JP5683827B2 - Non-adhesive container and manufacturing method thereof - Google Patents

Non-adhesive container and manufacturing method thereof Download PDF

Info

Publication number
JP5683827B2
JP5683827B2 JP2010076320A JP2010076320A JP5683827B2 JP 5683827 B2 JP5683827 B2 JP 5683827B2 JP 2010076320 A JP2010076320 A JP 2010076320A JP 2010076320 A JP2010076320 A JP 2010076320A JP 5683827 B2 JP5683827 B2 JP 5683827B2
Authority
JP
Japan
Prior art keywords
fine particles
container
oxide fine
hydrophobic oxide
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010076320A
Other languages
Japanese (ja)
Other versions
JP2010254377A (en
Inventor
関口 朋伸
朋伸 関口
山本 政史
政史 山本
山田 和範
山田  和範
周平 菅野
周平 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP2010076320A priority Critical patent/JP5683827B2/en
Publication of JP2010254377A publication Critical patent/JP2010254377A/en
Application granted granted Critical
Publication of JP5683827B2 publication Critical patent/JP5683827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、非付着性容器及びその製造方法に関する。特に、内容物の非付着性に優れた容器とその製造方法に関する。より具体的には、食品、飲料品、医薬品、化粧品、化学品等を収容するための非付着性容器とその製造方法に関する。   The present invention relates to a non-adhesive container and a method for producing the same. In particular, the present invention relates to a container excellent in non-adhesiveness of contents and a manufacturing method thereof. More specifically, the present invention relates to a non-adhesive container for containing foods, beverages, pharmaceuticals, cosmetics, chemicals, and the like, and a method for manufacturing the same.

従来より多種多様の容器が知られているが、その内容物も多岐にわたる。例えば、ゼリー菓子、プリン、ヨーグルト、液体洗剤、練り歯磨き、カレールー、シロップ、ワセリン、洗顔クリーム、洗顔ムース等のように、食品、飲料品、医薬品、化粧品、化学品等がある。また、内容物の性状も固体、半固体、液体、粘性体、ゲル状物等のように様々なものがある。   A wide variety of containers are known in the past, but their contents are also diverse. For example, there are foods, beverages, pharmaceuticals, cosmetics, chemicals, and the like such as jelly confectionery, pudding, yogurt, liquid detergent, toothpaste, carrero, syrup, petrolatum, face wash cream, face wash mousse and the like. In addition, the contents have various properties such as solid, semi-solid, liquid, viscous material, and gel-like material.

これらの内容物を収容するための容器においては、保存性が要求されるほかに、内容物、収容形態、用途等に応じて熱接着性、遮光性、耐熱性、耐久性等が要求される。ところが、これらの特性を満たしている容器であっても、次のような問題がある。すなわち、内容物が容器に付着するという問題である。内容物が容器に付着すれば、内容物をすべて使い切ることが困難になり、それだけ無駄が生じることになる。また、内容物をすべて使い切るためには容器に付着した内容物を別途に回収しなければならず、手間がかかる。このため、容器では、上記のような保存性等のほか、内容物が容器に付着しにくい性質(非付着性)を備えていることが必要である。   Containers for storing these contents are required to have preservability, as well as thermal adhesiveness, light shielding properties, heat resistance, durability, etc., depending on the contents, storage form, application, etc. . However, even a container satisfying these characteristics has the following problems. That is, there is a problem that the contents adhere to the container. If the contents adhere to the container, it becomes difficult to use up all of the contents, resulting in waste. In addition, in order to use up all the contents, the contents attached to the container must be collected separately, which is troublesome. For this reason, the container is required to have the property (non-adhesiveness) that the contents are difficult to adhere to the container, in addition to the storage stability as described above.

これに対し、特許文献1には、「少なくとも300℃の耐熱性があり、顕著な抗付着性と1〜1000nmの厚さを有する容易にきれいにされる表面コーティングを備えた装置において、前記表面コーティングは、金属酸化物網状組織と疎水性物質を含有し、前記疎水性物質は前記表面コーティングの前記厚さに対して均一に分布され、前記表面コーティングは疎水性であり、90°より大きい水に対する接触角を有することを特徴とする容易にきれいにされる表面コーティングを備えた装置」が開示されている。(特許文献1)。   On the other hand, Patent Document 1 states that “in an apparatus having a heat resistance of at least 300 ° C., a remarkable anti-adhesion property and an easily cleaned surface coating having a thickness of 1-1000 nm, Contains a metal oxide network and a hydrophobic material, the hydrophobic material being evenly distributed with respect to the thickness of the surface coating, the surface coating being hydrophobic and against water greater than 90 ° An apparatus with an easily cleaned surface coating characterized by having a contact angle is disclosed. (Patent Document 1).

特開2004−130785号JP 2004-130785 A

しかしながら、上記装置の表面コーティングは、ゾル−ゲル法によって形成されるもので工程が複雑であり、その上フルオロアルキルシロキサンのようなフッ素を含有した化合物を使用しているため、人体や環境への影響面が懸念される。   However, the surface coating of the above device is formed by a sol-gel method, and the process is complicated. Moreover, since a fluorine-containing compound such as fluoroalkylsiloxane is used, the surface coating for the human body and the environment is used. There are concerns about the impact.

本発明の主な目的は、比較的簡単な工程で製造することができるとともに、フッ素のような懸念物質を含まず、優れた非付着性を持続的に発揮できる容器を提供することにある。   The main object of the present invention is to provide a container that can be produced by a relatively simple process and that does not contain a concern substance such as fluorine and that can continuously exhibit excellent non-adhesiveness.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の構成を有する容器が上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventor has found that a container having a specific configuration can achieve the above object, and has completed the present invention.

すなわち、本発明は、下記の非付着性容器及びその製造方法に係る。
1. 内容物を収容するための容器であって、容器が少なくとも内容物と接触する面の一部又は全部に、充填粒子及び樹脂成分を含む凹凸形成用材料からなる皮膜が付与され、その凹凸状態の面上に一次粒子平均径3〜100nmの疎水性酸化物微粒子が付着し、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成しており、
疎水性酸化物微粒子が付着する当該面の十点平均粗さRzが7〜500μmであり、かつ、断面曲線最大高さRmaxが12〜1000μmである、非付着性容器。
2. 疎水性酸化物微粒子の付着量が0.01〜10g/mである、前記項1に記載の非付着性容器。
3. 凹凸形成用材料中の充填粒子の含有量は、固形分重量基準で1〜80重量%である、前記項1又は2に記載の非付着性容器。
4. 疎水性酸化物微粒子のBET法による比表面積が50〜300m/gである、前記項1〜3のいずれかに記載の非付着性容器。
5. 疎水性酸化物微粒子が付着する当該面が微小凹凸状態であり、凸部の数が50〜100000個/cmである、前記項1〜4のいずれかに記載の非付着性容器。
6. 疎水性酸化物微粒子が疎水性シリカである、前記項1〜5のいずれかに記載の非付着性容器。
7. 疎水性シリカがその表面にトリメチルシリル基を有する、前記項6に記載の非付着性容器。
8. 充填粒子の平均粒径が0.5〜100μmである、前記項1〜7のいずれかに記載の非付着性容器。
9. 前記項1〜8のいずれかに記載の非付着性容器に内容物が充填されており、蓋材により当該内容物が密封されてなる製品。
10. 内容物を収容するための容器を製造する方法であって、1)疎水性酸化物微粒子の付着面に液状ないし半固形状の凹凸形成用材料又はその出発原料を層状に塗布することにより、十点平均粗さRzが7〜500μmであり、かつ、断面曲線最大高さRmaxが12〜1000μmである凹凸状態の面を形成する工程、2)前記凹凸状態の面上に一次粒子平均径3〜100nmの疎水性酸化物微粒子を付着させる工程を含む非付着性容器の製造方法。
That is, this invention relates to the following non-adhesive container and its manufacturing method.
1. A container for containing contents, and a coating made of a material for forming irregularities including filler particles and a resin component is applied to at least part or all of the surface of the container that comes into contact with the contents, Hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached on the surface, and the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure,
A non-adhesive container having a ten-point average roughness Rz of 7 to 500 μm and a cross-sectional curve maximum height Rmax of 12 to 1000 μm on the surface to which the hydrophobic oxide fine particles adhere .
2. Item 2. The non-adhesive container according to Item 1, wherein the amount of hydrophobic oxide fine particles adhered is 0.01 to 10 g / m 2 .
3. Item 3. The non-adhesive container according to Item 1 or 2, wherein the content of the filler particles in the unevenness forming material is 1 to 80% by weight based on the solid content weight.
4). Item 4. The non-adhesive container according to any one of Items 1 to 3, wherein the hydrophobic oxide fine particles have a specific surface area of 50 to 300 m 2 / g by BET method.
5. Item 5. The non-adhesive container according to any one of Items 1 to 4 , wherein the surface to which the hydrophobic oxide fine particles adhere is in a micro uneven state, and the number of convex portions is 50 to 100,000 / cm 2 .
6). Item 6. The non-adhesive container according to any one of Items 1 to 5 , wherein the hydrophobic oxide fine particles are hydrophobic silica.
7). Item 7. The non-adhesive container according to Item 6 , wherein the hydrophobic silica has a trimethylsilyl group on the surface thereof.
8). Item 8. The non-adhesive container according to any one of Items 1 to 7 , wherein the average particle size of the filled particles is 0.5 to 100 µm.
9. A product in which the non-adhesive container according to any one of Items 1 to 8 is filled with contents, and the contents are sealed with a lid.
10. A method for producing a container for containing contents, wherein 1) a liquid or semi-solid unevenness forming material or a starting material thereof is applied in a layered manner on a surface to which hydrophobic oxide fine particles are adhered. A step of forming a concavo-convex surface having a point average roughness Rz of 7 to 500 μm and a cross-sectional curve maximum height Rmax of 12 to 1000 μm; 2) an average primary particle diameter of 3 to 3 on the concavo-convex surface; A method for producing a non-adhesive container, comprising a step of adhering 100 nm hydrophobic oxide fine particles.

本発明の非付着性容器は、フッ素のような懸念物質を含むことなく、優れた非付着性を発揮することができる。これにより、内容物を容器からほぼすべて取り出すことができるので、容器内壁に付着する分のロスを抑制ないしは防止することができる。   The non-adhesive container of the present invention can exhibit excellent non-adhesiveness without containing a concern substance such as fluorine. Thereby, since almost all the contents can be taken out from the container, the loss of the amount adhering to the inner wall of the container can be suppressed or prevented.

また、本発明の製造方法によれば、容器が少なくとも内容物と接触する面の一部に疎水性酸化物微粒子を付与するだけで良いので、複雑な工程を経る必要がなく、生産効率、コスト等の面で有利である。また、容器の材質の制約もなく、例えばガラス容器、陶器、紙容器、プラスチック容器、金属容器、木質容器等のいずれの材質の容器にも適用できる。しかも、既存の容器にも事後的に非付着性を付与することもできる。さらに、疎水性酸化物微粒子を付与後に熱処理することにより、さらに非付着性を持続させることができる。また、疎水性酸化物微粒子を付着させる部分の表面を微小な凹凸状態にしておくことによって、さらに非付着性を持続させることができる。   In addition, according to the production method of the present invention, it is only necessary to apply hydrophobic oxide fine particles to at least a part of the surface that comes into contact with the contents. Etc. are advantageous. Moreover, there is no restriction | limiting of the material of a container, For example, it can apply also to containers of any materials, such as a glass container, earthenware, a paper container, a plastic container, a metal container, and a wooden container. Moreover, non-adhesiveness can also be imparted to existing containers afterwards. Furthermore, non-adhesiveness can be further maintained by heat-treating after applying the hydrophobic oxide fine particles. Further, non-adhesiveness can be further maintained by keeping the surface of the portion to which the hydrophobic oxide fine particles are adhered in a minute uneven state.

