JP5703836B2 - Conductive particles, adhesive composition, circuit connection material, and connection structure - Google Patents

Conductive particles, adhesive composition, circuit connection material, and connection structure Download PDF

Info

Publication number
JP5703836B2
JP5703836B2 JP2011040594A JP2011040594A JP5703836B2 JP 5703836 B2 JP5703836 B2 JP 5703836B2 JP 2011040594 A JP2011040594 A JP 2011040594A JP 2011040594 A JP2011040594 A JP 2011040594A JP 5703836 B2 JP5703836 B2 JP 5703836B2
Authority
JP
Japan
Prior art keywords
nickel
particles
palladium
layer
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011040594A
Other languages
Japanese (ja)
Other versions
JP2012178270A (en
Inventor
邦彦 赤井
邦彦 赤井
奈々 榎本
奈々 榎本
隆伸 小林
隆伸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011040594A priority Critical patent/JP5703836B2/en
Publication of JP2012178270A publication Critical patent/JP2012178270A/en
Application granted granted Critical
Publication of JP5703836B2 publication Critical patent/JP5703836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電粒子及びその製造方法、接着剤組成物、回路接続材料、接続構造体、並びに回路部材の接続方法に関する。   The present invention relates to a conductive particle and a method for producing the same, an adhesive composition, a circuit connection material, a connection structure, and a circuit member connection method.

電子機器の高性能化や高機能化の進展にともない、電子機器の内部に搭載されている電子部品も高機能化と小型化、薄型化が進んでいる。これら電子部品は、単独で機能を発揮するものではなく、配線基板と電気的に接続されることで機能を発揮する。具体的には、ハンダや金ワイヤなどによってプリント基板(PCB)やフレキシブル回路基板(FPC)などの配線基板に実装される。   With the advancement of performance and functionality of electronic devices, electronic components mounted inside electronic devices are also becoming more functional, smaller and thinner. These electronic components do not perform their function independently, but perform their functions by being electrically connected to the wiring board. Specifically, it is mounted on a wiring board such as a printed circuit board (PCB) or a flexible circuit board (FPC) by solder or gold wire.

発展が目覚しいフラットパネルディスプレイ(FPD)分野では、これまでのハンダを用いた電子部品の接続方法に代わり、導電粒子を含有する回路接続材料を用いた実装方法が広く採用されている。回路接続材料の具体例としては、導電粒子と接着剤成分とを含有する接着剤組成物及びこれをフィルム状に成形した異方導電性フィルムが挙げられる。対向配置された一対の回路部材の間に回路接続材料を介在させ、全体を加熱及び加圧することによって、それぞれの回路部材が有する回路電極同士を電気的に接続するとともに回路部材同士を接着する。導電粒子を含有する回路接続材料は、接続する電極が小さく、数が多い場合でも、それぞれの電極同士の接続が一回の加圧接着で可能であるという利点がある。なお、ここでいう異方導電性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   In the field of flat panel display (FPD), which has been remarkably developed, a mounting method using a circuit connecting material containing conductive particles has been widely adopted in place of the conventional electronic component connecting method using solder. Specific examples of the circuit connecting material include an adhesive composition containing conductive particles and an adhesive component and an anisotropic conductive film obtained by forming the adhesive composition into a film. By interposing a circuit connecting material between a pair of circuit members arranged opposite to each other and heating and pressurizing the whole, circuit electrodes included in each circuit member are electrically connected and the circuit members are bonded to each other. The circuit connection material containing conductive particles has an advantage that even when the number of electrodes to be connected is small and the number of electrodes is large, the electrodes can be connected to each other by a single pressure bonding. In addition, anisotropic conductivity here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.

近年は、特に高画質化の進展により、駆動用半導体の数が増え、電極間の狭ピッチ化が進んでいる。また、デザイン性の観点から狭額縁化、薄型化が進み、実装面積、体積も減少し、上記回路接続材料に対する要求がより厳しくなってきている。回路接続材料を用いた接続方法としては、ガラスの透明電極上に直接実装するCOG(Chip−on−Glass)実装や、フレキシブル基板に実装したのち、フレキシブル基板とガラス基板を接続するCOF(Chip−on−Flex)実装が挙げられる。   In recent years, the number of drive semiconductors has increased due to the progress of higher image quality, and the pitch between electrodes has been reduced. In addition, from the viewpoint of design, the frame size and the thickness have been reduced, the mounting area and volume have been reduced, and the requirements for the circuit connection material have become more severe. As a connection method using a circuit connecting material, COG (Chip-on-Glass) mounting directly mounted on a glass transparent electrode, or COF (Chip-) for connecting a flexible substrate to a glass substrate after mounting on a flexible substrate. on-Flex) implementation.

これまでに種々の導電粒子が開発されている。例えば、特許文献1には、銀、ニッケル、銅、錫、アルミニウム又は亜鉛などからなる金属球を核とする導電性微粒子が記載されている。特許文献2には、カーボン粒子の外側表面に樹脂コート層が形成された導電性微粒子が記載されている。特許文献3〜5には、樹脂粒子の表面を金属でコーティングした導電粒子が記載されている。これらの導電粒子は用途に合わせて使い分けられている。   Various conductive particles have been developed so far. For example, Patent Document 1 describes conductive fine particles having a metal sphere made of silver, nickel, copper, tin, aluminum, zinc, or the like as a nucleus. Patent Document 2 describes conductive fine particles in which a resin coat layer is formed on the outer surface of carbon particles. Patent Documents 3 to 5 describe conductive particles obtained by coating the surfaces of resin particles with metal. These conductive particles are properly used according to the application.

上記の通り、FPDにおける回路部材の電極間の狭ピッチ化の進展にともない、隣り合う電極同士を短絡(ショート)させてしまうリスクが高くなっている。短絡は、導電粒子の粒子径が大き過ぎる場合や、接着剤成分中で導電粒子が凝集している場合に生じやすくなる。狭ピッチの電極用の回路接続材料は、導電粒子の小径化と、接着剤成分中での高充填化及び高分散性の両立が求められている。樹脂粒子の表面を金属でコーティングした導電粒子は、金属微粒子からなる導電粒子と比較して、体積密度が接着剤成分に近いため、接着剤成分中で均一に分散しやすく有利である(特許文献3参照)。   As described above, with the progress of narrowing the pitch between the electrodes of the circuit member in the FPD, there is a high risk that the adjacent electrodes are short-circuited. A short circuit tends to occur when the particle diameter of the conductive particles is too large or when the conductive particles are aggregated in the adhesive component. Circuit connection materials for narrow-pitch electrodes are required to achieve both a reduction in the diameter of the conductive particles and a high filling and high dispersibility in the adhesive component. Conductive particles whose resin particles are coated with metal are advantageous in that they are easily dispersed uniformly in the adhesive component because the volume density is close to that of the adhesive component compared to conductive particles made of metal fine particles (Patent Literature). 3).

一方、電極に流れる電流が大きいプラズマディスプレイ(PDP)や太陽電池などの分野では、導電粒子として金属微粒子を用いた回路接続材料が提案されている(特許文献6)。しかし、コア粒子にニッケルや銀、銅などの金属粒子を用いた場合、湿度や温度によっては酸化が進み、接続抵抗が上昇したり、接続後にマイグレーションが発生して隣接する電極間をショートさせたりする可能性がある。なお、マイグレーションとは、電気回路や電極における電析を意味し、接続構造体の接続信頼性低下の原因となる。このマイグレーションは、接着剤中の不純物又は電極を構成する金属が電圧印加時にイオン化されることで発生するものと考えられている。   On the other hand, circuit connection materials using metal fine particles as conductive particles have been proposed in fields such as a plasma display (PDP) and a solar cell in which a large current flows through an electrode (Patent Document 6). However, when metal particles such as nickel, silver, and copper are used for the core particles, oxidation proceeds depending on humidity and temperature, connection resistance increases, migration occurs after connection, and adjacent electrodes are short-circuited. there's a possibility that. Migration means electrodeposition in an electric circuit or an electrode, and causes a reduction in connection reliability of the connection structure. This migration is considered to occur when impurities in the adhesive or the metal constituting the electrode are ionized when a voltage is applied.

そこで、金属の酸化やマイグレーションを防止する目的で金属粒子に貴金属を被覆した導電粒子が提案されてきた。例えば、特許文献7には、金属材料の表面を貴金属で被覆してなる金属球を核とした導電粒子が開示されている。このような導電粒子は、金属の酸化やマイグレーションの抑制に対して一定の効果を有する反面、コストが安い貴金属を選定する必要がある。   Accordingly, conductive particles in which metal particles are coated with a noble metal have been proposed for the purpose of preventing metal oxidation and migration. For example, Patent Document 7 discloses a conductive particle having a metal sphere formed by coating the surface of a metal material with a noble metal as a nucleus. Such conductive particles have a certain effect on metal oxidation and suppression of migration, but need to select a noble metal with low cost.

特許文献8には、卑金属粒子の表面に2層以上の異なった貴金属を被覆し、表面層をパラジウムとした導電粒子が開示されている。しかし、貴金属処理を2回実施する必要があり、製造工程が長くなるだけでなく、高価な貴金属を2種類使用するため全体のコストは高くなる。   Patent Document 8 discloses conductive particles in which the surface of base metal particles is coated with two or more different noble metals and the surface layer is palladium. However, it is necessary to perform the precious metal treatment twice, which not only lengthens the manufacturing process, but also increases the overall cost because two types of expensive precious metals are used.

特許文献9には、マイカ等の無機質粉体の表面に、化学めっきにより金属を被覆し、更にその上に電気めっきを施すことで、無機質粉体に導電性を付与する方法が記載されている。   Patent Document 9 describes a method of imparting conductivity to an inorganic powder by coating the surface of the inorganic powder such as mica with a metal by chemical plating and further performing electroplating thereon. .

特開平11−134935号公報Japanese Patent Laid-Open No. 11-134935 特開平10−308121号公報JP-A-10-308121 特開昭57−49632号公報Japanese Unexamined Patent Publication No. 57-49632 特開昭62−181379号公報Japanese Patent Laid-Open No. 62-181379 特開平1−242782号公報Japanese Unexamined Patent Publication No. 1-224282 特開2003−197033号公報Japanese Patent Laid-Open No. 2003-197033 特開平11−134936号公報Japanese Patent Laid-Open No. 11-134936 特開平2−66101号公報JP-A-2-66101 特開昭60−181294号公報JP-A-60-181294

しかしながら、従来、卑金属からなるコア粒子を貴金属でコーティングしてなる導電粒子は、必ずしも金属の酸化やマイグレーションによる不具合を十分に解消できず、接続構造体の優れた接続信頼性を安定的に達成するには改善の余地があった。   However, conventionally, conductive particles obtained by coating core particles made of a base metal with a noble metal do not always sufficiently eliminate defects due to metal oxidation and migration, and stably achieve excellent connection reliability of the connection structure. There was room for improvement.

本発明は、上記課題に鑑みてなされたものであり、接続すべき電極間の抵抗を十分長期にわたって良好な値に維持できるとともにマイグレーションの発生を十分に抑制して優れた接続信頼性を達成でき且つ低コストで得られる導電粒子を提供することを目的とする。   The present invention has been made in view of the above problems, and can maintain the resistance between the electrodes to be connected at a good value for a sufficiently long period of time and can sufficiently suppress the occurrence of migration and achieve excellent connection reliability. And it aims at providing the electrically-conductive particle obtained at low cost.

本発明者らは、特許文献7に記載の方法に基づき、ニッケル粒子の表面に無電解金めっきを施した導電粒子、並びに、ニッケル粒子の表面に無電解パラジウムめっきを施した導電粒子をそれぞれ作製した。これら導電粒子を用いて回路接続材料を作製し、その評価試験を実施した。この結果、パラジウムめっきが施されたニッケル粒子を含む材料は、金めっきが施されたニッケル粒子を含む材料よりも接続抵抗が高く、性能が劣ることが判明した。この原因を究明するため、本発明者らはパラジウムめっきが施されたニッケル粒子をSEM(Scanning Electron Microscope)で観察したところ、パラジウム層がニッケル粒子を完全には覆っておらず、導電粒子の表面にニッケル粒子が露出していた。本発明者らはこれらの知見に基づき、以下の発明を完成させるに至った。   Based on the method described in Patent Document 7, the present inventors respectively produced conductive particles obtained by electroless gold plating on the surface of nickel particles, and conductive particles obtained by electroless palladium plating on the surface of nickel particles. did. A circuit connecting material was produced using these conductive particles, and the evaluation test was performed. As a result, it was found that a material containing nickel particles plated with palladium has higher connection resistance and inferior performance than a material containing nickel particles plated with gold. In order to investigate this cause, the present inventors observed nickel particles plated with palladium by SEM (Scanning Electron Microscope). As a result, the palladium layer did not completely cover the nickel particles, and the surface of the conductive particles Nickel particles were exposed. Based on these findings, the inventors have completed the following invention.

本発明に係る導電粒子は、ニッケル粒子と、ニッケル粒子の表面を覆う無電解めっきによるニッケル層と、ニッケル層の外側表面を覆うパラジウム層とを備える。   The conductive particles according to the present invention include nickel particles, a nickel layer formed by electroless plating that covers the surface of the nickel particles, and a palladium layer that covers the outer surface of the nickel layer.

この導電粒子は、コア粒子がニッケル粒子からなり、ニッケル粒子の表面にニッケル層及びパラジウム層がこの順序で積層されている。この導電粒子を接着剤成分中に分散させることで回路接続材料が作製される。この回路接続材料を使用することにより、接続すべき電極間の抵抗を十分長期にわたって小さい値に維持できる。また、本発明に係る導電粒子は、銀を用いた導電粒子に比べてマイグレーション発生に対する懸念が小さい。   The conductive particles have core particles made of nickel particles, and a nickel layer and a palladium layer are laminated in this order on the surface of the nickel particles. A circuit connection material is produced by dispersing the conductive particles in the adhesive component. By using this circuit connecting material, the resistance between the electrodes to be connected can be maintained at a small value for a sufficiently long period. Further, the conductive particles according to the present invention are less concerned about the occurrence of migration than the conductive particles using silver.

上記効果が得られる主因は現時点では必ずしも明らかではないが、本発明者らは無電解めっきによるニッケル層を設けることで、コア粒子の表面のパラジウム層を直接形成する場合と比較し、緻密で均質なパラジウム層を形成しやすいことが関係していると推察する。これに加え、無電解めっきによるニッケル層の表面上には、連続したパラジウム層を形成しやすいことも関係していると推察される。   The main reason why the above effect is obtained is not necessarily clear at the present time, but the present inventors have provided a nickel layer by electroless plating, which is denser and more homogeneous than the direct formation of the palladium layer on the surface of the core particles. This is presumed to be related to easy formation of a palladium layer. In addition to this, it is inferred that it is easy to form a continuous palladium layer on the surface of the nickel layer by electroless plating.

