polymers such as vinyl acetate copolymer and polyethylene oxide, ethylene oxide - propylene oxide copolymers, and polymers such as these acrylates body or methacrylate products thereof. Moreover, you may use what made these polymer compounds contain electrolyte solution and made it gelatinous as electrolyte. Alternatively, only a polymer compound containing an electrolyte salt may be used as an electrolyte as it is.

次に、正極を電解質に含浸させ、電解質を含浸させたセパレータを介して負極と対向させ、外装封止して有機活物質二次電池を作製する。   Next, the positive electrode is impregnated with the electrolyte, and the negative electrode is opposed to the negative electrode through the separator impregnated with the electrolyte, followed by sealing the exterior to produce an organic active material secondary battery.

なお、本発明において、電池形状が特に限定されるものでないのはいうまでもない。電池形状の例としては、円筒型、角型、シート型等が挙げられる。また、外装方法も特に限定されない。外装方法の例としては、金属ケースや、モールド樹脂、アルミラミネートフィルム等が挙げられる。   In the present invention, needless to say, the battery shape is not particularly limited. Examples of battery shapes include cylindrical, square, and sheet types. Also, the exterior method is not particularly limited. Examples of the exterior method include a metal case, a mold resin, and an aluminum laminate film.

なお、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲において種々の変形が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible in the range which does not deviate from a summary.

1 二次電池システム
2 組電池
3 リチウムイオン二次電池
4 有機活物質二次電池
DESCRIPTION OF SYMBOLS 1 Secondary battery system 2 Assembly battery 3 Lithium ion secondary battery 4 Organic active material secondary battery

Claims (7)

第1の活物質の電極反応によって充放電し、前記第1の活物質もしくは前記電極反応の反応物または生成物がリチウム遷移金属酸化物であるリチウムイオン二次電池と、
第2の活物質の電極反応によって充放電し、前記第2の活物質もしくは前記電極反応の反応物または生成物が有機物である有機活物質二次電池と、
を含み、
前記リチウムイオン二次電池と前記有機活物質二次電池が直列に接続されており、
前記第2の活物質が2,2,6,6−テトラメチルピペリジン−N−オキシルラジカルを分子構造中に含む化合物である、二次電池システム。
A lithium ion secondary battery that is charged and discharged by an electrode reaction of a first active material, and wherein a reaction product or product of the first active material or the electrode reaction is a lithium transition metal oxide;
An organic active material secondary battery that is charged and discharged by an electrode reaction of a second active material, and wherein the second active material or the reaction product or product of the electrode reaction is an organic material;
Including
The lithium ion secondary battery and the organic active material secondary battery are connected in series ,
The secondary battery system, wherein the second active material is a compound containing 2,2,6,6-tetramethylpiperidine-N-oxyl radical in the molecular structure .
前記リチウムイオン二次電池が複数個直列に接続され、複数のリチウムイオン二次電池のうち所定のリチウムイオン二次電池と前記有機活物質二次電池が直列に接続されていることを特徴とする、請求項1に記載の二次電池システム。   A plurality of the lithium ion secondary batteries are connected in series, and a predetermined lithium ion secondary battery and the organic active material secondary battery among the plurality of lithium ion secondary batteries are connected in series. The secondary battery system according to claim 1. 前記有機活物質二次電池の前記第2の活物質電極反応の反応物または生成物が中性のラジカル化合物であることを特徴とする、請求項1または2に記載の二次電池システム。 The secondary battery system according to claim 1 or 2, wherein a reaction product or product of an electrode reaction of the second active material of the organic active material secondary battery is a neutral radical compound. 前記中性のラジカル化合物がニトロキシルラジカル系安定ラジカル化合物であることを特徴とする、請求項3に記載の二次電池システム。   The secondary battery system according to claim 3, wherein the neutral radical compound is a nitroxyl radical-based stable radical compound. 前記ニトロキシルラジカル系安定ラジカル化合物が2,2,6,6−テトラメチルピペリジン−N−オキシルラジカルを分子構造中に含む化合物であることを特徴とする、請求項4に記載の二次電池システム。   The secondary battery system according to claim 4, wherein the nitroxyl radical-based stable radical compound is a compound containing 2,2,6,6-tetramethylpiperidine-N-oxyl radical in the molecular structure. . 前記リチウムイオン二次電池の数が前記有機活物質二次電池の数より多いことを特徴とする請求項1〜5のいずれか一項に記載の二次電池システム。 6. The secondary battery system according to claim 1 , wherein the number of the lithium ion secondary batteries is larger than the number of the organic active material secondary batteries. 前記リチウムイオン二次電池の数は、前記有機活物質二次電池1個に対して100個以下の割合であることを特徴とする、請求項1〜6のいずれか一項に記載の二次電池システム。 The number of the lithium ion secondary battery is characterized in that the the proportion of 100 or less for one organic active material secondary battery, the secondary according to any one of claims 1 to 6 Battery system.
JP2011203572A 2011-09-16 2011-09-16 Secondary battery system Expired - Fee Related JP5708933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203572A JP5708933B2 (en) 2011-09-16 2011-09-16 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203572A JP5708933B2 (en) 2011-09-16 2011-09-16 Secondary battery system