本発明の非付着性容器の切断面構造を示す模式図である。It is a schematic diagram which shows the cut surface structure of the non-adhesive container of this invention. 本発明の非付着性容器に内容物を入れ、蓋材を熱接着した状態を示す断面構造の模式図である。It is a schematic diagram of the cross-sectional structure which shows the state which put the contents in the non-adhesive container of this invention, and heat-bonded the cover material. 本発明の別の実施態様を示す容器の切断面構造を示す模式図である。It is a schematic diagram which shows the cut surface structure of the container which shows another embodiment of this invention.

1 蓋の基材層
2 蓋の熱接着層
3 疎水性酸化物微粒子
4 容器本体
5 内容物
6 充填粒子
7 容器本体
8 凹凸形成用材料
DESCRIPTION OF SYMBOLS 1 Base material layer of lid 2 Thermal adhesive layer of lid 3 Hydrophobic oxide fine particle 4 Container body 5 Contents 6 Filling particle 7 Container body 8 Concavity and convexity forming material

1.非付着性容器
本発明の非付着性容器は、内容物を収容するための容器であって、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3〜100nmの疎水性酸化物微粒子が付着していることを特徴とする。
1. Non-adhesive container The non-adhesive container of the present invention is a container for containing contents, and the hydrophobicity of the average primary particle diameter of 3 to 100 nm on at least part or all of the surface where the container contacts the contents It is characterized in that oxide fine particles are adhered.

まず、本発明の容器本体は、内容物を収容できるものであれば良く、公知のもの又は市販品を使用することができる。その材質も限定されず、例えばガラス容器、陶器、紙容器、プラスチック容器、金属容器、木質容器のほか、それら2種以上の複合材料からなる容器等のいずれの材質であっても良い。また、容器本体の形態は、例えば皿状、トレー状、袋状、コップ状、ボトル状、なべ状、箱状、樽状、略円柱状、包装紙(包装用葉)等の公知の形態であっても良い。また、容器本体は、成形体からなる容器を好適に用いることができる。例えば、紙、プラスチック又は金属の成形体からなる容器を挙げることができる。また、容器本体としては、剛性材料からなる層を含む積層材料から構成されてなる容器も例示することができる。また、本発明では、非付着性容器として、好ましくは「少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3〜100nmの疎水性酸化物微粒子が付着している包装材料」を除く。   First, the container main body of this invention should just be what can accommodate the content, and can use a well-known thing or a commercial item. The material is not limited, and any material such as a glass container, ceramics, paper container, plastic container, metal container, wood container, or a container made of a composite material of two or more of these may be used. Moreover, the form of the container body is a known form such as a dish shape, tray shape, bag shape, cup shape, bottle shape, pan shape, box shape, barrel shape, substantially cylindrical shape, wrapping paper (packaging leaf), etc. There may be. Moreover, the container main body can use the container which consists of a molded object suitably. For example, the container which consists of a molded object of paper, a plastics, or a metal can be mentioned. Moreover, as a container main body, the container comprised from the laminated material containing the layer which consists of a rigid material can also be illustrated. In the present invention, the non-adhesive container is preferably a packaging material composed of a laminate having at least a base material layer and a thermal adhesive layer, wherein the thermal adhesive layer is an outermost layer on one surface of the packaging material. “Packaging material in which hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are adhered to the outermost surface, which is laminated and the thermal adhesive layer is not adjacent to other layers” is excluded.

本発明の非付着性容器は、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3〜100nmの疎水性酸化物微粒子が付着していることを特徴とする。この場合、容器本体が内容物と接触していない面に当該疎水性酸化物微粒子が付着していても良く、また容器の全面(内容物と接触しない面も含む全面)に付着していても差し支えない。また、内容物と接触する面の一部に付着していても良いし、当該面の全部(全面)に付着していても良い。   The non-adhesive container of the present invention is characterized in that hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to at least a part or all of the surface in contact with the contents. In this case, the hydrophobic oxide fine particles may be attached to the surface of the container body that is not in contact with the contents, or may be attached to the entire surface of the container (including the entire surface that does not contact the contents). There is no problem. Moreover, you may adhere to a part of surface which contacts the contents, and you may adhere to all the said surfaces (entire surface).

本発明の非付着性容器に付着している疎水性酸化物微粒子は肉眼ではほとんど認識できず、従って透明ないしは半透明である。このため、容器本体として透明のガラス容器や透明に近いプラスチック容器を採用した場合は、疎水性酸化物微粒子の付着後であってもその透明性を維持することができる。その他にも、容器内面に絵柄、模様等がある場合は、疎水性酸化物微粒子(又はその層)を介してその絵柄、模様等を視認することができる。   The hydrophobic oxide fine particles adhering to the non-adhesive container of the present invention can hardly be recognized with the naked eye, and thus are transparent or translucent. For this reason, when a transparent glass container or a nearly transparent plastic container is employed as the container body, the transparency can be maintained even after the hydrophobic oxide fine particles are adhered. In addition, when there is a pattern, a pattern, or the like on the inner surface of the container, the pattern, the pattern, or the like can be visually recognized through hydrophobic oxide fine particles (or a layer thereof).

図1に本発明の非付着性容器の切断面構造の模式図を示す。図1の非付着性容器では、容器本体4の内容物を収容する側の面(底面及び側面の一部)に一次粒子平均径3〜100nmの疎水性酸化物微粒子3が付着している。疎水性酸化物微粒子3は容器本体4に付着して固定されている。すなわち、疎水性酸化物微粒子と内容物とが接触しても疎水性酸化物微粒子が脱落しない程度に付着している。図1において、疎水性酸化物微粒子3は、一次粒子が含まれていても良いが、その凝集体(二次粒子)が多く含まれていることが望ましい。特に、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層をなしていることがより好ましい。すなわち、容器本体4の少なくとも一部表面上には疎水性酸化物微粒子により形成された三次元網目状構造からなる多孔質層が積層されていることが好ましい。   FIG. 1 shows a schematic diagram of a cut surface structure of a non-adhesive container of the present invention. In the non-adhesive container of FIG. 1, hydrophobic oxide fine particles 3 having an average primary particle diameter of 3 to 100 nm are attached to the surface (the bottom surface and a part of the side surface) on the container main body 4 side. The hydrophobic oxide fine particles 3 are adhered and fixed to the container body 4. That is, even if the hydrophobic oxide fine particles and the content come into contact with each other, the hydrophobic oxide fine particles are adhered to such an extent that they do not fall off. In FIG. 1, the hydrophobic oxide fine particles 3 may contain primary particles, but it is desirable that the hydrophobic oxide fine particles 3 contain many aggregates (secondary particles). In particular, it is more preferable that the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. That is, it is preferable that a porous layer having a three-dimensional network structure formed of hydrophobic oxide fine particles is laminated on at least a part of the surface of the container body 4.

図2には、本発明の非付着性容器に内容物を充填し、蓋材を熱接着することにより内容物を密封した製品の断面構造の模式図を示す。なお、図2は、疎水性酸化物微粒子3は省略したかたちで表記されている。容器本体4に内容物5が充填され、その開口部と蓋の熱接着層2とが接するような状態で密封される。この場合、容器の開口部表面に疎水性酸化物微粒子が付着している場合であっても、熱接着するに際して、熱接着される領域上に存在する疎水性酸化物微粒子が熱接着層中に埋め込まれ、熱接着層と容器本体4が直接接触することになり、熱接着を行うことができる。また、容器本体4の材質が熱可塑性のプラスチックの場合は、例えば同種のプラスチックからなる蓋と溶着可能である。   FIG. 2 shows a schematic diagram of a cross-sectional structure of a product in which the non-adhesive container of the present invention is filled with the contents and the contents are sealed by thermally bonding the lid. In FIG. 2, the hydrophobic oxide fine particles 3 are shown in a omitted form. The container body 4 is filled with the contents 5 and sealed in such a state that the opening and the thermal adhesive layer 2 of the lid are in contact with each other. In this case, even when the hydrophobic oxide fine particles are attached to the surface of the opening of the container, the hydrophobic oxide fine particles present on the heat-bonded region are present in the heat-adhesive layer when thermally bonded. It is embedded, and the thermal bonding layer and the container body 4 are in direct contact, and thermal bonding can be performed. Further, when the material of the container body 4 is a thermoplastic plastic, it can be welded to a lid made of the same kind of plastic, for example.

なお、蓋材の材質は特に制限されるものではなく、公知の材料又は積層材料を採用することができ、容器本体4の材質や要求特性に応じて適宜選択すれば良い。例えば、紙、合成紙、樹脂フィルム、蒸着層付き樹脂フィルム、アルミニウム箔等の単体又はこれらの複合材料・積層材料を好適に用いることができる。   Note that the material of the lid member is not particularly limited, and a known material or a laminated material can be adopted, and may be appropriately selected according to the material and required characteristics of the container body 4. For example, a simple substance such as paper, synthetic paper, a resin film, a resin film with a vapor deposition layer, an aluminum foil, or a composite material / laminated material thereof can be suitably used.

これらの材料には、公知の蓋材で採用されている各層が任意の位置に積層されていても良い。例えば、印刷層、印刷保護層(いわゆるOP層)、着色層、熱接着層、接着剤層、接着強化層、プライマーコート層、アンカーコート層、防滑剤層、滑剤層、防曇剤層等が挙げられる。   In these materials, each layer employed in a known lid material may be laminated at an arbitrary position. For example, printing layer, printing protective layer (so-called OP layer), colored layer, thermal adhesive layer, adhesive layer, adhesion reinforcing layer, primer coat layer, anchor coat layer, anti-slip agent layer, lubricant layer, anti-fogging agent layer, etc. Can be mentioned.

なお、図2では、熱接着性の蓋材を用いているが、これに限定されることはなく、他の公知のタイプのものも採用することができる。例えば、嵌合蓋、ネジ蓋、ラップフィルム、熱収縮性フィルム、かしめ蓋、キャップ等を適宜選択することができる。勿論これらの蓋材の内面及び/又は外面に疎水性酸化物微粒子を付着させることもできる。   In addition, in FIG. 2, although the heat-adhesive cover material is used, it is not limited to this, The thing of another well-known type can also be employ | adopted. For example, a fitting lid, a screw lid, a wrap film, a heat shrinkable film, a caulking lid, a cap, and the like can be appropriately selected. Of course, hydrophobic oxide fine particles can be attached to the inner surface and / or the outer surface of these lid members.

容器本体4に付着する疎水性酸化物微粒子は、一次粒子平均径が通常3〜100nmであり、好ましくは5〜50nmであり、より好ましくは5〜20nmである。一次粒子平均径を上記範囲とすることにより、疎水性酸化物微粒子が適度な凝集状態となり、その凝集体中にある空隙に空気等の気体を保持することができる結果、優れた非付着性を得ることができる。すなわち、この凝集状態は、容器本体に付着した後も維持されるので、優れた非付着性を発揮することができる。   The hydrophobic oxide fine particles adhering to the container body 4 have an average primary particle diameter of usually 3 to 100 nm, preferably 5 to 50 nm, more preferably 5 to 20 nm. By setting the average primary particle diameter in the above range, the hydrophobic oxide fine particles are in an appropriate aggregated state, and can hold a gas such as air in the voids in the aggregate, resulting in excellent non-adhesiveness. Can be obtained. That is, this agglomerated state is maintained even after adhering to the container body, so that excellent non-adhesiveness can be exhibited.