上記導電粒子の核をなすニッケル粒子は導電性に優れ且つコストが安いため、本発明によれば、接続すべき電極間の抵抗値を十分に小さくできるとともに低コスト化が図られる。またパラジウムは、金、白金等の貴金属と比較して安価であるため、パラジウム層を備える導電粒子は、金又は白金のみを用いた導電粒子に比べて低コストである。   Since the nickel particles that form the core of the conductive particles are excellent in conductivity and low in cost, according to the present invention, the resistance value between the electrodes to be connected can be sufficiently reduced and the cost can be reduced. In addition, since palladium is less expensive than noble metals such as gold and platinum, conductive particles including a palladium layer are lower in cost than conductive particles using only gold or platinum.

なお、ここでいうニッケル粒子とはニッケルを主成分とする金属粒子を意味し、ニッケル粒子の質量基準でニッケル含有量が50質量%以上のものをいう。ニッケル層とは、ニッケルを主成分とする金属層を意味し、ニッケル層の質量基準でニッケル含有量が50質量%以上のものをいう。パラジウム層とは、パラジウムを主成分とする金属層を意味し、パラジウム層の質量基準でパラジウム含有量が50質量%以上のものをいう。   In addition, the nickel particle here means the metal particle which has nickel as a main component, and means a nickel content 50 mass% or more on the mass reference | standard of a nickel particle. The nickel layer means a metal layer containing nickel as a main component and has a nickel content of 50% by mass or more based on the mass of the nickel layer. The palladium layer means a metal layer containing palladium as a main component and has a palladium content of 50% by mass or more based on the mass of the palladium layer.

ニッケル層のリン含有量及びホウ素含有量は、当該ニッケル層の質量基準でいずれも、7質量%以下であることが好ましい。これらの元素の含有量がいずれも7%質量以下であると、ニッケル層の表面上にパラジウムが均一に析出しやすく、緻密で均質なパラジウム層を更に形成しやすい。   The phosphorus content and boron content of the nickel layer are preferably 7% by mass or less based on the mass of the nickel layer. When the content of these elements is 7% by mass or less, palladium is likely to be uniformly deposited on the surface of the nickel layer, and a dense and homogeneous palladium layer is more easily formed.

パラジウム層は、還元めっき又は置換めっきによって形成されたものであることが好ましい。この場合、ニッケル層を覆うパラジウム層が緻密で均質なものとなり、ニッケルの表面露出を十分に低減できる。特に、還元めっきによって形成されたパラジウム層は、不純物が極めて少なく、下地(ニッケル)を完全に覆うことが可能なため更に好ましい。   The palladium layer is preferably formed by reduction plating or displacement plating. In this case, the palladium layer covering the nickel layer becomes dense and homogeneous, and the surface exposure of nickel can be sufficiently reduced. In particular, a palladium layer formed by reduction plating is more preferable because it has very few impurities and can completely cover the base (nickel).

本発明に係る導電粒子をSEMで表面観察した場合、パラジウム層はニッケル層の外側表面全体を覆っていることが好ましい。かかる構成の導電粒子は、酸化物を経由してイオン溶出する現象やマイグレーションがほとんどなく、より高度な接続信頼性を維持しやすい。   When the surface of the conductive particles according to the present invention is observed with an SEM, the palladium layer preferably covers the entire outer surface of the nickel layer. The conductive particles having such a configuration have almost no phenomenon of ion elution via an oxide and migration, and it is easy to maintain higher connection reliability.

本発明に係る導電粒子は、より一層優れた接続信頼性を達成する観点から、表面のニッケル原子の数Aとパラジウム原子の数Bの比A/Bが1.0以下であることが好ましい。ここで、比A/Bは、導電粒子の表面をESCA(Electron Spectroscopy forChemical Analysis、X線光電子分光)法による分析で求められる値を意味する。   In the conductive particles according to the present invention, the ratio A / B between the number A of nickel atoms on the surface and the number B of palladium atoms is preferably 1.0 or less from the viewpoint of achieving even better connection reliability. Here, the ratio A / B means a value obtained by analyzing the surface of the conductive particles by ESCA (Electron Spectroscopy for Chemical Analysis, X-ray photoelectron spectroscopy) method.

ニッケルの露出をより確実に防ぐ観点から、パラジウム層の厚さは5〜100nmであることが好ましい。   From the viewpoint of more reliably preventing nickel exposure, the thickness of the palladium layer is preferably 5 to 100 nm.

本発明は、ニッケル粒子の表面を覆うニッケル層を無電解めっきによって形成する工程と、ニッケル層の表面を覆うパラジウム層を形成する工程とを備える導電粒子の製造方法を提供する。この方法によれば、優れた接続信頼性を達成するのに有用な導電粒子を低コストで得ることができる。また、本発明においては、ニッケル層を設けることで、ニッケル粒子の特性(例えば、ニッケル純度や表面の状態)がパラジウム層の形成に与える影響を小さくできるため、ニッケル粒子の選択の制限が少ないという利点がある。   The present invention provides a method for producing conductive particles comprising a step of forming a nickel layer covering the surface of nickel particles by electroless plating and a step of forming a palladium layer covering the surface of the nickel layer. According to this method, it is possible to obtain conductive particles useful for achieving excellent connection reliability at a low cost. Further, in the present invention, by providing the nickel layer, it is possible to reduce the influence of the characteristics of the nickel particles (for example, nickel purity and surface condition) on the formation of the palladium layer. There are advantages.

なお、従来の無電解金めっきでは主にシアン金めっきが使用されていたが、環境問題の観点からシアンを用いないめっきへの変更が望まれている。本発明によれば、シアンを用いることなくニッケル層及びパラジウム層を備える導電粒子を製造することができる。   In the conventional electroless gold plating, cyan gold plating is mainly used, but a change to plating without cyan is desired from the viewpoint of environmental problems. According to the present invention, conductive particles including a nickel layer and a palladium layer can be produced without using cyan.

本発明は、接着性を有する接着剤成分と、接着剤成分中に分散している上記導電粒子とを備える接着剤組成物を提供する。本発明は、この接着剤組成物からなり、回路部材同士を接着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続するために用いられる回路接続材料を提供する。   The present invention provides an adhesive composition comprising an adhesive component having adhesiveness and the conductive particles dispersed in the adhesive component. This invention consists of this adhesive composition, and provides the circuit connection material used in order to adhere | attach circuit members and to electrically connect the circuit electrodes which each circuit member has.

本発明は、対向配置された一対の回路部材と、上記回路接続材料の硬化物からなり、一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該回路部材同士を接着する接続部とを備える接続構造体を提供する。本発明は、対向配置された一対の回路部材の間に上記回路接続材料を介在させ、全体を加熱及び加圧して、回路接続材料の硬化物からなり、一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように回路部材同士を接着する接続部を形成することにより、一対の回路部材及び接続部を備える接続構造体を得る、回路部材の接続方法を提供する。   The present invention comprises a pair of circuit members arranged opposite to each other and a cured product of the circuit connection material, and is interposed between the pair of circuit members so that circuit electrodes included in the respective circuit members are electrically connected to each other. A connection structure including a connection portion for bonding the circuit members to each other is provided. In the present invention, the circuit connection material is interposed between a pair of circuit members arranged to face each other, and the whole is heated and pressurized to be formed of a cured product of the circuit connection material. The connection of circuit members is obtained by forming a connection part that bonds the circuit members to each other so that the circuit electrodes of the circuit member are electrically connected to each other. Provide a method.

本発明によれば、接続すべき電極間の抵抗を十分長期にわたって良好な値に維持できるとともにマイグレーションの発生を十分に抑制して優れた接続信頼性を達成できる。また、本発明に係る導電粒子は低コストで得ることができる。   According to the present invention, the resistance between the electrodes to be connected can be maintained at a good value for a sufficiently long time, and the occurrence of migration can be sufficiently suppressed to achieve excellent connection reliability. In addition, the conductive particles according to the present invention can be obtained at low cost.

本発明に係る導電粒子の好適な実施形態を模式的に示す断面図である。It is sectional drawing which shows typically suitable embodiment of the electrically-conductive particle which concerns on this invention. 本発明に係る回路接続材料の好適な実施形態を模式的に示す断面図である。It is sectional drawing which shows typically suitable embodiment of the circuit connection material which concerns on this invention. 回路電極同士が接続された接続構造体の好適な実施形態を模式的に示す断面図である。It is sectional drawing which shows typically suitable embodiment of the connection structure to which circuit electrodes were connected. 接続構造体の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of a connection structure.

以下、発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the invention will be described in detail. However, the present invention is not limited to the following embodiments.

(導電粒子)
図1に示す導電粒子10は、コア粒子としてのニッケル粒子1と、ニッケル粒子1の表面を覆う無電解めっきによるニッケル層2と、ニッケル層2の外側表面を覆うパラジウム層3とを備える。
(Conductive particles)
A conductive particle 10 shown in FIG. 1 includes nickel particles 1 as core particles, a nickel layer 2 by electroless plating covering the surface of the nickel particles 1, and a palladium layer 3 covering the outer surface of the nickel layer 2.

<ニッケル粒子>
ニッケル粒子1の粒径は、隣接する電極間の絶縁性を確保する観点から、隣接する電極の間隔よりも小さいことが好ましい(図3参照)。また、ニッケル粒子1の粒径は、接続すべき電極の高さにばらつきがあるときは、十分に低い接続抵抗を得る観点から、高さのばらつきよりも大きいことが好ましい。これらの理由から、ニッケル粒子1の粒径は、1〜200μmであることが好ましく、1〜100μmであることがより好ましく、20〜50μmであることが特に好ましい。ここで平均粒径は、レーザー光回折散乱式粒度分析計で測定したメディアン径D50を意味する。
<Nickel particles>
The particle diameter of the nickel particles 1 is preferably smaller than the interval between the adjacent electrodes from the viewpoint of ensuring the insulation between the adjacent electrodes (see FIG. 3). Further, when the height of the electrodes to be connected varies, the particle diameter of the nickel particles 1 is preferably larger than the variation in height from the viewpoint of obtaining a sufficiently low connection resistance. For these reasons, the particle diameter of the nickel particles 1 is preferably 1 to 200 μm, more preferably 1 to 100 μm, and particularly preferably 20 to 50 μm. Here, the average particle diameter means the median diameter D50 measured by a laser light diffraction / scattering particle size analyzer.

ニッケル粒子1は、液相還元析出法、気相化学反応法、ガス中蒸発法等の湿式、乾式のいずれかで製造されたものを使用できる。具体的には、Niから得たNiOを還元する方法、ニッケルカーボニルNi(CO)を焼成する方法(モンド法)、金属粒子に塩素ガスを接触させ、金属塩化物ガスを連続的に発生させた後、この金属塩化物ガスに水素等の還元性ガスを接触させる方法(特開平10−219313号公報)、Ni(OH)をHガスによって還元する方法(特開2001−284603号公報)、アトマイズ法、CVD法などが挙げられる。 The nickel particles 1 may be produced by either wet or dry methods such as liquid phase reduction deposition, gas phase chemical reaction, and gas evaporation. Specifically, a method of reducing NiO obtained from Ni 3 S 2, a method of firing nickel carbonyl Ni (CO) 4 (Mondo method), contacting metal gas with chlorine gas, and continuously supplying metal chloride gas After being generated in the metal chloride gas, a reducing gas such as hydrogen is brought into contact with the metal chloride gas (Japanese Patent Laid-Open No. 10-219313), and Ni (OH) 2 is reduced with H 2 gas (Japanese Patent Laid-Open No. 2001-2001). 284603), an atomizing method, a CVD method, and the like.

ニッケル粒子1とは、ニッケルを主成分とする粒子を意味し、ニッケルの他に金属、酸化物、無機物などが含有していてもよい。ニッケル粒子1の製造方法によって、これらの含有物の種類や量が異なるが、ニッケル粒子1の表面に後述のニッケル層2を形成することで、これらの含有物の種類や量の違いよる影響が抑えられ、緻密で均質なパラジウム層3を形成しやすくなる。よって、得られる導電粒子10のコストやサイズ、形状などの目的に合わせて、ニッケル粒子1を選択できる。   The nickel particles 1 mean particles containing nickel as a main component, and may contain metals, oxides, inorganic substances, etc. in addition to nickel. Depending on the method for producing the nickel particles 1, the types and amounts of these inclusions are different, but by forming the nickel layer 2 described later on the surface of the nickel particles 1, there is an influence due to the difference in the types and amounts of these inclusions. It is suppressed and it becomes easy to form a dense and homogeneous palladium layer 3. Therefore, the nickel particles 1 can be selected according to the purpose of the obtained conductive particles 10 such as cost, size, and shape.

ニッケル粒子1の形状は、特に制限はないが、隣接する電極間の絶縁性の確保と、対向電極間での導通安定性の確保のため、球体に近いことが望ましい。例えば、扁平したニッケル粒子1を用いた場合、平均粒径が隣接する電極間距離よりも十分に小さくても、電極間に配置されたニッケル粒子1が、隣接する電極間の方向に長辺が向いた状態で配置されると、隣接する電極間の絶縁性が不十分となりやすい。また、対向する電極間には、複数の導電粒子10が配置され導通が確保されるが、扁平した導電粒子10が存在すると、電極への接触状態やめり込み状態が、各粒子で異なり、導通安定性が不十分となりやすい。導電粒子10が電極に同じ状態で接触するため、そのコア粒子をなすニッケル粒子1の形状は球体が好ましい。   The shape of the nickel particles 1 is not particularly limited, but is preferably close to a sphere in order to ensure insulation between adjacent electrodes and to ensure conduction stability between opposing electrodes. For example, when flat nickel particles 1 are used, even if the average particle size is sufficiently smaller than the distance between adjacent electrodes, the nickel particles 1 arranged between the electrodes have long sides in the direction between the adjacent electrodes. When arranged in a facing state, the insulation between adjacent electrodes tends to be insufficient. In addition, a plurality of conductive particles 10 are arranged between the opposing electrodes to ensure conduction. However, when flat conductive particles 10 are present, the state of contact with the electrodes and the state of penetration are different for each particle, so that conduction is stable. Tend to be insufficient. Since the conductive particles 10 are in contact with the electrodes in the same state, the shape of the nickel particles 1 forming the core particles is preferably a sphere.

