JP5685004B2 - Soil improvement method - Google Patents
Soil improvement method Download PDFInfo
- Publication number
- JP5685004B2 JP5685004B2 JP2010107943A JP2010107943A JP5685004B2 JP 5685004 B2 JP5685004 B2 JP 5685004B2 JP 2010107943 A JP2010107943 A JP 2010107943A JP 2010107943 A JP2010107943 A JP 2010107943A JP 5685004 B2 JP5685004 B2 JP 5685004B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- soil
- mass
- blast furnace
- furnace slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002689 soil Substances 0.000 title claims description 131
- 238000000034 method Methods 0.000 title claims description 23
- 239000004568 cement Substances 0.000 claims description 150
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 126
- 239000000203 mixture Substances 0.000 claims description 103
- 239000002893 slag Substances 0.000 claims description 70
- 239000000395 magnesium oxide Substances 0.000 claims description 62
- 239000000463 material Substances 0.000 claims description 59
- 239000010459 dolomite Substances 0.000 claims description 41
- 229910000514 dolomite Inorganic materials 0.000 claims description 41
- 229910052749 magnesium Inorganic materials 0.000 claims description 32
- 239000011777 magnesium Substances 0.000 claims description 32
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 31
- 239000011398 Portland cement Substances 0.000 claims description 29
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 29
- 238000002156 mixing Methods 0.000 claims description 24
- 238000010276 construction Methods 0.000 claims description 7
- 229910001385 heavy metal Inorganic materials 0.000 description 50
- 238000010828 elution Methods 0.000 description 49
- 238000012360 testing method Methods 0.000 description 45
- 239000000047 product Substances 0.000 description 20
- 230000007613 environmental effect Effects 0.000 description 18
- 230000001629 suppression Effects 0.000 description 18
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 17
- 238000011161 development Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000011400 blast furnace cement Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000003513 alkali Substances 0.000 description 6
- 239000004927 clay Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 229910052602 gypsum Inorganic materials 0.000 description 5
- 239000010440 gypsum Substances 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003864 humus Substances 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000002440 industrial waste Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000911 decarboxylating effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- HHSPVTKDOHQBKF-UHFFFAOYSA-J calcium;magnesium;dicarbonate Chemical compound [Mg+2].[Ca+2].[O-]C([O-])=O.[O-]C([O-])=O HHSPVTKDOHQBKF-UHFFFAOYSA-J 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
本発明は、汚染土壌や軟弱地盤の改良に好適に用いることができる環境負荷低減型のセメント組成物を前記土壌や地盤に混和して重金属の溶出を抑制したり強度を改善したりする土壌改良方法に関するものである。 The present invention is a soil improvement which suppresses elution of heavy metals or improves strength by mixing an environmental load reducing cement composition which can be suitably used for improving contaminated soil and soft ground into the soil and ground. It is about the method.
高炉を用いて鉄鉱石から金属鉄を製造する際に副産物として得られる高炉スラグは、潜在水硬性を有するなどセメントに類似した性能を有するとともに大量に生成するため、高炉セメントの原材料、セメント混和材などとして広く土木・建築分野での利用が図られてきているが、地盤改良材や土壌改良材の構成材料としても種々利用されている。 Blast furnace slag obtained as a by-product when producing metallic iron from iron ore using a blast furnace has performance similar to that of cement, such as latent hydraulic properties, and is produced in large quantities. It has been widely used in the civil engineering / architecture field, but it is also used in various ways as a constituent material for ground improvement materials and soil improvement materials.
軟弱地盤の強度改良材としては、例えば、特許文献1には「セメント系固化材、無水石膏、高炉水砕スラグ及びアルミナスラッジからなる固化材」が、特許文献2には「C3S含有量が35〜65重量%、C3A含有量が10〜20重量%の鉱物組成を有し、かつ、Fe2O3の含有量が2重量%以下で、Al2O3/Fe2O3の重量比が3以上であるセメント組成物100重量部、石膏10〜300重量部、高炉スラグ10〜300重量部からなる地盤改良材」が記載されている。 As a strength improvement material for soft ground, for example, Patent Document 1 discloses “a solidified material composed of cement-based solidified material, anhydrous gypsum, granulated blast furnace slag, and alumina sludge”, and Patent Document 2 discloses a “C 3 S content”. Has a mineral composition of 35 to 65% by weight, C 3 A content of 10 to 20% by weight, Fe 2 O 3 content of 2% by weight or less, Al 2 O 3 / Fe 2 O 3 Is a ground improvement material consisting of 100 parts by weight of a cement composition having a weight ratio of 3 or more, 10 to 300 parts by weight of gypsum, and 10 to 300 parts by weight of blast furnace slag.
また、汚染土壌からの6価クロム等の重金属の溶出を抑制する改良材(不溶化剤)としては、特許文献3に「スラグ含有量31〜70%の高炉セメントからなる不溶化剤」が記載されている。更に、前記重金属の溶出抑制と強度発現性の両方に配慮したものとして、特許文献4には「水硬性材料、高炉スラグ及び石膏を含んでなる地盤改良材」が記載されている。 Moreover, as an improving material (insolubilizing agent) that suppresses elution of heavy metals such as hexavalent chromium from contaminated soil, Patent Document 3 describes “an insolubilizing agent made of blast furnace cement having a slag content of 31 to 70%”. Yes. Furthermore, Patent Document 4 describes “a ground improvement material comprising hydraulic material, blast furnace slag and gypsum” as a consideration of both the elution suppression of heavy metals and strength development.
一方、2005年2月に発行された京都議定書、2009年7月のG8サミットの決議に基づく温室効果ガス排出量の削減を受け、セメント業界や建設業界も温室効果ガスの一つである二酸化炭素の排出抑制に取組む必要が生じてきている。 On the other hand, following the reduction of greenhouse gas emissions based on the Kyoto Protocol issued in February 2005 and the resolution of the G8 Summit in July 2009, the cement industry and the construction industry are also one of the greenhouse gases. There is a need to work on reducing emissions.
そのような中で、セメント製造時の二酸化炭素の原単位は788kg/tであり、高炉スラグ生成時に発生する同原単位24.1kg/tと比べ極めて大きい。したがって、最近では、上記のような環境問題を考慮して、地盤改良や土壌改良に用いられるセメント系固化材においても脱セメント化、低セメント化、高炉スラグの増量化等が更に図られつつある。 Under such circumstances, the basic unit of carbon dioxide at the time of cement production is 788 kg / t, which is extremely large as compared with 24.1 kg / t of the basic unit generated when blast furnace slag is generated. Therefore, recently, in consideration of the environmental problems as described above, cement-based solidified materials used for ground improvement and soil improvement are being further decemented, reduced in cement, and increased in blast furnace slag. .
そのような中で、特許文献5に示されるような「高炉スラグ100重量部に対し、ポルトランドセメント又は石灰を1〜42重量部含有する重金属溶出抑制剤」といった高炉スラグを主体としたセメント系固化材も開発されてきている。 Under such circumstances, cement-based solidification mainly composed of blast furnace slag such as “heavy metal dissolution inhibitor containing 1 to 42 parts by weight of Portland cement or lime with respect to 100 parts by weight of blast furnace slag” as shown in Patent Document 5. Materials have also been developed.
また、一方、特許文献6、特許文献7、特許文献8、特許文献9などに示されるように、従来から、軽焼マグネシア、酸化マグネシウム、焼成ドロマイト等のマグネシウム含有物を含む種々の土壌改良材(重金属の溶出抑制剤)も知られている。 On the other hand, as shown in Patent Document 6, Patent Document 7, Patent Document 8, Patent Document 9, and the like, conventionally, various soil improvement materials containing magnesium-containing materials such as light-burned magnesia, magnesium oxide, and burned dolomite. (Heavy metal elution inhibitor) is also known.
上記特許文献1〜特許文献3に示されるように、従来から、高炉スラグを含むセメント系の「軟弱地盤の強度改良材」や「汚染土壌からの6価クロム等の重金属の溶出を抑制する改良材(不溶化剤)」が種々開発されてきているが、いずれも、強度と重金属の溶出抑制の両方を考慮したものではなく、また、上記環境問題を考慮したものでもない。 Conventionally, as shown in Patent Documents 1 to 3, cement-based "soft ground strength improving material" including blast furnace slag and "improvement of suppressing elution of heavy metals such as hexavalent chromium from contaminated soil" Various materials (insolubilizers) have been developed, but none of them considers both strength and suppression of elution of heavy metals, nor does it consider the above environmental problems.