なお、本発明において、一次粒子平均径の測定は、走査型電子顕微鏡(FE−SEM)で実施することができ、走査型電子顕微鏡の分解能が低い場合には透過型電子顕微鏡等の他の電子顕微鏡を併用して実施しても良い。具体的には、粒子形状が球状の場合はその直径、非球状の場合はその最長径と最短径との平均値を直径とみなし、走査型電子顕微鏡等による観察により任意に選んだ20個分の粒子の直径の平均を一次粒子平均径とする。   In the present invention, the average primary particle diameter can be measured with a scanning electron microscope (FE-SEM). When the resolution of the scanning electron microscope is low, other electrons such as a transmission electron microscope are used. You may carry out together with a microscope. Specifically, when the particle shape is spherical, the diameter is considered as the diameter, and when the particle shape is non-spherical, the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 arbitrarily selected by observation with a scanning electron microscope or the like. The average diameter of the particles is defined as the average primary particle diameter.

疎水性酸化物微粒子の比表面積(BET法)は特に制限されないが、通常50〜300m/gとし、特に100〜300m/gとすることが好ましい。 The specific surface area of the hydrophobic oxide fine particles (BET method) is not particularly limited, and usually 50 to 300 m 2 / g, it is preferable that the particular 100 to 300 m 2 / g.

疎水性酸化物微粒子としては、疎水性を有するものであれば特に限定されず、表面処理により疎水化されたものであっても良い。例えば、親水性酸化物微粒子をシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子を用いることもできる。酸化物の種類も、疎水性を有するものであれば限定されない。例えばシリカ(二酸化ケイ素)、アルミナ、チタニア等の少なくとも1種を用いることができる。これらは公知又は市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、エボニック デグサ社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(エボニック デグサ社製)等が例示できる。アルミナとしては、製品名「AEROXIDE Alu C」(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。 The hydrophobic oxide fine particles are not particularly limited as long as they have hydrophobicity, and may be those hydrophobized by surface treatment. For example, fine particles in which hydrophilic oxide fine particles are subjected to a surface treatment with a silane coupling agent or the like to make the surface state hydrophobic can also be used. The type of oxide is not limited as long as it has hydrophobicity. For example, at least one of silica (silicon dioxide), alumina, titania and the like can be used. These may be known or commercially available. For example, as silica, product names “AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974”, “AEROSIL RX200”, “AEROSIL RY200” (above, manufactured by Nippon Aerosil Co., Ltd.), “AEROSIL R202” "AEROSIL R805", "AEROSIL R812", "AEROSIL R812S" (above, manufactured by Evonik Degussa). Examples of titania include “AEROXIDE TiO 2 T805” (manufactured by Evonik Degussa). Examples of alumina include fine particles in which the product name “AEROXIDE Alu C” (manufactured by Evonik Degussa) is treated with a silane coupling agent to make the particle surface hydrophobic.

この中でも、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた非付着性が得られるという点において、表面にトリメチルシリル基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」(いずれもエボニック デグサ社製)等が挙げられる。   Among these, hydrophobic silica fine particles can be preferably used. In particular, hydrophobic silica fine particles having a trimethylsilyl group on the surface are preferable in that better non-adhesiveness can be obtained. Examples of commercially available products corresponding to this include “AEROSIL R812” and “AEROSIL R812S” (both manufactured by Evonik Degussa).

容器本体に付着させる疎水性酸化物微粒子の付着量(乾燥後重量)は限定的ではないが、通常0.01〜10g/mとするのが好ましく、0.2〜1.5g/mとするのがより好ましく、0.3〜1g/mとするのが最も好ましい。上記範囲内に設定することによって、より優れた非付着性が長期にわたって得ることができる上、疎水性酸化物微粒子の脱落抑制、コスト等の点でもいっそう有利となる。容器本体4に付着した疎水性酸化物微粒子は、三次元網目構造を有する多孔質層を形成していることが好ましく、その厚みは0.1〜5μm程度が好ましく、0.2〜2.5μm程度がさらに好ましい。このようなポーラスな層状態で付着することにより、当該層に空気を多く含むことができ、より優れた非付着性を発揮することができる。 The amount (weight after drying) of the hydrophobic oxide fine particles to be adhered to the container body is not limited, but is usually preferably 0.01 to 10 g / m 2, and preferably 0.2 to 1.5 g / m 2. More preferably, it is most preferably 0.3-1 g / m 2 . By setting within the above range, more excellent non-adhesiveness can be obtained over a long period of time, and it is further advantageous in terms of suppression of falling off of hydrophobic oxide fine particles and cost. The hydrophobic oxide fine particles adhering to the container body 4 preferably form a porous layer having a three-dimensional network structure, and the thickness is preferably about 0.1 to 5 μm, and 0.2 to 2.5 μm. The degree is further preferred. By adhering in such a porous layer state, the layer can contain a lot of air, and more excellent non-adhesiveness can be exhibited.

また、本発明では、疎水性酸化物微粒子を付着させる部分の表面を微小な凹凸状態にしておくことにより、さらに非付着性を効果的に持続させることができる。すなわち、予め微小な凹凸状態が表面に形成された容器内面に対して疎水性酸化物微粒子を付着させることにより、持続性の高い非接着性を得ることができる。   Moreover, in this invention, non-adhesiveness can be further maintained effectively by making the surface of the part which adheres hydrophobic oxide microparticles | fine-particles into a micro uneven | corrugated state. That is, highly adhering non-adhesiveness can be obtained by adhering the hydrophobic oxide fine particles to the inner surface of the container having a fine uneven state formed on the surface in advance.

前記凹凸状態の程度は、特に限定的ではないが、疎水性酸化物微粒子が付着する面の表面(以下「付着面」ともいう。)の十点平均粗さRzを7〜500μm程度とするのが好ましく、特に10〜300μmとするのがより好ましく、10〜100μmとするのが最も好ましい。この範囲内に設定することによって、非付着性をより確実に持続的に発揮させることができる。十点平均粗さRzはJIS B0601(−1982)で定義される。但し、本発明では、1試料につき測定面の任意のX軸方向とX軸に垂直なY軸方向のRzをそれぞれ測定し、算術平均した値を採用した。   The degree of the unevenness is not particularly limited, but the ten-point average roughness Rz of the surface to which the hydrophobic oxide fine particles adhere (hereinafter also referred to as “attachment surface”) is about 7 to 500 μm. In particular, 10 to 300 μm is more preferable, and 10 to 100 μm is most preferable. By setting within this range, non-adhesiveness can be more reliably and continuously exhibited. Ten-point average roughness Rz is defined by JIS B0601 (-1982). However, in the present invention, Rz in the arbitrary X-axis direction on the measurement surface and the Y-axis direction perpendicular to the X-axis is measured for each sample, and an arithmetic average value is adopted.

また、本発明の非付着性容器は、付着面の断面曲線最大高さRmaxを12〜1000μmとするのが好ましく、特に15〜500μmとするのがより好ましく、15〜200μmとするのが最も好ましい。Rmaxを前記範囲内に設定することによって、非付着性をより確実に持続的に発揮させることができる。断面曲線最大高さRmaxはJIS B0601(−1982)で定義される。但し、本発明では、1試料につき測定面の任意のX軸方向とX軸に垂直なY軸方向のRmaxをそれぞれ測定し、算術平均した値を採用した。   In the non-adhesive container of the present invention, the maximum height Rmax of the cross-sectional curve of the adhering surface is preferably 12 to 1000 μm, more preferably 15 to 500 μm, and most preferably 15 to 200 μm. . By setting Rmax within the above range, non-adhesiveness can be more reliably and continuously exhibited. The section curve maximum height Rmax is defined by JIS B0601 (-1982). However, in the present invention, Rmax in the arbitrary X-axis direction on the measurement surface and the Y-axis direction perpendicular to the X-axis is measured for each sample, and an arithmetic average value is adopted.

本発明の非付着性容器において、付着面を微小な凹凸状態とする場合において、凸部の数を50〜100000個/cmとするのが好ましく、70〜80000個/cmとするのがより好ましく、80〜50000個/cmとするのが最も好ましい。この範囲内で所望の非付着性をより確実に持続的に発揮することができる。当該凸部の数/cmは、次式によって算出した値である。 In non-adherent container of the present invention, in the case of the attachment surface with fine irregularities, it is preferable to the number of protrusions and 50-100000 pieces / cm 2, that the 70-80000 pieces / cm 2 More preferably, it is most preferably 80 to 50000 pieces / cm 2 . Within this range, the desired non-adhesiveness can be more reliably and continuously exhibited. The number of the convex portions / cm 2 is a value calculated by the following equation.

Pc:ピークカウント(ASME B46.1:1995) Pc: Peak count (ASME B46.1: 1995)

Pcは、例えば接触式表面粗度計((株)東京精密製 製品名「SURFCOM1400D-12」)を用いて測定することができ、1試料につき測定面の任意のX軸方向とX軸に垂直なY軸方向のPcをそれぞれ測定し、算術平均した値を採用した。   Pc can be measured using, for example, a contact-type surface roughness meter (product name “SURFCOM1400D-12”, manufactured by Tokyo Seimitsu Co., Ltd.), and any X-axis direction of the measurement surface per sample and perpendicular to the X-axis Each Pc in the Y-axis direction was measured, and an arithmetic average value was adopted.

本発明では、付着面を凹凸状態とする手段は特に制限されない。例えば、樹脂射出成形容器の場合は、射出成形用金型内の表面粗さを調整することにより、微小な凹凸を備えた樹脂容器を成形することができる。また、容器の材質に応じて、例えばサンドブラスト法、研磨等の方法によって機械的に微小な凹凸を付与することもできる。例えばガラス容器等のように機械的に微小な凹凸を付与するのが困難である場合は、表面形状を凹凸に成形した樹脂フィルム、エンボス加工を施した樹脂フィルム等を付着面に積層して凹凸を付与することもできる。また、充填粒子及び樹脂成分を含む凹凸形成用材料からなる皮膜を塗布又は積層により凹凸を付与することもできる。本発明では、上記の凹凸形成用材料を用いる方法が、表面粗さ等を精密に制御できるという点で好ましい。以下、この方法による非付着性容器を代表例として図3を用いながら説明する。   In the present invention, the means for making the adhesion surface uneven is not particularly limited. For example, in the case of a resin injection molded container, a resin container having minute irregularities can be molded by adjusting the surface roughness in the injection mold. Also, depending on the material of the container, fine unevenness can be mechanically imparted by a method such as sandblasting or polishing. For example, when it is difficult to mechanically give fine irregularities such as glass containers, the resin film with the surface shape formed into irregularities, the resin film with embossing, etc. laminated on the adhesion surface Can also be given. In addition, unevenness can be imparted by applying or laminating a film made of an unevenness forming material containing filler particles and a resin component. In the present invention, the method using the material for forming irregularities is preferable in that the surface roughness and the like can be precisely controlled. Hereinafter, a non-adhesive container according to this method will be described as a representative example with reference to FIG.