また、ニッケル粒子1の表面形状は、平滑であってもよいが、凹凸があると好ましい。凹凸部分が電極にめり込みやすく、電極と導電粒子10の接触面積が増えるため、導通抵抗の安定性が増す。   Further, the surface shape of the nickel particles 1 may be smooth, but it is preferable that there are irregularities. Since the uneven portion is easy to sink into the electrode and the contact area between the electrode and the conductive particles 10 increases, the stability of the conduction resistance increases.

<ニッケル層>
ニッケル層2は、無電解めっきによって形成されたものであり、ニッケルを主成分とする材料からなる。ニッケル層2は、ニッケル粒子1の表面の少なくとも一部又は全体を覆うためのものであり、図1に示すようにニッケル粒子1の表面の全体を覆っていることが好ましい。無電解めっきは、ニッケル粒子1の表面に十分に緻密で均質なニッケル層2を形成するのに好適である。
<Nickel layer>
The nickel layer 2 is formed by electroless plating and is made of a material mainly composed of nickel. The nickel layer 2 is for covering at least a part or the whole of the surface of the nickel particle 1, and preferably covers the whole surface of the nickel particle 1 as shown in FIG. Electroless plating is suitable for forming a sufficiently dense and homogeneous nickel layer 2 on the surface of the nickel particles 1.

ニッケル層のリン含有量及びホウ素含有量は、当該ニッケル層2の質量基準でいずれも、15質量%以下であることが好ましい。一般的に無電解ニッケルめっきではリン系又はホウ素系の還元剤を用いられるが、めっき条件によってリン及びホウ素の元素がニッケル層2中に取込まれる。これらの元素の含有量がいずれも15%質量以下であると、ニッケル層の表面上にパラジウムが析出しやすい。更に、緻密で均質なパラジウム層を更に形成しやすくするには、これらの元素の含有量はいずれも、10%質量以下であることがより好ましく、7%質量以下であることが更に好ましく、5%質量以下であることが最も好ましい。   The phosphorus content and boron content of the nickel layer are preferably 15% by mass or less on the basis of the mass of the nickel layer 2. Generally, in electroless nickel plating, a phosphorus-based or boron-based reducing agent is used, but phosphorus and boron elements are taken into the nickel layer 2 depending on plating conditions. When the content of these elements is 15% or less by mass, palladium is likely to be deposited on the surface of the nickel layer. Furthermore, in order to make it easier to form a dense and homogeneous palladium layer, the content of these elements is preferably 10% by mass or less, more preferably 7% by mass or less. Most preferably, it is not more than% mass.

リン及びホウ素は、無電解めっきで用いる還元剤の種類によりニッケル層2中に共析するものであり、リン含有量及びホウ素含有量によりニッケル層2の特性が変わるので、目的に合わせて選択すればよい。例えば、ニッケル層2中のリン含有量が低いほど、電気抵抗は低く、磁性を帯びる導電粒子10を得られる傾向がある。一方、リン含有量が高いほど、硬度が高く、電極にめり込み易い導電粒子10が得られる。   Phosphorus and boron are co-deposited in the nickel layer 2 depending on the type of reducing agent used in the electroless plating, and the characteristics of the nickel layer 2 change depending on the phosphorus content and boron content. That's fine. For example, the lower the phosphorus content in the nickel layer 2, the lower the electrical resistance, and there is a tendency to obtain magnetic conductive particles 10. On the other hand, the higher the phosphorus content, the higher the hardness and the more easily conductive particles 10 can be obtained.

ニッケル層2の厚さは、ニッケル粒子1の表面が十分に覆われていれば、特に規定されないが、5nm以上100nm以下が好ましい。ニッケル層2の厚さを5nm以上とすると、ニッケル粒子11表面の全体を比較的容易に覆うことが可能となる。他方、ニッケル層2の厚さが100nm以下であれば、無電解ニッケルめっき時間が短くて済むため、製造プロセスの短縮と、省資源、廃液量の低減が図れる。ニッケル層2の厚さが100nmを超えると、パラジウム層3を設けた最終形態としての導電粒子10の平均粒径と、ニッケル粒子1の平均粒径との差が大きくなる。これらの平均粒径の差が大きくなるに従い、回路接続材料が所望の性能を十分に発揮しない傾向となり、例えば、電極間の接続と絶縁のバランスが崩れるといった不具合が生じやすい。   The thickness of the nickel layer 2 is not particularly limited as long as the surface of the nickel particles 1 is sufficiently covered, but is preferably 5 nm or more and 100 nm or less. If the thickness of the nickel layer 2 is 5 nm or more, the entire surface of the nickel particles 11 can be covered relatively easily. On the other hand, if the thickness of the nickel layer 2 is 100 nm or less, the electroless nickel plating time can be shortened, so that the manufacturing process can be shortened, resources can be saved, and the amount of waste liquid can be reduced. When the thickness of the nickel layer 2 exceeds 100 nm, the difference between the average particle diameter of the conductive particles 10 as the final form provided with the palladium layer 3 and the average particle diameter of the nickel particles 1 increases. As the difference between these average particle diameters increases, the circuit connection material tends not to exhibit the desired performance sufficiently, and, for example, problems such as the balance between connection between electrodes and insulation are likely to occur.

<パラジウム層>
パラジウム層3は、パラジウムを主成分とする材料からなる。パラジウム層3は、ニッケル粒子1及びニッケル層2の表面の少なくとも一部又は全体を覆うためのものであり、図1に示すようにニッケル層2の外側表面の全体を覆っていることが好ましい。
<Palladium layer>
The palladium layer 3 is made of a material whose main component is palladium. The palladium layer 3 is for covering at least part or all of the surfaces of the nickel particles 1 and the nickel layer 2, and preferably covers the entire outer surface of the nickel layer 2 as shown in FIG. 1.

パラジウム層3を具備する導電粒子10は、酸化物を経由してイオン溶出する現象やマイグレーションがほとんどなく、より高度な接続信頼性を維持しやすい。ニッケル層2を覆うための金属としてパラジウムが好適な理由は以下の通りである。まず、パラジウムは貴金属であるため、卑金属や銅に比べて酸化されにくく、高温高湿にさらされても電気抵抗が上昇しにくい。また、パラジウムは、リンなどの合金化も可能であり、その含有量も任意に設定可能である。リンを含有しない純パラジウム層と比較してリンを含有するパラジウム層は硬度が高い(「表面技術 P651、Vol55、No10、2004」を参照)。パラジウム層3の硬度を高めると、導電粒子19が電極表面にめり込みやすくなり、導通性能をより一層向上し得る。パラジウム層3のパラジウム以外の含有量は、特に限定されず、導電粒子10の目的にあわせて適宜設定できる。   The conductive particles 10 having the palladium layer 3 have almost no phenomenon of ion elution via an oxide or migration, and it is easy to maintain higher connection reliability. The reason why palladium is suitable as the metal for covering the nickel layer 2 is as follows. First, since palladium is a noble metal, it is less likely to be oxidized than base metal or copper, and even when exposed to high temperature and high humidity, electrical resistance is unlikely to increase. Palladium can be alloyed with phosphorus or the like, and the content thereof can be arbitrarily set. The palladium layer containing phosphorus is higher in hardness than the pure palladium layer not containing phosphorus (see “Surface Technology P651, Vol55, No10, 2004”). When the hardness of the palladium layer 3 is increased, the conductive particles 19 can easily sink into the electrode surface, and the conduction performance can be further improved. The content of the palladium layer 3 other than palladium is not particularly limited, and can be appropriately set according to the purpose of the conductive particles 10.

導電粒子10は、より一層優れた接続信頼性を達成する観点から、表面のニッケル原子の数Aとパラジウム原子の数Bの比A/Bが1.0以下であることが好ましい。A/Bは、0.8以下が更に好ましく、0.6以下が特に好ましい。A/Bが0.6以下のパラジウム層3は緻密で均質であることに加え、表面におけるニッケルの露出が極めて少なく、ニッケルの溶出に起因する不具合をより一層高いレベルで抑制できる。   The conductive particles 10 preferably have a ratio A / B of the number A of nickel atoms to the number B of palladium atoms of 1.0 or less from the viewpoint of achieving even better connection reliability. A / B is more preferably 0.8 or less, and particularly preferably 0.6 or less. In addition to being dense and homogeneous, the palladium layer 3 having an A / B of 0.6 or less has very little nickel exposure on the surface, and it is possible to suppress defects caused by nickel elution at a higher level.

一方、A/Bが1.0を超えると、ニッケル原子が導電粒子10の表面に大量に存在しており、ニッケル粒子1及びニッケル層2の表面の状態が変化(酸化、合金化、結晶化、汚れなど)しやすい。A/Bが1.0を超えるパラジウム層3は十分に均質であるとは言えず、例えば、ニッケル粒子1の表面に、粒状のパラジウム析出物がまばらに付着した状態や粒状のパラジウム析出物が近接して並ぶような状態となっていることがある。特に後者は、SEMなどでの観察ではパラジウム析出物が連続した層をなしているように見え、これがニッケル粒子1及びニッケル層2の表面を覆っているようにも見える。しかし、パラジウム析出物の粒と粒の間から、ニッケルが溶出しやすく、ニッケルの酸化やマイグレーションによる不具合が生じやすい。   On the other hand, when A / B exceeds 1.0, a large amount of nickel atoms are present on the surface of the conductive particles 10, and the surface states of the nickel particles 1 and the nickel layer 2 change (oxidation, alloying, crystallization). Easy to get dirty, etc.). The palladium layer 3 with A / B exceeding 1.0 cannot be said to be sufficiently homogeneous. For example, a state in which granular palladium precipitates are sparsely adhered to the surface of the nickel particles 1 or granular palladium precipitates are present. It may be in a state of being in close proximity. In particular, the latter seems to form a continuous layer of palladium precipitates by observation with an SEM or the like, and this also seems to cover the surfaces of the nickel particles 1 and the nickel layer 2. However, nickel is likely to elute between the palladium precipitate grains, and problems due to nickel oxidation and migration are likely to occur.

パラジウム層3の厚さは、5〜100nmであることが好ましい。パラジウム層の厚さが5nm未満であると、導電性が不十分となりやすい。一方、パラジウム層2の厚さが100nmを超えると、導電粒子10全体の弾性が不十分となりやすい。導電粒子10全体の弾性が不十分であると、導電粒子10を分散させて得られた回路接続材料が一対の電極で挟まれ、縦方向(一対の電極が対向する方向)に熱圧着などで潰された際、導電粒子10の弾性によってパラジウム層3が電極表面に十分に押し当てられる力が不十分となる。そのため、パラジウム層3と電極との接触面積が小さくなり、電極間の接続信頼性の向上効果が小さくなる。また、パラジウム層3が厚いほど、コストが高くなり、経済的に好ましくない。パラジウム層3を無電解めっき(還元めっき又は置換めっき)によって形成する場合、めっき液量を適宜変更することによってパラジウム層3の厚さを任意に設定できる。   The thickness of the palladium layer 3 is preferably 5 to 100 nm. When the thickness of the palladium layer is less than 5 nm, the conductivity tends to be insufficient. On the other hand, if the thickness of the palladium layer 2 exceeds 100 nm, the elasticity of the entire conductive particle 10 tends to be insufficient. If the elasticity of the conductive particles 10 as a whole is insufficient, the circuit connection material obtained by dispersing the conductive particles 10 is sandwiched between a pair of electrodes, and thermocompression bonding or the like is performed in the vertical direction (the direction in which the pair of electrodes face each other). When crushed, the force with which the palladium layer 3 is sufficiently pressed against the electrode surface due to the elasticity of the conductive particles 10 becomes insufficient. Therefore, the contact area between the palladium layer 3 and the electrode is reduced, and the effect of improving the connection reliability between the electrodes is reduced. Further, the thicker the palladium layer 3 is, the higher the cost is, which is not economically preferable. When the palladium layer 3 is formed by electroless plating (reduction plating or displacement plating), the thickness of the palladium layer 3 can be arbitrarily set by appropriately changing the amount of plating solution.

(導電粒子の製造方法)
次に、導電粒子10の製造方法について説明する。導電粒子10は、ニッケル粒子1の表面を覆うニッケル層2を無電解めっきによって形成する工程S1と、ニッケル層2の表面を覆うパラジウム層3を形成する工程S2とを経て製造される。
(Method for producing conductive particles)
Next, a method for manufacturing the conductive particles 10 will be described. The conductive particles 10 are manufactured through a step S1 of forming a nickel layer 2 covering the surface of the nickel particles 1 by electroless plating and a step S2 of forming a palladium layer 3 covering the surface of the nickel layer 2.

<ニッケル層を形成する工程(S1)>
この工程は、ニッケル粒子1の表面に無電解めっきによってニッケル層2を形成する工程である。これにより、ニッケル粒子1と、その表面の少なくとも一部又は全体を覆うニッケル層2とからなる母粒子を製造する。無電解ニッケルめっき液を構成する成分としては、例えば、硫酸ニッケルや塩化ニッケル等の水溶性ニッケル塩、次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の還元剤、クエン酸、酒石酸、ヒドロキシ酢酸、リンゴ酸、乳酸、グルコン酸、グリシン等のアミノ酸、エチレンジアミン、アルキルアミン等のアミン類、その他のアンモニウム、EDTA、ピロリン酸等の錯化剤が挙げられる。
<Step of forming a nickel layer (S1)>
This step is a step of forming the nickel layer 2 on the surface of the nickel particles 1 by electroless plating. Thereby, the mother particle which consists of the nickel particle 1 and the nickel layer 2 which covers at least one part or the whole of the surface is manufactured. Examples of components constituting the electroless nickel plating solution include water-soluble nickel salts such as nickel sulfate and nickel chloride, reducing agents such as sodium hypophosphite, sodium borohydride, dimethylamine borane and hydrazine, citric acid And amino acids such as tartaric acid, hydroxyacetic acid, malic acid, lactic acid, gluconic acid and glycine, amines such as ethylenediamine and alkylamine, and other complexing agents such as ammonium, EDTA and pyrophosphoric acid.

