JP5699739B2 - 負荷駆動装置 - Google Patents

負荷駆動装置 Download PDF

Info

Publication number
JP5699739B2
JP5699739B2 JP2011071873A JP2011071873A JP5699739B2 JP 5699739 B2 JP5699739 B2 JP 5699739B2 JP 2011071873 A JP2011071873 A JP 2011071873A JP 2011071873 A JP2011071873 A JP 2011071873A JP 5699739 B2 JP5699739 B2 JP 5699739B2
Authority
JP
Japan
Prior art keywords
temperature
detection unit
load
current
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011071873A
Other languages
English (en)
Other versions
JP2012210005A (ja
Inventor
野村 学
学 野村
武利 佐藤
武利 佐藤
洋介 松尾
洋介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011071873A priority Critical patent/JP5699739B2/ja
Publication of JP2012210005A publication Critical patent/JP2012210005A/ja
Application granted granted Critical
Publication of JP5699739B2 publication Critical patent/JP5699739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Direct Current Motors (AREA)

Description

本発明は、負荷駆動装置に関するものである。
従来より、モータ等の負荷をPWM制御によって駆動する負荷駆動装置が提供されており、例えば特許文献1、2には、電動ファンを制御する制御装置に関する技術が開示されている。この種の駆動システムでは、モータロック等や短絡などによって過電流が流れた場合に内部素子(半導体スイッチ素子等)の破壊を招く虞があるため、過電流状態を即座に検出して内部素子を保護する動作を行うことが求められている。
特開平9−284999号公報 特開2004−282920公報
特許文献1の電動ファン制御システムでは、モータロック等に起因して生じる過電流を過電流検出手段(6)によって検出し、このときに制御モジュール(2)への出力電流を制限している。また、内部温度検出手段(8)の出力により、制御モジュール(2)の内部温度を検出しており、温度が第1判定値を超えると制御モジュール(2)への出力電流をOFFし、第2判定値以下になると復帰するように制御を行っている。
特許文献1のような構成は、モータロック時に制御装置自体を保護する目的では有効であるが、雰囲気温度上昇やモータハーフロック、モータロック、負荷ショートなどの様々な異常状態に合わせた適切な保護を行うことができない問題がある。また、システムによっては負荷電流を制限してしまうと、システム機能を全く果たすことができない状態になる場合がある。例えば、燃料ポンプシステムなどでは、燃料ポンプがある電圧以下になってしまうと燃料を送ることができなくなってしまうため、異常の種別によってはシステム機能を維持した保護がなされることが望ましい。
また、特許文献2の技術では、過電流判定値を越えた時、予め設定されたタイマ時間(t1)によって出力をONし、予め設定されたOFF時間(t2)後に復帰するようになっている。このような特許文献2の方法は、起動時において緩やかに電圧上昇するシステム(例えば電動ファンシステムなど)ではある程度有効であるが、起動時に急峻に電圧上昇するシステム(燃料ポンプシステムなど)では、起動時の突入電流によりポンプロックと判断し誤検出してしまう可能性がある。また、特許文献2の方法は、システム保護(特にポンプ寿命の延命等)には有効であるが、電流値に応じて断続ON/OFF時間を決定しており、熱破壊しないレベルまでの余裕を考慮した適切な動作が難しかった。
本発明は、上述した課題を解決するためになされたものであり、保護動作を行うための監視期間を異常種別に応じて適切に設定することが可能であり、異常種別に適した保護動作を行い得る負荷駆動装置を提供することを目的とする。
上記目的を達成するため、請求項1の負荷駆動装置は、
制御信号が入力される制御入力端子を備え、前記制御信号の状態に応じて負荷への通電路を通電状態と非通電状態とに切り替えるスイッチ素子と、
前記スイッチ素子に前記制御信号を出力可能な制御部と、
前記通電路を流れる駆動電流の状態を検出する電流状態検出部と、
装置内の所定位置の温度状態を検出する温度状態検出部と、
前記電流状態検出部での検出結果と前記温度状態検出部での検出結果とに基づき、複数の異常種別のいずれかが生じているか否かを判断する判断部と、
を備え、
前記制御部は、
前記判断部によって前記複数の異常種別のいずれかが生じていると判断され、且つその異常の継続が設定された監視時間に達する場合に、前記温度状態検出部による検出部位に対する保護動作を行い、
更に、前記監視時間を、前記判断部によって判断された異常種別に応じた時間に設定可能とされており、
前記電流状態検出部が所定の過電流状態を検出し、且つ前記温度状態検出部が所定の過熱状態を検出した場合に前記監視時間を第1の時間に設定し、
前記電流状態検出部が前記過電流状態を検出せず、前記温度状態検出部が前記過熱状態を検出した場合に前記監視時間を前記第1の時間よりも長い第2の時間に設定することを特徴とする。
また、請求項2の負荷駆動装置は、
制御信号が入力される制御入力端子を備え、前記制御信号の状態に応じて負荷への通電路を通電状態と非通電状態とに切り替えるスイッチ素子と、
前記スイッチ素子に前記制御信号を出力可能な制御部と、
前記通電路を流れる駆動電流の状態を検出する電流状態検出部と、
装置内の所定位置の温度状態を検出する温度状態検出部と、
前記電流状態検出部での検出結果と前記温度状態検出部での検出結果とに基づき、複数の異常種別のいずれかが生じているか否かを判断する判断部と、
前記負荷に印加される電圧を検出する負荷電圧検出手段と、
を備え、
前記制御部は、
前記判断部によって前記複数の異常種別のいずれかが生じていると判断され、且つその異常の継続が設定された監視時間に達する場合に、前記温度状態検出部による検出部位に対する保護動作を行い、
更に、前記監視時間を、前記判断部によって判断された異常種別に応じた時間に設定可能とされており、
前記電流状態検出部が所定の第1過電流状態を検出し、且つ前記温度状態検出部が所定の過熱状態を検出した場合に前記監視時間を第1の時間に設定し、
前記電流状態検出部が所定の第2過電流状態を検出し、且つ前記負荷電圧検出手段によって検出される負荷電圧が所定の短絡閾値以下となる場合に、前記監視時間を前記第1の時間よりも短い時間に設定することを特徴とする。
請求項1、2の発明には、電流状態検出部での検出結果と温度状態検出部での検出結果とに基づき、複数の異常種別のいずれかが生じているか否かを判断する判断部が設けられている。そして、制御部は、この判断部によって複数の異常種別のいずれかが生じていると判断され、且つその異常の継続が設定された監視時間に達する場合に、温度状態検出部による検出部位に対する保護動作を行っている。更に、前記監視時間は、判断部によって判断された異常種別に応じた時間に設定可能とされている。
この構成によれば、電流状態検出部及び温度状態検出部での検出結果によって異常種別をより正確に把握することができ、保護動作を行うための監視期間を異常種別に応じて適切に設定することができる。これにより、温度状態検出部による検出部位に対し、把握された異常種別に適した保護動作を行うことができる。
請求項の発明において、制御部は、電流状態検出部が所定の過電流状態を検出し、且つ温度状態検出部が所定の過熱状態を検出した場合に監視時間を第1の時間に設定し、電流状態検出部が過電流状態を検出せず、温度状態検出部が過熱状態を検出した場合に監視時間を第1の時間よりも長い第2の時間に設定している。
この構成によれば、電流状態検出部及び温度状態検出部のいずれによっても異常が検出されているときには(即ち、相対的に異常の度合いが大きいときには)、より早く保護動作に移行することができ、保護を強化することができる。一方、電流状態検出部が異常を検出せず、温度状態検出部のみが異常を検出しているときには(即ち、両方で異常が検出されている場合と比較して相対的に異常の度合いが小さいときには)、相対的に保護動作を遅らせて、負荷の動作を優先させることができる。
請求項2、3の発明には、負荷に印加される電圧を検出する負荷電圧検出手段が設けられている。そして、制御部は、電流状態検出部が所定の第1過電流状態を検出し、且つ温度状態検出部が所定の過熱状態を検出した場合に監視時間を第1の時間に設定し、電流状態検出部が所定の第2過電流状態を検出し、且つ負荷電圧検出手段によって検出される負荷電圧が所定の短絡閾値以下となる場合に、監視時間を第1の時間よりも短い時間に設定するように構成されている。
この構成によれば、電流状態検出部及び温度状態検出部のいずれによっても異常が検出されているときには、より早期に保護動作に移行することができ、保護を強化することができる。また、電流状態検出部が異常を検出し且つ負荷電圧検出手段によって短絡状態が検出されたときには、第1の時間よりも更に短時間で保護動作に移行することができ、保護を一層強化することができる。
請求項4の発明において、温度状態検出部は、負荷へ供給される負荷電流又は負荷からの回生電流が流れる部品の温度を検出する第1温度検出部を備え、少なくとも第1温度検出部で検出される温度が閾値に達した場合に過熱状態としている。
この構成によれば、電流の影響を受け易く温度破壊が懸念される部品の温度をモニタリングすることで、当該部品が温度破壊に達するまでの余裕を考慮した適切な保護動作を行うことができる。
請求項5の発明において、温度状態検出部は、負荷電流及び回生電流に依存しない部品の温度を検出する第2温度検出部を備えており、制御部は、第1温度検出部及び第2温度検出部の少なくともいずれかで検出される温度が閾値に達した場合に過熱状態としている。
この構成では、負荷電流や回生電流に依存しない部品の温度をも考慮して保護動作を行うことができる。特に、負荷電流や回生電流以外の要因で部品温度が上昇したときにも保護動作を行うことができるため、装置全体をより多面的に保護することができる。
請求項6の発明において、電流状態検出部又は制御部には、複数の電流閾値が予め設定されており、制御部は、電流状態検出部の検出結果に基づき、通電路を流れる駆動電流が複数の電流閾値の内の高い電流閾値に達するほど監視時間を短く設定している。
この構成では、駆動電流の異常状態がより大きくなるときほどより早期に保護動作に移行することができ、保護の強化を図ることができる。逆に、駆動電流の異常状態の程度がより小さい場合には、相対的に遅めに保護動作に移行させ、負荷の駆動を優先させることができる。
請求項7の発明において、制御部は、電流値と監視時間との対応関係を定めた演算式に基づき、電流状態検出部によって検出される駆動電流が大きくなるほど監視時間を短くするように監視時間を設定している。
この構成では、駆動電流の大きさに応じて監視時間を連続的に増減することができ、監視時間をより細かく適切に設定することができる。
請求項8の発明において、温度状態検出部又は制御部には、複数の温度閾値が予め設定されており、制御部は、温度状態検出部の検出結果に基づき、所定位置の温度が複数の温度閾値の内の高い温度閾値に達するほど監視時間を短く設定している。
この構成では、所定位置の温度異常状態の程度がより大きくなるときほどより早期に保護動作に移行することができ、保護の強化を図ることができる。逆に、温度異常状態の程度がより小さい場合には、相対的に遅めに保護動作に移行させ、負荷の駆動を優先させることができる。
請求項9の発明において、制御部は、温度状態検出部による検出部位に対する保護動作を行った後、所定の復帰条件が成立したときに保護動作を解除している。
この構成によれば、保護動作の対象となった検出部位を、復帰条件が成立した適切な時期に復帰させることが可能となり、復帰させるべき条件が整ったときには負荷動作の抑制を極力抑えることができる。
図1は、第1実施形態に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。 図2は、第1実施形態に係る負荷駆動装置で用いられる保護回路部の内部構成を概略的に例示するブロック図である。 図3は、過熱状態及び過電流状態を検出したときの保護動作を説明するタイミングチャートである。 図4は、過熱状態を検出したときの保護動作を説明するタイミングチャートである。 図5は、各異常状態における時間経過に応じたスイッチ素子温度(駆動MOS温度)の上昇曲線を示すグラフである。 図6は、短絡状態を検出したときの保護動作を説明するタイミングチャートである。 図7は、負荷ショート時を含めた各異常状態における時間経過に応じたスイッチ素子温度(駆動MOS温度)の上昇曲線を示すグラフである。 図8は、図7と同様のグラフであり、図7とは異なる方法で監視時間を設定した場合について示すものである。 図9は、第1実施形態の変更例1に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。 図10は、図9の負荷駆動装置における過熱状態を検出したときの保護動作を説明するタイミングチャートである。 図11は、雰囲気温度上昇時における時間経過に応じた制御IC温度の上昇曲線を示すグラフである。 図12は、第1実施形態の変更例2に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。 図13は、第1実施形態の変更例3に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。 図14は、第1実施形態の変更例4に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。 図15は、負荷電流に依存する各部品の温度について、所定の異常状態が発生したときの時間経過に応じた温度上昇曲線を示すグラフである。 図16は、負荷電流に依存しない部品の温度について、所定の異常状態が発生したときの時間経過に応じた温度上昇曲線を示すグラフである。 図17は、図1の負荷駆動装置に関し、駆動電流が流れる場合および回生電流が流れる場合についての電流経路を説明する説明図である。 図18は、図1の負荷駆動装置の部品実装例1について説明する説明図である。 図19は、図1の負荷駆動装置の部品実装例2について説明する説明図である。 図20は、横軸に経過時間をとり、縦軸に負荷電流をとった座標系における破壊領域と各保護動作の領域との関係を示すグラフである。 図20は、横軸に経過時間をとり、縦軸に負荷電流をとった座標系において、複数の閾値を用いて保護動作を行う場合の各保護動作の領域と、破壊領域との関係を示すグラフである。 図22は、横軸に経過時間をとり、縦軸に負荷電流をとった座標系において、監視時間を駆動電流(判定電流)に応じて連続的に変化させる場合の各保護動作の領域と、破壊領域との関係を示すグラフである。 図23は、他の実施形態に関し、負荷ハーフショート時、ポンプハーフロック時を含めた各異常状態における時間経過に応じたスイッチ素子温度(駆動MOS温度)の上昇曲線を示すグラフである。
[第1実施形態]
以下、本発明の負荷駆動装置を具現化した第1実施形態について、図面を参照して説明する。
(負荷駆動システムの概要)
まず、図1、図2等を参照し、負荷駆動装置の概要について説明する。
図1は、第1実施形態に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。図2は、第1実施形態に係る負荷駆動装置で用いられる保護回路部の内部構成を概略的に例示するブロック図である。
図1に示す負荷駆動システム1は、例えば燃料ポンプの駆動を制御する燃料ポンプ制御システムとして構成されており、負荷駆動装置2、負荷3、電源4を備え、エンジン制御ECU5から信号入力を受け得るように構成されている。
負荷3は、例えばポンプ内に搭載された公知の直流モータとして構成され、負荷駆動装置2によって制御される駆動電圧に応じて回転する構成をなしており、一端側がスイッチ素子SW1(駆動MOS)のソース端子側に接続され、他端側がグランド側に接続されている。電源4は、各機器へ電力供給を行う公知のバッテリとして構成されている。
エンジン制御ECU5は、各種センサ信号を取り込んでエンジン制御動作を実行する周知構成のものであり、図示しない車速、エンジン回転数などの条件を演算処理しうるものである。このエンジン制御ECU5は、負荷駆動装置2に対し負荷電圧(モータ供給電圧)を指示する電圧指示信号Vcを出力するように構成されている。
負荷駆動装置2は、負荷3にPWM制御にて電圧を供給する駆動装置として構成されており、電源4から負荷3に至る通電路20を流れる負荷電流を制御し得るように構成されている。具体的には、電源4の出力をパルス幅変調(PWM)制御方式にてスイッチングすることにより、負荷3に供給する電圧のレベルを調節するものである。この負荷駆動装置2は、供給電圧のレベルをエンジン制御ECU5からの電圧指示信号Vc(出力レベル指示信号に相当)により決定する構成となっている。なお、エンジン制御ECU5と負荷駆動装置2との間での信号の授受は、パルス通信により行われるものであり、従って上記電圧指示信号Vcはパルス状の信号である。
負荷駆動装置2は、主として、スイッチ素子SW1、SW2、入力信号変換回路10、信号処理回路11、出力モニタ回路12、発振回路13、駆動回路14、過電流検出保護15、過熱保護回路16、平滑回路8、ダイオード7等によって構成されている。なお、このうち、入力信号変換回路10、信号処理回路11、出力モニタ回路12、発振回路13、駆動回路14、過電流検出保護15、過熱保護回路16、ダイオード7等については、制御IC6の内部に実装されている。
電源4から平滑回路8を通じて配される通電路20には、PWM制御を行うための半導体スイッチ素子SW1(以下、スイッチ素子SW1ともいう)が設けられている。このスイッチ素子SW1は、例えばnチャネル型パワーMOSFETとして構成され、駆動用のMOSFETとして機能している。このスイッチ素子SW1のオン状態時に、電源4から平滑回路8を通じて配される通電路20を導通させるように構成されている。このスイッチ素子SW1は、「スイッチ素子」の一例に相当するものである、制御信号が入力されるゲート端子(制御入力端子)を備え、制御信号の状態に応じて負荷への通電路20を通電状態と非通電状態とに切り替えるように機能する。また、平滑回路8は、スイッチ素子SW1のスイッチング時に発生する伝導ノイズを抑制するために設けられたものであり、例えば図17のように構成されている。
また、スイッチ素子SW1のソース端子側はスイッチ素子SW2のドレイン端子側に接続されており、これら接続ラインに、負荷3の一端側が接続されている。スイッチ素子SW2は、回生用のパワーMOSFETとして機能しており、スイッチSW1がオン状態からオフ状態に切り替わり、スイッチ素子SW2がオフ状態からオン状態に切り替わったときに、回生電流が流れるように構成されている。
入力信号変換回路10は、エンジン制御ECU5との間で送受信されるパルス通信信号を処理する回路であり、エンジン制御ECU5からのパルス状電圧指示信号Vcを直流電圧信号Vbに変換して信号処理回路9に与えるための入力インタフェースとして機能するものである。発振回路13は、所定周波数の基準クロック信号を発生して信号処理回路11や保護回路部23に与えるように構成されている。
出力電圧モニタ回路12は、負荷3の両端電圧(図1ではモータへの印加電圧)を検出し、その電圧検出信号を信号処理回路11に与えるように構成されている。ここで、負荷3をPWM制御により駆動する場合、その負荷3の両端電圧はスイッチ素子SW1のオン・オフに応じて変動する。このような変動に対処するために、出力電圧モニタ回路12は、負荷3の両端電圧の検出を、平滑回路8を介して行う構成となっている。
信号処理回路9は、エンジン制御ECU5から入力信号変換回路10を通じて与えられる直流電圧信号Vb及び出力電圧モニタ回路12を通じてフィードバックされるモータ電圧との比較結果、並びに発振回路13からの基準クロック信号に基づいてパルス状のパルス幅変調信号(以下、PWM信号)を生成する動作を行う周知構成のものであり、そのPWM信号を駆動回路14に与える構成となっている。
駆動回路14は、上記PWM信号を増幅した電圧信号をスイッチ素子SW1のゲート・ソース間に印加してこれをスイッチングすることにより、負荷3をPWM駆動する。このような負荷3のPWM駆動が行われる結果、当該負荷3に対する印加電圧を平均電圧として制御することができ、当該負荷3の可変速駆動が可能になる。
過電流保護回路15は、モータロックや負荷配線のショートなどにより負荷3に過電流が流れたときに、これを検出するように構成されている。図2において、過電流保護回路15には、スイッチ素子SW1のドレイン・ソース間電圧(以下、単にドレイン電圧と呼ぶ)が入力されるようになっており、スイッチ素子SW1がオンした期間のドレイン電圧に基づいて負荷3に流れる負荷電流を検出する構成となっている。また、この過電流保護回路15には、スイッチ素子SW1のソース電圧が入力されるようになっている。
なお、過電流保護回路15は、「電流状態検出部」の一例に相当し、通電路20を流れる駆動電流の状態を検出するように機能する。
過熱保護回路16は、スイッチ素子SW1に内蔵された温度モニタ用ダイオード7を検出素子としてスイッチ素子SW1の温度を検出するように構成されている。なお、過熱保護回路16は、「温度状態検出部」の一例に相当し、装置内の所定位置の温度状態を検出するように機能する。
過電流保護回路15及び過熱保護回路16によって構成される保護回路部23は、具体的には図2のような構成となっている。
本実施例では、過熱保護回路16によってスイッチ素子SW1に内蔵された温度モニタ用ダイオード7の電圧を検出しており、この電圧を比較器107により、符号102に示す第1の駆動MOS過熱検出用しきい値Tmos1と比較している。温度モニタ用ダイオード7の電圧がしきい値Tmos1よりも低くなった場合には、比較器からLレベル信号(過熱検出信号)が出力される。また、温度モニタ用ダイオード7の電圧を、比較器108により、符号103に示す第1の駆動MOS過熱検出用しきい値Tmos2と比較している。温度モニタ用ダイオード7の電圧がしきい値Tmos2よりも大きくなった場合には、比較器108からHレベル信号(過熱解除検出信号)が出力される。
また、通電路20を流れる駆動電流(モータ電流)はスイッチ素子SW1のオン時のドレイン−ソース間電圧によって検出しており、このオン時のドレイン−ソース間電圧を符号101で示す第1の過電流検出用しきい値IL1(ポンプロック電流に対応したしきい値)と比較している。そして、オン時のドレイン−ソース間電圧がしきい値IL1よりも大きければ比較器106からHレベル信号(過電流検出信号)が出力されるようになっている。
また、スイッチ素子SW1のオン時のドレイン−ソース間電圧は、符号104で示す第2の過電流検出用しきい値IL2(負荷ショートに対応したしきい値)と比較されるようになっている。そして、オン時のドレイン−ソース間電圧がしきい値IL2よりも大きければ比較器109からHレベル信号(過電流検出信号)が出力されるようになっている。なお、しきい値IL1とIL2は同じ値であってもよく、異なる値であってもよい。
更に、スイッチ素子SW1(駆動用パワーMOSFET)のソース電圧を、符号105で示す第1の負荷ショート判定しきい値と比較している。そして、スイッチ素子SW1のソース電圧が第1の負荷ショート判定しきい値よりも小さければ比較器110からHレベル信号を出力する。
このような構成において、比較器107で過熱検出したと判定し(即ち、Lレベル出力)、比較器106で過電流ではないと判定した時(即ち、Lレベル出力)、タイマ113には発振回路とは別の経路でHレベル信号が入力される。このとき、タイマ113は、Hレベル信号の入力から監視時間tL2だけカウントし、カウント後、停止信号を出力する。この停止信号が出力されると、ラッチ回路118で停止信号が保持され、このラッチ回路118での保持が解除されるまで信号処理回路に停止信号が入力され続ける。なお、比較器108からHレベル信号(解除信号)が出力されたときに回路114を介してラッチ回路118に解除信号が入力され、このとき、ラッチ回路118での停止信号の保持が解除される。これにより、ラッチ回路118から信号処理回路に停止信号が入力されなくなる。
また、比較器107で過熱検出したと判定し(即ち、Lレベル出力)、比較器106で過電流と判定した時(即ち、Hレベル出力)、タイマ111には発振回路とは別の経路でHレベル信号が入力される。このとき、タイマ111は、Hレベル信号の入力から監視時間tL1だけカウントし、カウント後、停止信号を出力する。この停止信号が出力されると、ラッチ回路117で停止信号が保持され、ラッチ回路117での保持が解除されるまで信号処理回路に停止信号が入力され続ける。なお、比較器108からHレベル信号(解除信号)が出力されたときに回路112を介してラッチ回路117に解除信号が入力され、このとき、ラッチ回路117での停止信号の保持が解除される。これにより、ラッチ回路117から信号処理回路に停止信号が入力されなくなる。
また、比較器109で過電流と判定し(即ち、Hレベル出力)、比較器110でも過電流と判定したとき(即ち、Hレベル出力)、タイマ115には発振回路とは別の経路でHレベル信号が入力される。このとき、タイマ115は、Hレベル信号の入力から監視時間tL3だけカウントし、カウント後、停止信号を出力する。この停止信号が出力されると、ラッチ回路119で停止信号が保持され、ラッチ回路119での保持が解除されるまで信号処理回路に停止信号が入力され続ける。なお、タイマ116は、ラッチ回路119から停止信号が出力されてから時間tL4だけカウントし、時間tL4経過後にラッチ回路119に対し解除信号を出力している。このとき、ラッチ回路119での停止信号の保持が解除される。これにより、ラッチ回路119から信号処理回路に停止信号が入力されなくなる。
(保護機能の説明)
次に、負荷保護装置2による保護動作について説明する。
図3に示すように、負荷駆動装置2では、t10で駆動を開始した後のPWM制御中に、ポンプロックなどにより、通電路20を流れる駆動電流が過電流検出しきい値電流IL1以上となった場合(図3の時間t11参照)、過電流保護回路15によってこの状態が検出され、過電流検出信号が出力される。更に、ダイオード7による温度検知により、スイッチ素子SW(駆動用MOS)の温度が過熱しきい値Tmos1以上になったと判定されたとき(図3の時間t12参照)、過熱保護回路16によってこの状態が検出され、過熱検出信号が出力される。保護回路部23は、過電流検出信号及び過熱検出信号が共に検出された時点(図3では時間t12)から、監視時間tL1後(図3では時間t13)にPWM信号を停止する信号を信号処理回路11に与える。その後、スイッチ素子SW(駆動用MOS)の温度が過熱解除しきい値Tmos2以下となったとき(図3では時間t14)、PWM信号の停止が解除され、FP出力(負荷3への出力)が定常動作に復帰する。これにより、再び負荷3が駆動される。
また、図4に示すように、駆動を開始した後のPWM制御中に、ポンプハーフロックや雰囲気温度上昇などにより、通電路20を流れる駆動電流が過電流検出しきい値電流IL1未満のまま、スイッチ素子SW(駆動用MOS)の温度が過熱しきい値Tmos1以上になったと判定されたとき(図4の時間t21参照)、過熱保護回路16によってこの状態が検出され、過熱検出信号が出力される。保護回路部23は、過熱検出信号が検出された時点(図4では時間t21)から、監視時間tL2後(図4では時間t22)にPWM信号を停止する信号を信号処理回路11に与える。その後、スイッチ素子SW(駆動用MOS)の温度が過熱解除しきい値Tmos2以下となったとき(図4では時間t23)、PWM信号の停止が解除され、FP出力(負荷3への出力)が定常動作に復帰する。これにより、再び負荷3が駆動される。
図5のように、本実施形態では、ポンプロックなどによって負荷電流がやや急峻に立ち上がる場合を想定し、過電流状態及び過熱状態がいずれも検出された場合には、監視時間tL1をやや短く設定している。一方、ポンプロック時に対して緩やかに上昇する雰囲気温度上昇やポンプハーフロックなどを想定し、過熱状態のみが検出された場合には、監視時間とtL1よりもやや長いtL2に設定している。図5のように、雰囲気温度上昇やポンプハーフロックなどの異常状態のときには、ポンプロック時と比較して破壊温度に到達するまでの時間に余裕があるため、破壊温度に到達しない程度に監視時間をある程度長くすることで負荷3の駆動を優先させることができる。
また、図2、図6に示すように、駆動を開始した後のPWM制御中に、負荷3の短絡状態等が生じ、通電路20を流れる駆動電流が過電流検出しきい値電流IL2以上となり、スイッチ素子SW1(駆動MOS)のソース電圧がしきい値VSに達したとき(図6ではt31)、過電流検出回路15によってこのような負荷ショート状態が検出される。保護回路部23は、負荷ショート状態が検出された時点(図6では時間t31)から、監視時間tL3後(図6では時間t32)にPWM信号を停止する信号を信号処理回路11に与える。その後、時間t32の時点から時間tL4を経過したとき(図6では時間t33)、PWM信号の停止が解除され、FP出力(負荷3への出力)が定常動作に復帰する。これにより、再び負荷3が駆動される。なお、本実施形態では、tL3<tL1<tL2の関係となっている。また、上記しきい値IL2は、IL1と同じであってもよい。
本実施形態では、図7のように、負荷ショートなどによって負荷電流が急峻に立ち上がる場合を想定し、過電流状態及び負荷ショート状態がいずれも検出された場合には、監視時間tL3をtL1よりも更に短く設定している。一方、この負荷ショート時と比較して緩やかに温度上昇する場合には、負荷ショート時と比較して破壊温度に到達するまでの時間に余裕があるため、破壊温度に到達しない程度に監視時間をある程度長くすることで負荷3の駆動を優先させている。
なお、図7の例では、通電路20を流れる駆動電流が過電流検出しきい値電流IL2以上となり、スイッチ素子SW1(駆動MOS)のソース電圧がしきい値VSに達したときを負荷ショート状態として監視時間tL3後に負荷3の駆動を停止させているが、ソース電圧だけで判断し、ソース電圧がしきい値VSに達したときを負荷ショート状態として監視時間tL3後に負荷3の駆動を停止させるようにしてもよい。この場合、例えば図8のように監視時間tL3を設定してもよい。
本実施形態では、保護回路部23が「判断部」の一例に相当し、電流状態検出部での検出結果と温度状態検出部での検出結果とに基づき、複数の異常種別のいずれかが生じているか否かを判断するように機能する。
また、本実施形態では、保護回路部23、信号処理回路11、駆動回路14が「制御部」の一例に相当し、スイッチ素子SW1に制御信号を出力するように機能し、具体的には、判断部によって複数の異常種別のいずれかが生じていると判断され、且つその異常の継続が設定された監視時間に達する場合に、温度状態検出部による検出部位に対する保護動作を行うように機能する。また、監視時間を、判断部によって判断された異常種別に応じた時間に設定するようにも機能する。
(第1実施形態の主な効果)
本実施形態に係る負荷駆動装置2には、電流状態検出部での検出結果と温度状態検出部での検出結果とに基づき、複数の異常種別のいずれかが生じているか否かを判断する判断部が設けられている。そして、制御部は、この判断部によって複数の異常種別のいずれかが生じていると判断され、且つその異常の継続が設定された監視時間に達する場合に、温度状態検出部による検出部位に対する保護動作を行っている。更に、前記監視時間は、判断部によって判断された異常種別に応じた時間に設定可能とされている。
この構成によれば、電流状態検出部及び温度状態検出部での検出結果によって異常種別をより正確に把握することができ、保護動作を行うための監視期間を異常種別に応じて適切に設定することができる。これにより、温度状態検出部による検出部位に対し、把握された異常種別に適した保護動作を行うことができる。
また、図3のように、制御部は、電流状態検出部が所定の過電流状態を検出し、且つ温度状態検出部が所定の過熱状態を検出した場合に監視時間を第1の時間tL1に設定し、図4のように、電流状態検出部が過電流状態を検出せず、温度状態検出部が過熱状態を検出した場合に監視時間を第1の時間tL1よりも長い第2の時間tL2に設定している。
この構成によれば、電流状態検出部及び温度状態検出部のいずれによっても異常が検出されているときには(即ち、相対的に異常の度合いが大きいときには)、より早く保護動作に移行することができ、保護を強化することができる。一方、電流状態検出部が異常を検出せず、温度状態検出部のみが異常を検出しているときには(即ち、両方で異常が検出されている場合と比較して相対的に異常の度合いが小さいときには)、相対的に保護動作を遅らせて、負荷の動作を優先させることができる。
また、図1に示すように、負荷に印加される電圧を検出する負荷電圧検出手段が設けられている。更に、図6に示すように、制御部は、電流状態検出部が所定の第2過電流状態を検出し、且つ負荷電圧検出手段によって検出される負荷電圧が所定の短絡閾値VS以下となる場合に、監視時間を第1の時間tL1よりも短い時間tL3に設定するように構成されている。
この構成によれば、電流状態検出部及び温度状態検出部のいずれによっても異常が検出されているときには、より早期に保護動作に移行することができ、保護を強化することができる。また、電流状態検出部が異常を検出し且つ負荷電圧検出手段によって短絡状態が検出されたときには、第1の時間よりも更に短時間で保護動作に移行することができ、保護を一層強化することができる。
また、図1のように、温度状態検出部は、負荷へ供給される負荷電流が流れる部品(図1ではスイッチ素子SW1)の温度を検出する第1温度検出部を備え、少なくとも第1温度検出部で検出される温度が閾値に達した場合に過熱状態としている。
この構成によれば、電流の影響を受け易く温度破壊が懸念される部品の温度をモニタリングすることで、当該部品が温度破壊に達するまでの余裕を考慮した適切な保護動作を行うことができる。
また、図3等のように、制御部は、温度状態検出部による検出部位に対する保護動作を行った後、所定の復帰条件が成立したときに保護動作を解除している。
この構成によれば、保護動作の対象となった検出部位を、復帰条件が成立した適切な時期に復帰させることが可能となり、復帰させるべき条件が整ったときには負荷動作の抑制を極力抑えることができる。
[第1実施形態の変更例1]
次に第1実施形態の変更例1について説明する。
図9は、第1実施形態の変更例1に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。図10は、図9の負荷駆動装置における過熱状態を検出したときの保護動作を説明するタイミングチャートである。図11は、雰囲気温度上昇時における時間経過に応じた制御IC温度の上昇曲線を示すグラフである。この負荷駆動装置は、第1実施形態の特徴を全て含み、更に構成を負荷している。よって第1実施形態と同様の構成については、同一の符号を付し、詳細な説明は省略する。
図9に示す負荷駆動装置2では、制御IC6の内部にダイオード17が設けられており、ダイオード7によるスイッチ素子SW1の温度検出に加え、ダイオード17による制御IC6内の温度検出が可能となっている。なお、この場合、過熱保護回路16が「温度状態検出部」「第2温度検出部」の一例に相当し、負荷電流及び回生電流に依存しない部品(図9では制御IC6)の温度を検出するように機能する。
この構成では、図10のように、ダイオード7によって検出される温度(即ち、第1温度検出部によって検出されるスイッチ素子SW1の温度)が閾値Tmos1に達する場合には、図2と同様に監視時間をtL2に設定し、ダイオード17によって検出される温度(即ち、第2温度検出部によって検出される制御IC6の温度)が閾値TIC1に達する場合には、監視時間をtL5に設定し、保護動作を行っている。なお、ダイオード7による温度が閾値Tmos1に達して監視時間がtL2に設定された場合には、このダイオード7による温度が閾値Tmos2となったときに復帰する。一方、ダイオード17による温度が閾値TIC1に達して監視時間がtL5に設定された場合には、ダイオード7の温度が閾値TIC2となったときに復帰する。
この構成では、負荷電流や回生電流に依存しない部品の温度をも考慮して保護動作を行うことができる。例えば電源電圧上昇などによって負荷電流と関係なく制御IC6の温度が上昇する場合などにおいて効果的に保護動作を行うことができる。なお、図11のように、制御IC6の温度が閾値TIC1に達するような異常状態のときは、制御ICの温度上昇曲線が緩やかに上昇することが想定されるため、監視時間tL5を上述のtL1、tL2、tL3よりも大きく設定してもよい。
[第1実施形態の変更例2]
次に第1実施形態の変更例2について説明する。
図12は、第1実施形態の変更例2に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。この負荷駆動装置は、第1実施形態の特徴を全て含み、更に構成を付加している。よって第1実施形態と同様の構成については、同一の符号を付し、詳細な説明は省略する。
図12の構成では、負荷電流に依存する部品としてスイッチ素子SW2(回生MOS)、コイルR1、R2などが温度検出対象となっており、これらをモニタしうるように温度検出用のダイオード19、18a、18bがそれぞれ設けられている。この構成では、温度検出用のダイオード19、18a、18bによって検出される各部品の温度の内、いずれかの温度が温度閾値に達した場合に、上記実施形態と同様の保護動作を行うことができる。なお、温度閾値は、各部品毎に個別の閾値を用いてもよく、全ての部品で共通の閾値を用いてもよい。この場合、保護動作の際の監視時間は、各部品ごとに個別の時間を設定してもよく、全ての部品で共通の監視時間を設定してもよい。
[第1実施形態の変更例3]
次に第1実施形態の変更例3について説明する。
図13は、第1実施形態の変更例3に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。この負荷駆動装置は、第1実施形態の特徴を全て含み、更に構成を付加している。よって第1実施形態と同様の構成については、同一の符号を付し、詳細な説明は省略する。
図13の構成では、ダイオード7、19での検出に加え、負荷電流に依存する部品として設けられたコイルR1、R2において、コイル両端の電圧をモニタし得るように構成されており、これにより、温度、電流値を検出することができるようになっている。そして、このように検出される各部品の温度の内のいずれかの温度又は電流値が閾値に達した場合に、上記実施形態と同様の保護動作を行うことができる。なお、閾値は、各部品毎に個別の閾値を用いてもよく、全ての部品で共通の閾値を用いてもよい。また、この場合、保護動作の際の監視時間は、各部品ごとに個別の時間を設定してもよく、全ての部品で共通の監視時間を設定してもよい。
[第1実施形態の変更例4]
次に第1実施形態の変更例4について説明する。
図14は、第1実施形態の変更例4に係る負荷駆動装置を用いた燃料ポンプ制御システムを概略的に例示するブロック図である。この負荷駆動装置は、第1実施形態の特徴を全て含み、更に構成を付加している。よって第1実施形態と同様の構成については、同一の符号を付し、詳細な説明は省略する。
図14の構成では、ダイオード7、19での検出に加え、基板導体の抵抗分32〜36で電圧をモニタし得るように構成されている。この構成では、抵抗分の配された各位置の温度及び電流値をモニタすることが可能となる。そして、このように検出される各部品の温度の内のいずれかの温度が閾値に達した場合に、上記実施形態と同様の保護動作を行うことができる。なお、閾値は、各部品毎に個別の閾値を用いてもよく、全ての部品で共通の閾値を用いてもよい。また、この場合、保護動作の際の監視時間は、各部品ごとに個別の時間を設定してもよく、全ての部品で共通の監視時間を設定してもよい。
[代表例及び各変更例の効果]
図15は、負荷電流に依存する各部品の温度について、所定の異常状態が発生したときの時間経過に応じた温度上昇曲線を示すグラフである。図16は、負荷電流に依存しない部品の温度について、所定の異常状態が発生したときの時間経過に応じた温度上昇曲線を示すグラフである。図17は、図1の負荷駆動装置に関し、駆動電流が流れる場合および回生電流が流れる場合についての電流経路を説明する説明図である。図18は、図1の負荷駆動装置の部品実装例1について説明する説明図である。図19は、図1の負荷駆動装置の部品実装例2について説明する説明図である。図20は、横軸に経過時間をとり、縦軸に負荷電流をとった座標系における破壊領域と各保護動作の領域との関係を示すグラフである。図20は、横軸に経過時間をとり、縦軸に負荷電流をとった座標系において、複数の閾値を用いて保護動作を行う場合の各保護動作の領域と、破壊領域との関係を示すグラフである。
本実施形態では、図17のF1のように、スイッチ素子SW1がオン動作し、スイッチ素子SW2がオフ動作しているときに駆動電流(負荷電流)が流れ、F2のようにスイッチ素子SW1がオフ動作し、スイッチ素子SW2がオン動作しているときに回生電流が流れることになる。この電流経路にある部品は、「負荷電流に依存する部品」であり、部品温度と負荷電流が密接に関係することになる。このような装置は、例えば、図18(A)(B)の例、図19(A)(B)の例のように回路基板40に実装することができ、接着剤46や放熱フィン42によってある程度温度上昇を抑えることができる。このような構成では、負荷異常時は、負荷電流経路にある部品の温度上昇が大きくなる。また、個々の温度上昇は他部品の雰囲気温度を上昇させてしまい温度上昇を加速してしまう。従って、保護例としては、図1の代表例のように、最も温度が高くなる部品に温度モニタ(ダイオード7)を設けて、電流判定値と監視時間の組み合わせで保護するようにすれば、装置全体を保護する上で効果的である。
また、上記のような「負荷電流に依存する部品」は、部品温度状態と負荷電流状態とを検出すれば、破壊状態までどの程度の余裕があるかをより正確に把握でき、適切な監視時間を設定しやすくなる。特に、各部品は、図15のように部品毎に上昇カーブが異なり、部品毎に破壊温度が異なっているため、各部品毎に閾値温度や監視時間を定めるようにすれば、各部品により適した保護動作を行うことが可能となる。また、いずれの部品の場合でも、図20と同様に破壊領域が設定されるため、上述した負荷ショート保護、ポンプロック保護、過熱保護などの各保誤動作に際し、適切な監視時間を設定すれば、破壊領域に至らない余裕部分(図20のハッチング領域以外の部分)をぎりぎりまで有効利用するように保護動作を行うことができる。また、制御IC6などの負荷電流に依存しない部品も、図16の例のような上昇カーブとなるため、このような特徴を考慮して監視時間を設定すれば、破壊温度に至るまでの余裕を考慮した適切な時間設定が可能となる。この場合、部品温度が上昇する原因は、電源電圧上昇などが考えられ、基本的に急峻な温度上昇が想定され難いため、監視時間は比較的長く設定することが可能となる。
[他の実施形態]
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
図3、図4、図6等の例では、異常状態が検出されたときに監視時間経過後に負荷の動作を停止させるような保護動作を行っているが、保護動作はこのような方法に限られない。例えば、図3、図4、図6のいずれの場合でも、異常状態が検出された場合に、監視時間経過後にデューティ比を低くし、異常検出前よりも負荷への出力を抑えるように保護動作を行ってもよい。
上記実施形態よりも更に異常状態を増やしてもよい。例えば、複数の電流閾値を予め設定しておき、通電路を流れる駆動電流が複数の電流閾値の内の高い電流閾値に達するほど監視時間を短く設定するようにしてもよい。例えば、第1実施形態の構成を変更し、図23のように、負荷ショート用の電流しきい値IL2、負荷ハーフショート用の電流しきい値IL4、ポンプロック用の電流しきい値IL1、ポンプハーフロック用の電流しきい値IL5などを用意し、例えばIL2>IL4>IL1>IL5と設定するようにしてもよい。そして、負荷ショート用の監視時間tL3、負荷ハーフショート用の監視時間tL5、ポンプロック用の監視時間tL1、ポンプハーフロック用の監視時間tL6をそれぞれ定め、高い電流閾値に達するほど監視時間を短く設定してもよい(即ち、tL3<tL5<tL1<tL6)。
この構成では、駆動電流の異常状態がより大きくなるときほどより早期に保護動作に移行することができ、保護の強化を図ることができる。逆に、駆動電流の異常状態の程度がより小さい場合には、相対的に遅めに保護動作に移行させ、負荷の駆動を優先させることができる。なお、このように複数の電流閾値を用いて監視時間を設定する場合、破壊領域と監視時間との関係は例えば図21のようになる。
また、上記実施形態の構成の一部を変更し、例えば、電流値と監視時間との対応関係を定めた演算式に基づき、電流状態検出部によって検出される駆動電流が大きくなるほど監視時間を短くするように監視時間を設定してもよい。電流値に応じて監視時間が反比例するような反比例式を用い、電流状態検出部によって検出される駆動電流の大きさに反比例するように監視時間を定めるようにしてもよい。また、反比例式に限られることはなく、駆動電流をパラメータとして、駆動電流が大きくなるほど監視時間を短くするように監視時間を算出する式であればよい。
この構成では、駆動電流の大きさに応じて監視時間を連続的に増減することができ、監視時間をより細かく適切に設定することができる。この場合、破壊領域と監視時間との関係は例えば図22のようになる。
第1実施形態の代表例等では、温度閾値を1つのみ設定していたが、複数の温度閾値が予め設定されていてもよい。そして、温度状態検出部の検出結果に基づき、所定位置の温度が複数の温度閾値の内の高い温度閾値に達するほど監視時間を短く設定するようにしてもよい。
この構成では、所定位置の温度異常状態の程度がより大きくなるときほどより早期に保護動作に移行することができ、保護の強化を図ることができる。逆に、温度異常状態の程度がより小さい場合には、相対的に遅めに保護動作に移行させ、負荷の駆動を優先させることができる。
1…負荷
2…負荷駆動装置
11…信号処理回路(制御部)
14…駆動回路(制御部)
15…過電流検出回路(電流状態検出部、負荷電圧検出手段)
16…過熱保護回路(温度状態検出部)
23…保護回路部(判断部、制御部)
SW1,SW2…スイッチ素子

Claims (9)

  1. 制御信号が入力される制御入力端子を備え、前記制御信号の状態に応じて負荷への通電路を通電状態と非通電状態とに切り替えるスイッチ素子と、
    前記スイッチ素子に前記制御信号を出力可能な制御部と、
    前記通電路を流れる駆動電流の状態を検出する電流状態検出部と、
    装置内の所定位置の温度状態を検出する温度状態検出部と、
    前記電流状態検出部での検出結果と前記温度状態検出部での検出結果とに基づき、複数の異常種別のいずれかが生じているか否かを判断する判断部と、
    を備え、
    前記制御部は、
    前記判断部によって前記複数の異常種別のいずれかが生じていると判断され、且つその異常の継続が設定された監視時間に達する場合に、前記温度状態検出部による検出部位に対する保護動作を行い、
    更に、前記監視時間を、前記判断部によって判断された異常種別に応じた時間に設定可能とされており、
    前記電流状態検出部が所定の過電流状態を検出し、且つ前記温度状態検出部が所定の過熱状態を検出した場合に前記監視時間を第1の時間に設定し、
    前記電流状態検出部が前記過電流状態を検出せず、前記温度状態検出部が前記過熱状態を検出した場合に前記監視時間を前記第1の時間よりも長い第2の時間に設定することを特徴とする負荷駆動装置。
  2. 制御信号が入力される制御入力端子を備え、前記制御信号の状態に応じて負荷への通電路を通電状態と非通電状態とに切り替えるスイッチ素子と、
    前記スイッチ素子に前記制御信号を出力可能な制御部と、
    前記通電路を流れる駆動電流の状態を検出する電流状態検出部と、
    装置内の所定位置の温度状態を検出する温度状態検出部と、
    前記電流状態検出部での検出結果と前記温度状態検出部での検出結果とに基づき、複数の異常種別のいずれかが生じているか否かを判断する判断部と、
    前記負荷に印加される電圧を検出する負荷電圧検出手段と、
    を備え、
    前記制御部は、
    前記判断部によって前記複数の異常種別のいずれかが生じていると判断され、且つその異常の継続が設定された監視時間に達する場合に、前記温度状態検出部による検出部位に対する保護動作を行い、
    更に、前記監視時間を、前記判断部によって判断された異常種別に応じた時間に設定可能とされており、
    前記電流状態検出部が所定の第1過電流状態を検出し、且つ前記温度状態検出部が所定の過熱状態を検出した場合に前記監視時間を第1の時間に設定し、
    前記電流状態検出部が所定の第2過電流状態を検出し、且つ前記負荷電圧検出手段によって検出される負荷電圧が所定の短絡閾値以下となる場合に、前記監視時間を前記第1の時間よりも短い時間に設定することを特徴とする負荷駆動装置。
  3. 前記負荷に印加される電圧を検出する負荷電圧検出手段を備え、
    前記制御部は、
    前記電流状態検出部が所定の第1過電流状態を検出し、且つ前記温度状態検出部が所定の過熱状態を検出した場合に前記監視時間を第1の時間に設定し、
    前記電流状態検出部が所定の第2過電流状態を検出し、且つ前記負荷電圧検出手段によって検出される負荷電圧が所定の短絡閾値以下となる場合に、前記監視時間を前記第1の時間よりも短い時間に設定することを特徴とする請求項に記載の負荷駆動装置。
  4. 前記温度状態検出部は、前記負荷へ供給される負荷電流又は前記負荷からの回生電流が流れる部品の温度を検出する第1温度検出部を備え、少なくとも前記第1温度検出部で検出される温度が閾値に達した場合に過熱状態とすることを特徴とする請求項1から請求項3のいずれか一項に記載の負荷駆動装置。
  5. 前記温度状態検出部は、前記負荷電流及び前記回生電流に依存しない部品の温度を検出する第2温度検出部を備え、
    前記制御部は、前記第1温度検出部及び前記第2温度検出部の少なくともいずれかで検出される温度が閾値に達した場合に過熱状態とすることを特徴とする請求項4に記載の負荷駆動装置。
  6. 前記電流状態検出部又は前記制御部には、複数の電流閾値が予め設定されており、
    前記制御部は、前記電流状態検出部の検出結果に基づき、前記通電路を流れる前記駆動電流が前記複数の電流閾値の内の高い電流閾値に達するほど前記監視時間を短く設定することを特徴とする請求項1から請求項5のいずれか一項に記載の負荷駆動装置。
  7. 前記制御部は、電流値と監視時間との対応関係を定めた演算式に基づき、前記電流状態検出部によって検出される前記駆動電流が大きくなるほど前記監視時間を短くするように前記監視時間を設定することを特徴とする請求項1から請求項5のいずれか一項に記載の負荷駆動装置。
  8. 前記温度状態検出部又は前記制御部には、複数の温度閾値が予め設定されており、
    前記制御部は、前記温度状態検出部の検出結果に基づき、前記所定位置の温度が前記複数の温度閾値の内の高い温度閾値に達するほど前記監視時間を短く設定することを特徴とする請求項1から請求項7のいずれか一項に記載の負荷駆動装置。
  9. 前記制御部は、前記温度状態検出部による検出部位に対する前記保護動作を行った後、所定の復帰条件が成立したときに前記保護動作を解除することを特徴とする請求項1から請求項8のいずれか一項に記載の負荷駆動装置。
JP2011071873A 2011-03-29 2011-03-29 負荷駆動装置 Active JP5699739B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071873A JP5699739B2 (ja) 2011-03-29 2011-03-29 負荷駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071873A JP5699739B2 (ja) 2011-03-29 2011-03-29 負荷駆動装置

Publications (2)

Publication Number Publication Date
JP2012210005A JP2012210005A (ja) 2012-10-25
JP5699739B2 true JP5699739B2 (ja) 2015-04-15

Family

ID=47189317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071873A Active JP5699739B2 (ja) 2011-03-29 2011-03-29 負荷駆動装置

Country Status (1)

Country Link
JP (1) JP5699739B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094260B2 (ja) * 2013-02-27 2017-03-15 株式会社デンソー 異常検出保護回路
CN115202975B (zh) * 2022-07-15 2024-01-26 摩尔线程智能科技(北京)有限责任公司 控制负载的功率消耗的方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329040B2 (ja) * 1993-12-21 2002-09-30 松下電器産業株式会社 インバータ駆動装置
JP2005080417A (ja) * 2003-09-01 2005-03-24 Calsonic Kansei Corp モータ駆動制御装置
JP2010098907A (ja) * 2008-10-20 2010-04-30 Tokai Rika Co Ltd 過電流保護回路

Also Published As

Publication number Publication date
JP2012210005A (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5750311B2 (ja) インバータ駆動装置
JP3966194B2 (ja) モータ制御装置
US9660512B2 (en) Electronic device for acquiring specific information of respective switching elements
JP5452551B2 (ja) 電力変換装置及び電力変換システム
US9030143B2 (en) Method and system of limiting current to a motor
US9065275B2 (en) Driving circuit for an electric motor
US10199982B2 (en) Motor control apparatus
EP2466750A1 (en) Load drive control device and load drive control method
US9912270B2 (en) Motor drive device
US6838847B2 (en) Stall protection based on back EMF detection
JP5780145B2 (ja) スイッチング素子駆動回路及びそれを備える駆動装置
JP5609805B2 (ja) 負荷駆動装置
WO2015079492A1 (ja) ゲート駆動回路及びインテリジェントパワーモジュール
JP2006230111A (ja) Dc/dcコンバータ
US20170170715A1 (en) Method of controlling an inverter
JP5427633B2 (ja) ゲート駆動装置
US20240313523A1 (en) Abnormality detection apparatus
JP5699739B2 (ja) 負荷駆動装置
JP5931407B2 (ja) モータ駆動装置及びこれを用いた電気機器
KR100689328B1 (ko) 인버터 보호 장치
US20200287482A1 (en) Control circuit for electric tool
JP2007336665A (ja) ゲート駆動装置およびそれを備えた電力変換装置
JP2021128118A (ja) 過電流検出装置
JP2008228371A (ja) 車両用電動モータの駆動制御装置
JP6753348B2 (ja) スイッチング素子の駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R151 Written notification of patent or utility model registration

Ref document number: 5699739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250