特許文献4に示されるものは、強度と重金属の溶出抑制の両方を考慮したものではあるものの、上記環境問題については何ら考慮されていない。 Although what is shown by patent document 4 considers both the intensity | strength and the elution suppression of heavy metal, the said environmental problem is not considered at all.
特許文献5に示されるものは、強度と重金属の溶出抑制の両方を考慮しており、また、高炉スラグを主体としたものであるため、一応、上記環境問題にも対応するものと見れるが、重金属溶出抑制剤中の含有セメント量が少なかったり土壌へのこの重金属溶出抑制剤の添加量が少なかったりすると、重金属の溶出抑制効果が十分に発揮されなかったり十分な強度が得られなかったりする。 Although what is shown in Patent Document 5 considers both strength and elution suppression of heavy metals, and because it is mainly made of blast furnace slag, it seems to correspond to the environmental problem, If the amount of cement contained in the heavy metal elution inhibitor is small or the amount of the heavy metal elution inhibitor added to the soil is small, the effect of inhibiting the elution of heavy metal may not be sufficiently exerted or sufficient strength may not be obtained.
特許文献6〜9に示されるものは、上記環境問題については何ら考慮されていない。 In Patent Documents 6 to 9, no consideration is given to the environmental problem.
本発明は、上記課題に鑑みてなされたものであって、その目的とするところは、高炉スラグの有効利用を図りつつ、土壌や地盤への混和量が少なくても汚染土壌からの重金属の溶出抑制に有効で軟弱地盤に対して強度改善が図れる低セメントの環境負荷低減型セメント組成物を対象土に混和することによる土壌改良方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to achieve the effective use of blast furnace slag, and to elute heavy metals from contaminated soil even if the amount of incorporation into the soil and ground is small. An object of the present invention is to provide a soil improvement method by mixing a low-cement environmental load-reducing cement composition , which is effective for restraint and capable of improving strength against soft ground, into the target soil.
本発明者らは、上記課題を解決すべく鋭意検討した結果、セメントの使用量を減らし高炉スラグの使用量を増やすことにより低セメント化し高炉スラグを主体とした系でも、マグネシウム分の含有量を制御しつつ、必要に応じて、適量の無水石膏と適量のマグネシウム含有物を併用すれば、混和量が少なくても汚染土壌からの重金属(特に6価クロム)の溶出抑制が可能で、かつ、強度発現性の良い改良土が得られる環境負荷低減型のセメント組成物による土壌改良方法を見出し、本発明を完成させた。 As a result of intensive investigations to solve the above problems, the present inventors have reduced the amount of cement used and increased the amount of blast furnace slag to reduce the cement content. While controlling, if necessary, using an appropriate amount of anhydrous gypsum and an appropriate amount of magnesium-containing material, it is possible to suppress elution of heavy metals (especially hexavalent chromium) from contaminated soil even if the amount of mixing is small, and The present inventors have completed the present invention by finding a soil improvement method using an environmental load-reducing cement composition capable of obtaining improved soil having good strength development.
すなわち、本発明は、特定量のセメントと特定量の高炉スラグからなり特定量のマグネシウム分を含むセメント組成物であって、必要に応じて、特定量の無水石膏と特定量のマグネシウム含有物を含む環境負荷低減型のセメント組成物を対象土に特定量混和する土壌改良方法である。より詳細には、以下に示される発明である。 That is, the present onset Ming, a cement composition containing a magnesium content of a specific amount consists specified amount of blast furnace slag with a specific amount of cement, as required, a specific amount of magnesium-containing material and a specific amount of anhydrite It is a soil improvement method in which a specific amount of a cement composition of a reduced environmental load containing is mixed with target soil. More specifically, the invention is shown below .
本発明の一つは、「改良の対象とする土1m 3 に対し、ポルトランドセメント20〜40質量%と、高炉スラグ60〜80質量%とからなるセメント組成物100質量部に対し1〜50質量部のマグネシア含有物を混和してなり、このマグネシア含有物を混和したセメント組成物中のマグネシウム分がMgO換算で8.4〜15質量%である、高炉スラグが主体の低セメント化したセメント組成物を50〜450kg混和することを特徴とする土壌改良方法」である。 One aspect of the present invention is “ 1-50 mass% of cement composition comprising 20-40 mass% of Portland cement and 60-80 mass% of blast furnace slag with respect to 1 m 3 of soil to be improved. Cement composition with a low cement content mainly composed of blast furnace slag, wherein the magnesium content in the cement composition containing the magnesia-containing material is 8.4 to 15% by mass in terms of MgO. A soil improvement method characterized by mixing 50 to 450 kg of a product .
このように、重金属の溶出抑制に有効なマグネシウム分の含有量を制御しつつ、セメントと高炉スラグとマグネシア含有物とを特定の配合で組み合わせた低セメントの環境負荷低減型セメント組成物を用いることにより、混和量が少なくても汚染土壌からの重金属の溶出抑制が可能で強度発現性の良い改良土が得られる。 Thus, while controlling the content of active magnesium content in suppressing elution of heavy metals, Ru with a low cement reduce environmental impact cement composition in combination with cement, blast furnace slag and magnesia inclusions in a particular formulation it allows even small mixing amount Ru good modified soil suppressing elution of the possible development of strength of the heavy metals is obtained from contaminated soil.
また、大量に高炉スラグを使用するので、高炉スラグの有効利用が拡大できる。なお、本発明でいう「環境負荷低減型」とは、二酸化炭素の排出抑制や産業廃棄物の廃棄処分低減といった環境問題に貢献するタイプのものである。 Moreover, since blast furnace slag is used in large quantities, the effective use of blast furnace slag can be expanded. The “environmental load reduction type” in the present invention is a type that contributes to environmental problems such as suppression of carbon dioxide emission and reduction of industrial waste disposal.
本発明の一つは、「 改良の対象とする土1m3に対し、ポルトランドセメント20〜40質量%と、高炉スラグ50〜80質量%と、無水石膏15質量%以下とからなるセメント組成物100質量部に対し1〜50質量部のマグネシア含有物を混和してなり、このマグネシア含有物を混和したセメント組成物中のマグネシウム分がMgO換算で5.0〜15質量%である、高炉スラグが主体の低セメント化したセメント組成物を50〜450kg混和することを特徴とする土壌改良方法」である。
セメントと高炉スラグに、さらに必要に応じて添加される無水石膏を特定の配合で組み合わせることにより、汚染土壌からの重金属の溶出抑制の効果、強度発現性を高めることができる
One of the present invention is “ a cement composition 100 comprising 20 to 40 mass% of Portland cement, 50 to 80 mass% of blast furnace slag, and 15 mass% or less of anhydrous gypsum with respect to 1 m 3 of soil to be improved. A blast furnace slag comprising 1 to 50 parts by mass of a magnesia-containing material with respect to parts by mass, wherein the magnesium content in the cement composition containing the magnesia-containing material is 5.0 to 15% by mass in terms of MgO. A soil improvement method characterized in that 50 to 450 kg of a low-cemented cement composition as a main component is mixed.
By combining cement and blast furnace slag with anhydrous gypsum added as necessary in a specific formulation, it is possible to increase the effect of suppressing the elution of heavy metals from contaminated soil and the strength development.
本発明では、前記ポルトランドセメントと高炉スラグとの合量100質量部、もしくは、前記ポルトランドセメントと高炉スラグと無水石膏の合量100質量部に対し、マグネシア含有物を1〜50質量部混和する。 In the present invention , 1 to 50 parts by mass of magnesia-containing material is mixed with 100 parts by mass of the total amount of Portland cement and blast furnace slag or 100 parts by mass of Portland cement, blast furnace slag and anhydrous gypsum. .