また、無電解めっき反応時において、pH、錯化剤、及び還元剤として次亜リン酸ナトリウム(次亜リン酸・水酸化ナトリウム)等のめっき液組成を厳密に調整することにより、ニッケル層2中のリン含有量を制御させながら母粒子を得ることができる。例えば、無電解ニッケルめっき液のpHを2〜12の範囲に調整することによりリン含有量が0.1〜15質量%のニッケル層2を形成することができる。   Further, during the electroless plating reaction, the nickel layer 2 can be adjusted by strictly adjusting the plating solution composition such as sodium hypophosphite (hypophosphorous acid / sodium hydroxide) as the pH, complexing agent, and reducing agent. The mother particles can be obtained while controlling the phosphorus content therein. For example, the nickel layer 2 having a phosphorus content of 0.1 to 15% by mass can be formed by adjusting the pH of the electroless nickel plating solution to a range of 2 to 12.

無電解めっき終了後は、水洗を短時間に効率よく行うことが好ましい。水洗時間が短いほど、ニッケル表面に酸化皮膜ができにくいため、パラジウム層3の形成が有利になる。また、通常、無電解めっき終了後、メンブレンフィルタ等を用いて濾過が行われるが、この場合もニッケルの酸化を防ぐために濾過を迅速に行うことが好ましい。   After the electroless plating is completed, it is preferable to perform water washing efficiently in a short time. The shorter the washing time, the more difficult it is to form an oxide film on the nickel surface, so the formation of the palladium layer 3 is more advantageous. Usually, after completion of electroless plating, filtration is performed using a membrane filter or the like. In this case as well, it is preferable to perform filtration quickly in order to prevent nickel oxidation.

<パラジウム層を形成する工程(S2)>
この工程は、工程S1で得られた母粒子の表面にパラジウム層3を形成して導電粒子10を製造する工程である。パラジウム層3の形成方法としては、特に限定されないが、電解めっき、無電解めっき、蒸着などが挙げられる。中でも無電解めっきである還元めっき又は置換めっきによって形成することが好ましい。この場合、ニッケル層2を覆うパラジウム層3が緻密で均質なものとなり、ニッケルの表面露出を十分に低減できる。一般的にニッケル粒子もしくはニッケル層の表面に無電解めっきでパラジウム層を形成する場合、ニッケル表面の状態(酸化、合金化、結晶性、汚れなど)によって、均質な層が形成できないことがある。加えて、パラジウム層の形成状態は、無電解パラジウムめっき液との相性によっても影響する。よって、ニッケル表面の状態にあわせた無電解パラジウムめっき液、めっき方法又はニッケル表面の前処理を選択する必要がある。
<Step of forming a palladium layer (S2)>
This step is a step of manufacturing the conductive particles 10 by forming the palladium layer 3 on the surface of the mother particles obtained in the step S1. Although it does not specifically limit as a formation method of the palladium layer 3, Electroplating, electroless plating, vapor deposition, etc. are mentioned. Among these, it is preferable to form by electroless plating reduction plating or displacement plating. In this case, the palladium layer 3 covering the nickel layer 2 becomes dense and homogeneous, and the surface exposure of nickel can be sufficiently reduced. In general, when a palladium layer is formed on the surface of nickel particles or a nickel layer by electroless plating, a homogeneous layer may not be formed depending on the state of the nickel surface (oxidation, alloying, crystallinity, dirt, etc.). In addition, the formation state of the palladium layer is influenced by the compatibility with the electroless palladium plating solution. Therefore, it is necessary to select an electroless palladium plating solution, a plating method, or a nickel surface pretreatment according to the state of the nickel surface.

無電解めっきの中でも特に、還元めっきによって形成されたパラジウム層3は、不純物が極めて少なく、母粒子(ニッケル)を完全に覆うことが可能なため更に好ましい。還元めっきは、パラジウムイオンを還元剤により還元して析出させるため、電源が不要なことに加え、微粒子のような独立した対象物を大量に一度にめっきするのに好適に用いられる。また、還元めっきによってパラジウム層3を形成する場合、還元剤や添加剤によりパラジウム層3のパラジウム濃度や物性を変更することができる。例えば、リンを含有した還元剤を用いるとパラジウム層3中にリンが共析する。また、ギ酸やギ酸塩、ヒドラジンなどを還元剤に用いると純パラジウムに近い高純度なパラジウム層3が得られる。リンを含有したパラジウム層13は純パラジウムより抵抗は劣るが、硬いことが特徴である。これらの違いは、導電粒子10の用途に合わせて適宜選択可能である。   Among the electroless platings, the palladium layer 3 formed by reduction plating is more preferable because it has very few impurities and can completely cover the mother particles (nickel). In reduction plating, palladium ions are reduced and deposited by a reducing agent, so that a power source is not required, and it is suitably used for plating a large number of independent objects such as fine particles at a time. Moreover, when forming the palladium layer 3 by reduction plating, the palladium concentration and physical property of the palladium layer 3 can be changed with a reducing agent or an additive. For example, when a reducing agent containing phosphorus is used, phosphorus is co-deposited in the palladium layer 3. Further, when formic acid, formate, hydrazine, or the like is used as a reducing agent, a highly pure palladium layer 3 close to pure palladium can be obtained. The palladium layer 13 containing phosphorus is inferior in resistance to pure palladium but is hard. These differences can be appropriately selected according to the use of the conductive particles 10.

還元めっきによってパラジウム層3を形成する場合、めっき液量を調整することによってもパラジウム層3の厚さをコントロールできる。詳細には、使用するめっき液に含有するパラジウムイオン濃度から析出後のめっき厚みをあらかじめ算出することができる。このため、無駄なパラジウムや試薬を使用することが無く、低コスト化が可能である。   When the palladium layer 3 is formed by reduction plating, the thickness of the palladium layer 3 can also be controlled by adjusting the amount of the plating solution. Specifically, the plating thickness after deposition can be calculated in advance from the concentration of palladium ions contained in the plating solution used. For this reason, useless palladium and a reagent are not used, and cost reduction is possible.

一方、置換めっきによってパラジウム層3を形成する場合、イオン化傾向の差により、母粒子を構成するニッケルの溶解とパラジウムの析出が同時に起こるため、母粒子とパラジウム層3との密着力の点で優れる。   On the other hand, when the palladium layer 3 is formed by displacement plating, due to the difference in ionization tendency, dissolution of nickel constituting the mother particle and precipitation of palladium occur simultaneously, which is excellent in terms of adhesion between the mother particle and the palladium layer 3. .

(めっき層の分析)
パラジウム層3の成分分析には、原子吸光光度計が使用できる。たとえば、導電粒子10を酸などで溶解した液を、原子吸光光度計を用いて分析して、金属イオン濃度を測定し、算出する方法がある。また、ICP発光分析装置を用いてパラジウム層3を分析してもよい。ICP発光分析装置を用いると、定性分析と同時に不純物の定量も可能となる。また、パラジウム層3中のリン濃度は、EDX(Energy Dispersive X−ray Spectroscopy)を使用して定量することもできる。なお、低倍率でのEDX測定では複数粒子から情報を得てしまうため、高倍率でのEDX測定が好ましい。
(Analysis of plating layer)
An atomic absorption photometer can be used for component analysis of the palladium layer 3. For example, there is a method in which a solution obtained by dissolving the conductive particles 10 with an acid or the like is analyzed using an atomic absorption photometer to measure and calculate a metal ion concentration. Further, the palladium layer 3 may be analyzed using an ICP emission analyzer. When an ICP emission analyzer is used, it is possible to quantify impurities simultaneously with qualitative analysis. Further, the phosphorus concentration in the palladium layer 3 can be quantified using EDX (Energy Dispersive X-ray Spectroscopy). In addition, since EDX measurement at a low magnification obtains information from a plurality of particles, EDX measurement at a high magnification is preferable.

(粒子の観察)
コア粒子を被覆するめっき膜(ニッケル層2、パラジウム層3)などの観察には、走査型電子顕微鏡(SEM、Scanning Electron Microscope)を用いることができる。画像により、めっき膜表面を確認できる。
(Particle observation)
A scanning electron microscope (SEM, Scanning Electron Microscope) can be used for observing the plating film (nickel layer 2, palladium layer 3) covering the core particles. The plated film surface can be confirmed from the image.

(回路接続材料)
上記のようにして作成した導電粒子10を接着剤成分中に分散させることによって接着剤組成物を調製する。回路接続材料として、ペースト状の接着剤組成物をそのまま使用してもよいし、これをフィルム状に成形して得た異方導電性フィルムを使用してもよい。図3に示す異方導電性フィルム50は、接着剤成分20に導電粒子10を分散させたものである。
(Circuit connection material)
An adhesive composition is prepared by dispersing the conductive particles 10 prepared as described above in an adhesive component. As the circuit connection material, the paste-like adhesive composition may be used as it is, or an anisotropic conductive film obtained by forming this into a film may be used. An anisotropic conductive film 50 shown in FIG. 3 is obtained by dispersing conductive particles 10 in an adhesive component 20.

(接続構造体)
図3に示す接続構造体100は、相互に対向する第1の回路部材30及び第2の回路部材40を備えており、第1の回路部材30と第2の回路部材40との間には、これらを接続する接続部50aが設けられている。
(Connection structure)
The connection structure 100 shown in FIG. 3 includes a first circuit member 30 and a second circuit member 40 that face each other, and the connection between the first circuit member 30 and the second circuit member 40. A connecting portion 50a for connecting them is provided.

第1の回路部材30は、回路基板(第1の回路基板)31と、回路基板31の主面31a上に形成される回路電極(第1の回路電極)32とを備える。第2の回路部材40は、回路基板(第2の回路基板)41と、回路基板41の主面41a上に形成される回路電極(第2の回路電極)42とを備える。   The first circuit member 30 includes a circuit board (first circuit board) 31 and a circuit electrode (first circuit electrode) 32 formed on the main surface 31 a of the circuit board 31. The second circuit member 40 includes a circuit board (second circuit board) 41 and a circuit electrode (second circuit electrode) 42 formed on the main surface 41 a of the circuit board 41.

回路部材の具体例としては、ICチップ(半導体チップ)、抵抗体チップ、コンデンサチップ、ドライバーIC等のチップ部品やリジット型のパッケージ基板などが挙げられる。これらの回路部材は、回路電極を備えており、多数の回路電極を備えているものが一般的である。上記回路部材が接続される、もう一方の回路部材の具体例としては、金属配線を有するフレキシブルテープ基板、フレキシブルプリント配線板、インジウム錫酸化物(ITO)が蒸着されたガラス基板などの配線基板が挙げられる。基板の材質としては、半導体、ガラス基板、セラミック等の無機物;ポリイミド、ポリカーボネート、ポリエステルスルホン等の有機物;これらの無機物や有機物を複合化した材料などが挙げられる。   Specific examples of the circuit member include chip components such as an IC chip (semiconductor chip), a resistor chip, a capacitor chip, and a driver IC, and a rigid package substrate. These circuit members are provided with circuit electrodes, and generally have many circuit electrodes. Specific examples of the other circuit member to which the circuit member is connected include a flexible tape substrate having metal wiring, a flexible printed wiring board, and a wiring substrate such as a glass substrate on which indium tin oxide (ITO) is deposited. Can be mentioned. Examples of the material of the substrate include inorganic materials such as semiconductors, glass substrates, and ceramics; organic materials such as polyimide, polycarbonate, and polyester sulfone; and materials obtained by combining these inorganic materials and organic materials.

異方導電性フィルム50によれば、回路部材同士を効率的且つ高い接続信頼性をもって接続することができる。したがって、異方導電性フィルム50は、微細な接続端子(回路電極)を多数備えるチップ部品の配線基板上へのCOG実装もしくはCOF実装に好適である。   According to the anisotropic conductive film 50, circuit members can be connected efficiently and with high connection reliability. Therefore, the anisotropic conductive film 50 is suitable for COG mounting or COF mounting on a wiring board of a chip component having many fine connection terminals (circuit electrodes).

接続部50aは回路接続材料に含まれる接着剤成分の硬化物20aと、これに分散している導電粒子10とを備える。そして、接続構造体100においては、対向する回路電極32と回路電極42とが、導電粒子10を介して電気的に接続されている。より具体的には、図3に示す通り、導電粒子10が回路電極32,42の双方に直接接触している。他方、横方向は絶縁性を有する硬化物20aが介在することで絶縁性が維持される。従って、異方導電性フィルム50を用いれば、10μmレベルの狭ピッチでの絶縁信頼性を向上させることが可能となる。なお、接続時に回路電極32又は回路電極42の位置ずれが生じた場合にあっては、接着剤成分を硬化させた後であってもリペアが可能である。   The connection part 50a includes a cured product 20a of an adhesive component contained in the circuit connection material, and the conductive particles 10 dispersed therein. In the connection structure 100, the circuit electrode 32 and the circuit electrode 42 facing each other are electrically connected via the conductive particles 10. More specifically, as shown in FIG. 3, the conductive particles 10 are in direct contact with both the circuit electrodes 32 and 42. On the other hand, in the lateral direction, insulation is maintained by the presence of the cured product 20a having insulation. Therefore, if the anisotropic conductive film 50 is used, it is possible to improve the insulation reliability at a narrow pitch of 10 μm level. In addition, when the position shift of the circuit electrode 32 or the circuit electrode 42 occurs at the time of connection, repair is possible even after the adhesive component is cured.

接着剤成分20としては、熱反応性樹脂と硬化剤の混合物が用いられ、具体的には、エポキシ樹脂と潜在性硬化剤との混合物が好ましい。   As the adhesive component 20, a mixture of a heat-reactive resin and a curing agent is used, and specifically, a mixture of an epoxy resin and a latent curing agent is preferable.

エポキシ樹脂としては、エピクロルヒドリンとビスフェノールAやF、AD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独に又は2種以上を混合して用いることが可能である。   Epoxy resins include bisphenol type epoxy resins derived from epichlorohydrin and bisphenol A, F, AD, etc., epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac, and naphthalene type epoxy resins having a skeleton containing a naphthalene ring. , Various epoxy compounds having two or more glycidyl groups in one molecule such as glycidylamine, glycidyl ether, biphenyl, and alicyclic can be used alone or in admixture of two or more.

これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることが好ましい。これによりエレクトロマイグレーションを防止しやすくなる。 These epoxy resins, impurity ions (Na +, Cl -, etc.) and, it is preferable to use a high purity which is reduced to 300ppm or less hydrolyzable chlorine and the like. This makes it easier to prevent electromigration.

潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。この他、接着剤には、ラジカル反応性樹脂と有機過酸化物の混合物や紫外線などのエネルギー線硬化性樹脂が用いられる。   Examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like. In addition, an energy ray curable resin such as a mixture of a radical reactive resin and an organic peroxide or ultraviolet rays is used for the adhesive.