図3にその一例の断面構造の模式図を示す。図3では、ガラス容器、樹脂容器、金属容器、紙容器等の本体7の容器内面側に充填粒子6を含む凹凸形成用材料8の表面に一次粒子平均径3〜100nmの疎水性酸化物微粒子3が付着している。すなわち、付着面の一部又は全部に凹凸が付与された上で、そのような凹凸状態の面上に一次粒子平均径3〜100nmの疎水性酸化物微粒子3が付着している。凹凸形成用材料によって凹凸を付与する場合は、凹凸形成用材料の表面(疎水性酸化物微粒子が付着する面)が凹凸状になり、その凹部に疎水性酸化物微粒子が凝集状態で入り込むことにより、非付着性が強化されると考えられる。すなわち、内容物のほか、工程中の機器又は装置との接触が生じても、当該凹部に入り込んだ疎水性酸化物微粒子は当該凹部に入り込んで固定された状態が維持されることによって疎水性酸化物微粒子の脱落が効果的に抑制ないしは防止される結果、優れた非付着性を持続的に発揮することができる。換言すれば、良好な耐摩耗性を発揮することができる。   FIG. 3 shows a schematic diagram of an example of the cross-sectional structure. In FIG. 3, hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm on the surface of the irregularity forming material 8 including the filler particles 6 on the inner surface side of the main body 7 such as a glass container, a resin container, a metal container, and a paper container. 3 is attached. That is, the unevenness is imparted to a part or all of the adhesion surface, and the hydrophobic oxide fine particles 3 having an average primary particle diameter of 3 to 100 nm are adhered to the surface in such an irregularity state. When unevenness is imparted by the unevenness forming material, the surface of the unevenness forming material (surface to which the hydrophobic oxide fine particles adhere) becomes uneven, and the hydrophobic oxide fine particles enter the recessed portion in an aggregated state. It is considered that non-adhesion is enhanced. That is, in addition to the contents, even if contact with the device or apparatus in the process occurs, the hydrophobic oxide fine particles that have entered the concave portion enter the concave portion and are maintained in a fixed state, thereby maintaining hydrophobic oxidation. As a result of effectively suppressing or preventing the removal of the fine particles, excellent non-adhesiveness can be continuously exhibited. In other words, good wear resistance can be exhibited.

凹凸形成用材料で用いる樹脂成分としては、公知の熱可塑性樹脂を採用することができる。例えば、アクリル樹脂、ポリスチレン、ABS樹脂、塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド系樹脂、ポリカーボネート、ポリアセタール、フッ素系樹脂、シリコン樹脂、ポリエステル系樹脂等のほか、これらのブレンド樹脂、これらを構成するモノマーの組合せを含む共重合体、変性樹脂等を用いることができる。熱可塑性樹脂に代えて熱硬化性樹脂を採用することもできる。例えば、エポキシ樹脂、メラミン樹脂、フェノール樹脂、シリコーン樹脂、不飽和ポリエステル樹脂等を用いることができる。   As the resin component used in the material for forming irregularities, a known thermoplastic resin can be employed. For example, acrylic resin, polystyrene, ABS resin, vinyl chloride resin, polyethylene resin, polypropylene resin, polyamide resin, polycarbonate, polyacetal, fluorine resin, silicone resin, polyester resin, and blended resins of these Copolymers, modified resins and the like containing combinations of monomers to be used can be used. A thermosetting resin may be employed instead of the thermoplastic resin. For example, an epoxy resin, a melamine resin, a phenol resin, a silicone resin, an unsaturated polyester resin, or the like can be used.

容器内面に凹凸を付与する場合の凹凸形成用材料により形成される凹凸層の厚み(ここでの厚みとは、最も厚みの厚い部分の厚みをいう)は特に限定的ではないが、生産性、コスト等の観点より0.1μm〜5mm程度とすることが好ましく、1μm〜2mm程度とすることがより好ましい。また、凹凸形成用材料により形成される凹凸層を熱接着層として機能させる場合は、熱接着性を考慮し、5〜150μmの厚みとするのが好ましい。この実施形態では、熱接着するに際して、熱接着される領域上に存在する疎水性酸化物微粒子が凹凸形成用材料中に埋め込まれ、凹凸形成用材料(熱接着層)が最表面となることにより熱接着を行うことができる。このため、上記厚みの範囲内において、疎水性酸化物微粒子を凹凸形成用材料にできるだけ多く埋め込むことができる厚みに設定することが望ましい。   The thickness of the concavo-convex layer formed by the concavo-convex forming material in the case of providing concavo-convex on the inner surface of the container (here, the thickness refers to the thickness of the thickest part) is not particularly limited. From the viewpoint of cost and the like, the thickness is preferably about 0.1 μm to 5 mm, more preferably about 1 μm to 2 mm. Moreover, when making the uneven | corrugated layer formed with the uneven | corrugated material use as a thermal adhesive layer, it is preferable to set it as thickness of 5-150 micrometers in consideration of thermal adhesiveness. In this embodiment, when thermal bonding is performed, the hydrophobic oxide fine particles existing on the region to be thermally bonded are embedded in the unevenness forming material, and the unevenness forming material (thermal adhesive layer) becomes the outermost surface. Thermal bonding can be performed. For this reason, it is desirable to set the thickness within the above-mentioned thickness range so that the hydrophobic oxide fine particles can be embedded in the unevenness forming material as much as possible.

凹凸形成用材料中における樹脂の含有量(固形分含有量)は、樹脂の種類、充填粒子及びその他の添加剤の使用の有無等によって異なるが、通常は20〜99重量%とし、特に30〜98重量%とすることが好ましく、さらに好ましくは50〜97重量%とする。   The resin content (solid content) in the material for forming irregularities varies depending on the type of resin, the presence of filler particles and other additives, etc., but is usually 20 to 99% by weight, particularly 30 to 30%. It is preferable to set it as 98 weight%, More preferably, you may be 50-97 weight%.

凹凸形成用材料と容器本体(の内面)との密着性が十分でない場合は、容器本体の内面にアンカーコート処理、プラーマーコート処理等を施すこともできる。   In the case where the adhesion between the unevenness forming material and the container main body (the inner surface thereof) is not sufficient, the inner surface of the container main body can be subjected to an anchor coat treatment, a plumer coat treatment or the like.

容器本体の内面と凹凸形成用材料の積層方法は限定的でなく、例えばドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法、ロールコーティング等の公知の方法を採用することができる。   The method for laminating the inner surface of the container body and the material for forming irregularities is not limited, and for example, a known method such as a dry laminating method, an extrusion laminating method, a wet laminating method, a heat laminating method, or roll coating can be employed.

凹凸形成用材料を熱接着層として機能させる場合は、公知の熱接着性材料を採用することができる。例えば、公知のシーラントフィルムのほか、ラッカータイプ接着剤、イージーピール接着剤、ホットメルト接着剤等の接着剤により形成される層を採用することができる。すなわち、この実施形態においては、凹凸形成用材料には、樹脂成分を含有する公知の熱接着剤も含む。ホットメルト層を形成する場合には、ホットメルト接着剤を溶融状態で塗布した後、冷却固化するまでに疎水性酸化物微粒子を付与すれば熱接着層に疎水性酸化物微粒子をそのまま付着させることができるため、この実施形態の容器の連続的な生産が容易となる。   When making the unevenness forming material function as a thermal adhesive layer, a known thermal adhesive material can be employed. For example, in addition to a known sealant film, a layer formed of an adhesive such as a lacquer type adhesive, an easy peel adhesive, or a hot melt adhesive can be employed. That is, in this embodiment, the unevenness forming material includes a known thermal adhesive containing a resin component. When forming a hot melt layer, after applying the hot melt adhesive in a molten state, if the hydrophobic oxide fine particles are applied before cooling and solidifying, the hydrophobic oxide fine particles are allowed to adhere to the thermal adhesive layer as they are. Therefore, continuous production of the container of this embodiment is facilitated.

充填粒子としては、有機成分及び無機成分の少なくとも1種を含む充填粒子を採用することができる。無機成分としては、例えば1)アルミニウム、銅、鉄、チタン、銀、カルシウム等の金属又はこれらを含む合金又は金属間化合物、2)酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化鉄等の酸化物、3)リン酸カルシウム、ステアリン酸カルシウム等の無機酸塩又は有機酸塩、4)ガラス、5)窒化アルミニウム、窒化硼素、炭化珪素、窒化珪素等のセラミック等を好適に用いることができる。   As the filler particles, filler particles containing at least one of an organic component and an inorganic component can be employed. Examples of inorganic components include 1) metals such as aluminum, copper, iron, titanium, silver, and calcium, or alloys or intermetallic compounds containing these metals, and 2) silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, iron oxide, and the like. Oxides, 3) inorganic acid salts or organic acid salts such as calcium phosphate and calcium stearate, 4) glass, 5) ceramics such as aluminum nitride, boron nitride, silicon carbide and silicon nitride can be suitably used.

有機成分としては、例えばアクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、セルロース系樹脂、塩化ビニル系樹脂、ポリビニルアルコール、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−アクリル酸エチル共重合体、ポリアクリロニトリル、ポリアミド等の有機高分子成分(又は樹脂成分)を好適に用いることができる。   Examples of organic components include acrylic resins, urethane resins, melamine resins, amino resins, epoxy resins, polyethylene resins, polystyrene resins, polypropylene resins, polyester resins, cellulose resins, vinyl chloride resins, and polyvinyl resins. Organic polymer components (or resin components) such as alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-ethyl acrylate copolymer, polyacrylonitrile, and polyamide can be suitably used.

この実施形態における充填粒子は、無機成分からなる粒子あるいは有機成分からなる粒子のほか、無機成分及び有機成分の両者を含む粒子を用いることができる。この中でも特に、アクリル系樹脂粒子、親水性シリカ粒子、リン酸カルシウム粒子、炭粉、焼成カルシウム粒子、未焼成カルシウム粒子、ステアリン酸カルシウム粒子等の少なくとも1種を用いることがより好ましい。   As the filler particles in this embodiment, particles containing both an inorganic component and an organic component can be used in addition to particles made of an inorganic component or particles made of an organic component. Among these, it is particularly preferable to use at least one of acrylic resin particles, hydrophilic silica particles, calcium phosphate particles, carbon powder, calcined calcium particles, uncalcined calcium particles, calcium stearate particles, and the like.

充填粒子の平均粒子径(レーザー回折式粒度分布計による)は0.5〜100μm程度が好ましく、1〜50μmがさらに好ましく、5〜30μmが最も好ましい。0.5μm未満では取扱い性、前述の凹凸形成等の点で不向きとなることがある。他方、100μmを超える場合は、充填粒子の脱落、分散性等の点で不向きの場合がある。   The average particle diameter of the packed particles (by a laser diffraction particle size distribution analyzer) is preferably about 0.5 to 100 μm, more preferably 1 to 50 μm, and most preferably 5 to 30 μm. If it is less than 0.5 μm, it may be unsuitable in terms of handleability, the above-described formation of irregularities, and the like. On the other hand, when it exceeds 100 μm, it may be unsuitable in terms of dropping off of the packed particles, dispersibility, and the like.

充填粒子の形状は限定的でなく、例えば球状、回転楕円体状、不定形状、涙滴状、扁平状、中空状、多孔質状等のいずれであっても良い。   The shape of the filled particles is not limited, and may be any of spherical shape, spheroid shape, indefinite shape, teardrop shape, flat shape, hollow shape, porous shape, and the like.

凹凸形成用材料中における充填粒子の含有量は、樹脂成分又は充填粒子の種類、所望の物性等に応じて適宜変更できるが、一般的には固形分重量基準で1〜80重量%が好ましく、2〜70重量%がさらに好ましく、3〜50重量%が特に好ましい。   The content of the filler particles in the unevenness forming material can be appropriately changed according to the type of resin component or filler particles, desired physical properties, etc., but generally 1 to 80% by weight based on the solid content weight is preferable, It is more preferably 2 to 70% by weight, particularly preferably 3 to 50% by weight.

