図1は、例えばハイウェイトラックの運転台の床、ボートの船体又は船尾梁、工場の建物の屋根として、あるいは車両又は歩行者の船橋甲板として使用することができる構造用複合サンドイッチパネル30を例示する。パネル30は、繊維強化独立気泡プラスチック発泡コア31及び対向する2枚の繊維強化スキン32を含む。発泡コア31は、複数枚の発泡ストリップ33を含む。ここで、このストリップ33の構造特性は、スキン32が設計目的としている荷重に合致するコア中の荷重に耐えるには不十分である。
コアに必要とされる構造特性を与えるように選択されるコア補強繊維は、ガラス繊維又は炭素繊維、あるいは他の補強性繊維である。一方向では、補強繊維は、多孔性の繊維布又はマットの複数枚の平行なシート又はウェブ34を含み、これらシート又はウェブ34は、コア31の面間に延在し、且つそのウェブ材料中の実質的な気孔度を維持しながら、各発泡ストリップ33の片面に接着している。望むならウェブ34は、ストリップ33がそれから切り取られる発泡板材(図示せず)に接着により貼り付けられる複数本の個別のロービングを含む補強材を取り入れることもできる。交差する方向では、一般にウェブ34に直角にコア補強繊維が、コアの両面間に延在し且つ多孔性補強フィラメントの束又はロービングから作られる間隔を置いて配置されたロッド又はストラット35の複数の平行な列を構成する。
ストラットの各列は、パネルスキンに対して逆向きの鋭角、例えば+58度と−58度又は+45度と−45度で傾斜した複数本のストラット35を含む。各列中の2組の対向するストラットは同一平面にあり、互いに交差して三角形又は格子型の構造を形成する。ストラットの列内のストラット35の直径及び間隔は構造上の考慮すべき事項によって決まるが、一般には直径0.01インチから0.12インチ及び間隔0.25インチから2.0インチの範囲にある。幾つかの事例ではストラットは直径0.50インチ及び間隔7.0インチを超える場合もある。ストラット35の列は、一般には0.5インチから1.0インチ離れた間隔で配置される。独立気泡発泡ストリップ又は断片33は、ポリウレタン、ポリ塩化ビニル、ポリスチレン、フェノール樹脂、ポリエチレン、ポリメタクリルイミド、又は特定の用途にとって望ましい特性を有する他の発泡材料であることができる。一般に発泡密度は低く、1立方フィート当たり2から5ポンドの範囲であるが、必要に応じてずっと高い密度を使用することもできる。
図1に示すようにストラット35はウェブ34と交差し、ストラットを構成する繊維が、ウェブを構成する繊維を貫通する。ストラットを構成する繊維ロービングは、ステッチ作業中に発泡コア中にウェブを貫いて挿入されるので、ストラットを構成するフィラメントは、どのフィラメントの組も断線することなくウェブのフィラメントを通過し、そのためコア補強構造のすべての要素の連続状態は完全なまま残る。好ましい実施形態ではパネルスキン32は、内側のスキン36及び外側のスキン37を含む。また補強用ストラット35の末端部分38は、内側のスキン36を貫通し、内側のスキン36の上に重なるように横に広がる。内側のスキン36が外側のスキン37によって被覆されてからパネル30を樹脂で成形する。したがってストラットは機械的にスキンに取り付けられ、荷重下でのスキン32のコア31からの層間剥離に対して高い抵抗性を与える。望むならストラットロービングの末端部分を、補強されたコア31の面に隣接させて終えることもできる。
コア及びスキンの両方の多孔性で繊維質の補強材に、すべての補強用材料の至る所に、好ましくは差圧下で流れる接着樹脂を含浸又は注入し、硬化して剛性の耐力構造を形成する。パネル30を成形し硬化するよりも前に、内側のスキン36及び発泡ストリップ33は、それらが取り付けられるウェブ30と共に、プラスチックフォームの圧力により生ずる摩擦と、ストラット35を形成するロービング繊維に逆らうスキン繊維とによって、またパネルスキンの上に重なるロービングセグメント又は末端部分によって、一体化構造物として保持される。コア30は特定の用途用に寸法が広範囲にわたって変わる可能性があるが、実際のコアサイズには、例えば厚さ0.25インチから5.0インチ×幅2フィートから8フィート×長さ2フィートから40フィートが挙げられる。コアは、一般には連続した長さで生産され、所望の長さに切断される。本発明に従って構築される単一の補強したコアよりも面積の大きいサンドイッチパネルを成形するには、樹脂の導入に先立って2個以上のコアを金型中に互いに隣接させて配置することができる。
コア31中のせん断荷重には、主にストラット35が一方向に抵抗し、また主にウェブ34が横方向に抵抗する。さらに、ストラットとウェブの各交差点での堅い樹脂接着により、またこのような全ての交差点を介した補強繊維の連続性によりウェブとストラットの複雑な一体化が達成される。ウェブとストラットは座屈に対して互いに支え合い、コア補強部材の細さのために座屈破壊の傾向がある厚いパネル中でのより軽量の補強部材の使用を可能にする。図1に示す構成は、ウェブ34の向きがスキン32に直角に定められ、且つストラット35が座屈を抑えるので、スキンに直角な大きな圧縮荷重に耐えることができる。ウェブとストラットの構造的一体化はまた、局在化した圧縮荷重のコア補強要素間での分担を増進させるための多重荷重経路を与え、且つコア内のせん断破壊による剥離面の開始及び拡散に対してかなりの抵抗性を与える。スキンへのコア補強部材の接着によるまた機械的な取付けは、パネルスキン中への金具の貫通に対する高い抵抗性を与える。
真空成形、樹脂トランスファー成形、又は真空支援樹脂トランスファー成形(VARTM)などの工程において差圧下で多孔質補強繊維中にくまなく樹脂を流すことによって、発泡コア及びスキンの繊維補強材は一般に樹脂を含浸又は注入される。VARTM成形では、一般に一つの可撓性の型面を有する気密性金型中にコア及びスキンを密封し、金型から空気を排気する。これは、可撓性の面を介して大気圧を与えてパネル30を型に順応させ、またスキン32の繊維を締め固める。触媒添加樹脂を、一般には樹脂配布媒体か、又はパネル表面に設けられた流路の網状組織を介して真空により金型中に引き込み、硬化させる。本発明は、望むなら改良型のVARTM注入法を組み込むこともできる。
補強されたコア31には、切削加工され、その発泡コア31の内部にウェブに隣接させて配置される樹脂溝39を、発泡ストリップ33中に設けることができる。溝39は、一般には断面積が個々の溝39よりも大きいが、同じサイズであってもよい樹脂供給流路40のところで終わる(図1)。流路40は、差圧下で溝39に樹脂を分配する役割を果たす。供給流路40は、補強用ウェブ34が終わる補強されたコア31の縁部の一方又は両方に沿って配置することができる。別法では流路40をコアの完全な内部に配置することもできる。例示の目的で、図1はコア縁部における流路40を示し、また図7はコア内部における供給流路を示す。流路40がコア31の一方の縁部にのみ設けられる場合、溝39をコア31の反対の縁部まで延ばすことができ、また別法では補強された発泡コア及びパネルスキン補強材内の樹脂の流れの動力学によっては発泡ストリップ内部で終端させることもできる。
触媒添加樹脂は、樹脂源、一般には樹脂のドラム缶に連結された管(図示しない)を通して流路40に流れる。管開口部は、流路40に沿って任意の箇所に配置することができる。減圧バッグを用いて本発明の補強型コアに注入する好ましい方法は、金型を密封し排気してから金型に任意の樹脂供給装置を取り付ける。剛性の樹脂連結又は挿入管には鋭く尖った端部が準備され、次いで供給流路40と交差して、減圧バッグの膜及びパネルスキン36、37を通して、又はパネル30の縁部で減圧バッグを通して補強されたコア31中に挿入される。挿入管は、その周囲に流路40中への樹脂の流れを可能にする開口部が設けられた。挿入点にテープシーラーを貼り付けて真空の減損を防ぎ、挿入管を樹脂供給源に連結し、その挿入管を介して樹脂を流路40中に真空によって引き込む。
この樹脂をパネル中に導入する方法の速さ、容易さ、及び低い材料コストに加えて、追加の樹脂をパネルの特定の領域に導くために、追加の樹脂連結管を、注入が進行している間に他の場所でパネル中に挿入することもできる。また、樹脂連結管を挿入することができる1又は複数個の孔を金型表面に設けることによって、この管挿入法を用いて剛性の金型内に完全に封入されたパネル30に注入することもできる。樹脂が溝39を満たすにつれて、樹脂は、多孔性繊維質ウェブ34中へまたその至る所に、交差する多孔性繊維質ストラット35中へまたその至る所に、また交差するパネルスキン32中へまたその至る所に流れた後、樹脂は硬化して剛性の補強されたサンドイッチパネル構造物を形成する。流路40が設けられている補強されたコア31を、流路40が互いに隣接し、単一のより大きな流路を形成する状態で金型中に置くことができる。このより大きな流路中に流れ込む樹脂が硬化して、ウェブ34の縁部分に打ち込まれる構造スプラインを形成し、隣接するコア31間のせん断力に抵抗する。
補強されたコア31に組み込まれるこの樹脂分配システムは、既存のVARTM法にまさる顕著な利点を有する。樹脂は迅速に溝39を満たし、ウェブ及びストラットによる無数の比較的均等に分布したスキンとの連結部を通してパネルスキン32に向かってウェブ及びストラットの補強構造物の至る所に流れ、それによってスキン中の非含浸領域の可能性をできるだけ小さくする。どのような樹脂マイクログルーブ又は配布媒体材料もコア31の周辺に必要でない。樹脂は、パネルの中央の平面に位置決めされた複数の溝39に導入され、比較的短い距離を両方のスキン32に向かって移動する。外側のスキン37上の又はパネル縁部の布上の任意の望ましい場所又は複数の場所に真空を適用することができる。望むなら、乾燥した多孔性スキン補強材の小さな領域が周囲の樹脂の流れによって真空から隔離されないことを確実にするために、穿孔した真空用の管、繊維質のドレンフロー媒体、又は真空を導入する他の手段の多数の列を外側のスキン37の表面に設けることもできる。著しく厚いコア又はスキンを有するパネルには、樹脂溝39と、スキン32に平行な平面に配置される関連する供給流路40との追加の組を設けることもできる。パネルの中心に導入された樹脂は、両方のスキン32に向かって比較的短い距離を移動する。今述べた内部コア注入システムはまた、交差する繊維質ストラットのないスキン間に延在するウェブを含むコアに有効である。より接近したウェブ間隔が、均一な樹脂の分配にとって必要な場合もある。
補強されたコアパネルと接している金型表面は、コア補強構造又はスキンの至る所に樹脂が迅速に流れるのを損なうことのない剛性又は可撓性のいずれであってもよい。例えば、減圧バッグによって覆われた当て板が金型台に対してシールされた状態で、関連する多孔性繊維質スキンを有する補強されたコアを、剛性の金型台と剛性の当て板の間に置くことができる。パネルの一方の縁部からバッグを排気することによりパネルに大気圧を加えると、パネルの反対の縁部に導入された樹脂は、金型の両面が剛性の通常のVARTM法の場合のようにパネルスキンの長さ又は幅全体を通して長手方向に流さなくてもコアとスキンの補強構造物のすみからすみまで迅速に流れる。
補強されたパネル30は、異なる特性の2種類の樹脂をコアに同時注入することを可能にするように構築することができる。例えば耐火性フェノール樹脂をパネルの外面スキンに含浸し、また構造的に優れているがあまり耐火性ではないビニルエステル樹脂を内面スキン及びコア補強構造物に含浸することができる。このような構造が望ましい場合、樹脂注入に先立ってパネル30に、内側のスキン36と外側のスキン37の間に位置決めされる接着性バリヤーフィルム41を設ける。バリヤーフィルム41は、そのフィルムの一方の側から他方への液状樹脂の通過を防ぐ接着材料、例えばエポキシからなる。熱及び適度の圧力を加えて硬化して、内側のスキン36と外側のスキン37の間に構造的接着を形成する。
パネルに注入するには、補強されたコア31及び取り付けられた内側のスキン36と、接着性バリヤーフィルム41と、外側のスキン37とを密閉した金型の中に置き、次いで真空ポンプにより排気する。第一樹脂を、以前に述べたように流路40及び39を通してコア31の内面に導入し、コア補強用構造物及び内側のスキンの至る所に流れるに任せる。同時に、異なる組成の第二樹脂を、金型表面又は外側スキン縁部を通して直接外面スキン中に導入する。接着性バリヤーフィルム41は、2種類の異なる樹脂が混ざり合うのを防ぐ役割を果たし、且つ2種類の樹脂の硬化によって発生する熱がまたその接着性フィルムの硬化を助長し、こうして内側のスキンと外側のスキンの間の構造的接着が得られる。接着性フィルム41をパネル30の一方の側にのみ貼る場合、コア31に注入する樹脂はまた、パネルの反対側の内側及び外側のスキンの両方に注入することになる。
図1、2、6、7、13、14、18で例示する本発明の実施形態は、コア補強用ウェブに隣接している内部の樹脂分配溝と、関連する樹脂供給流路とを備えたものとして示した。この特徴を、望むなら図1、2、6、7、13、14、18の実施形態から省くこともでき、またこの特徴を図3、4、5、9、19に示す実施形態に、又は発泡コア内に多孔性繊維質ウェブシートを有する任意の他の実施形態に加えることもできることを理解されたい。
サンドイッチパネル50(図2)は、補強用ストラットが2つの逆方向の角度ではなく単一の角度で発泡コア中に挿入されることのみが必要なために、図1に示した実施形態と比べて改善された生産速度で生産することができる補強された発泡コア52を利用する。平行な繊維強化ウェブ51は、コアの面に対して鋭角、例えば58度又は45度で発泡コア52の面間に延在する。ウェブ51のこれらの列は、その繊維が図1に関連して述べたやり方でウェブ51及びスキン54を貫通する繊維強化ストラット53の一組の平行な列と一般には直角に交差する。
図2に示す実施形態では、すべてのストラットがパネルスキンに関して或る角度で傾斜し、その角度は反対方向であることを除いてウェブ51の角度と一致する。ウェブ51及びストラット53は、座屈に対して互いに支え合い、協同して一方向のせん断荷重に抵抗し、且つウェブがまた横方向のせん断荷重に抵抗する。任意の枚数のウェブ補強布又はマットを選択することができるが、ウェブの二方向構造機能は、その繊維の一部をストラット53の角度と反対の角度に配向させたウェブ補強用繊維の使用により高めることができる。横方向せん断強さは、コア中のせん断力は一般に分解して+45度及び−45度の角度になるので、ウェブ51の残りの繊維をパネルスキンに対してそれらの角度で配向させることによって効果的に達成することができる。図1のコア補強用ウェブ34及び図2のコア補強用ウェブ51は、それぞれパネルスキン32及び54に隣接させて終わる。したがってウェブとスキンの間の直接の構造的結合は、パネル中の全ての補強繊維を囲んでいる樹脂マトリックスの接着結合によって実現される。このウェブとスキンの結合の強度は、ウェブ34及び51に、それらの縁部分に突き出て広がる繊維を設けるか、又は特許文献5に記載のようにウェブの縁部分に隣接させて発泡ストリップ55に溝を彫ることによって形成されるウェブ縁部の樹脂の溝底を設けることによって改善することができる。
ウェブ34及び51はまた、ストラット35及び53を介して、それぞれスキン32及び54との間接的な構造的結合部を有し、それらがウェブ及びスキンの両方に付着し、こうしてウェブとスキンの間の荷重の一部を支える。パネルスキンはまた、それぞれが広がったストラット末端部分を有する連続的な傾斜した別々のステープルの列を含む図2に示すロービングストラットの構成によって互いにつなぎ合わされる。ストラット構造のこの傾斜したステープル形態はまた、対向するストラットを有するパネル中に設けることもでき、図8に関連してより完全に記述する。
交差するウェブとストラットを有する複合パネルの強度及びスチフネスをさらに増すことが望ましい場合、そのコア補強用ウェブは、複数枚の別々のウェブストリップではなく、ただ1枚の連続した繊維強化マット又は布を含むことができる。この実施形態を図3、4、5に例示する。図3を参照すると、複合サンドイッチパネル60は、繊維強化スキン61及び繊維強化発泡コア62を含む。発泡コア62は、発泡断片又はストリップ63、間隔を置いて配置された繊維ロービングストラット64の間隔を置いて配置された列、及びパネルスキン間に延び、且つストラットの列に対して横方向の複数個の長方形の波形に形成されている繊維ウェブシート65を含む。図1の場合のようにストラット64は、スキンに対して等しい逆向きの角度で傾斜し、且つ対向するストラット及びスキン61と交差しそれを貫通する。ストラットはまた、波形ウェブセグメント66と交差しそれを貫通する。この波形ウェブセグメント66は、スキン間に延在し、且つスキンに隣接させて横たわるウェブセグメント67を貫通する。図3に示す構造は、図1に示したものに幾つかの構造的強化を与える。波形ウェブセグメント67は、スキン61との接着面積を広げることを可能にし、またストラット64は、ウェブセグメント67とスキン61の間の縫付けによる機械的取付を可能にする。また、ウェブ構造の波形は、ストラットの列に対して横方向の方向にかなりの追加の強度及びスチフネスを与える。
図4に示す補強型サンドイッチパネル70はまた、図3に関連して述べたウェブとスキンの付着と、波形の強度及びスチフネスとの利点を提供する。図4において発泡ストリップ71は、平行四辺形断面であり、連続波形ウェブシート73のウェブセグメント72はスキン74に対して鋭角でコア76の面間に延在する。間隔を置いて配置された繊維ロービングストラット75の複数の平行な列がまた、補強されたコア76の面間に延在し、ストラット75はウェブセグメント72の角度と等しいが、それと逆向きの角度で傾斜する。ストラットが波形ウェブセグメント72と交差しそれを貫通し、スキン74に隣接しているウェブシートセグメント76を貫通し、また好ましくはスキンの1又は複数層を貫通する。ウェブ中の繊維の向きは、図2に関連してより完全に述べたように全体的なコア構造特性について最適化することができる。また図2の場合と同様に単一角度にストラットを配向することは、単一の挿入工程のみが必要とされるために補強型コアの迅速且つ効率的な生産を可能にする。
図5に示す別の補強型サンドイッチパネル80はまた、発泡コア82の補強材の一部として連続波形ウェブシート81を使用する。発泡断片又はストリップ83は断面が三角形であり、スキン87間に延在するウェブセグメント84及び85がスキンと逆向きの角度で傾斜する。間隔を置いて配置された繊維ロービングストラット86の複数の列が、等しいが互いに逆向きの角度で傾斜し、ウェブセグメント84及び85と交差し、それらを貫通する。ストラットはまた、1又は複数層のスキン87と交差し、好ましくはそれを貫通する。
図3及び4に示した構成とは対照的に図5の三角形のウェブ構造は、補強用ストラット86が存在しなくてさえ長手方向及び横方向両方でパネル80にかなりの強度及びスチフネスを与える。ストラットは、ウェブセグメント84及び85を安定化させることによって、またスキン87を相互につなぎ合わせていることによってこれら特性を向上させる。ストラット86はまた、ストラットの列の方向にいっそうの強度及びスチフネスを与える。ストラットの角度は、全体的な構造上の考慮事項に基づいて選択され、ウェブセグメント84及び85の角度に一致させる必要はない。例えばストラット86は、望むならスキンに直角であることもできる。これは、パネル80に高い圧縮強さを与えるだけでなく、ストラットの挿入にただ一つの角度のみを必要とし、こうしてパネルの生産を単純にする。
図6及び7は、補強された発泡コア91中に、間隔を置いて配置された補強用ロービングストラット92の複数の平行な列と、間隔を置いて配置された補強用ロービングストラット93の複数の交差する平行な列と、スキン95に平行なただ1枚の連続した補強用ウェブシート94とを有するサンドイッチパネル90を例示する。発泡コア91は、ウェブ94によって分離されている積み重ねた発泡板材96を含む。構造設計が必要とするなら、ストラット92は、間隔、直径、繊維組成、及び角度がストラット93と異なってもよい。ストラットは、パネルの構造的要求仕様が本質的に一方向であるならば、ストラットのただ一組の平行な列として設けることもできる。パネル90の圧縮及びせん断特性は、主としてストラット92及び93によって与えられる。コア91の厚さが増大するか又はストラットの直径が減少するに従って、構造荷重条件下でストラットはますます座屈破壊を受けやすくなる。各列中のストラット92又は93は、格子状の構成で互いに交差し、ストラット列の平面で互いに座屈の支えを形成する。しかしながら唯一の弱く、且つ不十分な場合の多い横向き座屈の支えは、低密度発泡体96によってもたらされる。すべてのストラット92及び93が貫通している連続した繊維強化ウェブ94は、必要とされる追加の座屈の支えを与える。必要ならば、全てが互いに間隔を置いて配置され、パネルスキン95に平行な1又は複数枚の追加の支持ウェブ94を設けることもできる。
図6はまた、ストラット末端部分97、並びにコア91の補強部材と、単一のサンドイッチパネルの構成要素として成形された隣接する発泡コアの補強部材との間に、又は他の隣接している複合構造物(図示しない)に高い構造連続性を確保する手段を提供するために発泡板材96から突き出ているウェブの縁部分98を示す。所与のサンドイッチパネル内の隣接するコア同士の構造的付着が望まれる場合、樹脂をコア及びスキンの補強材中に導入する前に、発泡板材96の縁部分、及び隣接する補強したコアの発泡板材の縁部分(図示しない)を摩削するか、あるいはその他の方法で除去して繊維状ストラット末端部分97及びウェブ縁部分98を露出する。次いでこれら補強されたコアを、例えば金型中で押し固める。隣接するコア由来の露出端部及び縁部分が混ざり合い、続いて樹脂中に埋め込まれるようになる。樹脂は、差圧下でパネル補強材中に流れ込み、硬化してストラット末端部分及びウェブ縁部分と強い接着を形成する。好ましくは、スキン95間に延在する繊維強化マット又は布のストリップは、金型中で隣接するコア間に配列されてコア間の接合部の耐荷重特性を高める。
隣接する補強されたコア31間の、又はコア31とサンドイッチパネル縁部のスキンとの間の強い構造的結合はまた、コア31に、コア31の縁部との交差点を越えて延在する繊維ウェブ34を設けることによっても達成することができる。ウェブ31の延長部は、発泡ストリップ33に対して直角にタブの形態に折り重ねられる。これらのウェブ端部のタブは、パネル31に樹脂を含浸したとき、ウェブ補強部材を隣接する補強材に接着するための接触面積を拡げることを可能にする。樹脂を含浸し硬化させたパネル90と、隣接する複合構造物との間の強い構造的接着を達成することが望まれる場合、発泡板材91を摩削して、堅い硬化したストラット末端部分97及びウェブ縁部分98を露出し、それらの端部及び縁部分に隣接している領域を接着樹脂、マスチック、又は注封化合物で満たし、パネルに押し付ける。樹脂が硬化する間にパネル90がそれらと接着することになる。
図6及び7に示す補強されたコア91には、図1に関連して全般的に前述したように、一体型樹脂注入システムが準備される。サンドイッチパネル90は、多孔性繊維質のスキン及びコア補強材を含み、空気が排気される密閉型金型中に置かれる。次いで樹脂を、供給流路99の端部の所で、又はパネル面からドリルで開けた孔(図示しない)を通して流路中に導入する。次いで樹脂が、補強されたコア91の内部に位置決めされたその樹脂供給流路99を満たし、またその内部又はコア91内に位置決めされ、多孔性繊維質ウェブ94に隣接している連結用の間隔を置いて配置された樹脂溝100を満たす。次いで樹脂が、溝100から多孔性ウェブ94の至る所へ、ウェブ94から多孔性ストラット92及び93の至る所へ、またストラットから多孔性スキン95の至る所へ流れた後、樹脂が硬化して構造パネルを形成する。コア91が円形パネルを生産するために使用されることになる場合、樹脂溝100をパネルの中心から放射状に、且つ樹脂をパネル面から中心に向かって供給する状態に配列することができる。
図1、3、5、6、7に示したコア補強用ストラット構造は、発泡コア内で互いに交差する対向するストラットの平面の列の形態をとる。得られる格子状構造のこのような交差の数及び密度は、コアの厚さ、ストラット間の間隔、及びパネルスキンに対するストラット角の峻度に左右される。代替のストラット構造を図8に示し、これを図1、3、5、6、7の構造の代わりに用いることができるが、比較的薄いパネル又は比較的太いストラットの場合に最も適している。図8のコア補強構造は、図示のようなストラットの一方向の列か、又は幾組かの交差するストラットの列のいずれかを含み、構造的要求仕様に応じて、場合によってはコア補強用ウェブと共に用いることができる。
図8を参照するとサンドイッチパネル110は、対向するスキン111と、パネルスキン111間に延在し且つスキンに対して等しいが逆向きの角度で傾斜している繊維ロービングストラット113の複数の列を有する補強された発泡コア112とを含む。対向するストラット113は、単純な三角形の構成でパネルスキン111に隣接させて互いに交差し且つスキンを貫通する。補強型コア110の生産においては連続した繊維ロービング114を、発泡コアの対向する両面からスキン111及び発泡コア112を貫いて縫い合わせる。望むならロービングストラットの両方の組を、コアの同じ面からスキン及び発泡コアを貫いて縫い合わせることもできる。ステッチング工程では連続ロービング114がスキン111を出て、ループ115(仮想線で示す)の形で突き出す。次いでロービングは挿入線に沿って折り返して、二重ロービングセグメントからなるストラット113を形成する。
パネル110がステッチング装置を通して進むに従ってロービングセグメント116がスキン111の上に重なる。ステッチング工程の間に形成される突き出たロービングループ115は、スキンの表面からの望ましい距離、例えば0.2インチの所で切断されて、突き出たストラット末端部分117(仮想線で示す)を形成する。樹脂成形工程の間にパネルスキンに圧力が加わると、突き出たストラット末端部分117が広がり、スキン111に対して扁平な末端部分118を形成する結果、スキンとの強い接着と、スキン111からの扁平なストラット端部118の引き抜きに対する機械的抵抗とを形成する。
機械的取付けは、図1に関連して示した外側のスキンを加えることによって向上することができる。切断され広がったストラット端部118はまた、スキンに隣接させて塊りを形成する傾向のある、又はパネルが金型表面にしっかりフィットするのを妨げてスキン表面に過剰な樹脂を堆積させる完全なループで得られるスキン特性と比べてかなりの改善を実現する。表面平坦性は、パネル110に十分な圧力を加えて、スキン111の表面を越えて突き出るロービングセグメントに発泡コア112を順応させることによって、又は突き出るロービングセグメントを適度な成形圧力下でその中に押し込めることができる溝又はへこみを発泡コアに設けることによってさらに改善することができる。
図8に示す、ストラット113を含む傾斜したステープル構成、切断し広げたストラット末端部分118、及びスキンの上に重なるロービングセグメント116は、コア補強用ストラットとパネルスキンの間の構造的取付けを確実にする有効且つ効果的な手段、並びに本発明の主題の、あらゆる補強型コアを生産する好ましい方法を提供する。ステッチングの他の方法、及び発泡コアの面よりも外側のロービングセグメントの他の処理法、例えば従来の型の連続繊維の本縫い又は環縫いもまた使用することができることを理解されたい。
図1〜8に例示したサンドイッチパネル及びコアは、一般に幅が深さよりも大きい。また多孔性繊維質のウェブ及びストラットを含むコア補強部材を、深さが幅よりも大きいサンドイッチパネルに組み込むこともできる。図9は、ストラット型コア補強構造を組み込み、耐腐食性建物における屋根支持材として使用するように設計された梁型パネル又は梁120を例示する。梁120は、対向するガラス繊維又は炭素繊維強化プラスチックスキン121と、補強された発泡コア122とを含む。発泡コア122は、発泡板材又は断片123と、一般形態がバージョイストのスキン121に対して鋭角で発泡コア122を貫通している対向する多孔性ガラス繊維又は炭素繊維補強部材ストラット124とを含む。構造設計が必要とするなら、追加のストラットを交差するストラット124に加えて図6及び7に例示するような格子状構成を形成することもでき、また補強用ストラットの1又は複数の追加の平行な列をパネル又は梁120中に組み込むこともできる。スキン121は、その繊維が本質的に長手方向に配向している構造用弦フランジとして働く。スキン121は、図8に関連して述べたように補強部材124の末端部分127が広がり、スキン層の間に挟まれた繊維補強材を有する内側のスキン125及び外側のスキン126を含む。望むならスキン125及び126は、末端部分127の繊維を貫通し、スキン125及び126に隣接している可撓性繊維又は細い剛性ロッドを用いてスキンを末端部分に縫い付けることによって、広がった末端部分127により強固に取り付けることもできる。
望むなら1又は複数枚の多孔性繊維質の支持ウェブ128を梁120中に組み込んで、ストラット124を荷重下の座屈に対して安定化させることもできる。対向するスキン121間に延在する発泡板材123の面には、梁120を荷重下で横方変形に対して安定化させるためにガラス繊維などの多孔性の繊維補強布の第二の組のスキン129が設けられる。以前に述べたように差圧下で導入される硬化性樹脂が、梁120を形成する全ての多孔性の繊維補強材料に含浸し、硬化して剛性の耐力梁を形成する。構造上の考慮事項が必要とするなら、梁は不規則な断面、すなわち深さを梁の端部から梁の中心に向かって変えることもでき、且つまた湾曲又は弓の形であることもできる。望むならスキン120は厚さがかなり薄くてもよく、また図10に関連して下記でより完全に述べるようにトラスの弦構造機能を、スキンに隣接している発泡板材の溝中にロービング束を挿入することによって与えることもできる。
パネル幅が深さよりも大きいサンドイッチパネルのコア補強構造は、ロッド型又はストラット型補強部材が上部と下部の弦部材間に三角形の構成で逆向きの角度で延在する複数の平行な真のトラス型構造の形をとることができる。この配置は、ストラット末端部分のすぐれた付着を実現する。それはまた、比較的低コストのロービング形態の繊維補強材料、例えば炭素繊維又はガラス繊維をトラスの弦部材として利用して、より高価な布スキン補強材のかなりの部分を置きかえる。図10に示すようにサンドイッチパネル140は、補強型独立気泡発泡コア141及び対向する繊維補強スキン142を含む。補強されたコア141には、スキン142間に延在する複数の平行なトラス143の列が設けられる。各トラス143は、ガラス繊維又は炭素繊維などの繊維補強ロービング144の平行な束を含み、それらは発泡コア141中に形成された溝中に位置決めされ、また各トラス143のための上部及び下部弦部材として役割を果たす。繊維補強ロッド又はストラット145は、弦部材に貫入し、弦部材143中につなぎ留められ、逆向きの鋭角でパネルスキン142間に延在し、好ましくはスキン142の1又は複数層に貫入しその上に重なる。硬化した樹脂は、前述のように全ての補強材料に含浸する。またストラット145及び弦部(21) 材143を含むトラス構造を、例えば図1及び7に示すようにパネルスキン間に、又はそれらに平行に延在する補強用ウェブを有するコア中に組み込むこともできる。
図11を参照すると、織り又は編み繊維補強布の代わりに比較的経済的な繊維ロービングの使用を拡大して全パネルスキン構造を形成することができる。サンドイッチパネル150は、補強した独立気泡発泡コア151及び対向する繊維質スキン152を含む。コア151は、発泡板材153と、スキン間に延在する繊維補強部材又はストラット154とを含む。スキン152のそれぞれは、発泡コア153に隣接し、その発泡体の面を実質上覆う平行な補強用ロービング155の第一層を含む。平行な補強用ロービング156の第二層が、第一ロービング層155の上に重なり且つ交差し、第一層155の表面を実質上覆う。望むなら繊維マット又はベール157の層を第二ロービング層156の上に重ねることもできる。
パネル150の生産において第一スキン層155を含むロービングの端部は、発泡板材153の前縁と交差する線で固定される。板材は、図15に示した装置のようなステッチング装置を通して進み、板材の前進運動がスキン層155を形成するためのロービングを供給クリールから引き出して板材の対向する面を覆う。ステッチング装置によるストラット154の挿入に先立って複数本の平行なスキンロービング156が、ロービング156の所望の間隔及び張力を保つガイドを有する往復機構によって第一ロービング層155と交差して貼り付けられる。次いで第二スキン層156が、供給ロールから引き出される繊維ベール157によって被覆される。コア補強用ストラット154が、ベール157と、スキンロービング156及び155の層と、発泡板材153とを貫いて縫い合わされてサンドイッチパネル150を生成する。
構造上の考慮事項が必要とするなら、スキンロービングの追加の層を、縫合せの前に様々な角度でパネル面に貼り付けることができる。別法では配向又は非配向ロービング繊維を所望の長さに細断し、連続ロービングの代わりにコア面に貼り付けることもできる。縫い合わせたストラットロービング154の上を覆うセグメント158が、パネル150を金型中に並べるまで全てのスキンロービング155及び156を正しい位置に保持する。金型内では硬化性(curable)又は固化性(hardnable)樹脂が全ての繊維補強材中にくまなく流れて構造パネルを生成する。ロービングから直接パネルスキンを形成するこの方法は、図1〜10に示した実施形態のいずれにも取り込むことができる。
本発明の好ましい実施形態では、ロービングよりも著しく高価な織布又は縫合せ布をウェブとして使用することによるのではなく、繊維ロービングから直接ウェブ型コア補強部材を生産することによりかなりのコスト削減が達成される。この方法ではロービングを連続した発泡ストリップの周囲に巻いて、そのストリップの周りに構造管補強構造を作り出す。施巻構造を形成する特にコスト効率の高い手段は、渦巻き又は螺旋巻きによるものである。この施巻ストリップを所望の長さに切断し、図15に関連して述べたやり方でロービングステッチャー中に供給する。
図12を参照すると都合のよい長さのプラスチック発泡ストリップ170を、略図で例示した螺旋巻き付け装置171に端と端を接して通す。コア補強材の螺旋状巻きは、既存の工程と比較して大きな経済的利点を提供する。ロービング形態の繊維は、二重の斜め45度の布中に組み込まれた繊維の約50から60%のコストを占め、巻線機の生産速度は組機の5から10倍である。望むなら発泡ストリップには、後続の成形操作における樹脂の流れを容易にするために、図1に関連して述べたように1又は複数の溝39を設けることができる。発泡ストリップ170は、このストリップから生産されることになるサンドイッチパネルコアの厚さに等しい厚さと、コア内の補強用ウェブの所望の間隔に等しい幅とを有する。
ストリップ170が巻き付け装置171を通して進むにつれて、ストリップ170は、一方向に回転する回転ボビンホイール172及び反対方向に回転するボビンホイール173の軸を通過する。各ホイールは、繊維補強ロービング175を巻いた複数個のボビン174が装填される。回転ボビンホイール172は、発泡ストリップ上にロービングの層176を、装置171を通るストリップ170の前進速度とボビンホイール172の回転速度によって決まる或る単一の角度で巻き付ける。次いでこの一重施巻ストリップは、巻着ロービング層176を覆って第二層177を巻き付ける逆回転ボビンホイール173を通して進む。
巻き付け装置171は、広範な発泡ストリップのサイズ、例えば厚さ1−1/4インチから1フィート以上までを効率的に加工処理するように縮小拡大することができる。ロービングは、完成施巻ストリップ及びそれを組み込むことになる複合パネルの構造的要求仕様に応じて様々な厚さであることができ、また発泡ストリップの表面を覆うようにぎっしり詰まった間隔で、又はより広い間隔で配置することができる。発泡ストリップの表面に貼り付けられるロービングは、総計で1平方フィート当たりわずか0.1オンス以下の、また1平方フィート当たり5.0オンス以上もの重量を有することができる。図12〜14に示すロービングは、構造の詳細を理解できるように通常よりも厚い。ロービングは、ストリップが曲げ荷重を受ける用途においてせん断応力に対する最大抵抗を得るように+45度及び−45度の角度で巻くこともでき、又はロービングは、それらが組み込まれることになる特定の最終製品の構造的要求仕様によって必然的に決まる他の角度で貼り付けることもできる。
上に重なる巻着層176及び177を有する連続した発泡ストリップ170を、丸のこ(図示しない)などの走行切断装置によって長さに切断して、完成施巻ストリップ178を形成する。施巻発泡ストリップ178は、ハイブリッドサンドイッチパネル、例えば図14に示すものの発泡及びウェブ要素として使用されるので、それらの長さはサンドイッチコアパネルの所望の幅に等しい。切断に先立って巻着ロービングを、例えば切り口のどちらの側もホットメルト接着剤を含浸した糸179で被包することによって、又は切断箇所の周りに接着テープを貼ることによって、又はそのロービングに接着剤を塗布することによってほつれから守る。望むなら、湿気、樹脂の攻撃などからその発泡体を守るために発泡ストリップ170に、ロービング層に先立ってバリヤーフィルムを巻き付けることもできる。
完成したストリップ178は、図15に例示したコア二次成形装置(forming apparatus)200の送込み端部に進み、図15に関連して述べるようにその装置に挿入されるか、又は図18に示すようにストリップに接着性ベール241を取り付けるための装置(図示しない)に進む。生産されるコアの1平方フィート当たりの労働コストはきわめて低い。図12に関連して述べた巻き付け工程の変形形態では、長手方向の繊維ロービングの層180が、ストリップの長手軸に平行な方向に、且つロービング174をストリップの周りに巻き付ける前に発泡ストリップ170の表面に貼り付けられ、巻着ロービング174によって層180を定位置に保持する。長手方向の層180のロービングを静止したロービングパッケージ181から供給し、前進する発泡ストリップ170の前進運動によって引いて巻き付け装置171を通過させる。長手方向ロービングは、図12に示すようにストリップの2つの対向する面に貼り付けられてサンドイッチパネルスキン要素としての役割を果たすことができ、これは図14に関連して述べることにする。別法では構造柱に必要な圧縮及び座屈特性を与えるために長手方向ロービングを発泡ストリップの全面に貼り付けることもできる。
図13は施巻発泡ストリップ178の詳細図を提供し、図12に例示した巻き付け工程の間に貼り付けられる4組の多孔性繊維質ロービングの布設及び向きを示す。図13では、すべてのロービングは、扁平断面を有するように示され、独立気泡プラスチック発泡ストリップ170の表面を被覆するようにぎっしり詰まった間隔で配置されている。長手方向ロービング層180は、発泡ストリップ170の上部及び下部の面を被覆する。+45度の角度で示す巻着ロービングの第一層176は、長手方向ロービング層180と発泡ストリップ170の側面とを被覆する。−45度の角度の巻着ロービングの第二層177は、第一巻着層176を被覆する。その後、硬化型熱硬化性樹脂又は固化型熱可塑性樹脂を含浸させた場合、すべての繊維ロービングが、硬化又は固化樹脂と共に長方形管状断面の梁の全般的特性を有する構造要素を生成する。
図14は、図1に関連して上記で述べた交差するウェブ及びストラットのハイブリッド構造の補強型発泡コアサンドイッチパネルを例示するが、ここでは図13に示すロービングを巻いたストリップ178が、図1に示すウェブシート34を取り付けた発泡ストリップ33の代わりに用いられる。さらに図14は、図15に示した生産方法において織布又は編物の代わりにロービングを組み込んでサンドイッチパネルスキンを形成する。このロービングを巻いた発泡コアストリップとロービングを貼ったパネルスキンの組合せが、重要な構造上及びコスト上の利点を実現する。再度図14を参照すると、構造用複合パネル190は、繊維強化独立気泡プラスチック発泡コア191及び対向する繊維強化スキン192を含む。補強された発泡コア191は、図13に示す複数の平行なストリップ178を含む。望むなら発泡ストリップ178には、隣接する施巻縁部が両方とも同じ向きをもつのではなく、したがって構造的にアンバランスでなく、プラスとマイナスの角度方向であるように、サンドイッチパネルコア形成の間に右方巻きストリップと左方巻きストリップを互い違いにすることによって一方向のみの斜めに巻いたロービングを設けることもできる。
コアの面間に延在し、多孔性繊維質の補強ロービングから作られる間隔を置いて配置されたロッド又はストラット193の複数の平行な列が、施巻発泡ストリップ178に直角に交差する。各列内のストラット193は、パネルスキン192に対して、且つ施巻ストリップ178の平らな表面に対して互いに逆向きの鋭角で傾斜する。ストラット193の列の面に平行、且つ被包されたストリップ178及びそれらの長手方向ロービング層180に直角な方向に延在する平行な多孔性繊維質スキンロービング194の層が、施巻ストリップ178の上に重なっている。軽量の繊維ベール、マット、又はスクリムが、複数本の不連続のロービングの形態で、又は前もってロービングを軽量ベールに接着させた単方向性の布としてパネル190に貼り付けることができるスキンロービング層194の上に重なる。ストラット193の末端部分が、長手方向ロービング180、巻着ロービング176と177、スキンロービング194、及びベール195のすべての層を貫通し、且つそれら末端部分がべール195の上に重なる。
図14に例示したパネルは、ストラット193を含む連続ロービングを示すために図15の装置中でそれが生産される位置とは逆にされている。図14に示すように複数本の連続ロービングが、逆向きの角度で、且つパネルの同じ側からサンドイッチパネル190を貫いて、各連続ロービングセグメント196が環縫いの形に絡んだ状態で縫い合わされている。代替のステッチング方法、例えば図1に示したような本縫い又はカットループを使用することもできることを理解されたい。
図14に示す繊維補強構造の重要な特徴は、施巻ストリップ178上の長手方向ロービング層180が、サンドイッチパネルスキン192の横補強材を含み、且つ長手方向の層180の上に重なる+45度及び−45度のロービング層176及び177がまたサンドイッチパネルスキンの要素を構成することである。すなわちコア補強材のウェブ要素が、+45度及び−45度のスキン要素と同じ連続した巻着ロービングからなる。これは、ウェブ型のコア補強用ウェブが図1の場合のようにパネルスキンに隣接させて終わらないので、コアとスキン構造間のより大きな層間剥離抵抗をもたらす。発泡ストリップ178を覆うロービング層180、176、177もまた、ストラット193の末端部分をつなぎ留める。
図14に示した補強型コア190はまた、パネルの長さ及び/又は幅全体に連続しているスキン要素を含むロービング層180、194及びべール195を省いて生産することもできる。これは、それら補強型コアを用いて、一般には互いに隣接し且つパネルのスキン間の複数のコアからなる大型のサンドイッチパネル、例えばボートの船体を生産する場合に望ましいことがある。このようなパネルでは、予め取り付けたスキンが補強用の布を含もうが、図14に関連して述べたようにコアに組み入れたロービングからなろうが、このような予め取り付けたスキンを有するコアを用いるのではなく、複数個のコア全体に構造的連続性を与えるのに十分な長さと幅のスキンを用いることが一般に好ましい。連続スキン要素180、194、195を省く場合、これら施巻ストリップ178は、隣接するコアと交差するストラットロービング193の摩擦によって、またストリップ178の上面及び下面に沿って縫い付けられる連続ロービングセグメントによって一つにまとめられたコアとしてしっかり保持されたままである。この構成ではストラット193の末端部分196は、サンドイッチパネルのスキンを貫通するのではなく、巻き付けられた外側のロービング層177とコアの表面に貼り付けられたパネルスキンとの間に閉じ込められる。
図12〜14のロービング施巻発泡ストリップ178は、断面が長方形として示されている。望むならこれらのストリップは他の断面、例えば図4、5、19に示すように平行四辺形又は三角形であることもできる。
特許文献11は、補強用布で被包した不連続のプラスチック発泡ブロック又はストリップからなるサンドイッチパネルコア要素を開示している。複数個の被包したブロックを、金型中のサンドイッチパネルスキン間にハニカムの形で、発泡ブロックの末端部分及び被包用布の縁部分がパネルスキンに隣接している状態で積み重ねる。本出願の図13に示す螺旋状施巻発泡ストリップ178をこれら被包されたブロックの代わりに用いて、布及び組立労働者のコスト全体にわたってかなり節約した状態で同等の構造特性を実現することができる。
特許文献11に記載のように発泡ブロックの端部を越えて補強布の縁部分を延出させ、それらを折り重ねてサンドイッチパネルスキンとの構造的取付けを改良するためのフランジを形成することが望ましい場合もある。図13の被包された長手方向のロービング層180、176、177の同様の延出部は、犠牲の発泡ブロック(図示しない)をコア発泡ストリップ170と端と端を接して交互に並べ、上記のようにその発泡体に施巻し、その被包されたストリップを犠牲の発泡ブロックの中央を通して切断し、犠牲のブロックを除去することによって得ることができる。また巻き付け装置171に挿入する前に、発泡ストリップ170に表面マイクログルーブを設けることもできる。施巻ストリップ又はブロック用に使用されるプラスチック発泡体の代わりに、他の適切なコア材料、例えば類似の幾何形状のバルサ材又は中空密封プラスチックボトルを用いることができる。
図1〜19に示すサンドイッチパネルコアの構造特性は、一般には主に繊維質コア補強構造によってもたらされるので、コアを含む独立気泡プラスチック発泡体を、耐水又は耐火性、熱絶縁性、あるいは光透過率などの他の所望のパネル特性に基づいて選択することができる。例えば半透明樹脂を半透明ポリエチレン発泡体及びガラス繊維補強材料に含浸して、ハイウェイトレーラーのルーフ又は建物の屋根として使用される光透過性の耐荷重パネルを生産することができる。プラスチック発泡体の代わりに炭素発泡体又はバルサ材などの他の多孔質材料を使用することもまた、本発明の範囲内である。
図1〜8、10、11、及び14は、発泡プラスチックコア材料の厚さ方向を貫いてガラス繊維ロービングなどの多孔性の繊維補強要素を挿入又は縫い付けることによって一部が生産される繊維強化コア及びサンドイッチパネルを例示する。これは、図15に例示した装置200によって達成することができる。複数個の発泡ストリップ201が、ステッチング装置200中に互いに隣接させて挿入される。ストリップ201は長方形又は他の断面であることができ、また前述のように補強布を取り付けた多孔性の繊維ウェブか、又は巻着した多孔性の繊維補強ロービングを設けることができる。望むならストリップ201の幅よりも長さの方が実質上大きい発泡板材が発泡プラスチック材料を構成することもできることを理解されたい。
ストリップ201は、例えば往復プレッシャーバー(図示しない)又は可動エンドレスベルト202によってほぼ等しい工程でステッチングヘッド203及び204に向かって進む。これらステッチングヘッド203及び204には、繊維ロービングに刺し通し、挿入するようになっている複数のチューブラニードル205、カニューレ、又は複合フックが厳密に取り付けられる。ステッチングヘッド203及び204は、ストリップ201の表面に対して逆向きの鋭角で傾斜する。ストリップ201が各前方への一段階の終りに前進を止めると、往復するステッチングヘッド203及び204が針205をストリップ201中に、それを貫いて挿入する。針は、それらのストリップ201への入口点に、ニードルガイド207によって正確に位置決めされる。巻かれたロービングパッケージ(図示しない)から供給された多孔性の繊維ロービング208は、針205によってストリップ201を貫いて挿入され、図8に示すように一般的なループ115の形態でそれらの入口点の反対側の表面に現れる。
図15を参照するとループ115は、それらが現れたストリップの表面を越えて形成されるループを保持する装置(図示しない)によって掴まれ、望むならそれらを他のループと係合させて図14に示すような環縫いを形成するか、又は別に供給されるロービングと係合させて本縫いを形成する。次いでステッチングヘッド203及び204が引っ込み、次のステッチを形成するのに十分な所定の長さのロービング208を針205中に進める。引き戻しの後、ストリップ201の列が、所定の段階又は距離を進み、停止し、ステッチングヘッド203及び204が往復運動して対向するストラットの次の組を挿入する。ストリップと交差する縫い合わされたロービング208によって保持されたストリップ201の一つにまとめられたアセブリーは、鋸又は他の適切な手段によって所望の長さのコア209に切断される。
ステッチング装置200を使用して、図1に示す予め取り付けた多孔性の繊維スキンを有するパネルを生産することができる。図15を再度参照すると補強用スキン布210がロールから供給され、パネル206の対向する両面に隣接させてステッチングヘッド203及び204の方に向かって進む。ロービングが、パネル206を形成するストリップ201を貫いて縫い合わされるに従って、ロービングはスキン布210の上に重なり、布210をパネル206に機械的に取り付ける。
また、図15に示す装置200を用いて、コアとスキンの両方のすべての構造補強構成要素が図14に示す低コスト繊維ロービングを含むサンドイッチパネルを生産することができる。長手方向スキンロービング194の層(図14)は、図15に示すステッチング装置200中でのその生産の間にパネル206の表面として貼り付けられる。パネルの面を覆うのに十分な複数本の多孔性の繊維ロービング211が、前進するパネル206によってロービング供給パッケージ(図示しない)から引き出され、ストリップ201の露出面に隣接させてステッチヘッドの方に向かって進む。薄い多孔性のベール、マット、又はスクリム210が、前進するパネル206によってロールから引き出されてスキンロービング211の上に重なり、ロービング208がパネル206を貫いて縫い合わされた後にそれらを定位置に保持する。ストリップ201には図14に示したように長手方向ロービング層180が設けられており、図14の層180及び194が図15中で生産されるパネル206の横方向及び長手方向のスキン補強材を構成する。横方向及び二重バイアス角のロービングをパネル206の面に貼り付ける往復機構(図示しない)を有するパネル生産装置200を提供することもまた、本発明の範囲内にある。これは、図11に示すパネル150の生産を可能にする。この場合、発泡コアはロービング層180の入った施巻ストリップ178を含まない。
本発明の別の好ましい実施形態では二方向パネル強度を、ストリップ177を貫いて構造用ロービング193を挿入することによってではなく、施巻発泡ストリップに内部横補強部材を与えることによって達成する。図16を参照すると補強された発泡ストリップ220は、ガラス繊維又は炭素繊維布などのウェブ状繊維補強材料のシート222によって分離された発泡プラスチックの複数個のブロック又は断片221を含む。発泡断片221及び補強用ウェブ222は、特許文献12に記載のように互いに接着され、ウェブ材料の実質的な気孔度を維持しながら加工及び取扱いを容易にする。補強されたストリップ220には、樹脂の流れのための溝223を設けることもできる。発泡断片221の代わりに他の材料、例えばバルサ材又はプラスチックブロー成形立方体を、コアの形態又は構造的完全性を損なうことなく用いることができることを理解されたい。
図17を参照すると、図12及び13に示したように補強されたストリップ230に、繊維ロービングの層176及び177を設けて施巻補強されたストリップ233を形成する。高い曲げ又は軸方向強度を必要とする場合、図13に示したロービング層180を設けることもまたできる。図18を参照すると補強されたコア240は、コア240の対向する面に加熱活性型結合剤で接着したベール241によって一つにまとめられた構造物として一体に保持された複数個の施巻補強ストリップ233からなる。より大きな曲げ可撓性を望むならベール241をコアの片面にのみ貼り付けることもできる。コア構造を一体化する他の手段には、施巻ストリップ全体にホットメルトヤーン又はスクリムの平行なバンドを接着するか、又は互いに接しているストリップの面に感圧接着剤を塗布することが挙げられる。ベール241の代わりにコア表面に構造用スキン布又はマットを接着して、いつでも含浸できるサンドイッチパネル予備成形物を形成することもできる。金型中に布のスキン補強材と樹脂の間に1又は複数個のコア240を置き、樹脂をコアとスキンの構造物中にくまなく流し、硬化させて構造用複合パネルを形成する場合、布ウェブ222と4枚の巻着ロービング層176及び177からなるロービングウェブ242とがグリッド状補強構造を形成し、パネルスキンに隣接している巻着層176及び177の部分がせん断力に抵抗するためのきわめて優れた接着を実現する。コア240のこの関節でつながった構造はまた、湾曲した金型表面に対する高度な順応性を可能にする。
図19は、二方向強度及びスチフネスが内部ウェブ又はロービングストラットのいずれも加えることなく達成される繊維施巻コア250の実施形態を例示する。繊維強化コア250は、施巻ストリップ254を形成するように螺旋状繊維ロービングの層252及び253を備えている複数個の三角形発泡ストリップ251を含む。施巻三角形ストリップ254は、加熱活性型結合剤で施巻ストリップ254の外側の巻着ロービング層253に接着したベール255によって、一つにまとめられたコア構造物として一体に保持される。三角形ストリップ251を切断する角度は、せん断及び圧縮強さの所望のバランスを得るように選択することができる。
コア及びスキンの多孔性の繊維補強材に注入又は含浸させるために2種類の一般型な固化性樹脂のどちらかを使用することは本発明の範囲内である。ポリエステル、ビニルエステル、エポキシ、及びフェノール樹脂などの熱硬化性樹脂は、成形工程の間に起こる化学的硬化、すなわち架橋の過程により固化する液状樹脂である。ポリエチレン、ポリプロピレン、PET、PEEKなどの前もって架橋させた熱可塑性樹脂は、補強材に注入する前に熱を加えることによって液化し、パネル内で冷却するに従って再固化する。
組み立てたパネル構造の多孔性補強材料に液状樹脂を注入する代替案として、その補強材料が、部分硬化した熱硬化性樹脂を予備含浸した布とロービングを含むこともできる。同様に補強用ロービング及び布材料に熱可塑性樹脂を予備含浸するか、又はそれを熱可塑性繊維と混ぜ合わせ、続いて熱及び圧力を加えることにより融合させることもできる。
補強した発泡コアの面に、鋼、アルミニウム、合板、又はガラス繊維強化プラスチックなどの剛性スキンシート材料を接合することもさらに本発明の範囲内である。これは、コア補強材に硬化性又は固化性樹脂を含浸し、樹脂の硬化時に剛性スキンに圧力を加えることによって、又は剛性スキンをコアに接合する前にコア補強用構造物に接着剤を含浸し硬化することによって達成することができる。
図20〜23は、螺旋状施巻ストリップを含み、改良された二方向強度及び有用な製造上の利点を有する繊維強化発泡コアパネルの構築の工程を示す。図20では螺旋状施巻ストリップ178がつなぎ合わされて単方向補強コアパネル260を形成する。望むならロービング176及び177の巻着層(図2)を含むストリップ178に、図6及び7に示すようなコアパネル260の面にほぼ平行なウェブシート94を組み込んで、荷重下の座屈に対してロービング176及び177を安定化させることもできる。低密度発泡体及び螺旋状に巻いた補強用ロービングを含む複数個のストリップをつなぎ合わせている好ましい方法を図23に示す。この方法ではホットメルト接着剤をコーティングしたガラス繊維スクリム271が、熱及び圧力を加えることによってコアパネルの対向する面に貼り付けられる。接着剤をコーティングした個々の繊維スクリム271又は列は、本明細書中に示した、複数個のストリップ又はブロックを含むすべてのコアパネルの実施形態において、隣接しているストリップをつなぐために用いることができる。
ロービング176及び177の層は、接着に抵抗する材料、例えば部分硬化プリプレグ樹脂又は熱可塑性繊維を含むことができる。このような材料を使用する場合、ロービング176及び177には、非含浸ガラス繊維又は炭素繊維などの接合可能な繊維を含む追加の間隔を置いて配置されたロービングを設けることができる。図21を参照するとロービング177の層がロービング176の層と交差し、その上に重なる。望むならこれらロービングを、ロービング176と177を交互に互いの上に重ねる編上げ工程において発泡ストリップ上に巻き付けることもできる。この編上げの選択は、発泡プラスチック又は他の低密度多孔質材料の単一ストリップ上に巻かれた補強繊維の2枚以上の層を含む本発明のすべての実施形態に適用される。差圧工程でコアパネルに液状熱可塑性樹脂を注入することを意図している場合、ストリップ170は独立気泡発泡体を含む。独立気泡及び連続気泡発泡体の両方が、プリプレグロービング176及び177を含む、又は固化型熱可塑性樹脂成分を含むコアパネルに適している場合もある。スキン及び固化性樹脂を成形した後に、補強されたストリップから発泡体をグリットブラスティング、溶媒、又は別の方法で除去して中空複合パネルを生産することができる。
図20及び22を参照するとコアパネル260は、おさ鋸盤又は他の手段によってストリップ178の長さに直角なC方向に切断されて所望の厚さの複数個の第一の細長い繊維強化コアパネル261になる。この切断工程の間にその切断工程による発泡体の層の除去のせいでロービング176及び177の切断された末端部分262がほぐれ、発泡ストリップの170の表面から突き出る原因となる。図23を参照すると複数個の第一の細長い繊維強化コアパネル261が、接着性スクリム271を用いてつなぎ合わされて、補強用ウェブが長手及び横の両方向に延びている二方向コアパネル270を形成する。補強用ロービング176及び177の突き出ている末端部分262は、パネルに固化性樹脂を注入する場合に、接着剤が対向するパネルスキン(図示しない)と結合するのを助ける。望むなら各ストリップ170にロービング176の単一層を螺旋状に巻くこともでき、これらロービング176の隣接層がバランスのとれた構造特性を有する交差する層をさらに含むことになる。同様に、本明細書中で述べた、隣接ストリップを含むすべてのコアパネルに、螺旋状に延びるロービングの単一層を巻くことができる。
図13に示すように、巻き付けに先立って発泡ストリップ170の1又は複数の側面に軸方向ロービング180を有する施巻ストリップ178を設けることによって、より高い圧縮強さのコアを生産することができる。完成したコアパネル270中には、コアパネル290及び300にも同様に応用することができるこれら軸方向ロービングが、パネルの面間に垂直に延在する。二方向補強コアパネル270の重要な利点は、単方向コアパネル260の以前から存在する品揃えからパネル260をただ薄く切り取って幅が所望のパネル厚に合致する第一の細長いコアパネル261にし、それらストリップを前述のように互いにつなぎ合わせることによってそれを任意の所望の厚さで迅速に生産することができることである。
コアパネル270は、図24〜26に示すようにパネルスキンに実質上高い構造的結合を与えることができる。すなわち、発泡ストリップ170とロービング176及び177の巻着層とを含む細長いコアパネル261(図24)に、層176及び177の上に重なる追加の螺旋状巻着ロービング層281及び282を設けて第二の細長いコアパネル280を形成する。接着性スクリム271又は他の手段を用いて複数個のパネル280を互いにつなぎ合わせて、図26に示す補強されたコアパネル290を形成する。巻着ロービングの層281及び282が、コアパネル290の面間に延在する連続ウェブを形成し、一方ロービング176及び177の層が、連続ウェブと交差する不連続ウェブを形成する。固化性樹脂がサンドイッチパネル中に導入されると、これらロービングの4層すべてがサンドイッチパネルスキン291と結合する。図25は、繊維質コア補強用ロービングをパネルスキンに取り付けた領域を大きく拡大して詳細に示す。図24を再び参照するとロービング282の層を省く場合、隣接する施巻ストリップ280上のロービング281の層は、そのロービング281がウェブ中で逆向きの角度で交差している補強ウェブを形成することになる。
図27は、互いにつなぎ合わせる前に第二の細長いコアパネル280を図26に示した向きから90度回転させる二方向補強コアパネル290の変形形態を示す。図27の構成では、各施巻コアパネル280上のロービングの最も密集した層が、スキンに隣接するのではなくコア内に位置決めされる。施巻パネル280の向きは、補強用ウェブとパネルスキンの間の強度及びスチフネスの所望のバランスによって決まるコアパネル290又はコアパネル300のいずれかを生産するように選択される。
補強部材を螺旋状に巻くことによって生産される二方向コアパネル、例えば図23及び26に例示したものは、互いに結合した複数個の発泡ブロックからなる。パネルの凸状面が比較的低い引張強さのスクリム繊維によって一体化されるならば、又は湾曲が熱を加えてスクリムをパネル面に結合する接着剤を軟化せることによって達成されるならば、この関節で繋がった構成はパネルが湾曲面に順応することを可能にする。図23を参照するとパネルを成形用具に押し当てて単純又は複雑な湾曲に成形した後、ガラス繊維などの高い引張強さの接着性スクリム271をコアパネル270の対向する各面に貼り付けることができる。スクリム接着剤が凝固した後に圧力を解放することができ、コアパネル270はその湾曲を保持し続ける。この方法は、湾曲した金型中に能率的に装填することができる予備成形品の生産に役立つ。接着性スクリムはまた、このように非補強発泡プラスチックを含む湾曲した予備成形品を生産するために使用することができる。
薄いスキンと共に使用されるコアパネル、例えばトレーラーのルーフのコアパネルは、コア中の十分なせん断強さ及びスチフネスを与えるが、衝撃又は圧縮荷重の条件下ではスキンに十分な支えを与えることができない。この不十分なスキンの支えの原因は、図23の場合のようにコアパネル面の上に重なるコア補強材が存在しないせいか、又はコアパネルを構成する螺旋状施巻発泡体の比較的幅広のストリップを使用する結果、広い間隔で配置されるウェブがスキンを支えることになるせいである可能性がある。追加のスキンの支えを与える手段を図27に示す。この手段では複数個の細長いコアパネル280を含む二方向コアパネル300に、剛性支持部材301が設けられている。好ましい実施形態では支持部材301は繊維質ロービング、例えばガラス繊維を含む。この繊維質ロービングは、パネル261に補強用ロービング281及び282を螺旋状に巻いて図24に示す細長いコアパネル280を形成するのに先立って、図22に示すように細長いコアパネル261中に形成されるスリット中に挿入される。一般に梁状の長方形断面を描く支持部材301を、図22に示すロービング176及び177の巻着層を構成するコア補強用ウェブ302と交差する各点において代わるがわる支持する。図27を再度参照すると、パネルスキン291に加わる圧縮及び衝撃荷重は、スキン支持部材301によって補強用ウェブ302に伝達され、こうしてスキン291の損傷を防止する。
図28〜30は、本発明の別の実施形態を例示する。この実施形態では繊維強化ストリップ310には、発泡ストリップ170の隅の片側又は両側に沿って、且つロービング176及び177の1枚又は複数枚の螺旋状巻着層の真下に軸方向に延びる補強用ロービング311が設けられる。この構造を図29に拡大して示す。前述のように複数個の補強されたストリップ310がつなぎ合わされて図30に示す補強されたコアパネル320を形成する場合、交差する螺旋状巻着ロービングからなる補強用ウェブの隣接する対が隅の軸方向ロービング311と協同して、ロッド状せん断部材によって分離される上部及び下部の弦を有する複数個の構造バージョイントを事実上形成する。この構造は、すぐれた衝撃強さ及びウェブ補強材とパネルスキンの間の高い付着強度を実現し、且つスキン補強材の使用を減らすことを可能にする。また望むなら軸方向の隅のロービング311を、二方向コアパネルの構造、例えば図24〜26に示すものに加えることもできる。
追加の軸方向ロービングを、螺旋状に巻いた補強部材を有する本発明の形態のいずれかにおいて発泡ストリップ170の表面のいずれか又はすべてを被覆するように巻着ロービングの真下に設けることができる。固化性樹脂による成形の後、単一の補強されたストリップ310(図28)を柱又は箱形はりなどの個別の構造部材として使用することができる。このような構造部材の性能は、図17及び24に示すような横補強部材を設けることによって、また追加の軸方向ロービングを設けてすべての露出した発泡体表面を被覆することによってさらに向上することができる。柱は、構造的付着領域の高い強度を与える目的で、ストリップ上にロービング層を巻く前にストリップの末端部分又はストリップの他の所望の領域で発泡ストリップ170の周囲に補強材料、例えばガラス繊維又は炭素繊維の層を螺旋状に包むことによってさらに補強することができる。
成形柱状構造部材は、螺旋巻き付け装置の繊維強化発泡体生産物を、成形装置、例えば熱硬化性樹脂の適用及び硬化のための樹脂射出引抜成形装置(図示しない)中へ直接且つ連続的に供給する連続工程によって経済的に生産することができる。同様にサンゴバンベトロテックス(Saint−Gobain Vetrotex)によって製造された「ツインテックス(Teintex)」ロービングなどの熱可塑性フィラメントと混ぜ合わされた螺旋状巻着ガラス繊維ロービングを、熱を連続して加える装置(図示しない)に通して連続的に進め、冷却することによって混ぜ合わせ、固化して繊維強化発泡構造物にすることができる。螺旋巻き付け装置の繊維強化生成物を切断して所定の長さの構成要素を形成し、上記構成要素を後続の用途及び樹脂の固化のために金型中へ送る連続工程を提供することもまた、本発明の範囲内である。
図31は、パネルスキンの支えを螺旋状巻着コア補強用ウェブ間に設けた一つにまとめられた複数個の螺旋状施巻ストリップ331を含む単方向繊維強化コアパネル330を例示する。少なくとも2個の発泡ストリップ170には、剛性ストリップ材料を含むことができ、又はコアパネルの成形の間に樹脂が流入し固化する多孔性の繊維質材料、例えばガラス繊維マットを含むこともできる外装332が、一又は両側面に設けられる。特に経済的な実施形態では発泡ストリップ170が、発泡体をガラス繊維マット332の連続シート間に導入する連続工程で生産される低コストプラスチック発泡断熱板から切り取られる。隣接するマット332の対が、螺旋状巻着ロービングを構成するコア補強用ウェブ間のパネルスキンに実質的な支持を与える。この巻着ロービングに隣接するガラス繊維マットのこれらセグメントが協同して、2層のガラス繊維マット332と4層の巻着ロービング176及び177とからなる構造的に強化された補強用ウェブ333を形成する。この構造は、ウェブの全厚が大きいために、単に螺旋状に巻かれるウェブに比べて補強繊維量の増加と、荷重下でのウェブの耐座屈性の改良との両方を実現する。ストリップ332は、ガラス繊維マットの代わりに、例えばアルミニウム箔を含めた様々な他の材料を含むことができる。アルミニウム箔は、ロービング176及び177の熱可塑性成分を溶融するためにストリップ331に加えられる放射熱を与えている間の発泡ストリップ170を保護するために使用することができる。
図32は、所与のロービング巻き付け装置から非常に多量に生産することができる補強型コアパネルの形態を例示する。補強されたコアパネル340は、交互するロービング施巻プラスチック発泡体178と単純なプラスチック発泡ストリップ170を含む。ストリップ178上に巻かれる補強用ロービングの重量を増すことによって、図20に示した均質なストリップコアパネル260とほぼ同等の構造特性を、図32に示す交互のストリップコアパネルにおいて達成することができる。
発泡ストリップを螺旋状に施巻する方法は、構造特性がコアの長さ方向に沿って変わるコアを有するサンドイッチパネルの生産を可能にする。この構成は、ロービングが、続いて一つにまとめられてコアパネルになる発泡ストリップ上に巻かれるにつれて、それらロービングの間隔及び角度を制御されたやり方で変えることによって達成される。図33は、発泡ストリップ170と、間隔を置いて配置された螺旋状巻着ロービング176及び177とを含む施巻ストリップ350を示す。図12を参照すると発泡ストリップ170上のロービングの角度及び間隔は、ストリップが所与のヘッド回転速度で巻き付けヘッド172及び173を通して進む速度を変えることによって制御される。この関係は、プログラム化したストリップコンベヤ駆動モーターの使用により厳密に制御することができる。例えば、ストリップ送り速度を低下させるに従って巻かれるロービングの間隔は減少し、且つロービングがストリップの軸と交差する角度は小さくなる。巻き付けヘッド172と173の相互の間隔は、ストリップ350の所望の長さに一致するように、好ましくは調整可能である。図33に示す施巻ストリップ350は、パネル支持材にかかる集中荷重に耐えるように高い圧縮強さを与えるために、ストリップ350の面に関してロービングの密度及び角度の峻度がストリップの端部で最も高い発泡ストリップを例示する。二方向強度を改良するために、図33に示す非補強発泡ストリップ170の代わりに図22に示す補強されたストリップ261又は図28に示す補強されたストリップ310を使用する。
図33はまた、コアの厚さが一様でない複合パネルにおけるスキン強度の改良を実現する手段を例示する。パネルの縁の閉鎖部分がより薄い厚さに次第に減少又は段階的に減少するのが構造サンドイッチパネルにおいては普通であり、厚さの変化がパネルの内部で時には必要とされる。パネルスキンを構成する繊維が平らな面から逸脱する場合、スキン中の引張又は圧縮応力が、スキン補強材の破壊及びパネルコアからのスキンの層状剥離を引き起こす恐れがある。図33に示す螺旋状施巻ストリップ350には、図12及び13に関連して述べたように、補強されたコアパネルの面を構成することになるストリップ350の対向する面上に軸方向ロービング180の層が設けられている。図14に関連して述べたようにロービング180の軸方向の層は、ストリップの方向に延びてスキン繊維の機能を果たし、またその軸方向ロービングにはロービング176及び177の層が上に螺旋状に巻き付けられる。曲げ応力の条件下で軸方向ロービング180がコア厚の移り変わる領域351又はその近傍で破壊する傾向は、軸方向ロービングが外側へ移動するのを螺旋状に巻いたロービング層が抑制するために減少する。軸方向ロービングの安定性は、前述のようにストリップ350に横補強材を設けて、ロービング層180が内側へ座屈するのを防止することによってさらに向上することができる。
低密度発泡体を含む螺旋状施巻単方向コアパネルにおいては、圧縮又はせん断荷重下での比較的厚いパネル中の比較的薄い補強用ウェブの耐座屈性は、ウェブの薄さを減らすことによってかなり改善することができる。図34は、繊維強化発泡ストリップ178及びウェブスペーサーストリップ361を含むコアパネル360を示し、このウェブスペーサーストリップ361の機能は、ロービング176及び177の層と協同して複合補強用ウェブ362を形成することである。スペーサーストリップ361は、複合補強用ウェブ362を厚さの大きい構造ウェブとして機能させるように、圧縮強さが発泡ストリップ170、多孔性マット材料、又は他の充分な強度の材料よりも大きい発泡プラスチックを含むことができる。複合ウェブ362のスペーサーとロービング構成要素は、サンドイッチパネルに注入するために使用される樹脂によって互いに構造接着する。スペーサーストリップ361は、発泡ストリップ170間に存在する樹脂の塊りを分割し、それによって硬化過程の間に樹脂の局所的な塊りの中で通常引き起こされる収縮を減らす役割を果たす。補強用ウェブに沿ったこの収縮の減少により、成形後のパネルスキンの平坦性が増し、それが外観を良くし、またより軽量のスキン補強材の使用を可能にすることができる。
螺旋状施巻ストリップを含むサンドイッチパネルは、高エネルギー弾道衝撃後の実質的な構造完全性を保持するのに有効であることが分かった。これらは、発射体による貫通を防ぐように設計されるジェットエンジン用ケーシング又は装甲板用構造的バックアップなどの用途に使用される。図35は、ジェットエンジンケーシングとして有用な本発明の円筒状又は環状実施形態を例示する。この実施形態では、コア特性の構造的連続性が螺旋状施巻発泡ストリップの端部間の接合部をなくすことによって最適化される結果、全体のパネル内の全ての螺旋状巻着ロービングが破壊されない。円筒状又は環状コアパネル370は、ストリップ371を円筒状又は非円筒状マンドレルの周囲に連続的に螺旋型に巻き付けることによって、単一の螺旋状施巻発泡ストリップ371から生産される。
プラスチック発泡ストリップ170と螺旋状巻着ロービング176及び177の層とを含む施巻ストリップ371は、長方形以外の、例えば図19に示したような三角形か、又は不等辺四辺形の断面形状であることもでき、そこではコアに横方向せん断強さを与えるようにコア内の補強用ウェブが逆向きの角度で配向される。横方向せん断強さはまた、例えば図24に示すように施巻ストリップ371に内部横補強材を設けることによって実現することもできる。より高い強度を得るために、望むならコアパネル370を覆って、好ましくは交差する角度で第二の連続ストリップ371を螺旋状に巻くこともできる。コアパネル370のフープ強度及び耐衝撃性はまた、図13に示したように巻着ロービング176及び177の真下に軸方向ロービング180を設けることによって向上させることができる。螺旋状に巻き付けたコア補強材及び構造用スキン補強材を有するサンドイッチパネルの耐弾道衝撃性は、図14及び15に関連して以前に述べたように交差する角度で、又はパネルスキンに直角にパネルスキンをよびコアを貫いて繊維補強材を縫い付けることによって高めることができる。1層又は複数層中の連続的な補強されたストリップ371はまた、容器の全面の周囲にストリップ371を形成し、フィラメント巻き付け工程により貼り付けられたスキンを設けることによって、円筒状又は箱状の輪郭の、爆発に耐えることを意図する周囲を囲った容器を形成するために用いることもできる。
連続ストリップ371は、パネルの形状又は構造完全性に著しく損なうことなくジェットエンジンのファン・ブレードなどの弾道物体が円筒形ケーシングを貫通することを可能にするように、比較的低重量の又は比較的脆い補強繊維、例えば炭素トウを用いて施巻きすることができ、貫通物体は、例えばケブラーなどの樹脂を含浸されていないアラミド繊維の囲繞外被によってケーシングの外側で阻止される。別法ではパネルは、衝撃物体を収容でき、一方でなおパネルの完全性も維持するように設計することができる。この構成においては衝撃下で伸長し、貫通に抵抗することになるアラミドなどの繊維又は鋼を、コア、スキン、及びパネルを貫通して縫合される補強材として使用することが望ましい。図1に関連して述べた樹脂フィルムバリヤー41を使用することによって、これら耐衝撃性補強材の特定の層を成形の間ずっと樹脂をほぼ含まない状態にしておき、弾道衝撃性能を最適化することができる。
図36は、中空管を発泡ストリップの代わりに用いて空気又は水の分配用に、あるいは特に炭素などの高熱伝導率の補強繊維を設けた場合、効率のよい熱交換器として使用することができる非断熱型構造サンドイッチパネルを生産する本発明の実施形態を示す。補強されたコアパネル380は、長方形、三角形、又は他の断面形状であることができる、補強用ロービング176及び177の層が螺旋状に巻かれる複数個の薄肉管381を含む。管381は、第一に構造用ロービングを巻き付けるマンドレルとしての役割を果たすことができ、したがって補強紙などの構造的に弱い材料を含むことができる。別法では管381は、ロール成形又は押出成形プラスチック又はアルミニウムなどの重要な構造特性を有する材料、好ましくは巻着補強層との、また後に貼り付けられるパネルスキンとの構造的接着のために表面処理された材料を含むこともできる。
薄い可撓性材料を含む管381の壁には、成形工程の間の圧力に耐えるように凸状の湾曲を設けることができる。またコアパネル380の生産工程の間又は成形工程の間、管381の端部をシールすることによって成形圧に耐えることもできる。空気又は他の気体を包含し、且つフィルム状プラスチック又は樹脂不浸透性の他の材料を含む円形断面のシールされた螺旋状施巻可撓性管を一体化してコアパネル380を形成することができ、また剛性の圧板を用いてコアパネル面に圧力を加えることによってこの可撓性管を成形工程の間に概ね長方形断面に順応させることができる。樹脂の侵入を防ぐようにシールされるコアパネル380をスキン補強材と組み合わせ、液状樹脂を用いて成形することができる。ロービング176及び177が部分硬化プリプレグ熱硬化性樹脂又は熱軟化型熱可塑性樹脂を含む場合、コアパネル380は、管381の端部をシールすることなく熱を加えることによって成形することができる。
図37及び38は、コアパネルの面間に延在し且つ面を覆って広がる螺旋状巻着コア補強材がまた、コアパネルの縁部も覆って広がる補強されたコアパネルの実施形態を示す。この構造は、コアパネル中の構造荷重の隣接するコアパネルへの、またサンドイッチパネルの縁部へのすぐれた伝達を可能にし、図37に例示する。間隔を置いて配置された発泡ストリップ170、好ましくは図28〜30に関連して述べたように軸方向のコーナーロービング311が設けられたものを、以前に述べた螺旋巻き付け装置を通過させて、連続的な補強されたストリップ390を形成する。ストリップ390は、複数個の軸方向に間隔を置いて配置された螺旋状施巻発泡ストリップ178を含む。この発泡ストリップ178には以前に述べたような間隔を置いて配置された横補強部材を設けることができ、またこれらはロービング176及び177の層によって互いにつなぎ合わされ、これらロービング層を、軸方向に延在するロービング311がストリップ178間で支えて中空の施巻セグメント391を形成する。これら巻着ロービング層は、発泡ストリップ間の空間を跨いで完全なまま保たれる。
図38に示す第二工程では、施巻ストリップ178が往復して折りたたまれ、それら連続するストリップが互いに隣接させて補強されたコアパネル400を形成する。中空の施巻セグメント391を含む補強用ロービングが折りたたまれ、ストリップ178の端部の全域でつぶれて、隣接するパネル構成要素とこのストリップの端部のすぐれた接着を実現して、内部のコアパネル補強材と外部のコアパネル縁部の間で構造荷重を伝達する。補強されたコアパネル400は、ストリップセグメント178を移動又は折りたたんで隣接するストリップと接した状態にした後、連続した接着性スクリムを貼り付けてそれらストリップセグメント178をつなぎ合わせることによって連続した長さで生産することができる。この連続した形態ではコアパネル400は、ロービング螺旋巻き付け装置につながった引抜成形などの連続成形工程にうまく適合する。