接着剤成分20には、接着後の応力を低減するため、又は接着性を向上するために、ブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム、シリコーンゴム等を混合することができる。   To the adhesive component 20, butadiene rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber, or the like can be mixed in order to reduce stress after adhesion or to improve adhesion.

接着剤組成物をフィルム状にするためには、フェノキシ樹脂、当該組成物にポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂を配合することが効果的である。これらのフィルム形成性高分子は、反応性樹脂の硬化時の応力緩和にも効果がある。特に、フィルム形成性高分子が、水酸基などの官能基を有する場合、接着性が向上するためより好ましい。   In order to make the adhesive composition into a film, it is effective to blend a phenoxy resin and a thermoplastic resin such as a polyester resin and a polyamide resin into the composition. These film-forming polymers are also effective in stress relaxation when the reactive resin is cured. In particular, when the film-forming polymer has a functional group such as a hydroxyl group, the adhesiveness is improved, which is more preferable.

フィルムの形成は、エポキシ樹脂、アクリルゴム、潜在性硬化剤、及びフィルム形成性高分子からなる接着組成物を、有機溶剤に溶解又は分散させることにより、液状化して、剥離性基材(セパレータフィルム)上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。このとき用いる有機溶剤としては、材料の溶解性を向上させる点において、芳香族炭化水素系と含酸素系の混合溶剤が好ましい。   The film is formed by dissolving or dispersing an adhesive composition composed of an epoxy resin, acrylic rubber, a latent curing agent, and a film-forming polymer in an organic solvent to form a peelable substrate (separator film). ) And then removing the solvent below the activation temperature of the curing agent. The organic solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent in terms of improving the solubility of the material.

異方導電性フィルム50の厚さは、導電粒子の粒径及び接着剤組成物の特性を考慮して相対的に決定されるが、1〜100μmであることが好ましい。1μm未満では充分な接着性が得られず、100μmを超えると導電性を得るために多量の導電粒子を必要とするために現実的ではない。こうした理由から、厚さは3〜50μmであることがより好ましい。   The thickness of the anisotropic conductive film 50 is relatively determined in consideration of the particle size of the conductive particles and the properties of the adhesive composition, but is preferably 1 to 100 μm. If it is less than 1 μm, sufficient adhesion cannot be obtained, and if it exceeds 100 μm, a large amount of conductive particles are required to obtain conductivity, which is not realistic. For these reasons, the thickness is more preferably 3 to 50 μm.

(接続構造体の製造方法)
次に、接続構造体100の製造方法について説明する。図4は、接続構造体の製造方法の一実施形態を概略断面図により示す工程図である。本実施形態では、異方導電性フィルム50を熱硬化させ、最終的に接続構造体100を製造する。
(Method for manufacturing connection structure)
Next, a method for manufacturing the connection structure 100 will be described. FIG. 4 is a process diagram showing a schematic cross-sectional view of an embodiment of a method for manufacturing a connection structure. In the present embodiment, the anisotropic conductive film 50 is thermally cured to finally manufacture the connection structure 100.

所定の長さに切断した異方導電性フィルム50を回路部材30の主面31a上に載置する(図4(a))。この段階では、異方導電性フィルム50の一方面上にはセパレータフィルム52が残存した状態となっている。   The anisotropic conductive film 50 cut to a predetermined length is placed on the main surface 31a of the circuit member 30 (FIG. 4A). At this stage, the separator film 52 remains on one surface of the anisotropic conductive film 50.

次に、図4(a)の矢印A及びB方向に加圧し、異方導電性フィルム50を第1の回路部材30に仮固定する(図4(b))。このときの圧力は回路部材に損傷を与えない範囲であれば特に制限されないが、一般的には0.1〜30.0MPaとすることが好ましい。また、加熱しながら加圧してもよく、加熱温度は異方導電性フィルム50が実質的に硬化しない温度とする。加熱温度は一般的には50〜100℃にするのが好ましい。これらの加熱及び加圧は0.1〜2秒間の範囲で行うことが好ましい。   Next, pressure is applied in the directions of arrows A and B in FIG. 4A to temporarily fix the anisotropic conductive film 50 to the first circuit member 30 (FIG. 4B). Although the pressure at this time will not be restrict | limited especially if it is a range which does not damage a circuit member, Generally it is preferable to set it as 0.1-30.0 MPa. Moreover, you may pressurize, heating, and let heating temperature be the temperature which the anisotropic conductive film 50 does not harden | cure substantially. In general, the heating temperature is preferably 50 to 100 ° C. These heating and pressurization are preferably performed in the range of 0.1 to 2 seconds.

セパレータフィルム52を剥がした後、図4(c)に示すように、第2の回路部材40を、第2の回路電極42を第1の回路部材30の側に向けるようにして異方導電性フィルム50上に載せる。そして、異方導電性フィルム50を加熱しながら、図4(c)の矢印A及びB方向に全体を加圧する。このときの加熱温度は、接着剤成分20が硬化可能な温度とする。加熱温度は、60〜180℃が好ましく、70〜170℃がより好ましく、80〜160℃が更に好ましい。加熱温度が60℃未満であると硬化速度が遅くなる傾向があり、180℃を超えると望まない副反応が進行し易い傾向がある。加熱時間は、0.1〜180秒が好ましく、0.5〜180秒がより好ましく、1〜180秒が更に好ましい。   After the separator film 52 is peeled off, the second circuit member 40 is anisotropically conductive with the second circuit electrode 42 facing the first circuit member 30 as shown in FIG. Place on film 50. And the whole is pressurized to the arrow A and B direction of FIG.4 (c), heating the anisotropic conductive film 50. FIG. The heating temperature at this time is a temperature at which the adhesive component 20 can be cured. The heating temperature is preferably 60 to 180 ° C, more preferably 70 to 170 ° C, and still more preferably 80 to 160 ° C. If the heating temperature is less than 60 ° C, the curing rate tends to be slow, and if it exceeds 180 ° C, unwanted side reactions tend to proceed. The heating time is preferably 0.1 to 180 seconds, more preferably 0.5 to 180 seconds, and still more preferably 1 to 180 seconds.

接着剤成分20の硬化により接続部50aが形成されて、図3に示すような接続構造体100が得られる。接続の条件は、使用する用途、接着剤組成物、回路部材によって適宜選択される。なお、接着剤成分20として、光によって硬化するものを使用した場合には、異方導電性フィルム50に対して活性光線やエネルギー線を適宜照射すればよい。活性光線としては、紫外線、可視光、赤外線等が挙げられる。エネルギー線としては、電子線、エックス線、γ線、マイクロ波等が挙げられる。   The connection part 50a is formed by hardening of the adhesive component 20, and the connection structure 100 as shown in FIG. 3 is obtained. The connection conditions are appropriately selected depending on the application to be used, the adhesive composition, and the circuit member. In addition, when what is hardened | cured with light is used as the adhesive component 20, what is necessary is just to irradiate the anisotropic conductive film 50 with an actinic ray or an energy ray suitably. Examples of the active light include ultraviolet light, visible light, and infrared light. Examples of energy rays include electron beams, X-rays, γ rays, and microwaves.

以上、本発明に係る導電粒子10及び導電粒子10の製造方法の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、導電粒子10の変形例として、パラジウム層3の表面を被覆する他の導電層(例えば金層)を更に有する導電粒子が挙げられる。   As mentioned above, although suitable embodiment of the manufacturing method of the electrically-conductive particle 10 and the electrically-conductive particle 10 which concerns on this invention was described in detail, this invention is not limited to the said embodiment. For example, as a modified example of the conductive particles 10, conductive particles further including another conductive layer (for example, a gold layer) covering the surface of the palladium layer 3 can be cited.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

(導電粒子1)
平均粒径20μmのニッケル粒子100gを、硫酸ニッケル30g/L、クエン酸20g/L、次亜リン酸ナトリウム30g/L、水酸化ナトリウム11.3g/L、めっき安定剤:16.6ml/L、pH6.4に調整した80℃の水:300mlに投入し、5分攪拌した。その後、直径3μmのメンブレンフィルタ(ミリポア社製)で濾過して、ニッケル粒子上に5nm厚の無電解ニッケル層を有する母粒子1を得た。
(Conductive particles 1)
100 g of nickel particles having an average particle diameter of 20 μm, 30 g / L of nickel sulfate, 20 g / L of citric acid, 30 g / L of sodium hypophosphite, 11.3 g / L of sodium hydroxide, plating stabilizer: 16.6 ml / L, It was poured into 300 ml of 80 ° C. water adjusted to pH 6.4 and stirred for 5 minutes. Then, it filtered with the membrane filter (made by Millipore) 3 micrometers in diameter, and obtained the mother particle 1 which has an electroless nickel layer 5 nm thick on a nickel particle.

得られた母粒子1を塩化パラジウム:3g/L(パラジウム:2g/L)、塩酸25ml/L、クエン酸20g/Lに調整した35℃の水:200mlにすばやく投入し、5分攪拌した。その後、濾過と水洗を3回行った。40℃で7時間真空乾燥した後、解砕により凝集を解した。以上の操作により、母粒子1の表面に10nm厚のパラジウム層を有する導電粒子1を得た。   The obtained mother particles 1 were quickly put into 200 ml of 35 ° C. water adjusted to palladium chloride: 3 g / L (palladium: 2 g / L), hydrochloric acid 25 ml / L, and citric acid 20 g / L, and stirred for 5 minutes. Then, filtration and water washing were performed 3 times. After vacuum drying at 40 ° C. for 7 hours, aggregation was broken by crushing. Through the above operation, conductive particles 1 having a palladium layer having a thickness of 10 nm on the surface of mother particles 1 were obtained.

(導電粒子2)
平均粒径10μmのニッケル粒子100gを、クエン酸ナトリウム:20g/Lと、めっき安定剤:16.6ml/Lを溶解してpH=5.2に調整した70℃の水300mlに投入し、攪拌した。そして、定量ポンプを用いて、ニッケル粒子が分散した液のpHを5.2に維持しながらめっき液a及びめっき液bをそれぞれ同時かつ平行に10ml/minで添加した。その後、直径3μmのメンブレンフィルタ(ミリポア社製)で濾過して、ニッケル粒子上に5nm厚の無電解ニッケル層を有する母粒子2を得た。めっき液aとして、硫酸ニッケル224g/L、クエン酸ナトリウム:40g/Lに調整した液を使用し、めっき液bとして、次亜リン酸ナトリウム:220g/L、水酸化ナトリウム:85g/Lに調整した液を使用した。
(Conductive particles 2)
100 g of nickel particles having an average particle diameter of 10 μm were added to 300 ml of 70 ° C. water adjusted to pH = 5.2 by dissolving sodium citrate: 20 g / L and plating stabilizer: 16.6 ml / L, and stirred. did. Then, using a metering pump, the plating solution a and the plating solution b were added simultaneously and in parallel at 10 ml / min while maintaining the pH of the solution in which the nickel particles were dispersed at 5.2. Then, it filtered with the membrane filter (made by a Millipore company) with a diameter of 3 micrometers, and obtained the mother particle 2 which has an electroless nickel layer 5 nm thick on a nickel particle. As plating solution a, a solution adjusted to nickel sulfate 224 g / L, sodium citrate: 40 g / L was used, and as plating solution b, sodium hypophosphite: 220 g / L, sodium hydroxide: 85 g / L The liquid used was used.

得られた母粒子2を塩化パラジウム:6.55g/L(パラジウム:4.0g/L)、塩酸25ml/L、クエン酸20g/Lに調整し35℃の水:200mlにすばやく投入し、5分攪拌した。その後、濾過と水洗を1回行った。置換パラジウムめっき後の母粒子2を原子吸光により分析したところ、10nm厚のパラジウム層が形成されていることを確認した。この置換パラジウムめっき後の母粒子2を水200ml、めっき液c:75ml、めっき液d:75mlを混ぜた60℃の無電解の還元パラジウムめっき液に投入し、5分攪拌した。めっき液cとめっき液dの組成は、特許第3035763号を参考にした。めっき液cとしては、パラジウム:20g/L、クエン酸ナトリウム:250g/L、エチレンジアミン:50g/Lを混合し、pHを6.0に調整した液を用いた。上記記載のパラジウムとは金属パラジウムとしての重量換算値である。めっき液dとしては、ギ酸ナトリウム:100g/Lを水酸化ナトリウム及び/又は硫酸でpH6.0に調整した液を用いた。その後、濾過と水洗を3回行った。40℃で7時間真空乾燥した後、解砕により凝集を解した。以上の操作により、母粒子2の表面に30nm厚のパラジウム層を有する導電粒子2を作製した。なお、このパラジウム層は置換パラジウムめっきと還元パラジウムめっきによって得られたものである。   The obtained mother particles 2 were adjusted to palladium chloride: 6.55 g / L (palladium: 4.0 g / L), hydrochloric acid 25 ml / L, and citric acid 20 g / L, and quickly charged into 35 ° C. water: 200 ml. Stir for minutes. Then, filtration and water washing were performed once. When the mother particles 2 after substitution palladium plating were analyzed by atomic absorption, it was confirmed that a palladium layer having a thickness of 10 nm was formed. The mother particles 2 after substitution palladium plating were put into an electroless reduced palladium plating solution at 60 ° C. in which 200 ml of water, plating solution c: 75 ml, and plating solution d: 75 ml were mixed, and stirred for 5 minutes. Japanese Patent No. 3035763 was referred to for the composition of the plating solution c and the plating solution d. As the plating solution c, a solution prepared by mixing palladium: 20 g / L, sodium citrate: 250 g / L, ethylenediamine: 50 g / L and adjusting the pH to 6.0 was used. The palladium described above is a weight converted value as metallic palladium. As the plating solution d, a solution prepared by adjusting sodium formate: 100 g / L to pH 6.0 with sodium hydroxide and / or sulfuric acid was used. Then, filtration and water washing were performed 3 times. After vacuum drying at 40 ° C. for 7 hours, aggregation was broken by crushing. Through the above operation, conductive particles 2 having a palladium layer with a thickness of 30 nm on the surface of the mother particles 2 were produced. This palladium layer is obtained by displacement palladium plating and reduced palladium plating.

(導電粒子3)
平均粒径5μmのニッケル粒子100gを、クエン酸ナトリウム:20g/L、めっき安定剤:16.6ml/Lを溶解させてpH=6.0に調整した70℃の水300mlに投入し、攪拌した。そして、定量ポンプを用いて、ニッケル粒子が分散した液のpHを6.0に維持しながらめっき液a及びめっき液bをそれぞれ同時かつ平行に10ml/minで添加した。その後、直径3μmのメンブレンフィルタ(ミリポア社製)で濾過して、ニッケル粒子上に10nm厚の無電解ニッケル層を有する母粒子3を得た。
(Conductive particles 3)
100 g of nickel particles having an average particle diameter of 5 μm were added to 300 ml of 70 ° C. water adjusted to pH = 6.0 by dissolving sodium citrate: 20 g / L and plating stabilizer: 16.6 ml / L and stirred. . Then, using a metering pump, plating solution a and plating solution b were added simultaneously and in parallel at 10 ml / min while maintaining the pH of the solution in which nickel particles were dispersed at 6.0. Then, it filtered with the membrane filter (made by Millipore) 3 micrometers in diameter, and obtained the mother particle 3 which has an electroless nickel layer 10 nm thick on a nickel particle.

得られた母粒子3を、水400ml、めっき液c:150ml、めっき液d:150mlを混ぜた70℃の無電解パラジウムめっき液にすばやく投入し、5分攪拌した。その後、濾過と水洗を3回行った。40℃で7時間真空乾燥した後、解砕により凝集を解した。以上の操作により、母粒子3の最表面に20nm厚のパラジウム層を有する導電粒子3を作製した。   The obtained mother particles 3 were quickly put into an electroless palladium plating solution at 70 ° C. in which 400 ml of water, plating solution c: 150 ml, and plating solution d: 150 ml were mixed, and stirred for 5 minutes. Then, filtration and water washing were performed 3 times. After vacuum drying at 40 ° C. for 7 hours, aggregation was broken by crushing. Through the above operation, conductive particles 3 having a palladium layer with a thickness of 20 nm on the outermost surface of base particles 3 were produced.

(導電粒子4)
平均粒径5μmのニッケル粒子を100g使用し、無電解ニッケルめっき液a及びbの滴下時間を長くし、pHを5.5に維持したこと以外は導電粒子2と同様に操作を行い、ニッケル粒子上に20nmの無電解ニッケル層を有する母粒子4を得た。
(Conductive particles 4)
The nickel particles were operated in the same manner as the conductive particles 2 except that 100 g of nickel particles having an average particle diameter of 5 μm were used, the dropping time of the electroless nickel plating solutions a and b was increased, and the pH was maintained at 5.5. Base particles 4 having an electroless nickel layer of 20 nm thereon were obtained.

得られた母粒子4をすぐにクエン酸ナトリウム50g/Lが溶けた70℃の浴中に分散させた。そして、定量ポンプを用いて、母粒子4が分散した液に、めっき液e及びめっき液fをそれぞれ同時かつ平行に10ml/minで添加し、無電解パラジウムめっきを母粒子4に対して行った。めっき液eとしては、パラジウム:20g/L、クエン酸ナトリウム:50g/L、エチレンジアミン20g/L、pH6.0に調整した液を用いた。なお、めっき液eのなかではパラジウムはイオンや錯体の状態で溶解しており、上記のパラジウムの量「20g/L」とは金属パラジウムとしての重量換算値である。めっき液fとしては、次亜リン酸ナトリウム:1.0mol/Lを水酸化ナトリウムでpH6.0に調整した液を用いた。サンプリングした粒子を原子吸光光度計によって分析し、パラジウムの膜厚を調整した。パラジウム膜厚が60nmになった時点で無電解めっき液の添加を中止した。反応が停止した時はpH6.0であった。添加終了後、濾過と水洗を3回行った。40℃で7時間真空乾燥した後、解砕により凝集を解した。以上の操作により、ニッケル粒子上に60nm厚のパラジウム層を有する導電粒子4を作製した。   The obtained mother particles 4 were immediately dispersed in a 70 ° C. bath in which 50 g / L of sodium citrate was dissolved. Then, using a metering pump, the plating solution e and the plating solution f were added simultaneously and in parallel to the liquid in which the mother particles 4 were dispersed at 10 ml / min, and electroless palladium plating was performed on the mother particles 4. . As the plating solution e, a solution adjusted to palladium: 20 g / L, sodium citrate: 50 g / L, ethylenediamine 20 g / L, pH 6.0 was used. In the plating solution e, palladium is dissolved in an ion or complex state, and the amount of palladium “20 g / L” is a weight-converted value as metallic palladium. As the plating solution f, a solution obtained by adjusting sodium hypophosphite: 1.0 mol / L to pH 6.0 with sodium hydroxide was used. The sampled particles were analyzed with an atomic absorption photometer to adjust the palladium film thickness. The addition of the electroless plating solution was stopped when the palladium film thickness reached 60 nm. When the reaction stopped, the pH was 6.0. After completion of the addition, filtration and washing with water were performed three times. After vacuum drying at 40 ° C. for 7 hours, aggregation was broken by crushing. Through the above operation, conductive particles 4 having a 60 nm-thick palladium layer on nickel particles were produced.

(導電粒子5)
平均粒径2μmのニッケル粒子を100g使用し、無電解ニッケルめっき液a及びbの滴下時間を長くし、pHを6.4に維持したこと以外は導電粒子3と同様に行い、ニッケル粒子上に100nmの無電解ニッケル層を有する母粒子5を得た。
(Conductive particles 5)
100 g of nickel particles having an average particle size of 2 μm were used, the dropping time of the electroless nickel plating solutions a and b was increased, and the pH was maintained at 6.4. Base particles 5 having an electroless nickel layer of 100 nm were obtained.

得られた母粒子5をすぐにクエン酸ナトリウム50g/Lが溶けた70℃の浴中に分散させた。そして、定量ポンプを用いて、母粒子5が分散した液に、めっき液e及びめっき液fhをそれぞれ同時かつ平行に20ml/minで添加し、無電解パラジウムめっきをニッケル粒子に対して行った。サンプリングした粒子を原子吸光光度計によって分析し、パラジウムの膜厚を調整した。パラジウム膜厚が100nmになった時点で無電解めっき液の添加を中止した。反応が停止した時はpH6.0であった。添加終了後、濾過と水洗を3回行った。40℃で7時間真空乾燥した後、解砕により凝集を解した。以上の操作により、ニッケル粒子上に100nm厚のパラジウム層を有する導電粒子5を作製した。   The obtained mother particles 5 were immediately dispersed in a 70 ° C. bath in which 50 g / L of sodium citrate was dissolved. Then, using a metering pump, the plating solution e and the plating solution fh were added simultaneously and in parallel to the liquid in which the mother particles 5 were dispersed at 20 ml / min, and electroless palladium plating was performed on the nickel particles. The sampled particles were analyzed with an atomic absorption photometer to adjust the palladium film thickness. When the palladium film thickness reached 100 nm, the addition of the electroless plating solution was stopped. When the reaction stopped, the pH was 6.0. After completion of the addition, filtration and washing with water were performed three times. After vacuum drying at 40 ° C. for 7 hours, aggregation was broken by crushing. By the above operation, conductive particles 5 having a palladium layer with a thickness of 100 nm on nickel particles were produced.

(導電粒子6)
平均粒径10μmのニッケル粒子10gを、300mlの50%塩酸中で10分攪拌し、濾過と水洗を3回行って母粒子6を得た。この母粒子6を還元剤が溶解した水300ml中で1時間攪拌し、濾過と水洗を3回行って、電気特性を向上させた導電粒子6を作製した。
(Conductive particles 6)
10 g of nickel particles having an average particle size of 10 μm were stirred in 300 ml of 50% hydrochloric acid for 10 minutes, filtered and washed three times to obtain mother particles 6. The mother particles 6 were stirred in 300 ml of water in which a reducing agent was dissolved for 1 hour, filtered and washed three times to produce conductive particles 6 with improved electrical characteristics.

(導電粒子7)
無電解ニッケルめっき処理の代わりに、水300mlで10分攪拌し、濾過を行って得た母粒子7を使用したこと以外は、導電粒子2と同じ操作を行い、導電粒子7を得た。得られた粒子は導電粒子2よりも暗い灰色であった。得られた導電粒子7をSEMを用いて無蒸着で観察したところ、ニッケル粒子表面に数百nmのパラジウム微粒子がまばらに付着しており、ニッケル層の表面のほとんどは露出していた。また、置換パラジウムめっき後にサンプリングした母粒子7を同様にSEMで観察したところ、母粒子7の表面に数百nmのパラジウムの粒がわずかに付着しているのみで、母粒子7の表面はほとんど露出していたことから、母粒子7への置換パラジウムめっきは出来ていなかったことがわかった。なお、母粒子7をパラジウムめっき液c及びdを溶解した無電解パラジウムめっき液中に投入し、3分経過したころ、めっき浴中に銀色に光る異物が発生し、パラジウムめっき液が分解していた。
(Conductive particles 7)
Instead of the electroless nickel plating treatment, the same operation as the conductive particle 2 was performed except that the mother particle 7 obtained by stirring with 300 ml of water for 10 minutes and performing filtration was used to obtain the conductive particle 7. The obtained particles were darker gray than the conductive particles 2. When the obtained conductive particles 7 were observed using an SEM without vapor deposition, several hundred nanometers of palladium fine particles were sparsely adhered to the surface of the nickel particles, and most of the surface of the nickel layer was exposed. Further, when the mother particles 7 sampled after the substitution palladium plating were similarly observed by SEM, only a few hundreds of nanometers of palladium particles adhered to the surface of the mother particles 7, and the surface of the mother particles 7 was almost the same. Since it was exposed, it turned out that substitution palladium plating to the mother particle 7 was not completed. The mother particles 7 were put into the electroless palladium plating solution in which the palladium plating solutions c and d were dissolved, and after 3 minutes, a silvery foreign matter was generated in the plating bath, and the palladium plating solution was decomposed. It was.

(導電粒子8)
無電解ニッケルめっき液a及びbの代わりに、めっき液g及びhを使用し、pHを4.0に調整して、ニッケル粒子上に10nm膜厚の無電解めっきニッケル層を有した母粒子8を作成したこと以外は、導電粒子3と同様の操作を行い、導電粒子8を得た。めっき液gとして、硫酸ニッケル:450g/L、クエン酸ナトリウム:116g/Lに調製した液を使用し、めっきhとして、次亜リン酸ナトリウム:150g/Lに調製した液を使用した。
(Conductive particles 8)
Instead of the electroless nickel plating solutions a and b, the plating solutions g and h are used, the pH is adjusted to 4.0, and the mother particles 8 having an electroless plating nickel layer with a thickness of 10 nm on the nickel particles A conductive particle 8 was obtained by performing the same operation as that of the conductive particle 3 except that the above was prepared. As the plating solution g, a solution prepared in nickel sulfate: 450 g / L and sodium citrate: 116 g / L was used, and as the plating solution h, a solution prepared in sodium hypophosphite: 150 g / L was used.

得られた導電粒子8は導電粒子3よりも暗い灰色であった。この導電粒子8を原子吸光光度計により分析したところ、計算上はニッケル粒子の最表面に20nm厚相当のパラジウム層が形成できるだけのパラジウム量が検出されたものの、SEMを用いた観察では、最表面に直径数百nmパラジウムの粒がそれぞれ独立して付着しており、粒子表面全体の半分はニッケル層が露出して状態であった。このように析出したパラジウムは、実質的にニッケル層を覆っておらず、連続したパラジウム膜は得られなかった。   The obtained conductive particles 8 were darker gray than the conductive particles 3. When the conductive particles 8 were analyzed with an atomic absorption photometer, the amount of palladium that can form a palladium layer equivalent to a thickness of 20 nm was detected on the outermost surface of the nickel particles, but the outermost surface was observed in the observation using the SEM. In this case, palladium particles having a diameter of several hundreds of nanometers were independently attached to each other, and the nickel layer was exposed in half of the entire particle surface. The palladium thus deposited did not substantially cover the nickel layer, and a continuous palladium film was not obtained.

(導電粒子9)
無電解ニッケルめっき処理の代わりに、ニッケル粒子を300mlの50%塩酸中で10分攪拌し、濾過と水洗を3回行って得た母粒子9を使用したこと以外は、導電粒子4と同様の操作を行い、導電粒子9を得た。
(Conductive particles 9)
Instead of the electroless nickel plating treatment, nickel particles were stirred in 300 ml of 50% hydrochloric acid for 10 minutes, and the mother particles 9 obtained by performing filtration and washing three times were used. Operation was performed to obtain conductive particles 9.

無電解パラジウムめっき液e及びfを滴下してしばらく経つと、ニッケル粒子が分散している液の液面に銀色に光る異物が浮遊しているのが見え始めた。また、SEMにより導電粒子9を観察したところ、パラジウムが析出している粒子としていない粒子があった。パラジウムが析出している導電粒子も、母粒子9の表面にパラジウムが析出している部分と析出していない部分があり、母粒子9は露出していた。析出しているパラジウムの部分を1万倍で拡大すると、母粒子9の表面に数百nmのパラジウム微粒子が密集して析出していたが、緻密で連続的な析出膜ではなかった。   After a while after the electroless palladium plating solutions e and f were dropped, it started to appear that foreign matter shining in silver was floating on the surface of the solution in which nickel particles were dispersed. In addition, when the conductive particles 9 were observed with an SEM, there were particles that were not particles in which palladium was deposited. The conductive particles on which palladium was deposited also had a portion where palladium was deposited on the surface of the mother particles 9 and a portion where palladium was not deposited, and the mother particles 9 were exposed. When the deposited palladium portion was magnified 10,000 times, palladium fine particles of several hundred nm were densely deposited on the surface of the mother particle 9, but it was not a dense and continuous deposited film.

また、母粒子9以外の部分に異常析出したパラジウム片も見受けられ、実質的にニッケル粒子がパラジウムで覆われている状態とはいえなかった。更に、この導電粒子9を原子吸光光度計により分析したところ、計算上はニッケル粒子の最表面に30nm厚相当のパラジウム層が形成できるだけのパラジウム量が検出されが、導電粒子4のように50nm厚のパラジウム層が形成できるだけのパラジウム量は得られなかった。添加した無電解パラジウムめっき液中のパラジウムは、めっき液の分解により母粒子9の表面以外にも析出したことが原因であると考えられる。母粒子9の表面に緻密に析出することはない状態で、めっき液の添加を続けたため、浴中のパラジウムイオン濃度が上昇し、めっき液の分解反応が始まってしまったものと考えられる。   In addition, palladium pieces abnormally deposited on portions other than the mother particles 9 were also observed, and it could not be said that the nickel particles were substantially covered with palladium. Further, when the conductive particles 9 were analyzed with an atomic absorption spectrophotometer, the amount of palladium that can form a palladium layer corresponding to a thickness of 30 nm on the outermost surface of the nickel particles was detected for calculation. An amount of palladium sufficient to form a palladium layer was not obtained. It is considered that the palladium in the added electroless palladium plating solution is precipitated other than the surface of the mother particle 9 due to the decomposition of the plating solution. It is considered that since the plating solution was continuously added without being densely deposited on the surface of the mother particle 9, the palladium ion concentration in the bath increased and the decomposition reaction of the plating solution started.

以下、本発明を実施例により詳細に説明するが、本発明はこれに限定されるものではない。なお、それぞれの配合比は表1にまとめて記載した。表1に接着剤組成物全体質量に対する各材料の割合を質量%で示した。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this. In addition, each compounding ratio was put together in Table 1, and was described. Table 1 shows the ratio of each material with respect to the total mass of the adhesive composition in mass%.

(実施例1)
<回路接続材料の作製>
フェノキシ樹脂〔ユニオンカーバイド(株)製、商品名PKHC、重量平均分子量45000〕20gを、重量比でトルエン(沸点110.6℃、SP値8.90)/酢酸エチル(沸点77.1℃、SP値9.10)=50/50の混合溶剤に溶解して、固形分40質量%の溶液とした。
(Example 1)
<Production of circuit connection material>
20 g of phenoxy resin [trade name PKHC, weight average molecular weight 45000, manufactured by Union Carbide Co., Ltd.], toluene (boiling point 110.6 ° C., SP value 8.90) / ethyl acetate (boiling point 77.1 ° C., SP Value 9.10) = dissolved in a 50/50 mixed solvent to obtain a solution having a solid content of 40% by mass.

ブチルアクリレート(以下BAという)(50重量部)、エチルアクリレート(以下EAという)(30重量部)、アクリロニトリル(以下ANという)(20重量部)、及びグリシジルメタクリレート(以下GMAという)(3重量部)を共重合させたアクリルゴム(重量平均分子量:500000)50gを、重量比でトルエン(沸点110.6℃)/酢酸エチル(沸点77.1℃)=50/50の混合溶剤に溶解して、固形分40質量%の溶液とした。   Butyl acrylate (hereinafter referred to as BA) (50 parts by weight), ethyl acrylate (hereinafter referred to as EA) (30 parts by weight), acrylonitrile (hereinafter referred to as AN) (20 parts by weight), and glycidyl methacrylate (hereinafter referred to as GMA) (3 parts by weight) ) Copolymerized acrylic rubber (weight average molecular weight: 500,000) in a mixed solvent of toluene (boiling point 110.6 ° C.) / Ethyl acetate (boiling point 77.1 ° C.) = 50/50 by weight ratio. A solution having a solid content of 40% by mass was obtained.

エポキシ樹脂〔ビスフェノールA型エポキシ樹脂、油化シェルエポキシ(株)製、商品名エピコート828(EP−828)、エポキシ当量184)30gを、原液のまま使用した。   30 g of an epoxy resin (bisphenol A type epoxy resin, manufactured by Yuka Shell Epoxy Co., Ltd., trade name Epicoat 828 (EP-828), epoxy equivalent 184) was used as a stock solution.

潜在性硬化剤は、イミダゾール変性体を核とし、その表面をポリウレタンで被覆してなる平均粒径5μmマイクロカプセル型硬化剤を、液状ビスフェノールF型エポキシ樹脂中に分散させたものである、マスターバッチ型硬化剤(旭化成工業(株)製、商品名ノバキュア3941、活性温度125℃)を用いた。   The latent curing agent is a master batch in which a microcapsule type curing agent having an average particle size of 5 μm having a imidazole-modified product as a core and a surface coated with polyurethane is dispersed in a liquid bisphenol F type epoxy resin. A mold curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name NOVACURE 3941, active temperature 125 ° C.) was used.

固形重量比で樹脂成分100、潜在性硬化剤30となるように配合し、更に、導電粒子1を3体積%配合分散させ、厚み50μmのPET樹脂フィルムに塗工装置を用いて塗布し、80℃、3分の熱風乾燥により、接着剤層の厚みが20μmの回路接続材料を得た。   The resin component 100 and the latent curing agent 30 are blended in a solid weight ratio, and further, 3% by volume of the conductive particles 1 are blended and dispersed, and applied to a PET resin film having a thickness of 50 μm using a coating apparatus. A circuit connection material having an adhesive layer thickness of 20 μm was obtained by hot-air drying at 3 ° C. for 3 minutes.

(実施例2)
導電粒子1の代わりに導電粒子2を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
(Example 2)
A circuit connection material was obtained through the same process as in Example 1 except that the conductive particle 2 was used instead of the conductive particle 1 and the same material as in Example 1 was used.

(実施例3)
導電粒子1の代わりに導電粒子3を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
(Example 3)
A circuit connection material was obtained through the same process as in Example 1 except that the conductive particle 3 was used instead of the conductive particle 1 and the same material as in Example 1 was used.

(実施例4)
導電粒子1の代わりに導電粒子4を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
Example 4
A circuit connection material was obtained through the same steps as in Example 1 except that the conductive particles 4 were used instead of the conductive particles 1 and the same material as in Example 1 was used.

(実施例5)
導電粒子1の代わりに導電粒子5を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
(Example 5)
A circuit connection material was obtained through the same steps as in Example 1 except that the conductive particles 5 were used instead of the conductive particles 1 and the same material as in Example 1 was used.

(比較例1)
導電粒子1の代わりに導電粒子6を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
(Comparative Example 1)
A circuit connection material was obtained through the same steps as in Example 1 except that the conductive particles 6 were used instead of the conductive particles 1 and the same material as in Example 1 was used.

(比較例2)
導電粒子1の代わりに導電粒子7を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
(Comparative Example 2)
A circuit connection material was obtained through the same steps as in Example 1 except that the conductive particles 7 were used instead of the conductive particles 1 and the same material as in Example 1 was used.

(比較例3)
導電粒子1の代わりに導電粒子8を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
(Comparative Example 3)
A circuit connection material was obtained through the same steps as in Example 1 except that the conductive particles 8 were used instead of the conductive particles 1 and the same material as in Example 1 was used.

(比較例4)
導電粒子1の代わりに導電粒子9を用いたこと以外は、実施例1と同様の材料を使用し、実施例1と同様の工程を経て回路接続材料を得た。
(Comparative Example 4)
A circuit connection material was obtained through the same steps as in Example 1 except that the conductive particles 9 were used instead of the conductive particles 1 and the same material as in Example 1 was used.

(金属の膜厚測定)
パラジウムの膜厚の測定では、各粒子を50体積%王水に溶解させた後、固形物を直径0.2μmフィルタ(ミリポア社製)で濾別して取り除き、原子吸光光度計Z−5310(株式会社日立製作所製 製品名)又はICP(誘導結合プラズマ)発光分析装置P4010(株式会社日立製作所製 製品名)を用いて各金属の量を測定した後に、それを厚み換算した。
(Metal film thickness measurement)
In the measurement of the palladium film thickness, each particle was dissolved in 50% by volume aqua regia, and then solids were removed by filtration with a 0.2 μm diameter filter (Millipore), and an atomic absorption photometer Z-5310 (Co., Ltd.) was obtained. After the amount of each metal was measured using a Hitachi product name) or an ICP (inductively coupled plasma) emission spectrometer P4010 (Hitachi product name), the thickness was converted.

次に、無電解めっきしたニッケル層の膜厚の測定では、導電粒子の金属層部分の薄片を収束イオンビームで切り出し、透過型電子顕微鏡HF−2200(株式会社日立製作所製 製品名)を用いて、めっき層の断面を観察することで、ニッケル層の厚みを測定した。   Next, in the measurement of the thickness of the electrolessly plated nickel layer, a thin piece of the metal layer portion of the conductive particles is cut out with a focused ion beam, and a transmission electron microscope HF-2200 (product name, manufactured by Hitachi, Ltd.) is used. The thickness of the nickel layer was measured by observing the cross section of the plating layer.

(導電粒子の観察)
導電粒子の観察では、導電テープ上に導電粒子を均一に撒き、エアガンで余分な導電粒子を吹き飛ばしたのち、蒸着をせず電子顕微鏡で観察した。電子顕微鏡には、S4700(株式会社日立製作所製 製品名)を使用し、5000倍以上で観察した。
(Observation of conductive particles)
In the observation of the conductive particles, the conductive particles were uniformly spread on the conductive tape, the excess conductive particles were blown off with an air gun, and then observed with an electron microscope without vapor deposition. For the electron microscope, S4700 (product name, manufactured by Hitachi, Ltd.) was used, and observation was performed at 5000 times or more.

(粒子の煮出試験)
導電粒子1〜9を各1g採取し、純水50gに分散させた。次に、60mlの圧力容器にサンプルを投入し、100℃で10時間放置した。その後、導電粒子の分散溶媒を0.2μmフィルターで濾過し、ろ液中の各金属イオンを原子吸光光度計で測定した。煮出し量(イオン測定値)は次式により求めた。
(Particulate boiling test)
1 g of each of the conductive particles 1 to 9 was collected and dispersed in 50 g of pure water. Next, the sample was put into a 60 ml pressure vessel and left at 100 ° C. for 10 hours. Thereafter, the dispersion solvent of the conductive particles was filtered with a 0.2 μm filter, and each metal ion in the filtrate was measured with an atomic absorption photometer. The amount of boiled out (measured ion value) was determined by the following formula.

Figure 0005703836
Figure 0005703836

(成分分析)
導電粒子の金属層部分の薄片を収束イオンビームで切り出し、透過型電子顕微鏡HF−2200(株式会社日立製作所製 製品名)を用いて10万倍以上観察し、上記装置に付属したNORAN社製EDXでめっき層の各領域の成分分析を行った。得られた値から各領域のニッケル、パラジウム及びリンの濃度を算出した。
(Component analysis)
A thin piece of the metal layer portion of the conductive particles is cut out with a focused ion beam, and observed with a transmission electron microscope HF-2200 (product name, manufactured by Hitachi, Ltd.) over 100,000 times. The component analysis of each area | region of the plating layer was conducted. The concentration of nickel, palladium and phosphorus in each region was calculated from the obtained values.

更に、パラジウムめっき層の各領域の成分分析にESCA分析装置、AXIS−165型(島津製作所/Kratos社製 製品名)も使用した。絶縁性微粒子を配置する前の各母粒子をインジウム箔に固定し、パラジウムめっき層をArエッチングにより序所に除去しながら、めっき層表面の成分分析を行った。Arエッチングレートは5nm/minで、Arエッチング1分毎に成分分析を行い、これを繰り返してめっき層の各領域の成分を算出した。   Furthermore, an ESCA analyzer, AXIS-165 type (Shimadzu Corporation / Kratos product name) was also used for component analysis of each region of the palladium plating layer. Each mother particle before disposing the insulating fine particles was fixed to an indium foil, and component analysis of the surface of the plating layer was performed while removing the palladium plating layer by Ar etching. The Ar etching rate was 5 nm / min, component analysis was performed every minute of Ar etching, and this was repeated to calculate the components in each region of the plating layer.

(回路接続体の作製)
実施例1〜5及び比較例1〜4に係る回路接続材料を用いて、ライン幅50μm、ピッチ100μm、厚み18μmの銅回路を500本有するフレキシブル回路板(FPC)同士を180℃、3MPaで15秒間加熱加圧して、幅2mmにわたり接続した。このとき、予め一方のFPC上に、回路接続材料の接着面を貼り付けた後、70℃、0.5MPaの条件で5秒間加熱加圧して仮接続し、その後、PET樹脂フィルムを剥離してもう一方のFPCと接続した。
(Production of circuit connection body)
Using circuit connection materials according to Examples 1 to 5 and Comparative Examples 1 to 4, flexible circuit boards (FPCs) having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm are 180 ° C. and 15 MPa at 3 MPa. It was heated and pressurized for 2 seconds and connected over a width of 2 mm. At this time, after pasting the adhesive surface of the circuit connecting material on one FPC in advance, it was heated and pressurized for 5 seconds under the conditions of 70 ° C. and 0.5 MPa, and then the PET resin film was peeled off. Connected to the other FPC.

また、前述のFPCとITOの薄層を形成したガラス(表面抵抗20Ω/□)とを180℃、3MPaで15秒間加熱加圧して、幅1.5mmにわたり接続した。このとき、上記と同様にITOガラスに仮接続を行った。   Further, the above-mentioned FPC and glass (surface resistance 20Ω / □) on which a thin layer of ITO was formed were heated and pressurized at 180 ° C. and 3 MPa for 15 seconds to be connected over a width of 1.5 mm. At this time, temporary connection was made to ITO glass in the same manner as described above.

(導通抵抗試験)
上記のようにして得た回路接続体の導通抵抗試験を実施することにより、実施例1〜5及び比較例1〜4に係る回路接続材料の性能の評価を行った。回路接続材料(異方導電性フィルム)はチップ電極間の絶縁抵抗が高く、接続すべき電極間の導通抵抗(接続抵抗)が低いことが重要である。接続すべき電極間の導通抵抗に関しては14サンプルの平均値を測定した。回路接続材料の評価は、初期の導通抵抗値と吸湿耐熱試験及び温度サイクル試験をそれぞれ実施した後の導通抵抗値によって行った。なお、ここでいう吸湿耐熱試験とは、温度85℃、湿度85%の条件下に回路接続体を1000時間放置してその耐性を評価する試験をいう。温度サイクル試験とは、−40℃〜100℃の温度変化を100サイクル繰り返す条件下に回路接続体を放置してその耐性を評価する試験をいう。
(Conduction resistance test)
The performance of the circuit connection materials according to Examples 1 to 5 and Comparative Examples 1 to 4 was evaluated by conducting a conduction resistance test of the circuit connection body obtained as described above. It is important that the circuit connection material (anisotropic conductive film) has high insulation resistance between chip electrodes and low conduction resistance (connection resistance) between electrodes to be connected. Regarding the conduction resistance between the electrodes to be connected, the average value of 14 samples was measured. The circuit connection material was evaluated based on the initial conduction resistance value and the conduction resistance value after each of the moisture absorption heat resistance test and the temperature cycle test. The hygroscopic heat resistance test here refers to a test in which the circuit connector is left for 1000 hours under conditions of a temperature of 85 ° C. and a humidity of 85% to evaluate the resistance. The temperature cycle test refers to a test in which the circuit connection body is left under the condition of repeating the temperature change of −40 ° C. to 100 ° C. for 100 cycles and its resistance is evaluated.