Publications (2)

Publication Number Publication Date
JP2013065469A JP2013065469A (en) 2013-04-11
JP5708933B2 true JP5708933B2 (en) 2015-04-30

Family

ID=48188801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203572A Expired - Fee Related JP5708933B2 (en) 2011-09-16 2011-09-16 Secondary battery system

Country Status (1)

Country Link
JP (1) JP5708933B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335034A (en) * 1992-06-01 1993-12-17 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery
JPH08162158A (en) * 1994-12-01 1996-06-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2007037291A (en) * 2005-07-27 2007-02-08 Nec Corp Power storage system for automobile
JP2007049789A (en) * 2005-08-08 2007-02-22 Nec Corp Information processing apparatus
CN100576624C (en) * 2006-01-18 2009-12-30 松下电器产业株式会社 The manufacture method of assembled battery, power-supply system and assembled battery
JP2007220658A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Packed battery, power supply system, and method of manufacturing packed battery
JP2011029136A (en) * 2009-06-30 2011-02-10 Murata Mfg Co Ltd Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2011150876A (en) * 2010-01-21 2011-08-04 Sony Corp Assembled battery and method for controlling the same

Also Published As

Publication number Publication date
JP2013065469A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP6402174B2 (en) Positive electrode for lithium battery
CN108370068B (en) Non-aqueous electrolyte additive, non-aqueous electrolyte including the same, and lithium secondary battery including the same
KR101382797B1 (en) Positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
JP5990818B2 (en) Cable type secondary battery and manufacturing method thereof
US7045248B2 (en) Secondary battery having radical compound electrode
JP5710533B2 (en) Nonaqueous electrolyte secondary battery, electrode for battery, and battery pack
KR100875126B1 (en) Electrode for lithium secondary battery having improved cycle performance and lithium secondary battery using same
JP5082198B2 (en) Lithium ion secondary battery
JP2016042461A (en) Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
WO2012046527A1 (en) Power supply device
JP2015198088A (en) Nonaqueous electrolyte for long life secondary battery and secondary battery including the same
JP2013196910A (en) Nonaqueous electrolyte secondary battery
JP5092224B2 (en) Nonaqueous electrolyte secondary battery, its battery pack and electronic device
JP3046055B2 (en) Non-aqueous secondary battery
US20220294037A1 (en) Method for manufacturing secondary battery
JP2008226643A (en) Nonaqueous electrolyte secondary battery
JP5779452B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015111585A1 (en) Lithium ion battery system
JP2006073253A (en) Nonaqueous electrolyte battery
JP4582684B2 (en) Non-aqueous secondary battery
JP7171124B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5708933B2 (en) Secondary battery system
JP7091574B2 (en) Non-aqueous electrolyte secondary battery
JP4915101B2 (en) Flat type non-aqueous electrolyte secondary battery
KR20150131509A (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R150 Certificate of patent or registration of utility model

Ref document number: 5708933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees