JP5689086B2 - Hot work tool steel - Google Patents

Hot work tool steel Download PDF

Info

Publication number
JP5689086B2
JP5689086B2 JP2012043011A JP2012043011A JP5689086B2 JP 5689086 B2 JP5689086 B2 JP 5689086B2 JP 2012043011 A JP2012043011 A JP 2012043011A JP 2012043011 A JP2012043011 A JP 2012043011A JP 5689086 B2 JP5689086 B2 JP 5689086B2
Authority
JP
Japan
Prior art keywords
mass
less
heat check
tool steel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012043011A
Other languages
Japanese (ja)
Other versions
JP2013177662A (en
Inventor
邦彦 橋
邦彦 橋
貴広 加藤
貴広 加藤
佐々木 剛
剛 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012043011A priority Critical patent/JP5689086B2/en
Publication of JP2013177662A publication Critical patent/JP2013177662A/en
Application granted granted Critical
Publication of JP5689086B2 publication Critical patent/JP5689086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は熱間工具鋼に関するものである。   The present invention relates to hot work tool steel.

金型材や熱間圧延用ロール材などの熱間工具鋼は、加熱と冷却が繰り返される熱疲労環境で使用されることから、耐ヒートチェック性が要求される。
耐ヒートチェック性には、高い高温強度と靭性が必要であるとされている(例えば非特許文献1)。従来、高温強度を向上させる方法としては、VやMo、Wなどの特殊炭化物形成元素を添加し、焼戻しの際にMC或いはMC型炭化物として微細に析出させることが知られている。また、靭性の向上には結晶粒の微細化、炭化物及び介在物の種類、形態、サイズを制御することが有効であり、一般に焼入れによりマルテンサイト組織とした後、焼戻し処理される。
Hot tool steel such as a die material and a roll material for hot rolling is used in a thermal fatigue environment in which heating and cooling are repeated, and thus heat check resistance is required.
It is said that heat check resistance requires high high-temperature strength and toughness (for example, Non-Patent Document 1). Conventionally, as a method for improving the high temperature strength, it is known to add a special carbide forming element such as V, Mo, W or the like and finely precipitate it as M 2 C or MC type carbide during tempering. In order to improve toughness, it is effective to control the refinement of crystal grains and the type, form and size of carbides and inclusions, and generally a tempering treatment is performed after forming a martensite structure by quenching.

例えば、特許文献1には、C:0.10〜0.70mass%、Si:0.10〜0.80mass%、Mn:0.30〜1.00mass%、P:0.007〜0.020mass%、Cr:3.00〜7.00mass%,WおよびMoは単独又は複合で(1/2W+Mo):0.20〜12.00mass%、V:0.10〜3.00mass%、Ni:0.05〜0.80mass%、S:0.150mass%以下を含有し、残部が実質的にFeと不可避的不純物からなり、JISG0555に準拠した非金属介在物の清浄度がdA60×400で0.020%以下、dB60×400で0.020%以下、dB60×400で0.020%以下でありd(A+B+C)で0.045%以下であるとともに、焼き鈍ししたときに、粒径が1.0μmを越える炭化物及び非金属介在物の面積率が0.004%以下であることを特徴とする熱間工具工が開示されている。これらを規定することによって、耐ヒートチェック性、耐溶損性及び被削性を向上させることができる。   For example, in Patent Document 1, C: 0.10 to 0.70 mass%, Si: 0.10 to 0.80 mass%, Mn: 0.30 to 1.00 mass%, P: 0.007 to 0.020 mass. %, Cr: 3.00 to 7.00 mass%, W and Mo are used alone or in combination (1/2 W + Mo): 0.20 to 12.00 mass%, V: 0.10 to 3.00 mass%, Ni: 0 0.05 to 0.80 mass%, S: 0.150 mass% or less, the balance being substantially composed of Fe and inevitable impurities, and the cleanliness of nonmetallic inclusions in accordance with JISG0555 is 0.00 at dA 60 × 400. 020% or less, dB60 × 400, 0.020% or less, dB60 × 400, 0.020% or less, and d (A + B + C), 0.045% or less. There hot tool machining is disclosed, wherein the area ratio of the carbide and non-metallic inclusions exceeding 1.0μm is 0.004% or less. By prescribing these, the heat check resistance, the erosion resistance and the machinability can be improved.