充填粒子を含有させる方法は、特に限定されないが、一般的には凹凸形成用材料又はその出発原料に充填粒子を配合する方法等が挙げられる。従って、一般的には、1)樹脂成分及び/又はそれを構成するモノマーもしくはオリゴマーを含み、必要に応じて2)溶剤、3)架橋剤等を含む組成物に充填粒子を分散させれば良い。   The method for containing the filler particles is not particularly limited, and generally includes a method of blending the filler particles into the material for forming unevenness or its starting material. Therefore, in general, the filler particles may be dispersed in a composition containing 1) a resin component and / or a monomer or oligomer constituting the resin component, and 2) a solvent, 3) a crosslinking agent, etc. as necessary. .

2.容器の製造方法
本発明の非付着性容器は、容器本体の少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3〜100nmの疎水性酸化物微粒子を付着させる工程(付着工程)を含む製造方法によって好適に得ることができる。
2. Method for Producing Container The non-adhesive container of the present invention is a process in which hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to at least a part of or the entire surface of the container body that contacts the contents (attachment process). It can obtain suitably by the manufacturing method containing.

容器本体としては、前述の通り公知の容器を採用できる。この容器本体に対して付着工程を実施する方法は特に限定されない。例えば、浸漬、刷毛塗り、ロールコート、粉体静電塗装法等の公知の方法を採用することができる。浸漬、刷毛塗り又はロールコートの場合は、疎水性酸化物微粒子を溶媒に分散させてなる分散体を用いて容器本体上に塗膜を形成した後に乾燥する方法により付着工程を実施することができる。この場合の溶媒は限定されず、水のほか、例えばエタノール、イソプロピルアルコール、シクロヘキサン、トルエン、アセトン、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤を適宜選択することができる。これらの中でも特に、良溶媒を含まない貧溶媒が好ましく、環境面、衛生面の観点から良溶媒を含まないエタノールを用いるのが望ましい。溶媒には、本発明の効果を阻害しない範囲内で、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。溶媒に対する疎水性酸化物微粒子の分散量は通常10〜100g/L程度とすれば良い。乾燥する場合は、自然乾燥又は強制乾燥(加熱乾燥)のいずれであっても良いが、工業的には強制乾燥するのが良い。乾燥温度は、容器の材質にもより、特に制限されないが、通常は250℃以下、特に120〜200℃とすることが、非付着性を持続させる点で好ましい。   As a container main body, a well-known container is employable as mentioned above. The method for carrying out the adhering step on the container body is not particularly limited. For example, known methods such as dipping, brush coating, roll coating, and electrostatic powder coating can be employed. In the case of dipping, brushing or roll coating, the adhesion step can be carried out by a method of drying after forming a coating film on the container body using a dispersion in which hydrophobic oxide fine particles are dispersed in a solvent. . The solvent in this case is not limited, and in addition to water, for example, ethanol, isopropyl alcohol, cyclohexane, toluene, acetone, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, hexyl alcohol, etc. An organic solvent can be appropriately selected. Among these, a poor solvent that does not contain a good solvent is preferable, and it is desirable to use ethanol that does not contain a good solvent from the viewpoints of environment and hygiene. The solvent may be used in combination with a trace amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier, and the like within a range that does not impair the effects of the present invention. The dispersion amount of the hydrophobic oxide fine particles with respect to the solvent is usually about 10 to 100 g / L. When drying, either natural drying or forced drying (heat drying) may be used, but industrially forced drying is preferable. The drying temperature is not particularly limited depending on the material of the container, but it is usually preferably 250 ° C. or lower, particularly 120 to 200 ° C. from the viewpoint of maintaining non-adhesiveness.

本発明の製造方法では、前記の付着工程中及び/又は付着工程後に容器本体を加熱することもできる。容器本体を加熱することにより容器本体に対する疎水性酸化物微粒子の付着力(固定力)をより高めることができる。この場合の加熱温度は、特に制限されるものではないが、通常は120〜200℃程度とすれば良い。   In the manufacturing method of this invention, a container main body can also be heated during the said adhesion process and / or after an adhesion process. By heating the container body, the adhesion force (fixing force) of the hydrophobic oxide fine particles to the container body can be further increased. The heating temperature in this case is not particularly limited, but is usually about 120 to 200 ° C.

また、本発明の製造方法では、疎水性酸化物微粒子を付着させる工程に先立って、疎水性酸化物微粒子が付着する当該面の表面に凹凸を形成する工程(又は前記表面を粗面化する工程)(凹凸形成工程)を含んでいても良い。   In the production method of the present invention, prior to the step of attaching the hydrophobic oxide fine particles, the step of forming irregularities on the surface of the surface to which the hydrophobic oxide fine particles adhere (or the step of roughening the surface) ) (Unevenness forming step) may be included.

前記の凹凸形成工程としては、例えば、1)付着面そのものに凹凸を付与する方法、2)付着面に液状ないし半固形状の凹凸形成用材料又はその出発原料を層状に塗布する方法、3)予め形成されたシート状凹凸形成用材料を付着面に積層する方法、4)凹凸を有する樹脂シートを付着面に積層する方法等を挙げることができる。   Examples of the unevenness forming step include 1) a method of providing unevenness on the adhesion surface itself, 2) a method of applying a liquid or semi-solid unevenness forming material or its starting material in layers on the adhesion surface, 3) Examples thereof include a method of laminating a previously formed sheet-like unevenness forming material on the adhesion surface, and 4) a method of laminating a resin sheet having irregularities on the adhesion surface.

前記1)の方法としては、例えばサンドブラスト法、研磨等の機械的な方法によって付着面表面に微小な凹凸を付与することができる。   As the method 1), for example, fine unevenness can be imparted to the surface of the adhesion surface by a mechanical method such as sandblasting or polishing.

前記2)及び3)の方法としては、非付着性容器において疎水性酸化物微粒子を付着させる部分に、凹凸形成用材料又はその出発原料を用い、予めインモールド成形、塗布、溶射、スプレー、転写、嵌め込み、貼り合せ等の方法により、凹凸形成用材料を層状に形成する工程を含んでも良い。前記出発原料を用いる場合は、出発材料の皮膜を形成した後に例えば加熱、紫外線照射等により皮膜を硬化させれば良い。その後、上記の付着工程を実施することにより、その形成した部分に疎水性酸化物微粒子を付着させることができる。これにより、良好な撥水性及び非付着性をより効果的に持続できる非付着性容器を提供することができる。凹凸形成用材料又はその出発原料としては、前記と同様のものを使用すれば良い。   As the method of 2) and 3), a material for forming irregularities or a starting material thereof is used in advance on a portion to which hydrophobic oxide fine particles are adhered in a non-adhesive container, and in-mold molding, coating, thermal spraying, spraying, and transfer are performed in advance. A step of forming the unevenness forming material in layers by a method such as fitting, bonding, or the like may be included. In the case of using the starting material, the film may be cured by, for example, heating, ultraviolet irradiation or the like after forming the film of the starting material. Thereafter, by carrying out the above-described adhesion step, hydrophobic oxide fine particles can be adhered to the formed portion. Thereby, the non-adhesion container which can maintain favorable water repellency and non-adhesion more effectively can be provided. What is necessary is just to use the same thing as the above as an uneven | corrugated material or its starting material.

前記4)の方法としては、凹凸形成用材料に代えて、エンボス加工を施した樹脂フィルム、表面形状を凹凸に成形した樹脂フィルム等を非付着性容器の疎水性酸化物微粒子を付着させる部分に積層すれば良い。樹脂フィルムを採用する場合は、凹凸形成用材料と同種の樹脂を用いることができる。必要に応じて、アルミニウム箔又はその他の材料を積層して用いることもできる。各積層の方法は公知の方法を採用できる。例えば、ドライラミネート法、共押出し法、ロールコーティング、熱ラミネート法等を適宜採用することができる。   As the method of 4), instead of the material for forming unevenness, an embossed resin film, a resin film having a surface shape formed into unevenness, and the like are attached to the portion where the hydrophobic oxide fine particles of the non-adhesive container are attached. What is necessary is just to laminate. When a resin film is employed, the same type of resin as the material for forming irregularities can be used. If necessary, aluminum foil or other materials can be laminated and used. A publicly known method can be adopted for each lamination method. For example, a dry laminating method, a coextrusion method, a roll coating, a heat laminating method and the like can be appropriately employed.

なお、本発明において、凹凸状態を形成させる場所は限定的でない。例えば、疎水性酸化物微粒子を付着させる部分のみであっても良いし、疎水性酸化物微粒子が付着しない部分も含んでも良いし、容器内面全面又は容器の全面であっても良い。   In the present invention, the place where the uneven state is formed is not limited. For example, it may be only a portion to which the hydrophobic oxide fine particles are attached, may include a portion to which the hydrophobic oxide fine particles are not attached, or may be the entire inner surface of the container or the entire surface of the container.

以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。   The features of the present invention will be described more specifically with reference to the following examples and comparative examples. However, the scope of the present invention is not limited to the examples.

実施例1
疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製した。このコート液中に市販のポリプロピレン製容器(フランジ幅約3mm、フランジ外径約70mm、高さ約110mm、内容積約200cc)を浸漬した。コート液の付着量は、乾燥後重量(=固形分付着量)で0.5g/mであった。浸漬処理後、25℃×30秒の温風でエタノールを蒸発させること(乾燥処理)により、サンプル(容器)を得た。
Example 1
A coating solution was prepared by dispersing 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) in 1000 mL of ethanol. A commercially available polypropylene container (flange width of about 3 mm, flange outer diameter of about 70 mm, height of about 110 mm, and internal volume of about 200 cc) was immersed in this coating solution. The adhesion amount of the coating liquid was 0.5 g / m 2 in terms of weight after drying (= solid content adhesion amount). After the immersion treatment, a sample (container) was obtained by evaporating ethanol with a warm air of 25 ° C. × 30 seconds (drying treatment).

実施例2
疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製した。このコート液中に市販のフランジ付き紙/ポリエチレン製容器(フランジ幅3mm、フランジ外径70mm、高さ約55mm、内容積約130cm、厚み約300μmの紙にポリエチレン100μmをコーティングしたものをポリエチレンが容器内側になるように成形したもの)を浸漬した。コート液の付着量は、乾燥後重量(=固形分付着量)で0.5g/mであった。浸漬処理後、25℃温風でエタノールを蒸発させることにより、サンプル(容器)を得た。
Example 2
A coating solution was prepared by dispersing 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) in 1000 mL of ethanol. In this coating solution, a commercially available flanged paper / polyethylene container (with a flange width of 3 mm, a flange outer diameter of 70 mm, a height of about 55 mm, an internal volume of about 130 cm 3 and a thickness of about 300 μm coated with 100 μm of polyethylene) Soaked inside the container). The adhesion amount of the coating liquid was 0.5 g / m 2 in terms of weight after drying (= solid content adhesion amount). After the immersion treatment, a sample (container) was obtained by evaporating ethanol with 25 ° C. warm air.

実施例3
疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製した。このコート液中に市販のフランジ付きポリスチレン製容器(フランジ幅約3mm、フランジ外径約88mm、高さ約63mm、内容積約176cc)を浸漬した。コート液の付着量は、乾燥後重量(=固形分付着量)で0.5g/mであった。浸漬処理後、25℃温風でエタノールを蒸発させることにより、サンプル(容器)を得た。
Example 3
A coating solution was prepared by dispersing 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) in 1000 mL of ethanol. A commercially available polystyrene container (flange width: about 3 mm, flange outer diameter: about 88 mm, height: about 63 mm, internal volume: about 176 cc) was immersed in this coating solution. The adhesion amount of the coating liquid was 0.5 g / m 2 in terms of weight after drying (= solid content adhesion amount). After the immersion treatment, a sample (container) was obtained by evaporating ethanol with 25 ° C. warm air.

比較例1
実施例1で使用した市販のポリプロピレン製容器をそのままサンプルとして用いた。
Comparative Example 1
The commercially available polypropylene container used in Example 1 was used as a sample as it was.

比較例2
実施例2で使用した市販の紙/ポリエチレン製容器をそのままサンプルとして用いた。
Comparative Example 2
The commercially available paper / polyethylene container used in Example 2 was used as a sample as it was.

比較例3
実施例3で使用した市販のポリスチレン製容器をそのままサンプルとして用いた。
Comparative Example 3
The commercially available polystyrene container used in Example 3 was used as a sample as it was.

試験例1
<疎水性酸化物微粒子からなる多孔質層の観察>
実施例1〜3の容器において、疎水性酸化物微粒子からなる層の構造をFE−SEMにより観察した。その結果、疎水性酸化物微粒子により形成された三次元網目構造を有する多孔質層が観察された。
Test example 1
<Observation of porous layer made of hydrophobic oxide fine particles>
In the containers of Examples 1 to 3, the structure of the layer made of hydrophobic oxide fine particles was observed by FE-SEM. As a result, a porous layer having a three-dimensional network structure formed of hydrophobic oxide fine particles was observed.

<接触角>
実施例1〜3の各容器の底内面を試験片(試験面)とし、接触角測定装置(固液界面解析装置「Drop Master300」協和界面科学株式会社製)を用いて純水の接触角を測定したところ、いずれも150度以上であった。
<Contact angle>
The bottom inner surface of each container of Examples 1 to 3 was used as a test piece (test surface), and the contact angle of pure water was determined using a contact angle measuring device (solid-liquid interface analyzer “Drop Master 300” manufactured by Kyowa Interface Science Co., Ltd.). When measured, all were 150 degree | times or more.

<付着テスト>
実施例1〜3及び比較例1〜3の各容器の重量(A)を予め測定しておき、次に市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)を100gそれぞれ充填後、当該容器を10秒間天地逆(開口部が地の方向の状態)にして内容物を排出させ、容器の天地を戻した状態(=開口部が天方向の状態)でその容器の重量(B)を測定した。B−Aを求めることにより、ヨーグルトの付着量とした。n=10の測定結果を表1に示す。
<Adhesion test>
The weight (A) of each container of Examples 1 to 3 and Comparative Examples 1 to 3 is measured in advance, and then 100 g of commercially available yogurt (product name “Delicious Caspian Sea” soft yogurt, manufactured by Glico Dairy Co., Ltd.) After each filling, the container is turned upside down for 10 seconds (the opening is in the ground direction), the contents are discharged, and the container is returned to the top (= opening is in the top direction). The weight (B) was measured. By calculating B-A, the amount of yogurt adhered was determined. The measurement results for n = 10 are shown in Table 1.

表1の結果からも明らかなように、従来品(比較例)では充填量の約6〜16%が容器に付着したまま残るのに対し、実施例では充填量の約1%あるいはそれ以下まで低減する(ほとんど付着しない)ことがわかる。本発明の容器は、純水の接触角が150度以上を示し、従来の容器には見られない優れた内容物非付着性を有する。   As is apparent from the results in Table 1, in the conventional product (comparative example), about 6 to 16% of the filling amount remains attached to the container, whereas in the example, the filling amount is about 1% or less. It turns out that it reduces (it hardly adheres). The container of the present invention has a contact angle of pure water of 150 ° or more, and has excellent content non-adhesiveness not found in conventional containers.

実施例4
浸漬処理後の乾燥処理を140℃×30秒の熱風とした以外は、実施例1と同様にサンプル(容器)を得た。
Example 4
A sample (container) was obtained in the same manner as in Example 1 except that the drying treatment after the immersion treatment was hot air of 140 ° C. × 30 seconds.

実施例5
浸漬処理後の乾燥処理を160℃×30秒の熱風とした以外は、実施例1と同様にサンプル(容器)を得た。
Example 5
A sample (container) was obtained in the same manner as in Example 1, except that the drying treatment after the immersion treatment was hot air of 160 ° C. × 30 seconds.

試験例2
<持続性改善テスト>
実施例1、実施例4及び実施例5の各容器の重量(A)を予め測定しておき、次に市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)を100gそれぞれ充填後、厚み40μmのアルミニウム箔+熱接着層からなるラミネート蓋材の熱接着層面に実施例1で用いたコート液を乾燥後重量で0.5g/m塗布し、この蓋材を前記各容器の開口部端面(フランジ等)に熱接着し包装体とした。この各包装体を振動試験機(アイデックス株式会社製BF−30U)を用いて1分間、30Hz(1分間に30回の上下往復振動)、2.2mm振幅(上下方向)、加速度約40Gの条件にて振動させた後、蓋材を開封取り除き(蓋材にヨーグルトは付着しなかった)、各容器を10秒間天地逆(開口部が地の方向の状態)にして内容物を排出させ、容器の天地を戻した状態(=開口部が天方向の状態)でその容器の重量(B)を測定した。B−Aを求めることにより、ヨーグルトの付着量とした。n=10の測定結果を表2に示す。
Test example 2
<Sustainability improvement test>
The weight (A) of each container of Example 1, Example 4 and Example 5 was measured in advance, and then 100 g of commercially available yogurt (product name “Delicious Caspian Sea” soft yogurt, manufactured by Glico Dairy Co., Ltd.) After each filling, the coating liquid used in Example 1 was dried and applied to the surface of the heat-bonding layer of the laminate cover material composed of 40 μm thick aluminum foil + the heat-bonding layer, and 0.5 g / m 2 by weight was applied. A package was obtained by thermally bonding to the end face (flange, etc.) of the opening of each container. Each package is subjected to a vibration tester (BF-30U manufactured by IDEX Co., Ltd.) for 1 minute, 30 Hz (30 vertical vibrations per minute), 2.2 mm amplitude (vertical direction), and acceleration of about 40 G. After oscillating under conditions, the lid material is unsealed (no yogurt adhered to the lid material), each container is turned upside down for 10 seconds (the opening is in the direction of the ground), and the contents are discharged. The weight (B) of the container was measured in a state where the top and bottom of the container was returned (= the state where the opening was in the top direction). By calculating B-A, the amount of yogurt adhered was determined. The measurement results for n = 10 are shown in Table 2.

表2の結果からも明らかなように、疎水性酸化物微粒子を付着させた後、熱処理を施すことにより、非付着性の持続効果(耐久性)がより改善されることがわかる。   As is clear from the results in Table 2, it can be seen that the non-adhesive sustaining effect (durability) is further improved by applying heat treatment after adhering the hydrophobic oxide fine particles.

実施例6
紙(坪量50g/m)の一面と、アルミニウムを蒸着したポリエチレンテレフタレートフィルム(厚み16μm。アルミ蒸着PETフィルムともいう。)のアルミニウム蒸着面とをポリウレタン系ドライラミネート用接着剤(乾燥後重量3.5g/m)を用いてドライラミネート法により貼り合せた。さらに、アルミ蒸着PETフィルムの他面にヒートシールラッカー(アクリル系樹脂固形分100重量部にアクリル樹脂ビーズ(平均粒子径15μm)5重量部、溶剤(トルエン+MEKの混合溶剤)40重量部を配合したもの)を乾燥後重量で3g/m塗布し、乾燥させた。(乾燥条件は150℃×10秒)さらに、疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製し、このコート液をヒートシールラッカーの塗布面に乾燥後重量で0.3g/mになるようバーコート方式で塗布した後、100℃10秒程度かけて乾燥し、エタノールを蒸発させ、容器用積層体を得た。
Example 6
One surface of paper (basis weight 50 g / m 2 ) and an aluminum-deposited surface of a polyethylene terephthalate film (thickness 16 μm, also referred to as an aluminum-deposited PET film) on which aluminum is deposited are bonded to a polyurethane-based dry laminate adhesive (weight 3 after drying). .5 g / m 2 ), and bonded by a dry laminating method. Further, a heat seal lacquer (acrylic resin solid content: 100 parts by weight, acrylic resin beads (average particle diameter: 15 μm), 5 parts by weight, solvent (toluene + MEK mixed solvent), 40 parts by weight was blended on the other surface of the aluminum vapor-deposited PET film. After drying, 3 g / m 2 was applied by weight and dried. (Drying conditions are 150 ° C. × 10 seconds) Further, 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) in 1000 mL of ethanol A coating solution is prepared by dispersing, and the coating solution is applied to the application surface of the heat seal lacquer by a bar coating method so that the weight is 0.3 g / m 2 after drying, and then dried at 100 ° C. for about 10 seconds. Ethanol was evaporated to obtain a laminate for containers.

実施例7
アクリル樹脂ビーズの平均粒子径を20μm、ヒートシールラッカー中のアクリル樹脂ビーズの配合量を8重量部とした以外は実施例6と同様に容器用積層体を得た。
Example 7
A container laminate was obtained in the same manner as in Example 6 except that the average particle diameter of the acrylic resin beads was 20 μm and the blending amount of the acrylic resin beads in the heat seal lacquer was 8 parts by weight.

実施例8
厚み12μmのポリエチレンテレフタレートフィルム(PETフィルムともいう。)の一面と厚み15μmのアルミニウム箔の一面とをポリウレタン系ドライラミネート用接着剤(乾燥後重量3.5g/m)を用いてドライラミネート法により貼り合せた。さらにPETフィルムの他面と厚み35μmのシーラントフィルム(ポリエチレンとポリブテンとのブレンド樹脂固形分100重量部にアクリル樹脂ビーズ(平均粒子径30μm)5重量部配合して製膜化したもの)の一面とをポリウレタン系ドライラミネート用接着剤(乾燥後重量3.5g/m)を用いてドライラミネート法により貼り合せた。さらに、疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製し、このコート液をシーラントフィルムの他面に乾燥後重量で0.3g/mになるようバーコート方式で塗布した後、100℃10秒程度かけて乾燥し、エタノールを蒸発させ、容器用積層体を得た。
Example 8
One surface of a polyethylene terephthalate film (also referred to as PET film) having a thickness of 12 μm and one surface of an aluminum foil having a thickness of 15 μm are dry-laminated using an adhesive for polyurethane-based dry laminating (weight after drying: 3.5 g / m 2 ). Pasted together. Furthermore, the other side of the PET film and one side of a 35 μm thick sealant film (formed by blending 5 parts by weight of acrylic resin beads (average particle size 30 μm) with 100 parts by weight of a blended resin solid content of polyethylene and polybutene), Were bonded by a dry laminating method using an adhesive for polyurethane dry laminating (weight after drying: 3.5 g / m 2 ). Furthermore, 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) are dispersed in 1000 mL of ethanol to prepare a coating solution. After coating the coating liquid on the other surface of the sealant film by a bar coating method so that the weight is 0.3 g / m 2 after drying, the coating liquid is dried at 100 ° C. for about 10 seconds, the ethanol is evaporated, Obtained.

実施例9
アクリル樹脂ビーズの配合量を10重量部とした以外は、実施例8と同様に容器用積層体を得た。
Example 9
A container laminate was obtained in the same manner as in Example 8 except that the amount of the acrylic resin beads was 10 parts by weight.

実施例10
アクリル樹脂ビーズの配合量を20重量部とした以外は、実施例8と同様に容器用積層体を得た。
Example 10
A container laminate was obtained in the same manner as in Example 8 except that the blending amount of the acrylic resin beads was 20 parts by weight.

実施例11
厚み15μmのアルミニウム箔(1N30、軟質箔)の一面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m)を用いて、厚み12μmのポリエチレンテレフタレートフィルム(PETフィルムともいう)の一面と貼り合わせた。続いて、アルミニウム箔の他面にアンカーコート(主成分:ポリエステル系樹脂;ACと略称)処理を施した上、低密度ポリエチレン樹脂(LDPEと略称)を乾燥後膜厚20μmとなるように押出し積層した。さらに、低密度ポリエチレン上にホットメルト剤(ワックス35重量部、ロジン35重量部及びエチレン−酢酸ビニル共重合体30重量部)を乾燥後重量22g/mとなるようにグラビアホットメルトコートした。この際、グラビア版(グラビアロール)の表面に1個あたり縦約760μm×横約760μm×深さ約150μmサイズのセルを連続的に多数設けることにより、ホットメルト表面に多数の凹凸を形成(転写)した。続いて、疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製し、このコート液をホットメルトの塗布面に乾燥後重量で0.3g/mになるようバーコート方式で塗布した後、100℃10秒程度かけて乾燥し、エタノールを蒸発させ、容器用積層体を得た。
Example 11
One surface of a 15 μm thick aluminum foil (1N30, soft foil) and one surface of a polyethylene terephthalate film (also referred to as a PET film) having a thickness of 12 μm using a polyurethane dry laminate adhesive (weight after drying: 3.5 g / m 2 ) Pasted together. Subsequently, the other surface of the aluminum foil was subjected to an anchor coat (main component: polyester resin; abbreviated as AC) treatment, and a low density polyethylene resin (abbreviated as LDPE) was extruded and laminated to a film thickness of 20 μm after drying. did. Further, a gravure hot melt coating was performed on the low density polyethylene so that the hot melt agent (35 parts by weight of wax, 35 parts by weight of rosin and 30 parts by weight of ethylene-vinyl acetate copolymer) was dried to a weight of 22 g / m 2 . At this time, a large number of concavities and convexities are formed on the surface of the hot melt by continuously providing a number of cells each having a size of about 760 μm × width of about 760 μm × depth of about 150 μm on the surface of the gravure plate (gravure roll). )did. Subsequently, 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) are dispersed in 1000 mL of ethanol to prepare a coating solution, This coating solution is applied to the hot melt coating surface by a bar coating method so that the weight after drying is 0.3 g / m 2 , and then dried at 100 ° C. for about 10 seconds to evaporate ethanol, and the laminate for containers Got.

実施例12
ホットメルト剤(ワックス35重量部、ロジン35重量部及びエチレン−酢酸ビニル共重合体30重量部)の塗布量(コート量)を乾燥後重量20g/mとし、グラビア版(グラビアロール)の表面の1個あたりのセルサイズを縦約425μm×横約425μm×深さ約160μmとした以外は、実施例11と同様にして容器用積層体を得た。
Example 12
The coating amount of the hot melt agent (35 parts by weight of wax, 35 parts by weight of rosin and 30 parts by weight of ethylene-vinyl acetate copolymer) was dried to a weight of 20 g / m 2 and the surface of the gravure plate (gravure roll) A container laminate was obtained in the same manner as in Example 11, except that the cell size per cell was about 425 μm long × about 425 μm wide × about 160 μm deep.

比較例4
厚み12μmのポリエチレンテレフタレートフィルム(PETフィルムともいう。)の一面と厚み15μmのアルミニウム箔の一面とをポリウレタン系ドライラミネート用接着剤(乾燥後重量3.5g/m)を用いてドライラミネート法により貼り合せた。さらにPETフィルムの他面と厚み35μmのシーラントフィルム(ポリエチレンとポリブテンとのブレンド樹脂を製膜化したもの)の一面とをポリウレタン系ドライラミネート用接着剤(乾燥後重量3.5g/m)を用いてドライラミネート法により貼り合せ、容器用積層体を得た。
Comparative Example 4
One surface of a polyethylene terephthalate film (also referred to as PET film) having a thickness of 12 μm and one surface of an aluminum foil having a thickness of 15 μm are dry-laminated using an adhesive for polyurethane-based dry laminating (weight after drying: 3.5 g / m 2 ). Pasted together. Furthermore, the other surface of the PET film and one surface of a 35 μm-thick sealant film (made of a blended resin of polyethylene and polybutene) were coated with an adhesive for polyurethane-based dry lamination (weight after drying: 3.5 g / m 2 ). The laminated body for containers was obtained by using and laminating by the dry laminating method.

試験例3
<付着テスト2>
実施例6〜12及び比較例4の容器用積層体を用いて横100×縦200mmの4方シール袋状容器(内一方は未シール)を作製し、市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)を100gそれぞれ充填し、1時間放置後、天地逆にしてヨーグルトを容器外に落下させたところ、実施例の袋状容器内のヨーグルトは全て排出することができたが、比較例の袋状容器内はヨーグルトがほぼ全面に付着し全て排出することができなかった。
Test example 3
<Adhesion test 2>
Using the container laminates of Examples 6 to 12 and Comparative Example 4, a four-side sealed bag-like container (with one side unsealed) having a width of 100 × 200 mm was prepared, and a commercially available yogurt (product name “delicious Caspian Sea” was prepared. "Soft yogurt, manufactured by Glico Dairy Co., Ltd.) 100g each, after standing for 1 hour, when the yogurt was dropped out of the container upside down, all the yogurt in the bag-like container of the example could be discharged. However, the yogurt adhered to almost the entire surface of the bag-like container of the comparative example and could not be completely discharged.

<表面粗さ等の測定>
実施例6〜12の容器用積層体の疎水性酸化物微粒子の付着面、比較例4の容器用積層体のシーラントフィルム面のそれぞれの十点平均粗さRz、断面曲線最大高さRmax、Pc(ピークカウント)を接触式表面粗度計((株)東京精密製 製品名「SURFCOM1400D-12」)を用いて測定した。十点平均粗さRz及び断面曲線最大高さRmaxは、JIS B0601(−1982)に定義される。但し、1試料につき測定面の任意のX軸方向とX軸に垂直なY軸方向のRzとRmaxをそれぞれ測定し、算術平均した値を採用した。また、微小凹凸状態の凸部の数は、前記式1を用いて算出した。但し、比較例4のPcの値は断面曲線から直接読み取った値を採用した。これらの結果を表3に示す。
<Measurement of surface roughness, etc.>
Ten point average roughness Rz, cross-section curve maximum height Rmax, Pc of the adhesion surface of the hydrophobic oxide fine particles of the container laminates of Examples 6 to 12 and the sealant film surface of the container laminate of Comparative Example 4 (Peak count) was measured using a contact-type surface roughness meter (product name “SURFCOM1400D-12” manufactured by Tokyo Seimitsu Co., Ltd.). The ten-point average roughness Rz and the cross-section curve maximum height Rmax are defined in JIS B0601 (-1982). However, Rz and Rmax in the arbitrary X-axis direction on the measurement surface and in the Y-axis direction perpendicular to the X-axis were measured for each sample, and arithmetically averaged values were adopted. Further, the number of convex portions in the minute uneven state was calculated using the above-described formula 1. However, the value read directly from the cross-sectional curve was adopted as the value of Pc in Comparative Example 4. These results are shown in Table 3.

<耐磨耗性テスト>
実施例6〜12の容器用積層体の疎水性酸化物微粒子の付着面、比較例4の容器用積層体のシーラントフィルム面のそれぞれの面を試験面とし、学振形耐磨耗試験機(JIS K 5701-1)で往復回数100回/500回、荷重200g、相手材:クロムメッキ面の条件にて耐磨耗試験を実施した。耐磨耗試験後に各試験面を上面として水平な平台にクリップで固定し、市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製1滴:約0.4g)を至近距離から垂らし、水平な平台を傾け、ヨーグルト液滴が転げ落ちた場合は合格、平台を90度傾けても転げ落ちずに垂れ流れた場合を不合格とした。その結果を表3に示す。
<Abrasion resistance test>
The adhesion surface of the hydrophobic oxide fine particles of the container laminates of Examples 6 to 12 and the sealant film surface of the container laminate of Comparative Example 4 were used as test surfaces, respectively. According to JIS K 5701-1), an abrasion resistance test was performed under the conditions of 100/500 reciprocations, a load of 200 g, and a mating material: chrome plating surface. After the abrasion resistance test, each test surface is fixed to a horizontal flat table with a clip, and a commercially available yogurt (product name “Delicious Caspian Sea” soft yogurt, 1 drop manufactured by Glico Dairy Co., Ltd .: approx. 0.4 g) is in close range. When the yogurt droplets fell down, the test was accepted. When the plate was tilted 90 degrees, it dropped and did not fall down. The results are shown in Table 3.

表3の結果からも明らかなように、付着面に一定の凹凸状態を付与することにより、耐磨耗試験において良好な結果が得られることがわかる。すなわち、本発明の容器では、非付着性が効果的に持続されることがわかる。   As is apparent from the results in Table 3, it can be seen that good results can be obtained in the abrasion resistance test by imparting a certain uneven state to the adhesion surface. That is, it can be seen that non-adhesiveness is effectively maintained in the container of the present invention.

Claims (10)