マグネシア含有物は重金属の溶出抑制効果の向上を目的として添加されるものであるが、概して、上記配合設計をすることにより本発明の目的が達成し易い。 Magnesia inclusions but are intended to be added pressure for the purpose of improving the effect of suppressing the elution of heavy metals, in general, the purpose is achieved easily in the present invention by the mix design.
本発明におけるマグネシア含有物の好ましいものの一つはドロマイト焼成物である。 One preferred that magnesia inclusions in the present invention is Ru dolomite fired product der.
高炉スラグのアルカリ刺激剤となるCaOやMgOを含むドロマイト焼成物はマグネシウム含有物の中でも好ましいものの一つであり、これを用いることによって、上記配合設計で本発明の目的が容易に達せられる。なお、本発明で言うドロマイト焼成物とは、一般的に、仮焼ドロマイト、軟焼ドロマイト、軽焼ドロマイト、焼成ドロマイトなどと言われるものである。 A dolomite fired product containing CaO or MgO as an alkali stimulator for blast furnace slag is one of the preferred magnesium-containing materials. By using this, the object of the present invention can be easily achieved by the above-described blending design. The dolomite fired product referred to in the present invention is generally called calcined dolomite, soft calcined dolomite, light calcined dolomite, calcined dolomite, or the like.
本発明におけるマグネシア含有物の好ましいものの他の一つは軽焼マグネシアである。 Preferred another one of those magnesia inclusions in the present invention is Ru light burned magnesia der.
上記ドロマイト焼成物と同様に高炉スラグのアルカリ刺激剤となり重金属の溶出抑制効果も高い軽焼マグネシアもマグネシウム含有物の中でも好ましいものの一つであり、これを用いることによって、上記配合設計で本発明の目的が容易に達せられる。 Light calcined magnesia, which is an alkali stimulant for blast furnace slag and has a high elution suppression effect on heavy metals as well as the above-mentioned calcined dolomite, is also one of the preferred magnesium-containing materials. The purpose is easily achieved.
本発明の土壌改良方法は、改良の対象とする土(対象土)1m3に対し、上記セメント組成物を50〜450kg混和してなる土壌改良方法である。 Soil improvement method of the present invention, with respect to the soil (target soil) 1 m 3 as a target of improvements, a soil improving how formed by 50~450kg mixing the cement composition.
このように、本発明の土壌改良方法は、上記本発明のセメント組成物を汚染土や軟弱土等の対象土に所定量混和して、重金属の溶出を抑制したり強度面での補強をしたりする方法であり、特に対象土1m3に対し100kg以下の50〜100kgといった比較的少量混和した場合でも、ある程度の強度を確保しつつ重金属の溶出抑制を図ることができる。
このような少量混和の場合、セメント組成物中のマグネシウム分を、例えば、MgO換算で13.6〜15質量%(石膏を含まない系)、あるいは、11.5〜15質量%(無水石膏を含む系)というように多くするのが好ましい。
Thus, in the soil improvement method of the present invention, a predetermined amount of the cement composition of the present invention is mixed with target soil such as contaminated soil or soft soil to suppress elution of heavy metals or to reinforce strength. Even when a relatively small amount of 50 to 100 kg of 100 kg or less is mixed with 1 m 3 of the target soil, it is possible to suppress elution of heavy metals while ensuring a certain level of strength.
In the case of mixing in such a small amount, the magnesium content in the cement composition is, for example, 13.6 to 15% by mass (a system not containing gypsum) or 11.5 to 15% by mass (anhydrous gypsum in terms of MgO). It is preferable to increase the number of systems including
なお、本発明で言う上記対象土とは、重金属(特に6価クロム)による汚染土、火山灰質粘性土、砂質土、腐植土、高含水土、その他の軟弱土、有機質土、高有機質土、黒ぼく、シルト、粘性土等などである。 In addition, the said target soil said by this invention is contaminated soil by heavy metal (especially hexavalent chromium), volcanic ash clay soil, sandy soil, humus soil, highly hydrous soil, other soft soil, organic soil, highly organic soil. , Black me, silt, cohesive soil, etc.
本発明のセメント組成物によれば、土壌や地盤への混和量が比較的少なくても汚染土壌からの重金属(特に6価クロム)の溶出抑制に有効で、軟弱地盤に対して強度改善が図れる土壌改良や地盤改良用のセメント組成物が容易に得られる。 According to the cement composition of the present invention, it is effective in suppressing the elution of heavy metals (especially hexavalent chromium) from contaminated soil even if the amount of incorporation into soil and ground is relatively small, and the strength can be improved with respect to soft ground. A cement composition for soil improvement and ground improvement can be easily obtained.
また、本発明のセメント組成物は、高炉スラグの有効利用を図るべく高炉スラグ主体で低セメントの環境負荷低減型のものであり、二酸化炭素の排出抑制や産業廃棄物の有効利用といった昨今の環境問題の解決にも寄与するものである。 In addition, the cement composition of the present invention is a blast furnace slag-based, low-cement environmental load reducing type for effective use of blast furnace slag, and it is a recent environment such as carbon dioxide emission suppression and industrial waste effective use. It also contributes to solving problems.
また、本発明の土壌改良方法によれば、対象土に本発明のセメント組成物を混和するだけで強度と重金属(特に6価クロム)溶出抑制の両面の改善が図れる。そして、本発明のセメント組成物を対象土1m3に対し100kg以下の比較的少量混和した場合でも、ある程度の強度を確保しつつ重金属の溶出抑制ができ、環境に優しい。 Further, according to the soil improvement method of the present invention, both strength and suppression of elution of heavy metals (especially hexavalent chromium) can be improved only by mixing the cement composition of the present invention with the target soil. Even when the cement composition of the present invention is mixed in a relatively small amount of 100 kg or less with respect to 1 m 3 of the target soil, elution of heavy metals can be suppressed while securing a certain level of strength, and it is environmentally friendly.
以下、本発明のセメント組成物と土壌改良方法について、より具体的に説明する。 Hereinafter, the cement composition and the soil improvement method of the present invention will be described more specifically.
本発明のセメント組成物は、少量のセメントと多量の高炉スラグとを含み、必要に応じて適量の無水石膏と適量のマグネシア含有物を含むものである。 The cement composition of the present invention contains a small amount of cement and a large amount of blast furnace slag, and if necessary, contains an appropriate amount of anhydrous gypsum and an appropriate amount of magnesia-containing material.
セメントは、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメントなどの市販のポルトランドセメントである。価格や供給面から、普通ポルトランドセメントが好ましい。 The cement is a commercially available Portland cement such as ordinary Portland cement, early-strength Portland cement, or moderately hot Portland cement. Ordinary Portland cement is preferred in terms of price and supply.
これらポルトランドセメント中には、通常、MgO換算で1〜2.5%のマグネシウム分が含まれる。このマグネシウム分も僅かではあるが重金属の溶出抑制効果に影響すると見られる。 These Portland cements usually contain 1 to 2.5% magnesium in terms of MgO. Although this magnesium content is also small, it seems to influence the elution inhibitory effect of heavy metals.
高炉スラグは、従来から高炉セメントやセメント混和材の一材料として使用されている市販の高炉水砕スラグ粉末である。粉末度は特に限定されないが、ブレーン値が3000〜8000cm2/gのものが好ましい。この範囲のものであれば手頃な価格で入手し易く、本発明の目的が十分達成できる。 Blast furnace slag is a commercially available blast furnace granulated slag powder conventionally used as a material for blast furnace cement and cement admixture. The fineness is not particularly limited, but those having a brain value of 3000 to 8000 cm 2 / g are preferable. Within this range, it is easy to obtain at an affordable price, and the object of the present invention can be sufficiently achieved.
高炉スラグはアルカリ刺激剤により水硬する潜在水硬性を有する製鉄の際の産業廃棄物であり、強度発現と重金属の溶出抑制の両方に寄与する。特に、重金属の溶出抑制の観点から、マグネシウム分の多い高炉スラグ(高炉スラグ中にMgO換算で5〜8%)を用いることは好ましい。 Blast furnace slag is an industrial waste in the case of iron making that has latent hydraulic properties that are hydraulically driven by an alkali stimulant, and contributes to both strength development and suppression of elution of heavy metals. In particular, from the viewpoint of suppressing elution of heavy metals, it is preferable to use blast furnace slag containing a large amount of magnesium (5 to 8% in terms of MgO in the blast furnace slag).