特開2003−226939号公報JP 2003-226939 A

「鉄と鋼」、79巻9号、1013〜1021頁"Iron and Steel", Vol. 79, No. 9, pp. 1013-1021

特許文献1に示されている耐ヒートチェック性向上の技術的なポイントは、粒径が1.0μm超の炭化物及び非金属介在物を減らし、1.0μm以下のそれらを増やすことにより、析出強化の効果を引き出しつつ、靭性の低下を抑えることにあると推察される。したがって、これらの効果を活用するためには、拡散変態を伴わないように大きな冷却速度で焼入れしマルテンサイト組織にした後、焼戻し処理することが必要と考えられる。しかし、大型部材(例えば10t以上)においては、設備的或いは物理的に大きな冷却速度を得ることが難しいため、特許文献1の効果の恩恵を受けることはできない。   The technical point of improving the heat check resistance shown in Patent Document 1 is to strengthen precipitation by reducing carbides and non-metallic inclusions having a particle size of more than 1.0 μm and increasing them to 1.0 μm or less. It is presumed that there is to suppress the decrease in toughness while drawing out the effect. Therefore, in order to utilize these effects, it is considered necessary to perform a tempering treatment after quenching to a martensite structure at a high cooling rate so as not to involve diffusion transformation. However, since it is difficult to obtain a large cooling rate in terms of equipment or physically in a large member (for example, 10 t or more), it is not possible to benefit from the effect of Patent Document 1.

本発明は、上記事情を背景になされたものであり、大型鋼塊から製造される部材においても、高い耐ヒートチェック性を得ることが可能な工具鋼を提供することを目的とする。   The present invention has been made in the background of the above circumstances, and an object thereof is to provide tool steel capable of obtaining high heat check resistance even in a member manufactured from a large steel ingot.

すなわち、本発明の熱間工具鋼のうち、第1の本発明は、質量百分率で、C:0.50〜0.60%、Si:0.10%未満、Mn:0.30〜1.00%、P:0.010%未満、S:0.010%未満、Cr:3.00〜4.50%、Mo:0.80〜1.20%、Ni:0.30〜0.60%、V:0.05〜0.50%を有し、残部がFe及び不可避的不純物からなる組成を有し、フルベイナイト組織からなることを特徴とする。   That is, among the hot tool steels of the present invention, the first present invention is in mass percentage, C: 0.50-0.60%, Si: less than 0.10%, Mn: 0.30-1. 00%, P: less than 0.010%, S: less than 0.010%, Cr: 3.00 to 4.50%, Mo: 0.80 to 1.20%, Ni: 0.30 to 0.60 %, V: 0.05 to 0.50%, with the balance being composed of Fe and inevitable impurities, and having a full bainite structure.

第2の本発明の熱間工具鋼は、前記第1の本発明において、粒径が1μm未満の炭化物の平均面積率が10〜30%であることを特徴とする。   The hot work tool steel of the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the average area ratio of carbides having a particle size of less than 1 μm is 10 to 30%.

以下に、本発明における各元素の量比限定理由を記載する。なお、量比は、いずれも質量%(以下、mass%という)である。   The reasons for limiting the amount ratio of each element in the present invention will be described below. In addition, all quantity ratios are mass% (henceforth mass%).

C:0.50〜0.60mass%
Cは炭化物形成元素との間に炭化物を形成し、高温強度、焼戻し軟化抵抗性、耐摩耗性の増加をもたらす。0.50mass%未満だと、析出する炭化物の量が少ないため工具鋼として十分な硬さが得られず、多すぎると炭化物の粗大化に伴う靭性の低下を招くため、その範囲を0.50〜0.60mass%に限定する。
C: 0.50-0.60 mass%
C forms carbides with the carbide-forming elements, resulting in increased high-temperature strength, temper softening resistance, and wear resistance. If the amount is less than 0.50 mass%, the amount of precipitated carbide is small, so that sufficient hardness cannot be obtained as a tool steel, and if too large, the toughness is reduced due to coarsening of the carbide. Limited to ~ 0.60 mass%.

Si:0.10mass%未満
Siはフェライトの固溶強化元素であるが、偏析性を助長させる元素でもあるため、その量が多いと組織が不均一となり、耐ヒートチェック性の観点から好ましくない。よって、その範囲を0.10mass%未満に限定する。
Si: Less than 0.10 mass% Si is a solid solution strengthening element of ferrite. However, since it is also an element that promotes segregation, a large amount makes the structure non-uniform, which is not preferable from the viewpoint of heat check resistance. Therefore, the range is limited to less than 0.10 mass%.

P:0.010mass%未満
Pは旧オーステナイト粒界に偏析し、粒界破壊しやすくなるため、定性的にヒートチェックが発生しやすくなると推察されるので、その範囲を0.010mass%未満に限定する。
P: Less than 0.010 mass% P segregates at the prior austenite grain boundaries and easily breaks grain boundaries, so it is assumed that heat check is likely to occur qualitatively, so the range is limited to less than 0.010 mass%. To do.

S:0.010mass%未満
SはMnと化合してMnSを形成するが、多すぎると粗大なMnSが増え、靭性の低下を招くので、その範囲を0.010mass%未満に限定する。
S: Less than 0.010 mass% S combines with Mn to form MnS, but if it is too much, coarse MnS increases and the toughness is reduced, so the range is limited to less than 0.010 mass%.

Mn:0.30〜1.00mass%
Mnはオーステナイト化処理中に母相に固溶して、フェライトの生成を抑制する(焼入れ性を向上させる)効果がある。0.30mass%未満であると焼入れ性が不十分となり、また1.00mass%を超えると焼入れ性が過度になり、フルベイナイト組織が得にくくなる。よって、その範囲を0.30〜1.00mass%とした。なお、同様に理由で下限を0.40%mass%、上限を0.60mass%とするのが望ましい。
Mn: 0.30 to 1.00 mass%
Mn dissolves in the matrix during the austenitizing treatment and has the effect of suppressing the formation of ferrite (improving the hardenability). If it is less than 0.30 mass%, the hardenability becomes insufficient, and if it exceeds 1.00 mass%, the hardenability becomes excessive and it becomes difficult to obtain a full bainite structure. Therefore, the range was set to 0.30 to 1.00 mass%. For the same reason, it is desirable that the lower limit is 0.40% mass% and the upper limit is 0.60 mass%.

Cr:3.00〜4.50mass%
CrはMnと同様、焼入れ性を増加させる元素である。また、Fe及びCと化合して炭化物を形成し焼戻し軟化抵抗性を増加させるため、耐ヒートチェック性を付与するのに有効な元素であるが、多すぎると粗大な炭化物を形成し、靭性の低下をもたらす。これらの理由でCr含有量を3.00〜4.50mass%に限定する。なお、同様に理由で下限を3.50mass%、上限を4.00mass%とするのが望ましい。
Cr: 3.00 to 4.50 mass%
Cr, like Mn, is an element that increases hardenability. In addition, it combines with Fe and C to form carbides and increase temper softening resistance, so it is an effective element for imparting heat check resistance, but if it is too much, coarse carbides are formed and toughness is increased. Bring about a decline. For these reasons, the Cr content is limited to 3.00 to 4.50 mass%. For the same reason, it is desirable that the lower limit is 3.50 mass% and the upper limit is 4.00 mass%.

Mo:0.80〜1.20mass%
MoはCと化合し特殊炭化物を形成する元素で、焼戻し軟化抵抗性と高温強度を向上させる元素である。しかし、多すぎると粗大な炭化物を形成し、靭性の低下をもたらすので、その範囲を0.80〜1.20mass%に限定する。なお、同様に理由で下限を0.85mass%、上限を1.00mass%とするのが望ましい。
Mo: 0.80 to 1.20 mass%
Mo is an element that combines with C to form a special carbide, and is an element that improves temper softening resistance and high-temperature strength. However, if it is too much, coarse carbides are formed and the toughness is lowered, so the range is limited to 0.80 to 1.20 mass%. For the same reason, it is desirable that the lower limit is 0.85 mass% and the upper limit is 1.00 mass%.

Ni:0.30〜0.60mass%
Niは母相に固溶し焼入れ性及び靭性を向上させる元素であるが、0.30mass%未満であるとその効果は小さく、必要以上に添加すると原料費の増加につながる。このため、Ni含有量の範囲を0.30〜0.60mass%とする。なお、同様に理由で下限を0.40mass%、上限を0.50mass%とするのが望ましい。
Ni: 0.30-0.60 mass%
Ni is an element that dissolves in the matrix and improves the hardenability and toughness. However, if it is less than 0.30 mass%, its effect is small, and if it is added more than necessary, the raw material cost increases. For this reason, the range of Ni content shall be 0.30-0.60 mass%. For the same reason, it is desirable that the lower limit is 0.40 mass% and the upper limit is 0.50 mass%.

V:0.05〜0.50mass%
VはCと化合し特殊炭化物を形成する元素で、焼入れ時或いは焼戻し時に母相中に微細な炭化物を析出し、焼戻し軟化抵抗性、高温強度及び耐摩耗性を大幅に向上させる元素である。しかし、多すぎると粗大な炭化物を形成し靭性の低下を招くため、その範囲を0.05〜0.50mass%に限定する。なお、同様に理由で下限を0.10mass%、上限を0.30mass%とするのが望ましい。
V: 0.05-0.50 mass%
V is an element that combines with C to form a special carbide, which precipitates fine carbides in the matrix during quenching or tempering, and greatly improves temper softening resistance, high-temperature strength, and wear resistance. However, if the amount is too large, coarse carbides are formed and the toughness is reduced, so the range is limited to 0.05 to 0.50 mass%. For the same reason, it is desirable that the lower limit is 0.10 mass% and the upper limit is 0.30 mass%.

組織
本発明の工具鋼は、基地組織がマルテンサイト組織よりもベイナイト組織の方が、高温耐力が高いため、優れた耐ヒートチェック性を示す。また、マルテンサイトとベイナイトの混合組織では、ミクロ的に不均一な組織となり、割れ感受性が高くなることから、構成組織はフルベイナイト組織に限定する。
また、フルベイナイト組織とすることにより、例えば10t以上の大型材においても急冷時の制約が小さく、製造が容易になる。
Structure In the tool steel of the present invention, the base structure having a bainite structure has a higher high-temperature proof stress than the martensite structure, and thus exhibits excellent heat check resistance. Moreover, in the mixed structure of martensite and bainite, the structure is limited to the full bainite structure because the structure becomes microscopically non-uniform and the cracking sensitivity becomes high.
In addition, by using a full bainite structure, for example, even in a large material of 10 t or more, restrictions during rapid cooling are small, and manufacturing becomes easy.

炭化物
工具鋼としての必要な硬さは主に析出炭化物によりもたらされるが、炭化物の数が多かったり、その粒径が大き過ぎると、靭性低下を招く。このため、粒径1μm未満の炭化物が、平均面積率で10〜30%であるのが望ましい。面積率は、材料全体で前記範囲を満たすのが望ましい。
Carbide The required hardness as tool steel is mainly brought about by precipitated carbides, but if the number of carbides is too large or the particle size is too large, the toughness is reduced. For this reason, it is desirable that the carbide having a particle size of less than 1 μm is 10 to 30% in terms of average area ratio. It is desirable that the area ratio satisfies the above range for the entire material.

以上説明したように、本発明の工具鋼によれば、化学組成を規定し、フルベイナイト組織としたので、該化学組成によりベイナイト組織が得られやすくなり、かつ良好な耐ヒートチェック性が得られる。   As described above, according to the tool steel of the present invention, since the chemical composition is defined and a full bainite structure is obtained, the bainite structure can be easily obtained by the chemical composition, and good heat check resistance can be obtained. .

本発明の実施例に用いられるヒートチェック試験装置および試験片を示す図である。It is a figure which shows the heat check test apparatus and test piece which are used for the Example of this invention. 同じく、実施例における一部供試材の0.2%耐力を示す図である。Similarly, it is a figure which shows the 0.2% yield strength of the partial test material in an Example. 同じく、実施例における一部供試材のヒートチェック長さを示す図である。Similarly, it is a figure which shows the heat check length of the one part test material in an Example.

以下に、本発明の実施形態について説明する。
質量百分率で、C:0.50〜0.60%、Si:0.10%未満、Mn:0.30〜1.00%、P:0.010%以下、S:0.010%以下、Cr:3.00〜4.50%、Mo:0.80〜1.20%、Ni:0.30〜0.60%、V:0.05〜0.50%を有し、残部がFe及び不可避的不純物からなる組成を有する合金を溶製する。溶製の方法は特に限定されるものではないが、非金属介在物による清浄度を高めるため、取鍋精錬、真空鋳込み、エレクトロスラグ再溶解等の二次溶解、などの方法を採用するのが望ましい。非金属介在物は靭性の低下を招くだけでなく、母材と熱膨張率が異なることから、熱間工具鋼として使用中に加熱と冷却により、母相と介在物の境界が割れの起点となる可能性が高くなるため、非金属介在物の清浄度(JISG0555)は、好適にはd(A+B+C)≦0.10%である。
得られた鋳塊には、鍛造、圧延などの熱間加工を施すことができ、該熱間加工は常法により行うことができる。
Hereinafter, embodiments of the present invention will be described.
In mass percentage, C: 0.50 to 0.60%, Si: less than 0.10%, Mn: 0.30 to 1.00%, P: 0.010% or less, S: 0.010% or less, Cr: 3.00 to 4.50%, Mo: 0.80 to 1.20%, Ni: 0.30 to 0.60%, V: 0.05 to 0.50%, the balance being Fe And an alloy having a composition composed of inevitable impurities is melted. The method of melting is not particularly limited, but in order to increase the cleanliness due to non-metallic inclusions, it is possible to adopt methods such as ladle refining, vacuum casting, secondary melting such as electroslag remelting, etc. desirable. Nonmetallic inclusions not only lead to a decrease in toughness, but also have a different coefficient of thermal expansion from that of the base metal, so that the boundary between the matrix and inclusions is the starting point of cracking due to heating and cooling during use as hot tool steel. Therefore, the cleanliness (JISG0555) of non-metallic inclusions is preferably d (A + B + C) ≦ 0.10%.
The obtained ingot can be subjected to hot working such as forging and rolling, and the hot working can be performed by a conventional method.

熱間加工材には、熱処理を施すことによってフルベイナイト組織を得ることができる。すなわち、熱間加工材をオーステナイト(γ)化温度以上に加熱し、急冷する焼入れ処理を行う。加熱温度はオーステナイト化温度以上であればよく、適宜温度に設定することができる。ただし、冷却速度が大きくなりすぎると、マルテンサイト組織が出現しやすくなる。このため、焼入れ時に、オーステナイト化温度から350℃に至るまでのの平均冷却速度は1300℃/時間を超えないのが望ましい。
焼入れ後は、焼戻しによって適当な硬さに調質する。焼戻しの条件としては、500〜600℃×20〜30時間の条件を例示することができる。
得られた材料は、ヒートチェック性に優れた工具鋼として各種の用途に使用することができる。
The hot-worked material can have a full bainite structure by heat treatment. That is, a quenching treatment is performed in which the hot-worked material is heated to an austenite (γ) temperature or higher and rapidly cooled. The heating temperature should just be more than an austenitization temperature, and can be set to temperature suitably. However, if the cooling rate becomes too high, a martensite structure tends to appear. For this reason, it is desirable that the average cooling rate from the austenitizing temperature to 350 ° C. does not exceed 1300 ° C./hour during quenching.
After quenching, it is tempered to an appropriate hardness by tempering. As conditions of tempering, the conditions of 500-600 degreeC x 20-30 hours can be illustrated.
The obtained material can be used for various uses as tool steel excellent in heat check property.

以下に、本発明の実施例を説明する。
表1に示す組成(残部はFeとその他の不可避不純物)の試料を50kg真空誘導溶解装置(VIM)で溶製し、得られた鋳塊を90×90mmの断面の角柱形状に鍛造した。
その後、1020℃で1時間保持後、外径1300mmの部材の油焼入れを想定した冷却速度で焼入れを行った。この際の平均冷却速度は800℃/hr.であった。また、比較のため、一部の供試材では、上記焼入れに際し水冷で急冷した。この際の平均冷却速度は1600℃/hr.であった。
Examples of the present invention will be described below.
A sample having the composition shown in Table 1 (the balance is Fe and other inevitable impurities) was melted with a 50 kg vacuum induction melting apparatus (VIM), and the resulting ingot was forged into a prismatic shape with a 90 × 90 mm cross section.
Thereafter, after holding at 1020 ° C. for 1 hour, quenching was performed at a cooling rate assuming oil quenching of a member having an outer diameter of 1300 mm. The average cooling rate at this time is 800 ° C./hr. Met. For comparison, some test materials were quenched with water cooling during the quenching. The average cooling rate at this time is 1600 ° C./hr. Met.

焼入れ後、500〜600℃で焼鈍し、ビッカース硬さ450HVに調整した試験片を得た。該試験片を用いて各種試験を実施した。   After quenching, annealing was performed at 500 to 600 ° C. to obtain a test piece adjusted to a Vickers hardness of 450 HV. Various tests were performed using the test piece.

各供試材の構成組織は鏡面研磨後、5%ピクラールで腐食し、光学顕微鏡にてミクロ組織を観察することによって確認した。それぞれの構成組織を表2に示した。水冷によって焼入れを行った供試材はマルテンサイト組織になり、その他の供試材はフルベイナイト組織になっていた。   The structural structure of each specimen was corroded with 5% picral after mirror polishing, and confirmed by observing the microstructure with an optical microscope. Each constituent organization is shown in Table 2. The specimens quenched by water cooling had a martensite structure, and the other specimens had a full bainite structure.

さらに、各供試材を、10000倍のSEM像で6.8μm×11.7μmの大きさの20視野について、画像解析から1μm未満の炭化物の平均面積率を算出し、その結果を表2に示した。   Further, for each sample material, an average area ratio of carbides less than 1 μm was calculated from image analysis with respect to 20 fields of view of 6.8 μm × 11.7 μm in a 10,000 times SEM image. Indicated.

ヒートチェック試験は、室温と600℃の熱サイクルを負荷させることで行い、フルベイナイト組織の発明材1の最大ヒートチェック長さを100としたときの各試料の相対ヒートチェック長さから、耐ヒートチェック性を評価した。   The heat check test is performed by applying a thermal cycle at room temperature and 600 ° C., and the heat resistance is determined from the relative heat check length of each sample when the maximum heat check length of the invention material 1 having a full bainite structure is 100. Checkability was evaluated.

ヒートチェック試験では、図1のヒートチェック試験装置1を用いた。
ヒートチェック試験装置1は、回転駆動台2上に細長板3が長さ方向中央を軸にして水平回転可能に取り付けられており、細長板3の両端側に試験片載置台4、4が設けられている。細長板3が停止する所定の回転位置では、一方の試験片載置台4上に試料加熱用の高周波コイル5が配置され、他方の試験片載置台4上には試験片載置台4に向けて冷却水を流下させる冷却水ノズル6が配置されている。該ヒートチェック試験装置1では、細長板3を180度毎間欠的に回転させることで、試料の加熱、冷却を繰り返し行うことができる。
In the heat check test, the heat check test apparatus 1 of FIG. 1 was used.
In the heat check test apparatus 1, an elongated plate 3 is mounted on a rotary drive base 2 so as to be horizontally rotatable around the center in the length direction, and test piece mounting tables 4, 4 are provided on both ends of the elongated plate 3. It has been. At a predetermined rotational position where the elongated plate 3 stops, a high-frequency coil 5 for sample heating is arranged on one test piece mounting table 4, and the other test piece mounting table 4 faces the test piece mounting table 4. A cooling water nozzle 6 is provided for allowing the cooling water to flow down. In the heat check test apparatus 1, the sample can be repeatedly heated and cooled by rotating the elongated plate 3 every 180 degrees intermittently.

ヒートチェック試験では、各供試材を20×20×20mmに切り出して試験片として前記試験片載置台4、4のそれぞれに載置した。一方の試験片10が高周波コイル5の直下に位置し、他方の試験片10が冷却水ノズル6の直下に位置するように細長板3を回転位置させ、一方の試料試験片表面を高周波コイル5を用いて高周波誘導により600℃(表面)まで加熱し、同時に他方の試料試験片を冷却水ノズル6から流下する冷却水で室温まで水冷する。その後、細長板3を180度回転させて、加熱した試験片10を冷却水ノズル6の直下に位置させ、冷却水ノズル6から流下する冷却水で室温まで水冷し、同時に、水冷した他方の試験片は高周波コイル5の直下に位置させ600℃まで加熱する。
その後、さらに細長板3を180度回転させて加熱、冷却する手順を繰り返すことにより、2つの試験片に対し600℃と室温の熱サイクルを10000回負荷させることで試験を行った。なお、試験では、1つの試験片のみを載置して加熱と冷却の熱サイクルを付与することも可能である。
ヒートチェック試験後、ヒートチェック試験面中心から表面方向に2.5mm離れた位置の試験面に対して垂直の断面の表層側で観察される最も長いクラックで耐ヒートチェック性を評価した。
In the heat check test, each test material was cut out to 20 × 20 × 20 mm and placed on each of the test piece mounting tables 4 and 4 as a test piece. The elongated plate 3 is rotated so that one test piece 10 is located immediately below the high-frequency coil 5 and the other test piece 10 is located directly below the cooling water nozzle 6, and the surface of one sample test piece is placed on the high-frequency coil 5. Is heated to 600 ° C. (surface) by high frequency induction, and at the same time, the other sample test piece is cooled to room temperature with cooling water flowing down from the cooling water nozzle 6. Thereafter, the elongated plate 3 is rotated 180 degrees so that the heated test piece 10 is positioned immediately below the cooling water nozzle 6, cooled to room temperature with cooling water flowing from the cooling water nozzle 6, and at the same time, the other test that is water-cooled The piece is positioned directly under the high frequency coil 5 and heated to 600 ° C.
Thereafter, the test was performed by applying a thermal cycle of 600 ° C. and room temperature 10,000 times to the two test pieces by repeating the procedure of heating and cooling the elongated plate 3 by rotating it 180 degrees. In the test, it is possible to place only one test piece and apply a heat cycle of heating and cooling.
After the heat check test, the heat check resistance was evaluated by the longest crack observed on the surface layer side of the cross section perpendicular to the test surface at a position 2.5 mm away from the center of the heat check test surface in the surface direction.

図2にフルマルテンサイト組織及びフルベイナイト組織を呈する比較材1および2、フルベイナイト組織の発明材1およびフルマルテンサイト組織の参考材1の600℃における0.2%耐力を示す。参考材1は、発明材1と同組成からなり、焼入れ時の冷却を水冷とすることによってフルマルテンサイト組織としたものである。比較材1、2のフルマルテンサイト組織も焼入れ時の冷却を水冷としたものである。
比較材1及び2はV無添加鋼、発明材1、参考材1はV添加鋼である。V添加の有無で比較すると、V添加鋼の方がV無添加鋼より0.2%耐力が高く、また同組成で比較するとフルベイナイト鋼の方がフルマルテンサイト鋼より0.2%耐力が高い。したがって、600℃における0.2%耐力の向上には、V添加及びベイナイト組織化が有効であることがわかる。
FIG. 2 shows 0.2% proof stress at 600 ° C. of Comparative Materials 1 and 2 exhibiting a full martensite structure and a full bainite structure, Invention Material 1 having a full bainite structure, and Reference Material 1 having a full martensite structure. The reference material 1 has the same composition as the inventive material 1 and has a full martensite structure by cooling with water during quenching. The full martensite structures of the comparative materials 1 and 2 are also water-cooled during quenching.
Comparative materials 1 and 2 are V-free steel, invention material 1 and reference material 1 are V-added steel. When compared with the presence or absence of V, steel with V addition has a 0.2% yield strength higher than steel without V, and when compared with the same composition, 0.2% yield strength with full bainitic steel is greater than with full martensite steel. high. Therefore, it can be seen that V addition and bainite organization are effective in improving 0.2% proof stress at 600 ° C.

図3にフルマルテンサイト組織及びフルベイナイト組織を呈する比較材1および2、発明材1、参考材1の相対ヒートチェック長さを示す。V添加の有無に関わらず、組織をフルベイナイト化させることによって、耐ヒートチェック性が向上させることができることがわかる。これは、ベイナイト組織がマルテンサイト組織より高温保持中の組織の安定性が高いことや転位の移動がしにくいためと考えられる。
さらに、表2にべイナイト組織の全比較材及び発明材の相対ヒートチェック長さを示す。とりわけ発明材1〜13が高い耐ヒートチェック性を示した。
以上のように、耐ヒートチェック性を向上させる方法としては、V添加とベイナイト組織化を併用することが有効であると考えられる。
FIG. 3 shows the relative heat check lengths of Comparative Materials 1 and 2, Inventive Material 1 and Reference Material 1 exhibiting a full martensite structure and a full bainite structure. It can be seen that heat check resistance can be improved by converting the structure to full bainite regardless of whether or not V is added. This is presumably because the bainite structure is more stable than the martensite structure at a high temperature and the dislocations are difficult to move.
Furthermore, Table 2 shows the relative heat check lengths of all comparative materials having a bainitic structure and inventive materials. In particular, the inventive materials 1 to 13 showed high heat check resistance.
As described above, it is considered effective to use V addition and bainite organization in combination as a method for improving the heat check resistance.