内容物を収容するための容器であって、容器が少なくとも内容物と接触する面の一部又は全部に、充填粒子及び樹脂成分を含む凹凸形成用材料からなる皮膜が付与され、その凹凸状態の面上に一次粒子平均径3〜100nmの疎水性酸化物微粒子が付着し、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成しており、
疎水性酸化物微粒子が付着する当該面の十点平均粗さRzが7〜500μmであり、かつ、断面曲線最大高さRmaxが12〜1000μmである、非付着性容器。
A container for containing contents, and a coating made of a material for forming irregularities including filler particles and a resin component is applied to at least part or all of the surface of the container that comes into contact with the contents, Hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached on the surface, and the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure,
A non-adhesive container having a ten-point average roughness Rz of 7 to 500 μm and a cross-sectional curve maximum height Rmax of 12 to 1000 μm on the surface to which the hydrophobic oxide fine particles adhere .
疎水性酸化物微粒子の付着量が0.01〜10g/mである、請求項1に記載の非付着性容器。 The non-adhesive container according to claim 1, wherein the adhesion amount of the hydrophobic oxide fine particles is 0.01 to 10 g / m 2 . 凹凸形成用材料中の充填粒子の含有量は、固形分重量基準で1〜80重量%である、請求項1又は2に記載の非付着性容器。 The non-adhesive container according to claim 1 or 2, wherein the content of the filler particles in the unevenness forming material is 1 to 80% by weight based on the weight of the solid content. 疎水性酸化物微粒子のBET法による比表面積が50〜300m/gである、請求項1〜3のいずれかに記載の非付着性容器。 The non-adhesive container according to any one of claims 1 to 3, wherein the hydrophobic oxide fine particles have a specific surface area of 50 to 300 m 2 / g by BET method. 疎水性酸化物微粒子が付着する当該面が微小凹凸状態であり、凸部の数が50〜100000個/cmである、請求項1〜4のいずれかに記載の非付着性容器。 The non-adhesive container according to any one of claims 1 to 4 , wherein the surface to which the hydrophobic oxide fine particles adhere is in a minute uneven state, and the number of convex portions is 50 to 100,000 / cm 2 . 疎水性酸化物微粒子が疎水性シリカである、請求項1〜5のいずれかに記載の非付着性容器。 The non-adhesive container according to claim 1 , wherein the hydrophobic oxide fine particles are hydrophobic silica. 疎水性シリカがその表面にトリメチルシリル基を有する、請求項6に記載の非付着性容器。 The non-adhesive container according to claim 6 , wherein the hydrophobic silica has a trimethylsilyl group on a surface thereof. 充填粒子の平均粒径が0.5〜100μmである、請求項1〜7のいずれかに記載の非付着性容器。 The non-adhesive container according to any one of claims 1 to 7 , wherein the average particle diameter of the filled particles is 0.5 to 100 µm. 請求項1〜8のいずれかに記載の非付着性容器に内容物が充填されており、蓋材により当該内容物が密封されてなる製品。 A product in which the non-adhesive container according to claim 1 is filled with contents, and the contents are sealed with a lid. 内容物を収容するための容器を製造する方法であって、1)疎水性酸化物微粒子の付着面に液状ないし半固形状の凹凸形成用材料又はその出発原料を層状に塗布することにより、十点平均粗さRzが7〜500μmであり、かつ、断面曲線最大高さRmaxが12〜1000μmである凹凸状態の面を形成する工程、2)前記凹凸状態の面上に一次粒子平均径3〜100nmの疎水性酸化物微粒子を付着させる工程を含む非付着性容器の製造方法。 A method for producing a container for containing contents, wherein 1) a liquid or semi-solid unevenness forming material or a starting material thereof is applied in a layered manner on a surface to which hydrophobic oxide fine particles are adhered. A step of forming a concavo-convex surface having a point average roughness Rz of 7 to 500 μm and a cross-sectional curve maximum height Rmax of 12 to 1000 μm; 2) an average primary particle diameter of 3 to 3 on the concavo-convex surface; A method for producing a non-adhesive container, comprising a step of adhering 100 nm hydrophobic oxide fine particles.
JP2010076320A 2009-03-30 2010-03-29 Non-adhesive container and manufacturing method thereof Active JP5683827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076320A JP5683827B2 (en) 2009-03-30 2010-03-29 Non-adhesive container and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009083670 2009-03-30
JP2009083670 2009-03-30
JP2010076320A JP5683827B2 (en) 2009-03-30 2010-03-29 Non-adhesive container and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014246259A Division JP2015091722A (en) 2009-03-30 2014-12-04 Non-adhesive container and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010254377A JP2010254377A (en) 2010-11-11
JP5683827B2 true JP5683827B2 (en) 2015-03-11

Family

ID=43315778

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010076320A Active JP5683827B2 (en) 2009-03-30 2010-03-29 Non-adhesive container and manufacturing method thereof
JP2014246259A Pending JP2015091722A (en) 2009-03-30 2014-12-04 Non-adhesive container and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014246259A Pending JP2015091722A (en) 2009-03-30 2014-12-04 Non-adhesive container and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP5683827B2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856762B2 (en) * 2011-06-10 2016-02-10 昭和電工パッケージング株式会社 Heat sealing method for sealed containers
JP5915012B2 (en) * 2011-07-15 2016-05-11 凸版印刷株式会社 Water repellent packaging material
JP5890952B2 (en) * 2011-09-30 2016-03-22 東洋アルミニウム株式会社 Packaging materials
WO2013077380A1 (en) 2011-11-21 2013-05-30 東洋製罐株式会社 Pouring member used for discharging viscous fluid
JP5988139B2 (en) * 2012-06-04 2016-09-07 株式会社吉野工業所 Plastic cap
JP6083592B2 (en) * 2012-07-09 2017-02-22 株式会社吉野工業所 Synthetic resin cup container and manufacturing method thereof
US10689178B2 (en) 2012-07-13 2020-06-23 Toyo Seikan Group Holdings, Ltd. Packing container having excellent slipping property for the content
JP6015318B2 (en) * 2012-10-02 2016-10-26 凸版印刷株式会社 Heat sealable film
WO2014087695A1 (en) 2012-12-07 2014-06-12 電気化学工業株式会社 Water-repellent, thermoplastic resin sheet, and molded article
KR102116593B1 (en) * 2012-12-07 2020-05-28 덴카 주식회사 Water-repellent, thermoplastic resin sheet, and molded article
CN104995103B (en) 2013-02-14 2017-07-25 东洋制罐集团控股株式会社 There is the extraction tool of excellent slipping property to fluidity substance
JP6146091B2 (en) * 2013-03-29 2017-06-14 凸版印刷株式会社 Lid material
KR101320537B1 (en) * 2013-04-18 2013-10-23 한화폴리드리머 주식회사 Packaging material having water repellency and oil repellency, package comprising the same
JP6255748B2 (en) 2013-07-02 2018-01-10 東洋製罐グループホールディングス株式会社 Resin molded body having a surface excellent in water slidability
JP5673870B1 (en) 2013-07-26 2015-02-18 東洋製罐グループホールディングス株式会社 Resin structure having a liquid layer on the surface
JP6273728B2 (en) * 2013-09-11 2018-02-07 凸版印刷株式会社 Non-adhesive packaging material
JP2015058981A (en) * 2013-09-17 2015-03-30 陞一 山並 Mitigation method of heat seal of container opening part
JP6506007B2 (en) * 2013-11-04 2019-04-24 東京インキ株式会社 Non-adhesive film for food, method for producing the non-adhesive film, method for preventing or reducing adhesion of food to non-adhesive film for food, and food packaging container
JP6269255B2 (en) * 2014-03-31 2018-01-31 凸版印刷株式会社 Packaging materials and packaging containers
JP6511735B2 (en) * 2014-06-03 2019-05-15 東洋製罐グループホールディングス株式会社 Direct blow container
EP3159165B1 (en) * 2014-06-20 2020-10-07 Toyo Seikan Co., Ltd. Structure provided with liquid film formed on surface thereof and coating solution for forming liquid film
JP2016043990A (en) * 2014-08-22 2016-04-04 東京インキ株式会社 Non-adhesive packaging bag for food product and production method thereof
JP6506006B2 (en) * 2014-10-28 2019-04-24 東京インキ株式会社 Non-adhesive packaging container and method of manufacturing non-adhesive packaging container
JP6796394B2 (en) * 2015-04-22 2020-12-09 東京インキ株式会社 Non-adhesive lid material and airtight container
JP6651319B2 (en) 2015-09-30 2020-02-19 東洋製罐グループホールディングス株式会社 Packaging container
JP6732372B2 (en) * 2016-03-28 2020-07-29 株式会社吉野工業所 Resin injection-molded product and manufacturing method thereof
JPWO2018079607A1 (en) * 2016-10-27 2019-09-19 東洋製罐株式会社 Plastic molding
JP2018090314A (en) 2016-12-07 2018-06-14 東洋製罐グループホールディングス株式会社 Package with fluid stored therein
JP6928898B2 (en) * 2017-09-28 2021-09-01 大日本印刷株式会社 A method for producing a water-repellent laminate, a water-repellent laminate produced by the method, and a package formed by the water-repellent laminate.
JP6524180B2 (en) * 2017-11-01 2019-06-05 東洋アルミニウム株式会社 Packaging material
JP6579185B2 (en) * 2017-12-06 2019-09-25 東洋製罐グループホールディングス株式会社 Resin molding having a surface excellent in water slidability
JP2020011404A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Concrete molding flask and method for producing the same
WO2020025149A1 (en) * 2018-08-03 2020-02-06 Cryovac, Llc Super-hydrophobic thermoplastic films for packaging and packages made therefrom
EP3829867A1 (en) * 2018-08-03 2021-06-09 Cryovac, LLC Super-hydrophobic thermoplastic films for packaging
JP7262192B2 (en) 2018-09-07 2023-04-21 株式会社レゾナック・パッケージング Packaging materials for fat-containing foods
JP2020083400A (en) * 2018-11-28 2020-06-04 キョーラク株式会社 Bag-making method and bag-making device
JP7211859B2 (en) * 2019-03-14 2023-01-24 東洋アルミニウム株式会社 Manufacturing method for bottle-shaped resin container for liquid seasoning
JP7466992B2 (en) * 2020-04-30 2024-04-15 株式会社吉野工業所 Resin container and method for manufacturing resin container
JP7519223B2 (en) 2020-07-16 2024-07-19 東洋アルミニウム株式会社 Container lid material
JP7566434B2 (en) 2021-06-30 2024-10-15 株式会社吉野工業所 Plastic container

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328532A (en) * 1994-06-07 1995-12-19 Sekisui Chem Co Ltd Water-repellent film
JPH08176451A (en) * 1994-12-21 1996-07-09 Sekisui Chem Co Ltd Water-repellent resin composition
JPH10156282A (en) * 1996-11-28 1998-06-16 Seimi Chem Co Ltd Water-oil repellent metallic material
JP3371365B2 (en) * 1999-04-27 2003-01-27 三菱製紙株式会社 Inkjet recording sheet
JP2001121652A (en) * 1999-10-29 2001-05-08 Mitsubishi Gas Chem Co Inc Oxygen absorbing multi layer film and deoxygenating container
JP2002087420A (en) * 2000-09-18 2002-03-27 Kao Corp Multi-layered molded vessel
WO2002055446A1 (en) * 2001-01-12 2002-07-18 Basf Aktiengesellschaft Method for rendering surfaces resistant to soiling
DE10118349A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Self-cleaning surfaces through hydrophobic structures and processes for their production
DE10205783A1 (en) * 2002-02-13 2003-08-21 Creavis Tech & Innovation Gmbh Molded articles with self-cleaning properties and process for producing such molded articles
JP4441195B2 (en) * 2003-04-17 2010-03-31 昭和電工パッケージング株式会社 Deoxygenated lid and deoxygenated sealed container
JP2007144916A (en) * 2005-11-30 2007-06-14 Asahi Glass Co Ltd Super-water repellent substrate
JP2009073523A (en) * 2007-09-20 2009-04-09 Metal Color:Kk Heat-sealable lid material for packaging container with content adhesion preventability, and its manufacturing method

Also Published As

Publication number Publication date
JP2010254377A (en) 2010-11-11
JP2015091722A (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP5683827B2 (en) Non-adhesive container and manufacturing method thereof
ES2461845T3 (en) Multi-layer body and container
JP4348401B1 (en) Lid material
JP5793936B2 (en) Heat-sealable film and method for producing the same
JP5995463B2 (en) Packaging material and manufacturing method thereof
JP5890952B2 (en) Packaging materials
JP6044060B2 (en) Heat sealable packaging material
JP6167742B2 (en) Non-adhesive packaging material
JP5880218B2 (en) Water repellent laminate
JP6015318B2 (en) Heat sealable film
JP6031869B2 (en) Water repellent packaging material and package
JP6183696B2 (en) Water repellent film, laminate, and packaging material
JP6213086B2 (en) Lid material
JP6064453B2 (en) Packaging material and packaging container using the same
JP6273728B2 (en) Non-adhesive packaging material
JP6065996B2 (en) Laminate and lid
JP5990950B2 (en) Lid material and method for producing the lid material
JP6524180B2 (en) Packaging material
JP5499127B2 (en) Package
JP2017226422A (en) Lid material
JP2022018969A (en) Lid material for container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150114

R150 Certificate of patent or registration of utility model

Ref document number: 5683827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250