無水石膏(CaSO4)は、従来からセメント混和材の一材料として種々使用されており、これらのものが使用できる。無水石膏を90重量%以上含むものであれば、他の石膏類が少し含まれていても良い。廃石膏ボードあるいはこれの焼成物といった廃材を使用することは、環境面から好ましい。無水石膏の粉末度は粉であれば特に限定されない。 Anhydrous gypsum (CaSO 4 ) has been conventionally used as a material for cement admixtures, and these can be used. If it contains 90% by weight or more of anhydrous gypsum, other gypsum may be included a little. Use of waste materials such as waste gypsum board or a fired product thereof is preferable from the environmental viewpoint. The fineness of anhydrous gypsum is not particularly limited as long as it is a powder.
無水石膏はエトリンガイト形成による初期強度発現に寄与し、上記セメントと上記高炉スラグだけでは、必要強度が確保できない場合に添加される。 Anhydrous gypsum contributes to the development of initial strength due to ettringite formation, and is added when the required strength cannot be ensured with the cement and the blast furnace slag alone.
マグネシア含有物はMgOを10〜100%含むものであり、セメント組成物中のマグネシア分がセメントと高炉スラグだけでは不足する場合に添加される。マグネシア含有物としては、ドロマイト焼成物、軽焼マグネシア、マグネシアセメント、マグネシアクリンカー、などが挙げられるが、中でもドロマイト焼成物と軽焼マグネシアが好ましい。 The magnesia-containing material contains 10 to 100% MgO, and is added when the magnesia content in the cement composition is insufficient only with cement and blast furnace slag. Examples of the magnesia-containing material include a dolomite fired product, a light fired magnesia, a magnesia cement, and a magnesia clinker, among which a dolomite fired product and a light fired magnesia are preferable.
マグネシア含有物の粉末度は特に限定されないが、重金属の溶出抑制、高炉スラグに対するアルカリ刺激剤の両方の役割を効率よく果たすためには少なくとも粒径5mm以下の粉粒が好ましい。 The fineness of the magnesia-containing material is not particularly limited, but in order to efficiently play the role of both an alkali stimulant for suppressing leaching of heavy metals and blast furnace slag, particles having a particle size of 5 mm or less are preferable.
ドロマイト焼成物は、ドロマイト(CaMg(CO3)2)を750〜1000℃で焼成してドロマイトを脱炭酸させたものである。1000℃を超えて焼成したいわゆる堅焼のドロマイト焼成物は重金属を固定できない場合がある。ドロマイト焼成物は、CaCO3とMgCO3を脱炭酸させた焼成ドロマイトとMgCO3のみを脱炭酸させた半焼成ドロマイトがある。焼成ドロマイトの他、仮焼ドロマイト、軟焼ドロマイト、軽焼ドロマイトといったものも含まれる。成分は、例えば、CaO:65.6%、MgO:32.1%であり、若干のシリカ分や炭酸カルシウム等の不純物が含まれる。 The dolomite fired product is obtained by firing dolomite (CaMg (CO 3 ) 2 ) at 750 to 1000 ° C. to decarboxylate dolomite. A so-called hard-burned dolomite fired product fired above 1000 ° C. may not be able to fix heavy metals. The dolomite fired product includes calcined dolomite obtained by decarboxylating CaCO 3 and MgCO 3 and semi-fired dolomite obtained by decarboxylating only MgCO 3 . In addition to calcined dolomite, calcined dolomite, soft calcined dolomite, and light calcined dolomite are also included. The components are, for example, CaO: 65.6% and MgO: 32.1%, and some impurities such as silica and calcium carbonate are included.
CaOとMgOとの合量が95%以上であれば、市販のものを使用しても良い。ドロマイト焼成物は、重金属の溶出抑制、高炉スラグに対するアルカリ刺激剤の両方の役割を効果的に果たすことができ、比較的低価格で安定供給できるので好ましい。 If the total amount of CaO and MgO is 95% or more, a commercially available product may be used. The dolomite fired product is preferable because it can effectively serve as both an alkali suppressant for heavy metal elution suppression and blast furnace slag, and can be stably supplied at a relatively low price.
軽焼マグネシアは、水酸化マグネシウム等の原材料を300〜400℃で焼成して得られるMgOからなるものである。上記ドロマイト焼成物と同様、重金属の溶出抑制、高炉スラグに対するアルカリ刺激剤の両方の役割を効果的に果たすことができるが、特に重金属の溶出抑制効果を高めたい場合に用いることが好ましい。 Light-burned magnesia is made of MgO obtained by firing raw materials such as magnesium hydroxide at 300 to 400 ° C. As with the above dolomite fired product, it can effectively serve as both an inhibitor of heavy metal elution and an alkali stimulant for blast furnace slag, but it is particularly preferred when it is desired to increase the elution suppression effect of heavy metal.
本発明では、セメント組成物の主構成となる上記ポルトランドセメントと高炉スラグのセメント組成物中における割合は高炉スラグの方が多くなるようにして限定する必要がある。高炉スラグがポルトランドセメントより多いとMgOによる強度増進も期待できる。 In the present invention, it is necessary to limit the ratio of the Portland cement and blast furnace slag, which are the main components of the cement composition, in the cement composition such that the amount of blast furnace slag is larger. If there is more blast furnace slag than Portland cement, strength enhancement by MgO can be expected.
ポルトランドセメントは、セメント組成物中20〜40質量%である。20質量%未満では、セメントが少なすぎて強度発現性が悪くなる。40質量%を超えると高炉スラグの含有量が減るので重金属の溶出抑制効果が悪くなるとともに、環境負荷低減型のセメント組成物にはなり難くなる。 Portland cement is 20 to 40% by mass in the cement composition. If the amount is less than 20% by mass, the amount of cement is too small and the strength development becomes worse. If it exceeds 40% by mass, the content of blast furnace slag is reduced, so that the elution suppressing effect of heavy metals is deteriorated and it is difficult to become an environmental load reducing type cement composition.
高炉スラグは、セメント組成物中50〜80質量%である。50質量%未満では、重金属の溶出抑制効果が悪くなるとともに、セメント量を増やすことになるので環境負荷低減型のセメント組成物にはなり難くなる。また、80質量%を超えるとセメント量が減りすぎて強度発現性が悪くなる。 The blast furnace slag is 50 to 80% by mass in the cement composition. If it is less than 50% by mass, the effect of suppressing elution of heavy metals is deteriorated, and the amount of cement is increased, so that it is difficult to become an environmental load reducing type cement composition. Moreover, when it exceeds 80 mass%, the amount of cement will decrease too much and strength development will worsen.
無水石膏は、セメント組成物中0〜15質量%であり、セメント組成物中に必ずしも含まれる必要はない。ポルトランドセメントと高炉スラグと必要に応じて添加されるマグネシア含有物とだけでは強度発現が不十分となる場合に添加される。 Anhydrous gypsum is 0 to 15% by mass in the cement composition and does not necessarily need to be contained in the cement composition. It is added when strength development is insufficient only with Portland cement, blast furnace slag, and magnesia-containing material added as necessary.
添加量の上限は15質量%とする必要がある。15質量%を超えると、重金属の溶出抑制効果が悪くなったり長期強度の発現性が悪くなったり異常膨張を起こしたりして、安定した性能のセメント組成物が得られ難くなる。 The upper limit of the amount added needs to be 15% by mass. If it exceeds 15% by mass, the effect of inhibiting the elution of heavy metals will deteriorate, the expression of long-term strength will deteriorate, or abnormal expansion will occur, making it difficult to obtain a cement composition with stable performance.
本発明のセメント組成物は、上記の配合割合において、セメント組成物中のマグネシウム分の含有量をMgO換算で3〜15質量%とする必要がある。3質量%未満では、重金属の溶出抑制効果が悪くなる場合がある。15質量%を超えると対象土によっては十分な強度を確保し難くなる。上記範囲にすることにより、重金属の溶出抑制効果と良好な強度発現性の両方が安定して得られ易くなる。ポルトランドセメントと高炉スラグだけでは上記範囲のMgOが得られない場合は、マグネシア含有物を添加する。 In the cement composition of the present invention, the content of magnesium in the cement composition needs to be 3 to 15% by mass in terms of MgO in the above blending ratio. If it is less than 3 mass%, the elution suppression effect of a heavy metal may worsen. When it exceeds 15 mass%, it becomes difficult to ensure sufficient strength depending on the target soil. By setting the content in the above range, it becomes easy to stably obtain both the heavy metal elution suppression effect and good strength development. When only the Portland cement and blast furnace slag cannot produce MgO in the above range, a magnesia-containing material is added.
マグネシア含有物は重金属の溶出抑制効果を高めたい場合に混和されるが、その混和量はポルトランドセメントと高炉スラグと必要に応じて添加される無水石膏(混合物をECMセメントと称す)の合量100質量部に対し1〜50質量部とするのが好ましい。 The magnesia-containing material is mixed when it is desired to enhance the elution control effect of heavy metals, but the mixed amount is the total amount of Portland cement, blast furnace slag, and anhydrous gypsum (the mixture is called ECM cement) added as necessary. It is preferable to set it as 1-50 mass parts with respect to a mass part.
1質量部未満では混和効果が得られ難くなる。50質量部を超えると混和量を増やしても効果の増大は見られず、逆に、強度発現性が悪くなる場合がある。例えば、ドロマイト焼成物や軽焼マグネシアを上記のようにして混和すれば、マグネシウム分の含有量がMgO換算で3〜15質量%のセメント組成物が簡単に得られる。 If it is less than 1 part by mass, it is difficult to obtain a mixing effect. If the amount exceeds 50 parts by mass, no increase in effect is observed even if the amount is increased. On the other hand, strength development may be worsened. For example, when a dolomite fired product or lightly burned magnesia is mixed as described above, a cement composition having a magnesium content of 3 to 15% by mass in terms of MgO can be easily obtained.
本発明のセメント組成物は、上記ポルトランドセメントと高炉スラグを主成分とし、必要に応じて添加される無水石膏とマグネシア含有物とからなるものであり、これらをプレミックスしたプレミックス品として使用しても良いが、ポルトランドセメントと高炉スラグ、あるいは、ポルトランドセメントと高炉スラグと無水石膏とをプレミックスしておき(ベースとなる数種類のECMセメントを作製しておき)、マグネシア含有物は施工時にこれらに混和して使用しても良い。 The cement composition of the present invention comprises the above-mentioned Portland cement and blast furnace slag as main components, and comprises anhydrous gypsum and a magnesia-containing material added as necessary, and is used as a premix product obtained by premixing these. However, Portland cement and blast furnace slag, or Portland cement, blast furnace slag and anhydrous gypsum are premixed (preparing several types of ECM cement as a base), and magnesia-containing materials are used at the time of construction. You may mix and use.
このようにすることで、対象土や使用目的に応じて、マグネシア含有物の種類や混和量を調整できるので、本発明のセメント組成物の使用範囲が広げられ、使用し易くなる。 By doing in this way, since the kind and mixing amount of a magnesia containing material can be adjusted according to target soil and a use purpose, the use range of the cement composition of this invention is expanded, and it becomes easy to use.
本発明のセメント組成物の製造方法は特に限定されない。従来の方法で上記材料を適宜プレミックスしておくか、施工時に混合して使用すればよい。配合割合は、対象土の種類やセメント組成物の使用目的に応じて決められる。例えば、重金属の溶出抑制を主たる目的とする場合は、無水石膏の添加量やマグネシウム分の含有量が多くなる配合に、軟弱地盤の強度改善やソイルセメントの製造を目的とする場合は、ポルトランドセメントや無水石膏の含有量が多くなる配合にしておく。 The method for producing the cement composition of the present invention is not particularly limited. What is necessary is just to premix the said material suitably by the conventional method, or to mix and use it at the time of construction. The blending ratio is determined according to the type of the target soil and the purpose of use of the cement composition. For example, when the main purpose is to suppress the elution of heavy metals, the formulation increases the amount of anhydrous gypsum and the content of magnesium, and when the purpose is to improve the strength of soft ground and to manufacture soil cement, Or a formulation that increases the content of anhydrous gypsum.
いずれにしろ、少なくとも上記各材料中のアルミニウム分、硫酸分、マグネシウム分は事前に分析して把握しておくとともに、サンプリングした対象土と本発明のセメント組成物による配合決定のための予備試験を従来の方法で行っておくことは好ましい。 In any case, at least the aluminum content, sulfuric acid content, and magnesium content in each of the above materials should be analyzed and grasped in advance, and a preliminary test for determining the composition of the sampled target soil and the cement composition of the present invention should be conducted. It is preferable to carry out the conventional method.
本発明の土壌改良方法は、上記本発明のセメント組成物を改良の対象とする土(対象土)1m3に対し、対象土の種類により適切な添加量が異なるが、50〜450kg混和してなるものである。 In the soil improvement method of the present invention, an appropriate addition amount differs depending on the type of the target soil to 1 m 3 of the soil (target soil) to be improved with the cement composition of the present invention, but 50 to 450 kg is mixed. It will be.
対象土としては、前述の通り、重金属(特に6価クロム)による汚染土、火山灰質粘性土、砂質土、腐植土、高含水土、その他の軟弱土、有機質土、高有機質土、黒ぼく、シルト、粘性土等が挙げられる。 As mentioned above, as mentioned above, contaminated soil with heavy metals (especially hexavalent chromium), volcanic ash clay, sandy soil, humus soil, highly hydrous soil, other soft soil, organic soil, highly organic soil, Kuroboku , Silt, and clay soil.
これら対象土に本発明のセメント組成物を混和する。対象土の種類により適切な添加量が異なるが、対象土1m3に対し50〜450kgを混和する。たとえば、砂質土、シルトでは、50〜200kg、粘性土では、100〜300kg、火山灰質粘性土、腐植土、黒ぼく、高有機質土では、250〜450kgの添加が好ましい。 The cement composition of the present invention is mixed with these target soils. Although an appropriate addition amount varies depending on the type of the target soil, 50 to 450 kg is mixed with 1 m 3 of the target soil. For example, it is preferable to add 50 to 200 kg for sandy soil and silt, 100 to 300 kg for viscous soil, and 250 to 450 kg for volcanic ash clay, humus soil, Kuroboku, and highly organic soil.
強度改善を目的とする場合は、(a)セメント含有量の多いセメント組成物を用いる、(b)セメント組成物中に無水石膏を含ませる、(c)対象土に対してセメント組成物の混和量を増やすなどの策をとればよい。 For the purpose of improving strength, (a) use a cement composition with a high cement content, (b) include anhydrous gypsum in the cement composition, and (c) mix the cement composition with the target soil. Take measures such as increasing the amount.
重金属の溶出抑制を目的とする場合は、(a)高炉スラグ含有量の多いセメント組成物を用いる、(b)セメントの混和量を増加させ、セメント水和物量を増加することにより重金属の固定量を増加させる、(c)セメント組成物中にマグネシア含有物を含ませセメント組成物中のマグネシウム分の含有量を多くするなどの策をとればよい。 For the purpose of suppressing elution of heavy metals, (a) Use a cement composition with a high blast furnace slag content, (b) Increase the amount of cement admixed and increase the amount of cement hydrate to increase the amount of fixed heavy metal. And (c) include a magnesia-containing material in the cement composition to increase the magnesium content in the cement composition.
強度改善と重金属の溶出抑制の両方を目的とする場合は、上記策の中間の配合とする。上記両方を目的とする土壌改良における改良土の好ましい配合例は、対象土1m3に対し、ポルトランドセメント20〜30質量%、高炉スラグ70〜60質量%、無水石膏10質量%からなるこれらの混合物(ECMセメント)を200〜300kg混和するとともに、焼成ドロマイトを20〜50kg混和してなるものである。 When aiming at both improvement of strength and suppression of elution of heavy metals, use an intermediate blending of the above measures. A preferable blending example of the improved soil in the soil improvement for both the above purposes is a mixture of 20 to 30% by mass of Portland cement, 70 to 60% by mass of blast furnace slag and 10% by mass of anhydrous gypsum with respect to 1 m 3 of the target soil. (ECM cement) is mixed with 200 to 300 kg and calcined dolomite is mixed with 20 to 50 kg.