(高温高湿暴露試験)
容量100mlのガラスビーカーに導電粒子1〜9をそれぞれ1gずつ入れ、これらのガラスビーカーを温度85℃、湿度85%の槽内に120時間にわたって放置した。その後、SEMを用いて導電粒子の表面を観察し、酸化物(錆)の量を評価した。
(High temperature and high humidity exposure test)
1 g each of conductive particles 1 to 9 was put in a glass beaker having a capacity of 100 ml, and these glass beakers were left in a tank having a temperature of 85 ° C. and a humidity of 85% for 120 hours. Thereafter, the surface of the conductive particles was observed using SEM, and the amount of oxide (rust) was evaluated.

表1に評価結果を示す。

Figure 0005703836
Table 1 shows the evaluation results.
Figure 0005703836

実施例1〜5に係る導電粒子1〜5は、ニッケル粒子の表面に無電解ニッケルめっき層を設け、最表面にパラジウム層を設けたものである。これらの導電粒子は、表1に示されるように、吸湿耐熱試験後及び温度サイクル試験後のいずれにおいても低抵抗を維持していた。導電粒子1〜5は、導電粒子そのものに対する高温高湿試験後の結果も、試験前と変化が少なく、導電粒子1のみ若干の錆びがみられたが、そのほかは錆びが無く、導電粒子のそのものの信頼性が高いことがわかる。   The electroconductive particles 1-5 which concern on Examples 1-5 provide the electroless nickel plating layer in the surface of nickel particle, and provide the palladium layer in the outermost surface. As shown in Table 1, these conductive particles maintained a low resistance both after the moisture absorption heat test and after the temperature cycle test. As for the conductive particles 1 to 5, the result after the high-temperature and high-humidity test on the conductive particles themselves was little changed from that before the test, and only a small amount of rust was observed only in the conductive particles 1, but there was no rust and the conductive particles themselves. It can be seen that the reliability of is high.

また、導電粒子1〜5をSEM観察したところ、最表面がパラジウムによって実質的に覆われており、下地のニッケル粒子表面やニッケルめっき層の露出が極めて少ない。ESCA分析においても、導電粒子表面の最表面のパラジウム濃度が高いことが確認されている。   In addition, when the conductive particles 1 to 5 are observed with an SEM, the outermost surface is substantially covered with palladium, and the surface of the underlying nickel particles and the nickel plating layer is extremely small. Also in the ESCA analysis, it is confirmed that the palladium concentration on the outermost surface of the conductive particle surface is high.

一方、比較例1〜4に係る接続構造体は、吸湿耐熱試験後及び温度サイクル試験後において接続信頼性が低下した。すなわち、比較例1〜4においてそれぞれ使用した導電粒子6〜9は、上記試験後において導通抵抗が上昇した。導電粒子そのものに対する高温高湿試験後のSEM観察では、パラジウム層を設けていない導電粒子6は、特に錆びの量が多く、下地のニッケル粒子表面が観察されないほどであった。また、導電粒子7〜9も表面の錆びが多く発生していた。接続抵抗が低下した原因は、導電粒子表面の錆びであることが示唆される。   On the other hand, in the connection structures according to Comparative Examples 1 to 4, the connection reliability decreased after the moisture absorption heat test and the temperature cycle test. That is, the conductive particles 6 to 9 used in Comparative Examples 1 to 4, respectively, increased in conduction resistance after the test. In the SEM observation after the high-temperature and high-humidity test on the conductive particles themselves, the conductive particles 6 not provided with the palladium layer had a particularly large amount of rust, and the surface of the underlying nickel particles was not observed. Further, the conductive particles 7 to 9 also had a lot of surface rust. It is suggested that the cause of the decrease in the connection resistance is rust on the surface of the conductive particles.

また、導電粒子7,9は、ニッケル粒子の表面に直接パラジウム層を設けようとしたが、めっき操作の途中で異常析出が発生したり、水洗中に異物(パラジウム片)が落下するなど、十分なパラジウムめっきがされなかった。SEM観察においても、導電粒子7,9は、数百nmサイズの微粒子状のパラジウムが最表面に付着していたり、連続して並んでいるだけで、ニッケル粒子を十分に覆っていなかった。ESCA分析によっても導電粒子の最表面はニッケルに比率が高く、ニッケルの露出が多いことが示された。このようにニッケル表面の露出は、錆びを発生させ、導通抵抗を低下させる。 In addition, the conductive particles 7 and 9 tried to provide a palladium layer directly on the surface of the nickel particles, but abnormal precipitation occurred during the plating operation or foreign substances (palladium pieces) dropped during washing. Palladium plating was not done. Also in SEM observation, the conductive particles 7 and 9 were not covered sufficiently with the nickel particles because the fine palladium particles with a size of several hundreds of nanometers adhered to the outermost surface or were continuously arranged. The ESCA analysis also showed that the outermost surface of the conductive particles had a high ratio to nickel, and the nickel was exposed much. Thus, the exposure of the nickel surface causes rust and reduces the conduction resistance.

また、煮出し試験結果を見ると、最表面のニッケル露出が多い導電粒子6〜9はニッケルの溶出量が多く、錆びの発生、及び導通抵抗の低下と相関がある。   Moreover, when the boiling test result is seen, the conductive particles 6 to 9 having the most exposed nickel on the outermost surface have a large amount of elution of nickel, and correlate with the occurrence of rust and a decrease in conduction resistance.

なお、貴金属であるパラジウムは溶出が殆どない。ニッケルの溶出の少ない実施例は良好な結果を示し、ニッケルの溶出の多い比較例は接続信頼性が低いことが明らかである。   Note that palladium, which is a noble metal, has almost no elution. It is clear that the example with low nickel elution shows good results, and the comparative example with high nickel elution has low connection reliability.

パラジウムは貴金属の中でも比較的安価で実用的ではあるが、異方導電性フィルム用の導電粒子として多数使用されているニッケルに比べるとそれでも高価であるため、出来るだけパラジウムの使用量を減らしたい。一方で、ニッケルの露出が多いと接続信頼性が低下する傾向がある。還元型めっきは、析出する金属によって完全に下地を覆うことが可能であり、析出する金属純度も高いため、好ましい。特に、密着力と被覆性が良好な置換還元型が好ましい。   Palladium is relatively inexpensive and practical among noble metals, but it is still more expensive than nickel, which is used in large numbers as conductive particles for anisotropic conductive films, so it is desirable to reduce the amount of palladium used as much as possible. On the other hand, if nickel is exposed a lot, connection reliability tends to decrease. Reduction plating is preferable because the base can be completely covered with the deposited metal and the purity of the deposited metal is high. Particularly preferred is a substitution reduction type having good adhesion and covering properties.

本発明では、溶融、気相還元、電気還元などにより作製されたニッケル粒子表面に、無電解ニッケルめっき層を設け、その上にパラジウム層を設けることで、ニッケルの露出が極めて少ない導電粒子を得られる。比較例で示したように、上記の方法で作製したニッケル粒子に直接パラジウムめっきを行うと、ニッケルの露出が少ない、緻密で均一なパラジウム層が得られない。この原因は定かではないが、今後明らかにされるであろう。   In the present invention, an electroless nickel plating layer is provided on the surface of nickel particles produced by melting, vapor phase reduction, electroreduction, etc., and a palladium layer is provided thereon to obtain conductive particles with very little nickel exposure. It is done. As shown in the comparative example, if the nickel particles produced by the above method are directly plated with palladium, a dense and uniform palladium layer with little nickel exposure cannot be obtained. The cause of this is not clear, but it will be revealed in the future.

本発明によれば、接続すべき電極間の抵抗を十分長期にわたって良好な値に維持できるとともにマイグレーションの発生を十分に抑制して優れた接続信頼性を達成できる。また、本発明に係る導電粒子は低コストで得ることができる。   According to the present invention, the resistance between the electrodes to be connected can be maintained at a good value for a sufficiently long time, and the occurrence of migration can be sufficiently suppressed to achieve excellent connection reliability. In addition, the conductive particles according to the present invention can be obtained at low cost.

1…ニッケル粒子、2…ニッケル層、3…パラジウム層、10…導電粒子、20…接着剤成分、20a…接着剤成分の硬化物、30,40…回路部材、32,42…回路電極、50…異方導電性フィルム(回路接続材料)、100…接続構造体。   DESCRIPTION OF SYMBOLS 1 ... Nickel particle, 2 ... Nickel layer, 3 ... Palladium layer, 10 ... Conductive particle, 20 ... Adhesive component, 20a ... Hardened | cured material of an adhesive component, 30, 40 ... Circuit member, 32, 42 ... Circuit electrode, 50 ... anisotropic conductive film (circuit connection material), 100 ... connection structure.

Claims (7)

ニッケル粒子と、
前記ニッケル粒子の表面を覆う無電解めっきによるニッケル層と、
前記ニッケル層の外側表面を覆うパラジウム層と、
を備え
前記ニッケル層のリン含有量が0.5〜4.0質量%である導電粒子。
Nickel particles,
A nickel layer by electroless plating covering the surface of the nickel particles;
A palladium layer covering the outer surface of the nickel layer;
Equipped with a,
A phosphorus content of 0.5-4.0% by mass Rushirubeden particles of the nickel layer.
前記パラジウム層は、前記ニッケル層の外側表面全体を覆っている、請求項1に記載の導電粒子。 The conductive particle according to claim 1, wherein the palladium layer covers the entire outer surface of the nickel layer. 当該導電粒子の表面のニッケル原子の数Aとパラジウム原子の数Bの比A/Bが1.0以下である、請求項1又は2に記載の導電粒子。 The conductive particle according to claim 1 or 2 , wherein a ratio A / B of the number A of nickel atoms and the number B of palladium atoms on the surface of the conductive particle is 1.0 or less. 前記パラジウム層の厚さが5〜100nmである、請求項1〜のいずれか一項に記載の導電粒子。 The electroconductive particle as described in any one of Claims 1-3 whose thickness of the said palladium layer is 5-100 nm. 接着性を有する接着剤成分と、
前記接着剤成分中に分散している、請求項1〜のいずれか一項に記載の導電粒子と、
を備える接着剤組成物。
An adhesive component having adhesiveness;
The conductive particles according to any one of claims 1 to 4 , which are dispersed in the adhesive component,
An adhesive composition comprising:
請求項に記載の接着剤組成物からなり、回路部材同士を接着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続するために用いられる、回路接続材料。 A circuit connection material comprising the adhesive composition according to claim 5 and used for bonding circuit members together and electrically connecting circuit electrodes of the respective circuit members. 対向配置された一対の回路部材と、
請求項に記載の回路接続材料の硬化物からなり、前記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該回路部材同士を接着する接続部と、
を備える接続構造体。
A pair of circuit members disposed opposite to each other;
It consists of the hardened | cured material of the circuit connection material of Claim 6 , and the said circuit members are adhere | attached so that the circuit electrodes which intervene between the said pair of circuit members and each circuit member has may be electrically connected. A connection,
A connection structure comprising:
JP2011040594A 2011-02-25 2011-02-25 Conductive particles, adhesive composition, circuit connection material, and connection structure Active JP5703836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040594A JP5703836B2 (en) 2011-02-25 2011-02-25 Conductive particles, adhesive composition, circuit connection material, and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040594A JP5703836B2 (en) 2011-02-25 2011-02-25 Conductive particles, adhesive composition, circuit connection material, and connection structure

Publications (2)

Publication Number Publication Date
JP2012178270A JP2012178270A (en) 2012-09-13
JP5703836B2 true JP5703836B2 (en) 2015-04-22

Family

ID=46979992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040594A Active JP5703836B2 (en) 2011-02-25 2011-02-25 Conductive particles, adhesive composition, circuit connection material, and connection structure

Country Status (1)

Country Link
JP (1) JP5703836B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108843A1 (en) * 2012-01-20 2013-07-25 積水化学工業株式会社 Conductive particles, conductive material and connection structure
CN103782351B (en) * 2012-01-20 2016-07-06 积水化学工业株式会社 Electroconductive particle, conductive material and connection structural bodies
JP6411194B2 (en) * 2013-12-05 2018-10-24 積水化学工業株式会社 Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP6907490B2 (en) * 2016-09-16 2021-07-21 昭和電工マテリアルズ株式会社 Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596646B2 (en) * 1996-09-26 2004-12-02 日本化学工業株式会社 Conductive electroless plating powder for anisotropic conductive film and heat seal connector
JP4398665B2 (en) * 2002-12-13 2010-01-13 日本化学工業株式会社 Conductive electroless plating powder
JP5406544B2 (en) * 2008-01-29 2014-02-05 積水化学工業株式会社 Method for producing conductive fine particles, and conductive fine particles
JP4991666B2 (en) * 2008-09-19 2012-08-01 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP4746116B2 (en) * 2008-10-14 2011-08-10 日本化学工業株式会社 Conductive powder, conductive material containing the same, and method for producing conductive particles
KR101205041B1 (en) * 2009-08-06 2012-11-27 히다치 가세고교 가부시끼가이샤 Conductive particle

Also Published As

Publication number Publication date
JP2012178270A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
KR101195732B1 (en) Conductive particle and anisotropic conductive material
KR101261184B1 (en) Coated conductive particles and method for producing same
KR20140027058A (en) Conductive powder, conductive material containing the conductive powder, and method for manufacturing the conductive powder
KR20120051699A (en) Conductive particles, anisotropic conductive film, assembly, and connection method
KR101294946B1 (en) Method for producing conductive particles, method for producing insulating coated conductive particles, and anisotropic conductive adhesive film
JP4804596B1 (en) Conductive particle, method for producing conductive particle, anisotropic conductive material, and connection structure
WO2011030715A1 (en) Conductive particles with attached insulating particles, method for producing conductive particles with attached insulating particles, anisotropic conductive material, and connection structure
WO2013027575A1 (en) Anisotropic conductive film, process for producing anisotropic conductive film, connecting method, and bonded object
JP5941328B2 (en) Conductive particles and conductive material containing the same
JP5703836B2 (en) Conductive particles, adhesive composition, circuit connection material, and connection structure
JP4715969B1 (en) Conductive particles
JP2013020721A (en) Conductive particle
JP2021027027A (en) Electroconductive particle, electroconductive material, and connection structure
JP6340876B2 (en) Conductive particles
JP5484265B2 (en) Conductive particles, conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP6507551B2 (en) Conductive particles
JP7298256B2 (en) conductive particles
JP6286852B2 (en) Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP5549352B2 (en) Conductive particles, adhesive composition, circuit connection material, and connection structure
JP7292669B2 (en) Method for producing conductive particles
JP6507552B2 (en) Conductive particles
JP2012160460A (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R151 Written notification of patent or utility model registration

Ref document number: 5703836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350