Figure 0005689086
Figure 0005689086

Figure 0005689086
Figure 0005689086

1 ヒートチェック試験装置
3 細長板
4 試験片載置台
5 高周波コイル
6 冷却水ノズル
10 試験片
DESCRIPTION OF SYMBOLS 1 Heat check test apparatus 3 Elongated plate 4 Test piece mounting base 5 High frequency coil 6 Cooling water nozzle 10 Test piece

Claims (2)

質量百分率で、C:0.50〜0.60%、Si:0.10%未満、Mn:0.30〜1.00%、P:0.010%未満、S:0.010%未満、Cr:3.00〜4.50%、Mo:0.80〜1.20%、Ni:0.30〜0.60%、V:0.05〜0.50%を有し、残部がFe及び不可避的不純物からなる組成を有し、フルベイナイト組織からなることを特徴とする熱間工具鋼。   In mass percentage, C: 0.50 to 0.60%, Si: less than 0.10%, Mn: 0.30 to 1.00%, P: less than 0.010%, S: less than 0.010%, Cr: 3.00 to 4.50%, Mo: 0.80 to 1.20%, Ni: 0.30 to 0.60%, V: 0.05 to 0.50%, the balance being Fe And a hot tool steel having a composition consisting of inevitable impurities and a full bainite structure. 粒径が1μm未満の炭化物の平均面積率が10〜30%であることを特徴とする請求項1記載の熱間工具鋼。   The hot tool steel according to claim 1, wherein an average area ratio of carbides having a particle size of less than 1 µm is 10 to 30%.
JP2012043011A 2012-02-29 2012-02-29 Hot work tool steel Active JP5689086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043011A JP5689086B2 (en) 2012-02-29 2012-02-29 Hot work tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043011A JP5689086B2 (en) 2012-02-29 2012-02-29 Hot work tool steel

Publications (2)

Publication Number Publication Date
JP2013177662A JP2013177662A (en) 2013-09-09
JP5689086B2 true JP5689086B2 (en) 2015-03-25

Family

ID=49269563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043011A Active JP5689086B2 (en) 2012-02-29 2012-02-29 Hot work tool steel

Country Status (1)

Country Link
JP (1) JP5689086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083242B2 (en) * 2017-11-10 2022-06-10 山陽特殊製鋼株式会社 Hot tool steel with excellent thermal conductivity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059052A (en) * 1983-09-09 1985-04-05 Daido Steel Co Ltd Hot working tool steel
JP5881276B2 (en) * 2010-03-23 2016-03-09 山陽特殊製鋼株式会社 Hot tool steel with excellent toughness, short-time and long-term softening resistance

Also Published As

Publication number Publication date
JP2013177662A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
AU2014245635B2 (en) Abrasion resistant steel plate having excellent low-temperature toughness and method for manufacturing the same
CA2948297C (en) Railway vehicle wheel and method for manufacturing railway vehicle wheel
CN102146547B (en) Alloy steel roller and manufacturing process thereof
JP6583374B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP4808828B2 (en) Induction hardening steel and method of manufacturing induction hardening steel parts
TWI591187B (en) High-carbon cold-rolled steel sheet and its manufacturing method
WO2008013300A1 (en) Process for producing pearlitic rail excellent in wearing resistance and ductility
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP6572952B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6583375B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
TWI557239B (en) High-carbon hot rolled steel sheet and manufacturing method thereof
JP2015180771A (en) Wear-resistant steel sheet excellent in low-temperature toughness and low-temperature temper embrittlement cracking resistance characteristic and production method thereof
Srivatsa et al. Improvement of impact toughness by modified hot working and heat treatment in 13% Cr martensitic stainless steel
JP2010242209A (en) Steel for machine structural use excellent in crystal grain coarsening resistance and method for producing the same
CN103572176B (en) A kind of low-carbon martensitic steels and prepare the method for suspension ring
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP5965117B2 (en) Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness
JP6208611B2 (en) High strength steel with excellent fatigue properties
JP5689086B2 (en) Hot work tool steel
JPWO2020004060A1 (en) Manufacturing method of induction material for induction-hardened crankshaft and induction-hardened crankshaft
CN106929756B (en) Bearing steel and preparation method thereof
JP2013072105A (en) Method for manufacturing steel having excellent toughness and wear resistance
CN111101080A (en) High-temperature-resistant die steel and manufacturing method thereof
CN114651080B (en) Crankshaft and method for manufacturing blank for crankshaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

R150 Certificate of patent or registration of utility model

Ref document number: 5689086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250