なお、対象土に混和するセメント組成物量が少ないところでは重金属溶出抑制効果のある高炉スラグの対象土への混和量が少なくなるので、マグネシア含有物を併用して補った方がよい。 In addition, since the amount of blast furnace slag, which has an effect of suppressing heavy metal elution, decreases in the target soil when the amount of cement composition mixed in the target soil is small, it is better to supplement with the magnesia-containing material.
地盤改良の方法は、地面からの深さにより浅層改良、深層改良があり、添加方法として粉体による添加、スラリーによる添加方法がある。地盤改良の方法は、土壌に混和する従来のセメント系固化材の場合と同じであり、特に限定されない。 The ground improvement methods include shallow layer improvement and deep layer improvement depending on the depth from the ground, and addition methods include powder addition and slurry addition. The method of ground improvement is the same as in the case of a conventional cement-based solidified material mixed with soil, and is not particularly limited.
例えば、所定配合のポルトランドセメントと高炉スラグと無水石膏からなるプレミックス材(P)と水(W)とでW/P=1(重量比)のセメントミルクを作製し、これに攪拌しながら所定量の焼成ドロマイト粉を添加して本発明のセメント組成物からなるセメントミルクを作製する。 For example, W / P = 1 (weight ratio) cement milk is prepared with a premixed material (P) and water (W) made of Portland cement, blast furnace slag and anhydrous gypsum of a predetermined composition, and stirred while being stirred. A fixed amount of calcined dolomite powder is added to produce cement milk made of the cement composition of the present invention.
このセメントミルクの所定量を所定量の対象土と機械撹拌方式、噴射撹拌方式により混和して、土壌を改良する。本発明の土壌改良方法による対象土は建設発生土等の建設廃棄物にも拡大でき、得られる改良土は、ソイルセメント柱、土嚢、耐震補強、地盤沈下防止等の様々な分野で補強材や充填材として利用できる。 A predetermined amount of the cement milk is mixed with a predetermined amount of target soil by a mechanical stirring method and a jet stirring method to improve the soil. The target soil by the soil improvement method of the present invention can be expanded to construction waste such as construction generated soil, and the obtained improved soil can be used as a reinforcing material and a soil cement pillar, sandbag, seismic reinforcement, ground subsidence prevention, and other various fields. Can be used as a filler.
次に、本発明のセメント組成物を用いた試製改良土の性能を、試験例A〜Dで示す。 Next, the performance of the trial improvement soil using the cement composition of the present invention is shown in Test Examples A to D.
〔試験例A〕
(1) 使用材料
セメント:普通ポルトランドセメント(太平洋セメント社製)
高炉スラグ:セラメント(デイ・シイ社製:ブレーン値4000cm2/g品)
無水石膏:デイ・シイ社製:ブレーン値4000cm2/g
焼成ドロマイト:吉澤石灰社製(MgO:32.1%)
対象土:シルト(含水比率:41.1%、湿潤密度は1716kg/m3)
[Test Example A]
(1) Materials used Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
Blast-furnace slag: Seramento (Dai Shi Co., Ltd .: Brain value 4000 cm 2 / g product)
Anhydrous gypsum: manufactured by Dei Shi Co., Ltd .: Brain value 4000 cm 2 / g
Firing dolomite: manufactured by Yoshizawa Lime Co., Ltd. (MgO: 32.1%)
Target soil: Silt (water content: 41.1%, wet density is 1716 kg / m 3 )
(2) 試製改良土の製造
セメントと高炉スラグ、セメントと高炉スラグと無水石膏とをそれぞれ混合して表1に示す所定配合の混合物(ECMセメント)を得た。これに水を、水/ECMセメント=1(質量比)の割合で添加してホバートミキサーにより攪拌混合してセメントスラリーを得た。
(2) Production of trial improvement soil Cement and blast furnace slag, cement, blast furnace slag and anhydrous gypsum were mixed to obtain a mixture (ECM cement) having a predetermined composition shown in Table 1. Water was added thereto at a ratio of water / ECM cement = 1 (mass ratio), and the mixture was stirred and mixed by a Hobart mixer to obtain a cement slurry.
表1に示す配合割合になるように調整して、上記セメントスラリーと必要に応じて混和される焼成ドロマイトを対象土に混和してソイルミキサーで混練し、得られた混練物を5φ×10cmに成形して一軸圧縮強度試験用の供試体を得た。 The blending ratio shown in Table 1 is adjusted so that the cement slurry and the calcined dolomite mixed as necessary are mixed with the target soil and kneaded with a soil mixer, and the obtained kneaded product is adjusted to 5φ × 10 cm. A specimen for a uniaxial compressive strength test was obtained by molding.
なお、表1に示す焼成ドロマイトとECMセメントの混和量(単位量:kg/m3)は、対象土1m3当たりのkg量である。
また、表1中におけるセメント組成物中のマグネシウム分含有量はJIS R 5202により求めた。
Incidentally, mixing amount of burnt dolomite and ECM cement shown in Table 1 (unit amount: kg / m 3) is the kg per target soil 1 m 3.
Further, the magnesium content in the cement composition in Table 1 was determined according to JIS R 5202.
(3) 性能試験
(i) 一軸圧縮強度試験
JIS A 1216の規定に準じて、材令7日と28日で一軸圧縮強度試験を行った。
(ii)6価クロムの溶出試験
上記一軸圧縮強度試験後の破砕片を用い、環境庁告示第46号法の規定に準じて、6価クロムの溶出試験を行った。
(3) Performance test
(i) Uniaxial compressive strength test A uniaxial compressive strength test was conducted on the 7th and 28th days of the material age in accordance with the provisions of JIS A1216.
(ii) Hexavalent chromium elution test Hexavalent chromium elution test was performed in accordance with the provisions of the Environmental Agency Notification No. 46, using the crushed pieces after the uniaxial compressive strength test.
(4) 試験結果
試験結果を表1に示す。試験No.1〜6と試験No.13〜18あるいは試験No.7〜12と試験No.13〜18を比較してわかるとおり、本発明のセメント組成物を用いれば、低セメントでも従来の高炉セメント並の強度が得られる。また、シルトへのセメント組成物の混和量が比較的少なくても(セメント混和量が比較的少なくても)強度改善が図れる。
(4) Test results Table 1 shows the test results. Test No. 1-6 and test no. 13-18 or test no. 7-12 and test no. As can be seen by comparing 13 to 18, by using the cement composition of the present invention, the strength equivalent to that of a conventional blast furnace cement can be obtained even with a low cement. Further, the strength can be improved even if the amount of the cement composition mixed in the silt is relatively small (even if the amount of cement is relatively small).
更に、従来の高炉セメントでは重金属の溶出抑制に有効なマグネシウム含有量が増える(焼成ドロマイトを混和する)と強度は低下するが、本発明のセメント組成物では逆に向上するので、本発明のセメント組成物を用いることにより重金属の溶出抑制が効果的にできるとともに強度改善も図れる。 Furthermore, in conventional blast furnace cement, when the magnesium content effective for suppressing elution of heavy metals increases (mixed with calcined dolomite), the strength decreases. However, in the cement composition of the present invention, the strength improves. By using the composition, elution of heavy metals can be effectively suppressed and strength can be improved.
〔試験例B〕
(1) 使用材料
対象土以外は試験例Aと同じである。対象土は、関東ローム(含水比率:134.3%、湿潤密度は1350kg/m3)を用いた。
[Test Example B]
(1) Materials used Same as Test A except for the target soil. Kanto Loam (water content: 134.3%, wet density 1350 kg / m 3 ) was used as the target soil.
(2) 試製改良土の製造
表2に示す配合割合になるように調整して、試験例Aと同様にして製造した。
(2) Manufacture of trial improvement soil It adjusted so that it might become a mixture ratio shown in Table 2, and it manufactured similarly to Test Example A.
(3) 性能試験
試験例Aと同じである。
(3) Performance test Same as Test example A.
(4) 試験結果
試験結果を表2に示す。本発明の範囲をはずれるものは、試験No.22に示すようにマグネシウム分含有量が少ないところでは強度は確保できても6価クロムの溶出抑制が不十分となる場合がある。
(4) Test results Table 2 shows the test results. What departs from the scope of the present invention is test no. As shown in FIG. 22, in the case where the magnesium content is small, the elution suppression of hexavalent chromium may be insufficient even if the strength can be secured.
また、試験No.23、24に示すように、マグネシウム分含有量の多いところでは、6価クロムの溶出抑制はできたとしても本発明のもの(試験No.20、21)に比べて強度は低い。 In addition, Test No. As shown in FIGS. 23 and 24, where the magnesium content is high, the strength is lower than that of the present invention (Test Nos. 20 and 21) even though the elution of hexavalent chromium can be suppressed.
本発明のセメント組成物を用いれば、マグネシウム分含有量の多少(バラツキ)によらず、安定して強度確保と重金属の溶出抑制ができる。 If the cement composition of the present invention is used, it is possible to stably ensure strength and suppress elution of heavy metals regardless of the magnesium content (variation).
〔試験例C〕
(1) 使用材料
対象土以外は試験例Aと同じである。対象土は、砂質土(含水比率:34.0%、湿潤密度は1844kg/m3)を用いた。
[Test Example C]
(1) Materials used Same as Test A except for the target soil. The target soil was sandy soil (water content: 34.0%, wet density 1844 kg / m 3 ).
(2) 試製改良土の製造
セメントと高炉スラグと無水石膏とをそれぞれ混合して表3に示す所定配合の混合物(ECMセメント)を得た。この混合物の粉と必要に応じて混和される焼成ドロマイトの粉を対象土に混和してソイルミキサーで混練し、得られた混練物を5φ×10cmに成形して一軸圧縮強度試験用の供試体を得た。その他は試験例Aと同様である。
(2) Manufacture of trial improvement soil Cement, blast furnace slag, and anhydrous gypsum were mixed to obtain a mixture (ECM cement) having a predetermined composition shown in Table 3. This mixed powder and calcined dolomite powder mixed as necessary are mixed with the target soil and kneaded with a soil mixer, and the obtained kneaded material is formed into 5φ × 10 cm and is a specimen for a uniaxial compressive strength test. Got. Others are the same as in Test Example A.
(3) 性能試験
試験例Aと同じである。
(3) Performance test Same as Test example A.
(4) 試験結果
試験結果を表3に示す。本発明のセメント組成物を用いれば、試験No.27、29、30に示すように、対象土への混和量が100kg/m3程度と比較的少ないところでも、強度確保が図れる。
(4) Test results Table 3 shows the test results. When the cement composition of the present invention is used, the test No. As shown in 27, 29 and 30 , the strength can be ensured even when the amount of incorporation into the target soil is relatively small at about 100 kg / m 3 .
〔試験例D〕
(1) 使用材料
セメント:普通ポルトランドセメント(太平洋セメント社製)
高炉スラグ:セラメント(デイ・シイ社製:ブレーン値4000cm2/g品)
無水石膏:デイ・シイ社製:ブレーン値4000cm2/g
焼成ドロマイト:吉澤石灰社製(MgO:32.1%)
軽焼マグネシア:武井工業所社製(MgO:49.0%)
対象土:粘土(含水比率:54.5%)と6号ケイ砂(含水比率:0.05%)とを質量比1:1で混合した試製対象土(含水比率:27.3%、湿潤密度:2002kg/m3)
[Test Example D]
(1) Materials used Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
Blast-furnace slag: Seramento (Dai Shi Co., Ltd .: Brain value 4000 cm 2 / g product)
Anhydrous gypsum: manufactured by Dei Shi Co., Ltd .: Brain value 4000 cm 2 / g
Firing dolomite: manufactured by Yoshizawa Lime Co., Ltd. (MgO: 32.1%)
Light-burned magnesia: Takei Kogyo Co., Ltd. (MgO: 49.0%)
Soil: Clay (water content: 54.5%) and No. 6 silica sand (water content: 0.05%) mixed in a mass ratio of 1: 1 (sample water content: 27.3%, wet) Density: 2002kg / m 3 )
なお、この試製対象土は、1級試薬CaCrO4・2H2Oにより6価クロムをセメント中に300mg/kgとなるように含ませ、6価クロムによる汚染土とした。 In addition, this trial object soil included hexavalent chromium in the cement so as to be 300 mg / kg with the first grade reagent CaCrO 4 .2H 2 O, and used as contaminated soil with hexavalent chromium.
(2) 試製改良土の製造
セメントと高炉スラグ、セメントと高炉スラグと無水石膏とをそれぞれ混合して表4、表5に示す所定配合の混合物(ECMセメント)を得た。これに水を、水/ECMセメント=1(質量比)の割合で添加してホバートミキサーにより攪拌混合してセメントスラリーを得た。
(2) Manufacture of trial improvement soil Cement and blast furnace slag, cement, blast furnace slag and anhydrous gypsum were mixed to obtain a mixture (ECM cement) having a predetermined composition shown in Tables 4 and 5. Water was added thereto at a ratio of water / ECM cement = 1 (mass ratio), and the mixture was stirred and mixed by a Hobart mixer to obtain a cement slurry.
表4、表5に示す配合割合になるように調整して、上記セメントスラリーと必要に応じ
て混和される焼成ドロマイトもしくは軽焼マグネシアを試製対象土に混和してソイルミキ
サーで混練し、得られた混練物を5φ×10cmに成形して一軸圧縮強度試験用の供試体
を得た。
The blending ratio shown in Table 4 and Table 5 is adjusted, and the above-mentioned cement slurry and calcined dolomite or light calcined magnesia mixed as necessary are mixed in the soil for trial production and kneaded with a soil mixer. The kneaded product was molded into 5φ × 10 cm to obtain a specimen for a uniaxial compressive strength test.
(3) 性能試験
試験例Aと同じである。
(3) Performance test Same as Test example A.
(4) 試験結果
焼成ドロマイトを用いた試験結果を表4に、軽焼マグネシアを用いた試験結果を表5に示す。表4の試験No.31〜38と試験No.47〜54、もしくは試験No.39〜46と試験No.47〜54を比較してわかるように、本発明のセメント組成物を用いたものは、低セメントであるにもかかわらず、高炉セメント配合のもの以上の強度発現をし、6価クロムの溶出も抑制される。6価クロムによる汚染土に対しても有効であることがわかる。
(4) Test results Table 4 shows the test results using the calcined dolomite, and Table 5 shows the test results using the light calcined magnesia. Test No. in Table 4 31-38 and test no. 47-54, or test no. 39-46 and test no. As can be seen by comparing 47 to 54, the one using the cement composition of the present invention develops strength higher than that of the blast furnace cement blended material despite being low cement, and elution of hexavalent chromium is also possible. It is suppressed. It can be seen that it is also effective against soil contaminated with hexavalent chromium.
また、試験No.47〜54に示すようにセメント量が本発明の範囲をはずれ高いところでは、マグネシウム分の含有量が増えると強度発現は悪くなるが、本発明のセメント組成物では、試験No.31〜46に示すように、高炉セメント配合のものほど低下はしない。 In addition, Test No. As shown in Nos. 47 to 54, where the amount of cement deviates from the range of the present invention and the content of magnesium increases, the strength expression deteriorates. As shown in 31-46, it does not fall as much as the blast furnace cement blend.
また、表5の試験No.55〜62からわかるように、本発明のセメント組成物において、マグネシア含有物を上記焼成ドロマイトに変えて軽焼マグネシアにした場合も、良好な強度発現、6価クロムの溶出抑制は達成される。そして、焼成ドロマイトを用いた場合と同様に、マグネシウム分の含有量が増えても強度発現は悪くならなず、若干良くなる。 In addition, test No. in Table 5 As can be seen from 55 to 62, in the cement composition of the present invention, even when the magnesia-containing material is changed to the calcined dolomite and light calcined magnesia is used, good strength expression and hexavalent chromium elution suppression can be achieved. As in the case of using the calcined dolomite, even if the magnesium content increases, the strength expression does not deteriorate and becomes slightly better.