本発明の別の実施形態では、曲がりくねった形状の発泡ストリップ上に補強用ロービングを螺旋状に巻き付けることによって、繊維強化発泡コアパネルに二方向強度を与えることができる。図39は、それぞれが曲がりくねった輪郭を有し、サンドイッチパネルスキン補強材291に関して示した螺旋状施巻発泡ストリップ411を含む補強型コアパネル410を例示する。螺旋状巻着補強用ロービング176及び177の交差する層を含む曲がりくねったウェブ412が、コアパネル410に長手方向及び横方向両方のせん断強さを与え、各方向の強さの比はウェブ412の直線からの角度変位によって決まる。発泡ストリップ170は、図39に示した対称的な非平行縁部の代わりに曲がりくねった輪郭の平行縁部を有することができる。この発泡ストリップ170は、マルチプルギャングソーウォータージェット若しくはホット又はアブレシブワイヤを用いて発泡板材から切り取ることができ、あるいは熱成形可能な直線状発泡ストリップに熱を加えることによって形成することもできる。非平行縁部を有するストリップ上の巻着ロービングの巻き角は、前述のように巻き付け装置を通るストリップの送りを変えることによって制御することができる。
熱硬化性樹脂を含浸した繊維強化コアを含むサンドイッチパネルの耐衝撃性は、より脆性の熱硬化性樹脂をパネルの外側に延在させる代わりに、サンドイッチパネルスキンの外側部分に衝撃特性のすぐれた熱可塑性樹脂を組み込むことによって実質上高めることができる。図40は、螺旋状施巻繊維強化コア260とパネルスキン420及び422とを含む複合サンドイッチパネル420の大きく拡大した断面を例示する。発泡ストリップ170には、図13及び14に関連して溝39として以前に述べた樹脂分配溝223を設けることができる。パネルスキン421は、外側部分423に熱可塑性樹脂、例えばポリプロピレンを含浸した繊維補強マット又は布を含み、それがスキン421の外面から延出し、スキンの厚さ方向を部分的に貫通する。
この熱可塑性樹脂の層は、パネル420に熱硬化性樹脂を注入する前に、熱及び圧力下で繊維質スキン421の片面に熱可塑性フィルムを貼り付けることによって設けることができる。望むならガラス繊維と熱可塑性繊維の混合繊維、例えばサンゴバンベトロテックスから入手できる「ツインテックス」布からなる布層を熱可塑性フィルムの代わりに用いることもできる。この混合布は、加熱されて補強された熱可塑性外面を形成し、また熱可塑性樹脂を下側にある補強布の厚さを部分的に貫いて流入させる。高い耐衝撃性はまた、熱を加えることにより合体されなかった「ツインテックス」スキン布422を、補強されたコアパネル260に貼り付け、コア及びスキン補強材全体に熱硬化性樹脂を注入することによって得ることもできる。スキン422を構成する熱可塑性フィラメントは、注入されたスキンに高い耐衝撃性を与え、またこのスキンを注入後に加熱して熱可塑性繊維を溶融することができる。
発泡プラスチックなどの低密度多孔質材料を有する螺旋状施巻繊維強化複合パネルを生産する好ましい方法においては、コアパネルに「ツインテックス」布などの混合フィラメントロービングではなく、別々に貼り付けられる繊維補強材及び固化型熱可塑性材料が準備される。図20を参照すると発泡ストリップ170に、連続押出工程においてストリップに加熱され液化した樹脂を塗布することによって熱可塑性樹脂、例えばポリプロピレンの囲繞層を設けた後、その樹脂を冷却し凝固させてからストリップ全体にわたって補強用ロービング176及び177を螺旋状に包む。被包されたストリップ178は互いにつなぎ合わすことができ、熱及び圧力を加えることによって補強繊維に熱可塑性樹脂を含浸させる。繊維補強材及び熱可塑性樹脂を含むスキンも同様にコアパネルに取り付けることができる。押出の代わりに熱可塑性材料のストリップをロービング176及び177の層に隣接させて発泡ストリップ170間に設けることもできる。
さらに別の方法では発泡ストリップ170に、それぞれが複数本のガラス繊維などの補強用ロービング及び熱可塑性ロービングからなるロービング176及び177の層を螺旋状に巻く。発泡ストリップに繊維補強構成要素及び熱可塑性構成要素を別々に貼り付け、続いて熱及び圧力を加えることによって補強繊維に含浸させるこれらの方法はすべて、混合フィラメントロービングの使用によって達成されるものよりも一般にあまり完全でない。本発明の方法の利点は、その生産工程において再生熱可塑性樹脂を含めたきわめて低コストの材料を用いることができることである。本発明で述べたすべての繊維強化パネルにおいては、複数本のフィラメントを含む繊維ロービングの代わりに、金属及び高い引張強さのプラスチックを含めた様々な可撓性材料のモノフィラメント繊維を補強材として使用することができることを理解されたい。
前述のように本発明の実施形態は、差圧下で樹脂を内部コア補強要素の至る所に流し含浸させる工程において液状熱硬化性成形用樹脂の使用に合うようになされている。これらの実施形態は図1〜40に例示され、コアパネル内に多孔性補強要素を含む。サンドイッチパネル産業の大部分は、差圧を利用できないか、又は樹脂をコア補強材に浸潤させるには不十分な工程を使用している。サンドイッチパネルコアの厚さが増すにつれて、差圧が存在しないことは、成形用樹脂がコア内のコア補強部材、例えばガラス繊維ロービングに浸透し、その至る所に流れることができる度合を大幅に制限する。樹脂の浸透及び固化は、繊維強化コア及びサンドイッチパネルの構造特性の達成にとって不可欠である。
本明細書中で述べた幾つかの実施形態は、本発明を、差圧を使用しないサンドイッチパネル製造工程に用いられるように合わせる。このような工程には、例えば液状樹脂を用いたオープンモールド成形、オープンバス引抜成形、及び剛性スキンとパネルコアの接着貼合せが挙げられる。これらの工程に適合するようにされた実施形態では、サンドイッチパネルコア内に置かれた補強部材のこれら部分はコアパネルの生産の間に含浸、固化され、またコアパネル面に隣接する補強部材のこれら部分は依然として多孔性のままである。内部補強部材の固化は、望ましいコアの構造特性を確実にし、またコアパネル面に隣接する補強部材のこれら部分の気孔度は、コアが、後に接着樹脂を用いてコアに貼り付けられるサンドイッチパネルスキンとの、特に強い構造的付着を得るようにする。
有利には固化したウェブコアパネルはまた、樹脂注入、射出引抜成形、及び樹脂トランスファー成形などの差圧を使用する成形工程において用いることができる。これらの発熱を伴う樹脂硬化工程では、ウェブ中の未硬化樹脂の量を減らすか又は無くすことによってコア内の樹脂温度を著しく低下させ、こうして発泡体の損傷又は揮発性気体の発生の可能性を減らす。コアパネルの一方の面から他方の面へのスキン成形用樹脂の流れを可能にするように固化したウェブコアパネルに穿孔することが役に立つこともある。別法では、若干の残留気孔度がウェブ補強材中に残って成形工程の間の樹脂の流れを可能にするように、コアパネルのウェブに部分的にしか含浸させず、固化することもできる。
図41は、補強されたコアパネル431とパネルスキン432とを含む冷凍トラック又はリクリエーショナル・ビークルの壁として有用な構造用複合サンドイッチパネル430を例示する。コアパネル431は、図12〜14に関連して述べたように一般に構築されるプラスチック発泡体又は他の低密度多孔質材料の複数個の螺旋状施巻ストリップ178を含む。180は図41に示されないが、望むならば軸方向ロービング層を設けることもできる。望むならば施巻発泡ストリップ178は、第二ロービング層177を省くことができ、また望むならば図31に示したような事前に取り付けた補強用マット332、又は図16に関連して述べたような横補強部材222を設けることもできる。
図41を再度参照すると複数個のストリップ178を合体してコアパネル431を形成するのに先立って、固化性接着樹脂433、例えばポリエステル又はポリウレタンが、コアパネル431の補強ウェブを含む多孔性巻着ロービング層176及び177のこれら部分に塗布される。樹脂433は、各発泡ストリップの対向するウェブの両面に塗布することもでき、又はストリップ178を互いにつなぎ合わせる場合、隣接するウェブ面の多孔性繊維を浸潤するのに十分な量を片面にのみ塗布することもできる。望むなら若干の気孔度を、塗布する樹脂量を制限することによって保有することもできる。加熱した補強材を樹脂と接触させる場合、その粘度を下げることによって補強繊維の浸潤を容易にするように、ロービング層に熱を加えてから樹脂を塗布することができる。温度を上げることはまた、樹脂の塗布後の樹脂の硬化速度を加速する。ウェブストリップ178は、樹脂433が固化して複合補強ウェブ434を形成する間に、隣接するストリップ同士を押しつけてスタックにすることによって互いにつなぎ合わされる。別法では個々のストリップ178のウェブ部分を固化することもでき、以前に述べたように接着性スクリム又は他の結合手段を用いてストリップ178のスタックを合体してコアパネル431を形成することができる。
図41に示す実施形態では、ウェブ434とスキン432の構造的取付けを向上させるためにウェブ補強材の外側部分へのスキン取付用樹脂の吸上げ又は流れを可能にするように、ウェブ固化用樹脂433を、コアパネルの端面又は両側の表面に直接隣接しているコアパネルウェブのそれら部分に、例えばコアパネルの面から8分の1インチの距離にわたって与えずに置く。望むなら固化性樹脂433はコアパネルの両側の表面又は端面に完全に及んでもよく、またさらに樹脂がコアパネルの各面に部分的又は完全に広がってもよいことを理解されたい。
図51は、ウェブ固化用樹脂433が、隣接する繊維施巻ストリップ178の露出表面又は端面の一部分に横に広がって一連の構造I形梁501を形成するコアパネル500を例示する。この実施形態は、サンドイッチパネルの強度及びスチフネスを増すために有用であり、比較的低い構造特性の接着剤を用いてスキンをコアパネルに取り付ける。樹脂433は、隣接するストリップ178間の巻着繊維に含浸し、且つコアパネル500の各面に広がる巻着繊維502の一部にもまた含浸し、樹脂433が固化して構造I形梁501を形成する。スキン432は、多孔性の巻着繊維部分502に浸透して強いスキンとコアの結合を形成する接着剤435を用いてコアパネル500に取り付けられ、一方、固化したI形梁501が高いパネル強度及びスチフネスを与える。
コアパネル431の両側の表面又は端面に樹脂433を完全に含浸させ、固化する場合、コアパネル431は剛性のサンドイッチパネルになる。この得られるサンドイッチパネル及び図51に示すI形梁501の構造特性は、図13及び14に関連して述べたように施巻ストリップ178に長手方向繊維ロービング180を設けることによって向上させることができる。ウェブ固化用樹脂433は、ロールコーター、押出、スプレイ、又は流通装置によって塗布することができる。樹脂は、熱硬化性樹脂、例えばポリエステル、エポキシ、又はウレタンであることができ、また熱可塑性樹脂、例えばポリプロピレン、PET、又はナイロンであることができる。熱硬化性樹脂の固化速度は、施巻ストリップ178相互の付着速度を増してコアパネル431を形成するために、高触媒量、熱、紫外線、又はその他の方法を利用することにより加速することができる。
熱可塑性樹脂は、構造用及び熱可塑性フィラメントの混合フィラメント、例えばサンゴバンベトロテックスにより製造される「ツインテックス」、又はヘキセル・コーポレーション(Hexcel Corporation)により製造されているような熱可塑性樹脂で表面コーティングした構造用ロービングを含むロービングを準備することによって巻き付け工程の間にロービング層176及び177中に取り込むことができる。熱可塑性樹脂を含むストリップ178は、ストリップのウェブ部分に十分な熱を加えてその熱可塑性マトリックスを溶融した後に、それらストリップを相互に押しつけることによってつなぎ合わされる。別法では導電性繊維、例えば炭素繊維を、巻着層176及び177に隣接させて設けることもでき、この導電性繊維に電流を通して熱可塑性マトリックスを溶融してもよい。層176及び177は、望むならツインテックスロービングの代わりに、クレイン・コンポジッツ(Crane Conposites)により製造されている「ゼニコン(Zenicon)」などの固化型繊維強化熱可塑性テープを含むこともできる。この熱可塑性テープは、発泡ストリップ170と接触させる前に十分な熱を与えてテープを軟化することによって、ストリップ170上に巻くことができる。このテープを巻いたストリップは、ツインテックスについて述べたように互いにつなぎ合わされる。層176及び177が高い引張強さのポリマー繊維、例えばミリケン(Milliken)によるMFT及びプロペックス(Propex)によるカーブ(Curv)を含むこともまた本発明の範囲内である。
完成したコアパネル431(図41)は成形又は積層工程に移され、そこでサンドイッチパネルスキン432が、接着樹脂435を用いて前述のようにコアパネルに取り付けられる。スキンを取り付けるために使用される樹脂435は、ウェブ434を固化するために使用される樹脂433と同一種類のものであってもよいが、そうでなくてもよい。樹脂433が、例えば触媒添加ポリエステル樹脂を含み、また樹脂435が湿分硬化ポリウレタン樹脂を含んでもよく、あるいは一方の樹脂が熱可塑性であり、他方の樹脂が熱硬化性であってもよい。スキン取付樹脂435は、巻着ロービング層176及び177の多孔性部分を浸潤する。このロービング層176及び177は、コアパネル431の両側の表面又は端面を含み、またスキンとコアの強い構造的付着を可能にするならばコアパネル面に隣接しているウェブの縁部分を含むこともできる。
スキンを接着するための接着樹脂は、前述のようにロービング層176及び177のすべての部分に含浸し固化されるならば、同様に塗布される。サンドイッチパネルスキン432は、樹脂435付着の前は、多孔性繊維質、例えばガラス繊維布であってもよく、また剛性の、例えばアルミニウム又はガラス繊維強化プラスチックのシートであってもよい。スキン取付樹脂は、任意の通常の塗布工程によって塗布することができ、また前述のようにこれらはすでに固化しているので、ウェブ434に流入させるための差圧を必要としない。コアパネル431が熱可塑性マトリックスを組み込んだロービング層を含む場合、スキンは、コア面を加熱して、露出したロービング層の熱可塑性マトリックスを液化することによって付着させることができる。
サンドイッチパネル430は、建設業において一般的なシート材料、例えば化粧合板又は薄い塗装金属を含むスキン432を組み込むことによって建設用パネル又は建物の壁として使用することができる。また接着樹脂435を用いて個々のクラッド材、例えば瓦、煉瓦、又は石材の複数の断片を接着することができる。図41に示すパネルの有用な変形形態において樹脂層435は、繊維強化ポリマースタッコなどのマスチック状材料又は他の固化性壁表面材料を含むことができる。この実施形態では層435を構成する材料が、固化する前の繊維ロービング層176及び177に浸透してコアパネル431の面と恒久的構造接着を形成し、固化したウェブ434と協同して羽目に加わる構造荷重に耐える。望むなら図36に関連して以前に述べたように、中空管を発泡ストリップ170の代わりに用いることもでき、これら管を緻密な材料、例えば砂又はコンクリートで満たして図41に示す土留擁壁又は幹線道路遮音壁として有用なサンドイッチパネル430にすることができる。
また、パネルスキンに隣接している多孔性部分を有する固化したウェブを、コア補強部材が繊維補強材料の平坦なウェブシート、例えばガラス繊維の布地又はマットを含むコアパネル中に設けることもできる。図42は、図1に関連して以前に述べた多孔性繊維質ウェブシート34を取り付けた複数個の発泡ストリップ33を含む補強型コアパネル440を示す。図1に示した繊維質ストラット35を設ける工程は省略する。図42を再度参照すると固化性樹脂433が多孔性ウェブシート34に塗布され、ウェブシート34を取り付けた複数個の発泡ストリップ33が、図41に関連して述べたように互いにつなぎ合わされる。図41に関連して述べたようなスキンをコアパネルに取り付けるために用いられる接着樹脂がウェブ中へ浸透して高い構造的接着を実現することになるように、図42に示すウェブ固化用樹脂433を、コアパネル440の両側の表面又は端面に隣接しているウェブ34の縁部分には与えずに置くことができる。ウェブ434は、望むならツインテックス混合ガラス繊維及び熱可塑性の布を含むこともでき、またそのウェブを、熱及び圧力を加えることによって、液状樹脂を用いたスキンへの取付けのためのウェブ縁部分の気孔度を保持したまま固化することができる。
図43に示す実施形態は、間隔を置いて配置された補強コアストリップを有するサンドイッチパネルを例示する。固化されたウェブ部分451及び多孔性の面部分452を有する複数個のロービング施巻発泡ストリップ178が、間隔をあけて離した配列又は関係で集められ、積層工程を使用して対向する剛性パネルスキン453に接着樹脂435を用いて取り付けられる。この実施形態は、必要なプラスチック発泡体の体積を実質的に減らし、断熱を必要としない構造用サンドイッチパネルに役立つ。パネルスキン用の断熱又は連続した支えが必要な場合、単純な発泡体と固化されたウェブ451を有する施巻発泡体の交互するストリップを、図32に関連して全般的に述べたように互いにつなぎ合わすことができる。図41及び43に示す本発明の実施形態は、望むなら発泡ストリップ33の代わりに図36に示した中空管381を組み込むこともできる。代替実施形態では、より高密度の材料、例えば規格材を発泡ストリップ170の代わりに用いて構造特性の改良を達成することができる。
図44〜47は、螺旋状施巻ストリップ及び固化した構造ウェブを含み、改良された二方向強度を有する補強型コアパネルの構造を示す。図44に示し、図41に関連して述べた固化されたウェブ434を有するコアパネ431を、ストリップ178の長さに直角な方向に切断して、所望の厚さの複数個の第一の細長い繊維強化コアパネル462にする。図46を参照すると第一のコアパネル462に、交差するロービング層281及び282を螺旋状に巻き付けて、第二の補強されたストリップ464を形成する。図47を参照すると固化性樹脂433が、複数個の第二の補強されたストリップ464の隣接面に塗布される。樹脂433が、図46に詳細に示すロービング層177、178、281、及び282を浸潤して、図47に示す固化されたウェブ465を形成する。ストリップ464同士を押しつけ、樹脂433の固化につれてつなぎ合わせ、長手方向に延びる固化したウェブ465と、仮想線で示す横方向に延びる固化したウェブ434とを有する補強されたコアパネル460を形成する。図41に関連して述べたようにコアパネル460にサンドイッチパネルスキンを貼り付けることができる。図45を参照すると二方向コアパネルはまた、細長いコアパネル462の巻着ロービングに固化性樹脂433を塗布し、樹脂が硬化するに従ってその巻着縁部同士を押しつけて、図23に示したものと構造が同様のコアパネルを形成することによっても生産することができる。
図48〜50は、螺旋状巻着補強材の層を有する発泡ストリップを含む連続サンドイッチパネルを生産する有利な手段を模式的に例示する。図48に示すパネル成形装置470において多孔性の補強用ロービングの層を有する複数個の連続した長さの発泡ストリップ471は、引抜成形業界で一般に用いられる引取装置(図示しない)によってリール472から引き出されて、樹脂槽又は樹脂射出モジュール474と加熱ダイ475とを備えた引抜成形装置473に入る。連続的な施巻ストリップ471は、図12に示したストリップ177の施巻工程の間にリール472上へ巻き取られる。なお、ストリップ177を所定の長さに切断する工程は省略する。望むなら図48に示す複数個のストリップの代わりに単一の連続ストリップ471を供給することもでき、また望むならストリップ471を複数のリール472から同時に引抜成形装置473に引き入れることもできる。
ストリップ471には、横補強部材、軸方向補強材、又は本明細書中で以前に述べた他の改良点を設けることができる。ストリップ471が装置470を通して進むに従って、スキン材料476、例えばガラス繊維布地がストリップ471の表面に貼り付けられ、そのスキンとコアの補強材が樹脂モジュール474中で浸潤され、その樹脂が加熱ダイ475中で固化されて、補強されたコア478を有する補強型サンドイッチパネル477を形成し、そのサンドイッチパネルが所望の長さに切断される(図示しない)。連続ストリップ471は、サンドイッチパネル477がどこで切断されるかに関係なく、サンドイッチパネルコア478内に、切れ目のない補強層176、177、及び180を実現し、こうしてその長さ全体にわたって一様な強度のパネルを生成する。
本明細書中で以前に述べたように本発明の螺旋状施巻形態は、成形複合パネルの連続一貫生産によく適応する。図49は、トレーラーの壁又は建物の壁として有用であり、且つパネルの長さに対して横方向に繊維強化発泡ストリップ178を含むコアを有する連続サンドイッチパネルの経済的な生産方法を例示する。横補強部材の効率的な組み込みは、引抜成形などの連続パネル生産の伝統的な方法では特に困難である。パネル生産装置480は、巻き付け装置171(図12)、施巻ストリップ前進装置482、及び成形モジュール483を備える。図12に関連して述べた巻き付け装置171が、繊維施巻発泡ストリップ178を生成し、そのストリップ178は、図49に示すように前進装置482によって樹脂モジュール483に入りまたそれを通して連続して前進する。ストリップ178は、ストリップの長さに直角をなして(図49)又はストリップの前進方向に対して鋭角で前進することができる。
施巻ストリップには、以前に本明細書中で述べた特徴、例えばストリップ内の横補強部材を組み込むことができる。望むなら施巻発泡ストリップ178を図48に関連して述べたようにリール472から供給し、所望の長さに切断してから樹脂モジュール483に進めることもできる。成形モジュールに入る前にストリップ178のスタックに多孔性スキン材料484を与える。樹脂が、発泡ストリップ178中の多孔性スキン484及び多孔性ロービングを浸潤し、成形モジュール483中で硬化して連続サンドイッチパネル485を形成する。本発明の特に経済的な実施形態では施巻ストリップ178に軸方向ロービング層180が設けられ、リールから供給される複数本の補強用ロービングがスキン484の代わりに用いられ、その結果、補強布を織るコストを削除する。
成形モジュール483は、図48に関連して述べたような引抜成形装置、図50に関連して述べることになる押出装置、又は当産業界で知られている他の成形装置であることができる。この方法の重要な利点は、任意の所望の幅のパネルを、ワインダーの産出物から直接、あるいは連続した繊維強化発泡ストリップの単一のリールからのどちらからでも生産することができることである。ロービング施巻発泡ストリップ178は、望むなら図31に示したように発泡ストリップの片面又は対向する両面に隣接させて、予め剛性を与えたウェブ(pre−stiffened web)332を含むこともできる。この構成ではウェブ332はコアにかなりの圧縮強さ及びせん断強さを与え、また望むなら、スキン484を取り付けるために用いられる成形用樹脂のロービング層176及び177への浸透を省くことができる。
図50は、高強度、少ない材料消費量、及び軽量の建築用厚板、板材、又は柱として有用な、またプラスチック用樹脂押出工程を組み込んだ連続サンドイッチパネルの経済的な生産方法を例示する。パネル生産装置490は、巻き付け装置171′及び173′と、押出モジュール491とを含む。図12に関連して述べた巻き付け装置171′及び173′は、連続した繊維施巻発泡ストリップを生産し、この発泡ストリップが図50に示すように押出モジュール491を通して進む。モジュール491においては加熱された液状熱可塑性樹脂、例えばPVC又はポリエチレンが塗布されて繊維質の補強層180、176、及び177を浸潤し、その樹脂が冷却し固化して連続サンドイッチパネル厚板492を形成する。ストリップ178は、加熱された押出用樹脂の温度に耐えることができるプラスチック発泡組成物、例えばポリイソシアヌレート又はフェノール樹脂を含む。
望むなら、サンドイッチパネル492に高い圧縮強さを与えるために繊維施巻発泡ストリップ178は、図31に関連して述べたように繊維質マット補強材332を含むこともでき、また図48及び49に関連して述べたようにサンドイッチパネル492に追加のスキン材料を施すこともできる。補強された発泡コアは、望むなら図48に関連して述べたようにリールから供給することもできる。また、望むなら押出用樹脂は、例えば甲板に有用な表面特性を生み出すために充填材料、例えばセルロース木粉を含むこともでき、この場合、押出工程はサンドイッチパネル492の繊維補強材の完全な浸潤を確実にするために最初の充填されていない樹脂の段階を含むことができる。またパネルボード492には、押出の業界で通常行われているように表面エンボス加工か、又は耐紫外線用の押出成形した樹脂の追加の表面層を設けることもできる。サンドイッチパネル492に必要とされる特定の材料及び特性によっては、図48に関連して述べた引抜成形モジュール473を、図50に示す押出モジュール491の代わりに用いることができる。図36に関連して述べたような繊維施巻中空管を、その中空管が十分強くて押出工程の圧力に耐えるならば施巻発泡ストリップ178の代わりに用いることができる。
本明細書中で開示した繊維強化コアパネルのいずれかを用いて、個々のコアパネルの厚さを超す厚さの構造用成形複合パネルを生産することができる。2枚以上のコアパネルを、隣接するコアパネル面の繊維補強材が互いに接した状態、又は補強材料、例えばガラス繊維布の層がコアパネルを分離している状態で金型中に積み重ねることができる。望むなら特定の構造特性を達成するために隣接コアパネルの繊維補強材を交差する向きに、例えば図18に示したコアパネルの2枚の層を交差する向きに積み重ねることによって配置することもできる。図32に示した施巻ストリップ178に前述のような横補強部材を設けることができ、また上記横補強部材を有する2枚以上のコアパネル340をストリップ178が交差する配列状態で積み重ねて、高い二方向強度を有する第二のコアパネルを形成することができる。望むなら積み重ねたコアパネル340を補強用マット又は布により分離することもできる。
分かりやすくするために、また比較するために本明細書中のコアパネルは、形状が長方形のものとして、またコアパネルの縁部にほぼ平行な一連の繊維補強材を有するものとして示してきた。構造上の考慮事項にとって必要な場合、これら一連の補強材をコアパネルの方向又は縁部に対して任意の所望の角度に向きを定めることができる。例えば図18を参照すると横方向に補強された発泡ストリップ233を45度の角度で長方形コアパネル240の縁部と交差させることができる。
本明細書中で述べた補強型発泡コア及びコアパネルの形態並びにそれらの構築方法の各工程は本発明の好ましい実施形態を構成するが、本発明はこれらの厳密な形態及びこれら方法の工程には限定されないこと、また本発明の範囲及び精神から逸脱することなくこれらにおいて変更を行うことができることを理解されたい。