上記の通り、本発明のセメント組成物は、環境負荷低減型の低セメント含有量のものであるにもかかわらず、従来の高炉セメント以上の強度発現効果を有するとともに、重金属(6価クロム)の溶出抑制効果も高い。 As described above, the cement composition of the present invention has a strength development effect that is higher than that of a conventional blast furnace cement, and has a heavy metal (hexavalent chromium), despite having a low cement content with a reduced environmental load. Elution suppression effect is also high.
また、高セメント含有量の従来の高炉セメント配合のものでは、マグネシウム分が多くなると強度発現が悪くなったりして、マグネシウム分の含有量により強度発現が不安定となるが、本発明のセメント組成物では、マグネシウム分の含有量の影響を大きく受けることはなく、強度が安定して確保できる。 Further, in the case of a conventional blast furnace cement blend with a high cement content, the strength expression becomes worse when the magnesium content increases, and the strength expression becomes unstable due to the magnesium content, but the cement composition of the present invention The product is not greatly affected by the magnesium content, and the strength can be secured stably.
更に、対象土によっては、比較的少ない混和量で目的が達成でき、経済的な面でメリットが生ずる場合もある。 Furthermore, depending on the target soil, the objective can be achieved with a relatively small amount of mixing, and there may be an advantage in terms of economy.
〔試験例E〕
Cr6+濃度10ppmの水溶液と表6のセメント組成物を水粉体比10で混合し、材齢7日でCr6+濃度を測定した。なお、ドロマイト焼成物はECMセメントに対し、外割で混和した。
[Test Example E]
An aqueous solution having a Cr 6+ concentration of 10 ppm and a cement composition shown in Table 6 were mixed at a water powder ratio of 10, and the Cr 6+ concentration was measured at a material age of 7 days. In addition, the dolomite baked material was mixed with ECM cement in an external ratio.
使用したドロマイト焼成物は、ドロマイト原石(宇部マテリアル社製苦土石灰)を坩堝に蓋をして(炭酸ガス分圧0.1atm)、電気炉で750℃で4時間焼成した主成分がMgO、CaCO3の半焼成ドロマイト(CaO=42.4%、MgO=23.0%、ig.loss=33.9%)である。何れもCr6+濃度の濃度が定量限界以下まで固定された。 The calcined dolomite used was made of MgO, the main component calcined at 750 ° C. for 4 hours in an electric furnace by covering the crucible with raw dolomite (Ube Material Co., Ltd., clay lime) (carbon dioxide partial pressure 0.1 atm). CaCO 3 semi-fired dolomite (CaO = 42.4%, MgO = 23.0%, ig.loss = 33.9%). In all cases, the Cr 6+ concentration was fixed to the limit of quantification or less.
本発明のセメント組成物は、土壌からの重金属の溶出抑制効果、良好で安定した強度発現性能を併せ持つ新規な高炉スラグ−マグネシア系固化材であり、汚染土壌や軟弱地盤の改良に有効であり、該セメント組成物を対象土に混和するだけで土壌改良ができる。また、このセメント組成物を建設発生土等に混和して作製した改良土は、ソイルセメント柱、土嚢等に利用できる。 The cement composition of the present invention is a novel blast furnace slag-magnesia solidified material that has both a heavy metal elution suppression effect from soil, a good and stable strength development performance, and is effective in improving contaminated soil and soft ground. The soil can be improved simply by mixing the cement composition with the target soil. In addition, improved soil prepared by mixing this cement composition with construction generated soil can be used for soil cement pillars, sandbags, and the like.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010107943A JP5685004B2 (en) | 2010-05-10 | 2010-05-10 | Soil improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010107943A JP5685004B2 (en) | 2010-05-10 | 2010-05-10 | Soil improvement method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014207791A Division JP6023771B2 (en) | 2014-10-09 | 2014-10-09 | Cement composition and soil improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011236073A JP2011236073A (en) | 2011-11-24 |
JP5685004B2 true JP5685004B2 (en) | 2015-03-18 |
Family
ID=45324482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010107943A Active JP5685004B2 (en) | 2010-05-10 | 2010-05-10 | Soil improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5685004B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6066268B2 (en) * | 2012-09-07 | 2017-01-25 | 住友大阪セメント株式会社 | Heavy metal elution reducing material and method for reducing heavy metal elution from incinerated ash |
JP2016132587A (en) * | 2015-01-19 | 2016-07-25 | 株式会社大林組 | Cement composition |
CN105645913B (en) * | 2016-01-11 | 2018-04-13 | 海南瑞泽新型建材股份有限公司 | A kind of decrement reinforcing material suitable for roadbase |
JP6686631B2 (en) * | 2016-03-30 | 2020-04-22 | 住友大阪セメント株式会社 | Heavy metal insolubilizing material and method for producing the same |
JP6686630B2 (en) * | 2016-03-30 | 2020-04-22 | 住友大阪セメント株式会社 | Heavy metal insolubilizing material and method for producing the same |
JP7422071B2 (en) * | 2018-06-22 | 2024-01-25 | 日鉄セメント株式会社 | Heavy metal insolubilization solidification material and method for improving contaminated soil |
CN111943535A (en) * | 2020-07-28 | 2020-11-17 | 天津冀东水泥有限公司 | Method for producing general portland cement from construction waste and polluted soil |
CN113429138B (en) * | 2021-07-16 | 2022-07-22 | 天津中材工程研究中心有限公司 | High-activity cement admixture for thermal desorption organic contaminated soil as well as preparation method and application of high-activity cement admixture |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001348571A (en) * | 2000-06-07 | 2001-12-18 | Taiheiyo Cement Corp | Ground-modifying material |
JP2004292568A (en) * | 2003-03-26 | 2004-10-21 | Taiheiyo Cement Corp | Soil solidifying material |
JP5092203B2 (en) * | 2005-04-13 | 2012-12-05 | 英昭 水渡 | Method for suppressing elution of fluorine and heavy metals from waste |
JP5047745B2 (en) * | 2007-09-27 | 2012-10-10 | 美建マテリアル株式会社 | Ground improvement material |
JP5628486B2 (en) * | 2009-03-13 | 2014-11-19 | 国立大学法人東京工業大学 | Heavy metal elution inhibitor and curable composition containing the same |
-
2010
- 2010-05-10 JP JP2010107943A patent/JP5685004B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011236073A (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6023771B2 (en) | Cement composition and soil improvement method | |
JP5685004B2 (en) | Soil improvement method | |
JP5628486B2 (en) | Heavy metal elution inhibitor and curable composition containing the same | |
JP2001348571A (en) | Ground-modifying material | |
JP6782234B2 (en) | Manufacturing method of cement hardened material and hardened cement composition using it | |
JP5490352B2 (en) | Method for producing cement clinker | |
KR101736367B1 (en) | Grounting composition for high pressure injection soil solidification method | |
WO2019244856A1 (en) | Heavy metal-insolubilized solidification material and technique for improving contaminated soil | |
JP5446752B2 (en) | Mixed cement clinker and method for producing the same | |
JP5501649B2 (en) | Cement admixture and cement composition | |
JP2013107966A (en) | Soil solidifying material | |
JP4209381B2 (en) | Cement composition | |
JP4585753B2 (en) | Ground improvement material | |
JPH11106244A (en) | Cement composition | |
JP2010100471A (en) | Cement admixture and cement composition | |
JP6938742B1 (en) | Ground improvement material slurry, ground improvement material cured product, and ground improvement method | |
JP3549645B2 (en) | Cement admixture and cement composition | |
JPH11302047A (en) | Expansive material composition and expansive cement composition | |
JP2009185159A (en) | Soil-improving material and soil-improving method | |
JP4883390B2 (en) | Solidifying material for ground improvement and solidified soil using the same | |
JP2006176669A (en) | Solidifying material for soil and mixed solidifying material for soil | |
JP6166153B2 (en) | Ground improvement material | |
KR101564382B1 (en) | Eco-friendly mortar composition for compaction grouting | |
JP6385818B2 (en) | Cement additive and cement composition | |
JP6864778B1 (en) | Ground improvement material and ground solidification treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140219 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141009 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141010 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5685004 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |