JP5680857B2 - Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger - Google Patents

Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger Download PDF

Info

Publication number
JP5680857B2
JP5680857B2 JP2010001723A JP2010001723A JP5680857B2 JP 5680857 B2 JP5680857 B2 JP 5680857B2 JP 2010001723 A JP2010001723 A JP 2010001723A JP 2010001723 A JP2010001723 A JP 2010001723A JP 5680857 B2 JP5680857 B2 JP 5680857B2
Authority
JP
Japan
Prior art keywords
brazing
aluminum alloy
clad
heat exchanger
flat tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010001723A
Other languages
Japanese (ja)
Other versions
JP2011140690A (en
Inventor
尾崎 良太
良太 尾崎
小山 高弘
高弘 小山
田中 宏和
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2010001723A priority Critical patent/JP5680857B2/en
Publication of JP2011140690A publication Critical patent/JP2011140690A/en
Application granted granted Critical
Publication of JP5680857B2 publication Critical patent/JP5680857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、熱交換器用アルミニウム合金偏平管、特に、フッ化物系フラックスを用いる不活性ガス雰囲気ろう付け、あるいは真空ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータコアなどのアルミニウム合金製自動車熱交換器のチューブとして好適な熱交換器用アルミニウム合金偏平管、および該アルミニウム合金偏平管を用いて作製されるアルミニウム合金製熱交換器に関する。   The present invention relates to aluminum alloy flat tubes for heat exchangers, in particular, aluminum alloy automobile heat exchange such as evaporators, condensers, radiators, and heater cores joined by inert gas atmosphere brazing using a fluoride flux or vacuum brazing. The present invention relates to an aluminum alloy flat tube for a heat exchanger that is suitable as a tube of a heat exchanger, and an aluminum alloy heat exchanger that is manufactured using the aluminum alloy flat tube.

自動車熱交換器、例えばラジエータは、外面にフィンを有し、内面が作動流体(冷媒)の通路となるチューブおよびヘッダーから構成されている。このような自動車のラジエータまたはヒータコアなどのチューブ材、ヘッダープレート材としては、JIS A3003などのAl−Mn系合金を芯材とし、芯材の片面にAl−Si系合金ろう材をクラッドし、他方の面にAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした3層構造のアルミニウム合金クラッド材が用いられており、このクラッド材に、ろう材を持たないベアフィンを組合せて熱交換器コアが製造されている。   2. Description of the Related Art An automobile heat exchanger, for example, a radiator, includes a tube and a header that have fins on the outer surface and the inner surface serves as a passage for a working fluid (refrigerant). As a tube material and header plate material such as an automobile radiator or heater core, an Al-Mn alloy such as JIS A3003 is used as a core material, and an Al-Si alloy brazing material is clad on one side of the core material. A three-layered aluminum alloy clad material clad with a sacrificial anode material of an Al-Zn alloy or Al-Zn-Mg alloy is used on the surface of this, and a bare fin not having a brazing material is combined with this clad material Heat exchanger cores are manufactured.

クラッド材のAl−Si系ろう材は、アルミニウム合金製熱交換器を製作するとき、チューブとフィンとの接合、チューブとヘッダープレートとの接合、またはクラッド板からろう付けによりチューブを製造する場合のろう付け接合のためにクラッドされている。これらのろう付には、最近では一般にフッ化物フラックスを用いる不活性ガス雰囲気ろう付けが適用される。また、犠牲陽極材は、例えばチューブの内面側に使用され、作動流体と接して犠牲陽極作用を発揮し、芯材の孔食や隙間腐食の発生を防止する。   When manufacturing an aluminum alloy heat exchanger, the clad Al-Si brazing material is used when a tube is manufactured by joining a tube and a fin, joining a tube and a header plate, or brazing a clad plate. It is clad for brazing. In recent years, inert gas atmosphere brazing using a fluoride flux is generally applied to these brazings. Further, the sacrificial anode material is used, for example, on the inner surface side of the tube, and exerts a sacrificial anode action in contact with the working fluid, thereby preventing the occurrence of pitting corrosion and crevice corrosion of the core material.

上記3層構造のアルミニウム合金クラッド材の他、Al−Mn系合金を芯材とし、芯材の片面にAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした2層構造のアルミニウム合金クラッド材も用いられている。2層構造のアルミニウム合金クラッド材においては、クラッド材にろう付け接合されるフィン材などには、Al−Si系ろう材をクラッドしたブレージング材が適用される。   In addition to the aluminum alloy clad material having the above three-layer structure, a two-layer structure in which an Al—Mn alloy is used as a core, and a sacrificial anode material of an Al—Zn alloy or an Al—Zn—Mg alloy is clad on one surface of the core. The aluminum alloy clad material is also used. In an aluminum alloy clad material having a two-layer structure, a brazing material clad with an Al—Si brazing material is applied to a fin material brazed to the clad material.

近年、自動車の軽量化の要請に伴い、自動車熱交換器においても省エネルギー、省資源の観点から構成材料の薄肉化が要請され、チューブ材についても薄肉化が進行している。また、各種熱交換器の製造においては、クラッド板を成形ロールなどによって管状に形成し端部を高周波溶接してさらに成形ロールなどで偏平状のチューブとし、これをヘッダープレートおよびコルゲート成形したフィンを組付けて一体ろう付けを行っている。   In recent years, with the demand for lighter automobiles, automobile heat exchangers are also required to be made thinner from the viewpoint of energy saving and resource saving, and the tube materials are also becoming thinner. In the manufacture of various heat exchangers, the clad plate is formed into a tubular shape with a forming roll or the like, the end is subjected to high-frequency welding, and further formed into a flat tube with a forming roll or the like. It is assembled and brazed together.

このようにして組み立てられたラジエータの内部、特にチューブの内部は、高温から低温、且つ、高圧から常圧の冷媒が繰り返し流通、循環することになる。すなわち、チューブには繰り返し応力がかかるため、これらに耐える疲労特性が要求される。疲労特性は、静的な引張強度と関係していることが一般的に知られており、熱交換器においても素材の引張強度を向上させるため、例えば、Cuを添加した材料が提案されている。   In the radiator thus assembled, in particular, in the tube, the refrigerant from high temperature to low temperature and from high pressure to normal pressure is repeatedly circulated and circulated. That is, since a stress is repeatedly applied to the tube, fatigue characteristics that can withstand these are required. Fatigue properties are generally known to be related to static tensile strength, and in order to improve the tensile strength of materials in heat exchangers, for example, materials with added Cu have been proposed. .

特開平10−53827号公報JP-A-10-53827

一般にアルミニウム合金の場合、弾性域、すなわち高サイクル域での疲労強度(繰返し数10回程度)は静的な引張強度と正の相関を持ち、疲労強度を高めるために、芯材や内皮材にSi、Cu、Mgを添加して、チューブ全体としての引張強度を向上させることが行われてきた。しかしながら、実際のラジエータ、特にチューブの内部には、高温から低温、且つ高圧から常圧の冷媒が繰り返し流通、循環するため、チューブには繰り返し応力がかかり、この繰り返し応力は弾性域を超え、塑性域にまで及ぶことがわかってきた。塑性域、すなわち低サイクル域での疲労寿命(繰返し数10程度)は高サイクル疲労と疲労特性が異なり、静的な引張強度との相関は見られず、クラッド材の低サイクルの疲労強度に及ぼす各種要因の影響については、従来ほとんど解明されていないのが現状である。クラッド材を偏平管形状に成形し熱交換器に組み込んで使用する場合、疲労亀裂はチューブの外面側から発生し易く、熱交換器の耐久性を得るためには、偏平管外面側の疲労強度を向上させることが必要である。 Generally in the case of aluminum alloy, the elastic region, i.e. fatigue strength at high cycle range (about repeated several 10 7 times) has a positive correlation with the static tensile strength, in order to enhance the fatigue strength, the core material and the inner covering Si, Cu, and Mg have been added to improve the tensile strength of the entire tube. However, since the refrigerant from high temperature to low temperature and from high pressure to normal pressure repeatedly circulates and circulates inside the actual radiator, especially the tube, the tube is subjected to repeated stress, and this repeated stress exceeds the elastic range and is plastic. It has been found that it extends to the area. The fatigue life in the plastic region, that is, the low cycle region (approximately 10 3 cycles) is different from high cycle fatigue and fatigue properties, and no correlation with static tensile strength is seen. At present, the effects of various factors have not been clarified. When the clad material is formed into a flat tube shape and incorporated in a heat exchanger, fatigue cracks are likely to occur from the outer surface side of the tube. To obtain the durability of the heat exchanger, the fatigue strength on the outer surface of the flat tube It is necessary to improve.

弾性域内における高サイクル域での疲労強度は、軸力試験機や回転曲げ試験機などで測定することができるが、塑性変形を伴う低サイクル域における薄板材の疲労試験は前記試験機では試験することが難しく、発明者らは、図1に示す薄板用曲げ疲労試験機を用いて、低サイクル疲労寿命に及ぼすクラッド材を構成する材料の影響を精査するために試験、検討を行った。この曲げ疲労試験機は、試験片に対して両振りの曲げ疲労試験を行い、ひずみ範囲、周波数を決めて破断に至るまでのサイクル数を測定して、疲労寿命を破断回数が10〜10程度の低サイクル域で評価するものである。 Fatigue strength in the high cycle region within the elastic region can be measured with an axial force tester or a rotary bending tester, etc., but the fatigue test of thin plate materials in the low cycle region with plastic deformation is tested with the above tester. The inventors have conducted tests and examinations using the thin plate bending fatigue tester shown in FIG. 1 in order to examine the influence of the material constituting the clad material on the low cycle fatigue life. This bending fatigue tester performs a double-bending bending fatigue test on a test piece, determines the strain range and frequency, measures the number of cycles until breakage, and determines the fatigue life to be 10 3 to 10 The evaluation is performed in a low cycle range of about 4 .

その結果、クラッド材の外面側にろう材をクラッドした従来の3層クラッド材(ろう材をチューブの外面側とし、内皮材(犠牲陽極材)をチューブの内面側となるように芯材のそれぞれ反対面にクラッドしたもの)は低サイクルの疲労強度が劣っていることが明らかになり、これに対して、外面側にろう材を有しない2層クラッド材においては低サイクルの疲労強度が顕著に向上することを見出した。   As a result, the conventional three-layer clad material clad with the brazing material on the outer surface side of the clad material (the brazing material is the outer surface side of the tube and the inner skin material (sacrificial anode material) is the inner surface side of the tube) It is clear that the low-cycle fatigue strength of the one clad on the opposite surface is inferior, whereas in the two-layer clad material that does not have the brazing material on the outer surface side, the low-cycle fatigue strength is remarkable. I found it to improve.

また、低サイクル域での疲労強度は、まず、表面形状が凹部で且つ結晶粒界の三重点の位置、すなわち、クラッド材表面の結晶粒組織を観察した際にみられる結晶粒界の分岐点で、初期亀裂が発生し、その後、三重点間の亀裂が、特に繰り返し応力が負荷される方向に対して直角な方向の粒界に沿って進展し、その進展した亀裂が繋がる過程を経ることにより、粒界破断が生じ、疲労寿命に影響を及ぼす大きな亀裂に発展することを見出した。これは、クラッド材に負荷された応力が結晶粒内よりも結晶粒界に集中し、しかも板厚の薄い表面形状の凹部でさらに応力集中が引き起こされるため、表面形状が凹部で且つ結晶粒界の三重点で最も応力が集中し易いためである。特に、初期亀裂は三重点の中でも繰り返し応力が負荷される方向に対して直角の方向に向いている粒界の端の三重点でより発生し易いことが明らかとなった。ろう付け加熱後の三重点の個数は、結晶粒径と反比例する相関があり、結晶粒径が大きいほど三重点の個数は少なくなり、結晶粒径が小さくなるほど三重点の個数は多くなる傾向がある。低サイクルの疲労における亀裂の発生が結晶粒界の分岐点において発生することを考慮すると、結晶粒径よりも三重点の個数を制御することが有効である。   In addition, the fatigue strength in the low-cycle region is determined by the fact that the surface shape is concave and the position of the triple point of the crystal grain boundary, that is, the branch point of the crystal grain boundary observed when observing the crystal grain structure of the cladding material In this process, an initial crack occurs, and then a crack between triple points progresses along the grain boundary in a direction perpendicular to the direction in which the repeated stress is applied, and the progressed crack is connected. As a result, it was found that the grain boundary fracture occurs and the cracks develop into large cracks that affect the fatigue life. This is because the stress applied to the clad material is concentrated at the crystal grain boundary rather than within the crystal grain, and further, the stress concentration is caused by the concave part having a thin surface shape. This is because the stress is most easily concentrated at the triple point. In particular, it has been clarified that the initial crack is more likely to occur at the triple point at the end of the grain boundary facing the direction perpendicular to the direction in which the repeated stress is applied among the triple points. The number of triple points after brazing heating has a correlation inversely proportional to the crystal grain size. The larger the crystal grain size, the smaller the number of triple points, and the smaller the crystal grain size, the greater the number of triple points. is there. In consideration of the occurrence of cracks in low cycle fatigue at the branch point of the grain boundary, it is effective to control the number of triple points rather than the crystal grain size.

本発明は、上記の知見に基づいて、さらに試験、検討を重ねた結果としてなされたものであり、その目的は、高サイクル疲労強度とともに、低サイクル疲労強度にも優れ、耐食性も良好な熱交換器用アルミニウム合金2層クラッド材を曲げ成形し溶接してなるアルミニウム合金偏平管、および該アルミニウム合金偏平管を用いて作製されるアルミニウム合金製熱交換器を提供することにある。   The present invention has been made as a result of repeated testing and examination based on the above knowledge, and its purpose is heat exchange with high cycle fatigue strength as well as excellent low cycle fatigue strength and good corrosion resistance. An object of the present invention is to provide an aluminum alloy flat tube formed by bending and welding an aluminum alloy double-layer clad material, and an aluminum alloy heat exchanger manufactured using the aluminum alloy flat tube.

上記の目的を達成するための請求項1による熱交換器用アルミニウム合金偏平管は、質量%で、Si:0.3〜1.2%、Fe:0.05〜0.7%、Cu:0.3〜1.0%、Mn:0.6〜1.8%、Ti:0.06〜0.35%を含有し、不純物としてのMgを0.5%未満に制限し、残部Alおよび不可避不純物からなる芯材の片面に、Zn:0.5〜5.0%、Mg:0.5〜3.0%を含有し、残部Alおよび不可避不純物からなる内皮材をクラッドした2層クラッド材を芯材が表面側となるよう曲げ成形して端部を高周波溶接してなり、Al−Si系合金ろう材をクラッドしたアルミニウムブレージングフィンを表面側に組み付けてろう付けする熱交換器用のアルミニウム合金偏平管であって、ろう付け加熱(600℃(材料温度)に加熱して3分間保持)後の芯材表面の中心線平均粗さをRa、1mm当たりの結晶粒界の三重点個数をNとしたとき、N・e2Ra<300(但し、eは自然対数の底)の関係を満足することを特徴とする。なお、以下の説明において、合金組成%は全て質量%で示す。 In order to achieve the above object, the aluminum alloy flat tube for heat exchanger according to claim 1 is mass%, Si: 0.3-1.2%, Fe: 0.05-0.7%, Cu: 0. 0.3 to 1.0%, Mn: 0.6 to 1.8%, Ti: 0.06 to 0.35%, Mg as impurities is limited to less than 0.5%, the balance Al and A two-layer clad containing Zn: 0.5-5.0%, Mg: 0.5-3.0% on one side of a core material made of inevitable impurities, and clad with the remainder Al and an endothelial material made of inevitable impurities Aluminum for heat exchangers in which the brazing material is bent so that the core is on the surface side, the end is high-frequency welded, and the aluminum brazing fins clad with the Al-Si alloy brazing material are assembled and brazed on the surface side Alloy flat tube, brazed heating (600 ° C (material When the center line average roughness was heated to degrees) 3 min hold) the core material surface after Ra, per 1 mm 2 of the triple point number of the grain boundaries was N, N · e 2Ra <300 ( provided that, e is characterized by satisfying the relationship of the base of natural logarithm). In the following description, all alloy composition percentages are indicated by mass%.

請求項2による熱交換器用アルミニウム合金偏平管は、請求項1において、前記内皮材が、さらにSi:0.3〜1.2%、Mn:0.6〜1.8%のうちの1種または2種を含むことを特徴とする。   An aluminum alloy flat tube for a heat exchanger according to claim 2 is the aluminum alloy flat tube according to claim 1, wherein the endothelial material is further selected from Si: 0.3 to 1.2% and Mn: 0.6 to 1.8%. Or it contains 2 types, It is characterized by the above-mentioned.

請求項3による熱交換器用アルミニウム合金偏平管は、請求項1または2において、前記芯材が、さらにCr:0.01〜0.3%、Zr:0.01〜0.3%のうちの1種または2種を含むことを特徴とする。   The aluminum alloy flat tube for a heat exchanger according to claim 3 is the aluminum alloy flat tube according to claim 1 or 2, wherein the core material is Cr: 0.01 to 0.3%, Zr: 0.01 to 0.3%. It is characterized by including 1 type or 2 types.

請求項4による熱交換器用アルミニウム合金偏平管は、請求項1〜3のいずれかにおいて、前記内皮材が、さらにCr:0.01〜0.3%、Zr:0.01〜0.3%、Ti:0.01〜0.3%のうちの1種または2種以上を含むことを特徴とする。   An aluminum alloy flat tube for a heat exchanger according to claim 4 is any one of claims 1 to 3, wherein the endothelial material is further Cr: 0.01 to 0.3%, Zr: 0.01 to 0.3%. Ti: 0.01-0.3% of 1 type or 2 types or more are included.

請求項5による熱交換器用アルミニウム合金偏平管は、請求項1〜4のいずれかにおいて、前記内皮材が、さらにNi:0.1〜1.5%を含むことを特徴とする。 An aluminum alloy flat tube for a heat exchanger according to a fifth aspect is characterized in that in any one of the first to fourth aspects, the endothelial material further contains Ni: 0.1 to 1.5% .

請求項6によるアルミニウム合金製熱交換器は、請求項1〜5のいずれかに記載のアルミニウム合金偏平管にAl−Si系合金ろう材をクラッドしたアルミニウムブレージングフィンを組み付けて、フッ化物系フラックスを用いる不活性ガス雰囲気ろう付けまたは真空ろう付けすることにより作製したことを特徴とする。   An aluminum alloy heat exchanger according to a sixth aspect of the present invention is an aluminum alloy flat tube according to any one of the first to fifth aspects, wherein an aluminum brazing fin clad with an Al-Si alloy brazing material is assembled, and a fluoride flux is obtained. It was produced by brazing in an inert gas atmosphere or vacuum brazing used.

本発明によれば、高サイクル疲労強度とともに、低サイクル疲労強度にも優れ、耐食性も良好な熱交換器用アルミニウム合金偏平管、および該アルミニウム合金偏平管を用いて作製されるアルミニウム合金製熱交換器が提供される。   According to the present invention, an aluminum alloy flat tube for a heat exchanger that is excellent in low cycle fatigue strength as well as high cycle fatigue strength and excellent in corrosion resistance, and an aluminum alloy heat exchanger manufactured using the aluminum alloy flat tube Is provided.

本発明によるアルミニウム合金偏平管は、特に、フッ化物系フラックスを用いる不活性ガス雰囲気ろう付け、あるいは真空ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータコアなどのアルミニウム合金製自動車熱交換器のチューブとして好適に使用される。   The aluminum alloy flat tube according to the present invention is a tube of an aluminum alloy automobile heat exchanger such as an evaporator, a condenser, a radiator, and a heater core, which are joined by inert gas atmosphere brazing using a fluoride-based flux or vacuum brazing. Is preferably used.

曲げ疲労試験機の概略を示す図である。It is a figure which shows the outline of a bending fatigue testing machine.

低サイクルの疲労強度は、材料の表面側(芯材側)の表面粗さに影響され、表面粗さが大きいと凹部の部位が亀裂の発生起点となるから、ろう付け加熱(600℃(材料温度)に加熱して3分間保持)後の芯材表面の中心線平均粗さをRaは0.6μm以下とするのが望ましい。ろう付け加熱後の芯材表面の中心線平均粗さRaを0.6μm以下とするためには、従来はチューブ外面側に配していたろう材をクラッドせず、芯材そのものをチューブの外表面とすることである。   Low cycle fatigue strength is affected by the surface roughness of the material (core material side), and if the surface roughness is large, the concave portion becomes the starting point of cracking, so brazing heating (600 ° C (material The center line average roughness of the surface of the core material after heating to (temperature) and holding for 3 minutes is preferably set to Ra of 0.6 μm or less. In order to reduce the center line average roughness Ra of the core surface after brazing heating to 0.6 μm or less, the core material itself is not clad on the outer surface of the tube without cladding the brazing material that has been disposed on the outer surface side of the tube. It is to do.

チューブの表面側となる芯材の表面に結晶粒界の三重点が多いと、亀裂の発生起点が多くなり、また、三重点間の距離が短くなるから近傍の三重点との間で亀裂の伝播が生じ易くなる。従って、前記ろう付け加熱後の芯材表面における1mm当たりの三重点の個数は250個以下とするのが望ましい。 If there are many triple points of crystal grain boundaries on the surface of the core material on the tube surface side, the number of crack initiation points will increase, and the distance between the triple points will be shortened. Propagation is likely to occur. Accordingly, the number of triple points per 1 mm 2 on the surface of the core material after the brazing heating is preferably 250 or less.

このように、芯材表面の中心線平均粗さをより低く、また、1mm当たりの三重点個数を少なくすれば、クラッド材の低サイクル域での疲労強度を優れたものとすることができるが、より詳細に実験した結果から、低サイクル域での疲労寿命は1mm当たりの三重点個数に比例し、低サイクル域での疲労寿命の自然対数が芯材表面の中心線平均粗さの対数に比例することが明らかとなり、熱交換器として必要とされる耐久性が得られるためには、芯材表面の中心線平均粗さをRa、1mm当たりの三重点個数をNとしたとき、N・e2Ra<300(但し、eは自然対数の底)の関係とするのが好ましい。N・e2Ra≧300では、切り欠き効果と亀裂の伝播経路が多くなり、低サイクル域での疲労寿命が低下する。 Thus, if the center line average roughness of the core material surface is lower and the number of triple points per 1 mm 2 is reduced, the fatigue strength in the low cycle region of the clad material can be made excellent. However, from the results of more detailed experiments, the fatigue life in the low cycle region is proportional to the number of triple points per 1 mm 2 , and the natural logarithm of the fatigue life in the low cycle region is the centerline average roughness of the core surface. In order to obtain the durability required as a heat exchanger, it is clear that the center line average roughness of the core surface is Ra, and the number of triple points per mm 2 is N. , N · e 2Ra <300 (where e is the base of the natural logarithm). When N · e 2Ra ≧ 300, the notch effect and the propagation path of cracks increase, and the fatigue life in the low cycle range decreases.

一方、高サイクルの疲労強度は、従来から知られているように材料の静的な強度と相関があり、材料の強度(硬度)が高いほど良好である。この高サイクル域(弾性域)での疲労強度の向上条件と前記低サイクル域(塑性域)での疲労強度の向上条件を満たすことにより、高サイクル疲労強度を確保しつつ、低サイクル疲労強度もそなえたクラッド材を得ることができる。   On the other hand, the high cycle fatigue strength correlates with the static strength of the material as conventionally known, and the higher the strength (hardness) of the material, the better. By satisfying the conditions for improving the fatigue strength in the high cycle region (elastic region) and the conditions for improving the fatigue strength in the low cycle region (plastic region), the low cycle fatigue strength is secured while ensuring the high cycle fatigue strength. The prepared cladding material can be obtained.

本発明における疲労寿命向上の手段は、第1に、従来、チューブの表面側(芯材側)に配していたろう材を無くし、芯材と内皮材の2層構造としたことである。このことにより、ろう材が配された従来のクラッド材では、ろう付けによりろうが一旦溶融し、チューブ表面に残留したろうが凝固するため、ろう付け後のチューブ表面は凹凸が激しく、すなわち中心線平均粗さRaが大きいため、表面形状の凹部且つ三重点で亀裂が発生し易かったが、ろう材をなくすことによりチューブ表面の中心線平均粗さが格段に小さくなるため、亀裂の発生が顕著に抑制される。2層構造のクラッド材からなる偏平管とフィンやヘッダー材との接合は、ろう材をクラッドしたフィンおよびろう材をクラッドしたヘッダー材を用いることにより可能となる。第2に、チューブの外表面(芯材表面)を良好な表面性状とし、外表面(芯材表面)の三重点の数を減らすことである。三重点の数を減らすことにより初期亀裂の発生起点を減らし、また三重点間の距離をできるだけ大きく確保することができ、亀裂の伝播経路を抑制できる材料組織となる。また高サイクルの疲労強度を確保するために、一定以上の静的強度を確保した。   The first means for improving the fatigue life in the present invention is to eliminate the brazing material conventionally provided on the surface side (core material side) of the tube and to form a two-layer structure of the core material and the endothelial material. As a result, in the conventional clad material in which the brazing material is arranged, the brazing is once melted by brazing, and the brazing remaining on the tube surface is solidified. Since the average roughness Ra is large, cracks were likely to occur at the concave portions of the surface shape and triple points, but the cracks were prominent because the center line average roughness of the tube surface was significantly reduced by eliminating the brazing material. To be suppressed. A flat tube made of a clad material having a two-layer structure can be joined to a fin or header material by using a fin clad with a brazing material and a header material clad with a brazing material. Secondly, the outer surface (core material surface) of the tube has good surface properties and the number of triple points on the outer surface (core material surface) is reduced. By reducing the number of triple points, the starting point of the initial crack can be reduced, the distance between the triple points can be secured as large as possible, and the material structure can suppress the propagation path of the crack. In addition, in order to ensure high cycle fatigue strength, static strength above a certain level was ensured.

本発明のアルミニウム合金偏平管を構成する2層クラッド材における芯材の表面粗さは、材料圧延時のロール表面の面質により調整され、クラッド材圧延時の圧延ロール面の面質をより平滑な面に調製することにより低サイクルの疲労強度を向上させることができる。本発明の効果を得るための好ましい圧延ロール面の粗さは、中心線平均粗さで0.1〜0.6μmである。   The surface roughness of the core material in the two-layer clad material constituting the aluminum alloy flat tube of the present invention is adjusted by the surface quality of the roll surface during material rolling, and the surface quality of the rolling roll surface during clad material rolling is smoother. The low cycle fatigue strength can be improved by adjusting to a smooth surface. The roughness of the preferable rolling roll surface for obtaining the effect of the present invention is 0.1 to 0.6 μm in terms of centerline average roughness.

本発明のアルミニウム合金偏平管を構成する2層クラッド材における芯材、内皮材の合金成分の意義および限定理由について説明する。
(芯材)
Siは、芯材の強度を向上させる機能を有する。特に、ろう付け中に犠牲陽極材から拡散してくるMgと共存することにより、ろう付け後、時効硬化を生じせしめ強度をさらに高める。好ましい含有範囲は0.3〜1.2%であり、0.3%未満ではその効果が小さく、1.2%を超えて含有すると耐食性を低下させるとともに、芯材の融点を下げ、ろう付け時に局部溶融が生じ易くなる。Siのより好ましい含有範囲は0.3〜1.0%である。
The significance and reasons for limitation of the alloy components of the core material and the endothelial material in the two-layer clad material constituting the aluminum alloy flat tube of the present invention will be described.
(Core material)
Si has a function of improving the strength of the core material. In particular, by coexisting with Mg diffused from the sacrificial anode material during brazing, age hardening is caused after brazing to further increase the strength. The preferable content range is 0.3 to 1.2%, and if the content is less than 0.3%, the effect is small. If the content exceeds 1.2%, the corrosion resistance is lowered, the melting point of the core material is lowered, and brazing is performed. Sometimes local melting tends to occur. A more preferable content range of Si is 0.3 to 1.0%.

Feは不純物として含有される。Feは、アルミニウム母材に対してカソードとなり耐食性を低下させる。従って、0.7%以下に制限するのが好ましい。また、芯材中のFeは再結晶粒を微細にする効果があり、三重点個数を多くするため、0.3%以下とすることがより好ましい。Feの含有量が極めて少なくするためには、コストの高い高純度のアルミニウム地金を使用しなければならないため、含有範囲は0.05%以上とするのが実用的である。   Fe is contained as an impurity. Fe acts as a cathode with respect to the aluminum base material and reduces corrosion resistance. Therefore, it is preferable to limit it to 0.7% or less. Further, Fe in the core material has an effect of making the recrystallized grains fine, and in order to increase the number of triple points, it is more preferable to make it 0.3% or less. In order to reduce the Fe content extremely, it is necessary to use high-purity aluminum ingots with high cost. Therefore, the content range is practically 0.05% or more.

Cuは、芯材の強度を向上させるとともに、芯材の電位を貴にし、犠牲陽極材のとの電位差を大きくして、防食効果を向上させるよう機能する。さらに芯材中のCuは加熱ろう付け時に犠牲陽極材中およびろう材中に拡散して、なだらかな濃度勾配を形成させる結果、芯材側の電位は貴となり、犠牲陽極材の表面側の電位は卑となって犠牲陽極材中になだらかな電位分布が形成され、腐食形態を全面腐食型にする。Cuの好ましい含有量は0.3〜1.0%の範囲であり、0.3%未満ではその効果が小さく、1.0%を越えると芯材の耐食性が低下し、また融点が低下して、ろう付け時に局部的な溶融が生じ易くなる。Cuのより好ましい含有範囲は0.5〜0.9%である。   Cu functions to improve the anticorrosion effect by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference from the sacrificial anode material. Further, Cu in the core material diffuses in the sacrificial anode material and the brazing material during brazing, and forms a gentle concentration gradient. As a result, the potential on the core material side becomes noble, and the potential on the surface side of the sacrificial anode material. Becomes a base, and a gentle potential distribution is formed in the sacrificial anode material, so that the corrosion form becomes a full corrosion type. The preferable content of Cu is in the range of 0.3 to 1.0%. If the content is less than 0.3%, the effect is small. If the content exceeds 1.0%, the corrosion resistance of the core material is lowered, and the melting point is lowered. Thus, local melting is likely to occur during brazing. A more preferable content range of Cu is 0.5 to 0.9%.

Mnは、芯材の強度を向上させるとともに、芯材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。Mnの好ましい含有範囲は0.6〜1.8%であり、0.6%未満ではその効果が小さく、1.8%を越えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害される結果健全な板材が得難い。Mnのより好ましい含有範囲は1.1〜1.6%である。   Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. The preferable content range of Mn is 0.6 to 1.8%. If the content is less than 0.6%, the effect is small, and if the content exceeds 1.8%, a coarse compound is produced at the time of casting, and the rolling processability is reduced. As a result, it is difficult to obtain a healthy plate material. A more preferable content range of Mn is 1.1 to 1.6%.

Tiは、芯材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて材料の耐孔食性を向上させる。好ましい含有量は0.06〜0.35%の範囲であり、0.06%未満ではこの効果が少なく、0.35%を越えると鋳造が困難となり、また加工性が劣化して健全な材料の製造が困難となる。   Ti is divided into a high-concentration region and a low region in the thickness direction of the core material, and they are in a layered form in which they are alternately distributed. Has the effect of layering, thereby preventing the progress of corrosion in the thickness direction and improving the pitting corrosion resistance of the material. The preferable content is in the range of 0.06 to 0.35%. If the content is less than 0.06%, this effect is small, and if it exceeds 0.35%, casting becomes difficult, and workability deteriorates and the material is healthy. Is difficult to manufacture.

Mgは、芯材の強度を向上させる効果を有するが、ろう付け性低下の観点から、含有量を0.5%未満に制限するのが好ましい。フッ化物系のフラックスを使用する不活性ガス雰囲気ろう付けの場合、Mg量が0.5%以上含有されると、Mgがフッ化物系フラックスと反応してフィン材とのろう付け性が阻害され、またMgのフッ化物が生成してろう付け部の外観がわるくなる。   Mg has the effect of improving the strength of the core material, but it is preferable to limit the content to less than 0.5% from the viewpoint of reducing brazing properties. In the case of brazing with an inert gas atmosphere using a fluoride-based flux, if the Mg content is 0.5% or more, Mg reacts with the fluoride-based flux and the brazing property with the fin material is hindered. In addition, Mg fluoride is generated, and the appearance of the brazed portion becomes unclear.

Cr、Zrはろう付け後の結晶粒径を粗大化し、三重点個数を少なくするとともにろう付け性を向上させる。好ましい含有量は、それぞれ0.01〜0.3%の範囲であり、0.01%未満では効果が無く、0.3%を超えると粗大化合物を生じ、正常な板材の製造が困難になる。   Cr and Zr coarsen the crystal grain size after brazing, reduce the number of triple points, and improve brazing properties. Preferable contents are each in the range of 0.01 to 0.3%, and if it is less than 0.01%, there is no effect, and if it exceeds 0.3%, a coarse compound is produced and it becomes difficult to produce a normal plate material .

(内皮材)
Znは犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を保持させる。その結果、芯材の孔食やすき間腐食を防止する。好ましい含有量は0.5〜5.0%の範囲であり、0.5%未満ではその効果が小さく、5.0%を超えると自己耐食性が低下する。Znのより好ましい含有範囲は3.0〜5.0%である。
(Endothelial material)
Zn lowers the potential of the sacrificial anode material and maintains the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material are prevented. The preferable content is in the range of 0.5 to 5.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 5.0%, the self-corrosion resistance is lowered. A more preferable content range of Zn is 3.0 to 5.0%.

Mgは加熱ろう付け中に芯材へ拡散し、芯材中のSiやCuと共に強度を高める。また、犠牲陽極材に残存したMgはSiと共に強度を高める。これらの効果により、クラッド材の強度改善に寄与する。上記の効果を得るための好ましい含有量は0.5〜3.0%の範囲であり、0.5%未満ではその効果が小さく、3.0%を超えると圧延加工性が低下する。Mgのより好ましい含有範囲は1.5〜2.5%である。   Mg diffuses into the core material during heat brazing and increases the strength together with Si and Cu in the core material. Further, Mg remaining in the sacrificial anode material increases the strength together with Si. These effects contribute to improving the strength of the clad material. The preferable content for obtaining the above effect is in the range of 0.5 to 3.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 3.0%, the rolling processability decreases. A more preferable content range of Mg is 1.5 to 2.5%.

Siは内皮の強度を向上させる機能を有する。好ましい含有範囲は0.3〜1.2%であり、0.3%未満では強度不足の問題があり、1.2%を超えると、耐食性を低下させるとともに、融点が下がりろう付け性が劣る。Siのより好ましい含有範囲は0.3〜0.8%である。   Si has a function of improving the strength of the endothelium. The preferred content range is 0.3 to 1.2%, and if it is less than 0.3%, there is a problem of insufficient strength, and if it exceeds 1.2%, the corrosion resistance is lowered, the melting point is lowered, and the brazing property is inferior. . A more preferable content range of Si is 0.3 to 0.8%.

Mnは強度を向上させるとともに、犠牲陽極材の変形抵抗を向上させる。好ましい含有範囲は0.6〜1.8%であり、0.6%未満ではその効果は小さく、1.8%を超えて含有すると鋳造時に粗大な化合物が生成し、自己耐食性が低下する。Mnのより好ましい含有範囲は1.0〜1.8%   Mn improves the strength and the deformation resistance of the sacrificial anode material. The preferable content range is 0.6 to 1.8%, and if the content is less than 0.6%, the effect is small. If the content exceeds 1.8%, a coarse compound is produced during casting, and the self-corrosion resistance is lowered. A more preferable content range of Mn is 1.0 to 1.8%.

Cr、Zrはろう付け後の結晶粒径を粗大化し、ろう付け性を向上させる。好ましい含有量は、それぞれ0.01〜0.3%の範囲であり、0.01%未満ではその効果が小さく、0.3%を超えると粗大化合物を生じ、健全な板材の製造が困難になる。   Cr and Zr coarsen the crystal grain size after brazing and improve brazing properties. The preferred contents are each in the range of 0.01 to 0.3%, and if the content is less than 0.01%, the effect is small, and if it exceeds 0.3%, a coarse compound is produced, making it difficult to produce a sound plate material. Become.

Tiは、内皮材中で層状に分布し、腐食を横広がりにし、それにより耐食性を向上させる。好ましい含有量は0.01〜0.3%の範囲であり、0.01%未満ではその効果が小さく、0.3%を超えると粗大化合物を生じ、正常な板材の製造が困難になる   Ti is distributed in a layered manner in the endothelial material and causes corrosion to spread laterally, thereby improving the corrosion resistance. The preferred content is in the range of 0.01 to 0.3%, and if it is less than 0.01%, the effect is small, and if it exceeds 0.3%, a coarse compound is produced, and it becomes difficult to produce a normal plate material.

Niは耐食性を向上させる効果がある。好ましい含有量は0.1〜1.5%の範囲であり、0.1%未満では効果が小さく、1.5%を超えると耐食性を低下させる。Niのより好ましい含有範囲は0.6〜1.2%である。   Ni has an effect of improving the corrosion resistance. The preferable content is in the range of 0.1 to 1.5%, and if it is less than 0.1%, the effect is small, and if it exceeds 1.5%, the corrosion resistance is lowered. A more preferable content range of Ni is 0.6 to 1.2%.

本発明のアルミニウム合金偏平管において、ろう付け加熱後の芯材の三重点の個数は、クラッド材の製造条件、すなわち、芯材の均質化処理温度と時間、熱間圧延温度、中間焼鈍温度、中間焼鈍後の冷間圧延加工度を調整することにより制御することができる。   In the aluminum alloy flat tube of the present invention, the number of triple points of the core material after brazing heating is the production condition of the clad material, that is, the homogenization temperature and time of the core material, hot rolling temperature, intermediate annealing temperature, It can be controlled by adjusting the cold rolling degree after intermediate annealing.

本発明は、上記のように、Si:0.3〜1.2%、Cu:0.3〜1.0%、Mn:0.6〜1.8%、Ti:0.06〜0.35%を含有し、不純物としてのMgを0.5%未満に制限し、残部Alおよび不可避不純物からなる高強度の芯材に、犠牲陽極効果を得るために、Zn:0.5〜5.0%を含有し、さらにMg:0.5〜3.0%を含有し、残部Alおよび不可避不純物からなる内皮材をクラッドした2層クラッド材を曲げ成形して端部を高周波溶接してなり、Al−Si系合金ろう材をクラッドしたアルミニウムブレージングフィンを組み付けてろう付けする熱交換器用のアルミニウム合金偏平管で、ろう付け加熱後の芯材の中心線平均粗さをRa、1mm当たりの三重点個数をNとしたとき、N・e2Ra<300(但し、eは自然対数の底)の関係を満足することするものであり、当該アルミニウム合金偏平管を熱交換器チューブとして使用することにより、チューブの引張強度が確保されて高サイクル域の疲労寿命および低サイクル域の疲労寿命が向上し、耐久性に優れた熱交換器を得ることができる。 In the present invention, Si: 0.3-1.2%, Cu: 0.3-1.0%, Mn: 0.6-1.8%, Ti: 0.06-0. In order to obtain a sacrificial anode effect in a high-strength core material containing 35%, limiting Mg as an impurity to less than 0.5%, and the balance Al and inevitable impurities, Zn: 0.5-5. 2% clad material containing 0% and further Mg: 0.5-3.0%, clad with the remainder material of Al and unavoidable impurities and bent at the end and high-frequency welded , a heat exchanger to braze by assembling aluminum brazing fins clad Al-Si alloy filler metal of an aluminum alloy flat tube, the center line average roughness of brazing the core material after heating Ra, per 1 mm 2 when the triple point number was N, N · e 2Ra <300 ( E is a natural logarithm base). By using the aluminum alloy flat tube as a heat exchanger tube, the tensile strength of the tube is ensured and the fatigue life in a high cycle range is achieved. In addition, the fatigue life of the low cycle region is improved, and a heat exchanger having excellent durability can be obtained.

本発明によるアルミニウム合金製熱交換器は、前記のアルミニウム合金偏平管に、通常使用されているAl−Si系合金ろう材をクラッドしたアルミニウムブレージングフィンを組み付け、フッ化物系フラックスを用いる不活性ガス雰囲気ろう付けまたは真空ろう付けすることにより作製される。   The aluminum alloy heat exchanger according to the present invention is an inert gas atmosphere in which an aluminum brazing fin clad with a commonly used Al-Si alloy brazing material is assembled to the aluminum alloy flat tube, and a fluoride flux is used. It is produced by brazing or vacuum brazing.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお。これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. Note that. These examples show one embodiment of the present invention, and the present invention is not limited thereto.

実施例1
表1に示す組成を有する芯材用合金、表2に示す組成を有する内皮材用合金を溶解し、連続鋳造により造塊した。芯材用合金の鋳塊および内皮材用合金の鋳塊について、いずれも600℃×10時間の均質化処理を行った。
Example 1
The core material alloy having the composition shown in Table 1 and the endothelial material alloy having the composition shown in Table 2 were dissolved and ingoted by continuous casting. Both the ingot for the core material alloy and the ingot for the endothelial material alloy were homogenized at 600 ° C. for 10 hours.

ついで、内皮材用合金の鋳塊を熱間圧延して6mm厚さの熱間圧延材としたのち、該熱間圧延材と芯材用合金の鋳塊とを表3に示すように組み合わせて熱間圧延し、クラッド素材を得た。その後、クラッド素材に冷間圧延、中間焼鈍、冷間圧延を行い、厚さ0.20mmのクラッド材(H14)を得た。クラッドの構成において、内皮材の厚さは0.020mmとした。最終冷間圧延のロールは、通常より圧延ロール面の面質を平滑な面に調製(中心線平均粗さ:0.2μm)ものを用いた。   Next, after hot rolling the ingot of the alloy for endothelial material to obtain a hot rolled material having a thickness of 6 mm, the hot rolled material and the ingot of the core material alloy are combined as shown in Table 3. Hot-rolled to obtain a clad material. Thereafter, the clad material was subjected to cold rolling, intermediate annealing, and cold rolling to obtain a clad material (H14) having a thickness of 0.20 mm. In the cladding configuration, the thickness of the endothelial material was 0.020 mm. The roll for final cold rolling was prepared so that the surface quality of the rolling roll surface was smoother than usual (centerline average roughness: 0.2 μm).

得られたクラッド材を、窒素ガス雰囲気中で、ろう付け温度に相当する600℃(材料温度)に3分間加熱した後、以下の評価を行った。
ろう付け加熱後の引張強さの測定:クラッド材をJIS5号試験片に成型し、ろう付け加熱後、常温に4週間保持した後、常温で引張試験を行った。
The obtained cladding material was heated for 3 minutes at 600 ° C. (material temperature) corresponding to the brazing temperature in a nitrogen gas atmosphere, and then evaluated as follows.
Measurement of tensile strength after brazing heating: A clad material was molded into a JIS No. 5 test piece, held at room temperature for 4 weeks after brazing heating, and then subjected to a tensile test at room temperature.

ろう付け加熱後の表面粗さ測定:(株)東京精密製のサーフコムを用いて、芯材表面の中心線平均粗さ(Ra)を、圧延方向と直角方向について測定した。
ろう付け加熱後の三重点個数(三重点数)の測定:芯材表面を偏光ミクロ組織観察し、50倍の偏光ミクロ組織写真から画像解析によって結晶粒界を抽出し、芯材表面1mm当たりの三重点数を求めた。
Surface roughness measurement after brazing heating: Using a surfcom manufactured by Tokyo Seimitsu Co., Ltd., the center line average roughness (Ra) of the core material surface was measured in the direction perpendicular to the rolling direction.
Measurement of the triple point number after brazing heating (triple points): The core material surface a polarizing microstructure observation, by image analysis from 50 times the polarization microstructure photograph to extract the crystal grain boundary, the core material surface 1mm per 2 The number of triple points was obtained.

低サイクル曲げ疲労試験:図1に示す曲げ疲労試験機を用いて、ろう付け加熱後のクラッド材平板について、ひずみ範囲すなわちひずみ振幅1.0%で曲げ疲労試験を実施し、破断までの繰り返し数(回)を測定した。繰り返し数が3000回以上で破断したものを合格(○)、繰り返し数3000回未満で破断したものを不合格(×)と評価した。
高サイクル疲労試験:引張−引張の軸力疲労試験により、10回の疲労強度を測定した。50MPa以上を合格(○)、50MPa未満を不合格(×)とした。
Low cycle bending fatigue test: Using the bending fatigue tester shown in FIG. 1, the bending fatigue test was performed on the clad plate after brazing and heating in the strain range, that is, the strain amplitude of 1.0%. (Times) was measured. Those that broke when the number of repetitions was 3000 times or more were evaluated as acceptable (◯), and those that were broken when the number of repetitions was less than 3000 were evaluated as unacceptable (x).
High cycle fatigue test: A fatigue strength of 10 7 times was measured by a tensile-tensile axial fatigue test. 50 MPa or more was regarded as acceptable (◯), and less than 50 MPa as unacceptable (x).

内面の腐食試験:以下の腐食液を用い、以下の方法により試験を行った。
腐食液:粗悪水模擬液、pH3〜7 の弱酸性液(Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppm )
方法:88℃で8hr 加熱したのち冷却し、25℃で16hr保持するサイクルを4ヶ月間繰り返し試験し、試験後のクラッド材内面(内皮材側)の最大腐食深さを測定し、最大腐食深さが0.06mm以下を合格(○)、0.06mmを超えたものを不合格(×)と評価した。
Internal corrosion test: A test was conducted by the following method using the following corrosive liquid.
Etchant: poor water simulant, weakly acidic solution pH3~7 (Cl -: 195ppm, SO 4 2-: 60ppm, Cu 2+: 1ppm, Fe 3+: 30ppm)
Method: A cycle of heating at 88 ° C for 8 hours, cooling and holding at 25 ° C for 16 hours was repeated for 4 months, and the maximum corrosion depth of the clad material inner surface (endothelium material side) after the test was measured. A thickness exceeding 0.06 mm was evaluated as acceptable (◯), and a value exceeding 0.06 mm was evaluated as unacceptable (x).

評価結果を表3に示す。表3に示すように、本発明に従うクラッド材1〜13、15〜25、27および28はいずれも、ろう付け加熱後の引張強さに優れ、優れた低サイクル疲労強度および高サイクル疲労強度をそなえ、良好な耐食性を有していた。 The evaluation results are shown in Table 3. As shown in Table 3, all of the clad materials 1 to 13 , 15 to 25 , 27 and 28 according to the present invention have excellent tensile strength after brazing heating, and excellent low cycle fatigue strength and high cycle fatigue strength. In addition, it had good corrosion resistance.

Figure 0005680857
Figure 0005680857

Figure 0005680857
Figure 0005680857

Figure 0005680857
Figure 0005680857

比較例1
表4に示す組成を有する芯材用合金、表5に示す組成を有する内皮材用合金を溶解し、連続鋳造により造塊した。芯材用合金の鋳塊および内皮材用合金の鋳塊について、いずれも600℃×10時間の均質化処理を行った。なお、表4、表5において、本発明の条件を外れたものには下線を付した。
Comparative Example 1
The core material alloy having the composition shown in Table 4 and the endothelial material alloy having the composition shown in Table 5 were melted and ingoted by continuous casting. Both the ingot for the core material alloy and the ingot for the endothelial material alloy were homogenized at 600 ° C. for 10 hours. In Tables 4 and 5, those outside the conditions of the present invention are underlined.

ついで、内皮材用合金の鋳塊を熱間圧延して6mm厚さの熱間圧延材としたのち、該熱間圧延材と芯材用合金の鋳塊とを表6に示すように組み合わせて熱間圧延し、クラッド素材を得た。その後、クラッド素材に冷間圧延、中間焼鈍、冷間圧延を行い、厚さ0.25mmのクラッド材(H14)を得た(クラッド材30〜48)。クラッドの構成において、内皮材の厚さは0.050mmであった。最終の冷間圧延ロールは、通常より圧延ロール面の面質を平滑な面に調製(中心線平均粗さ:0.2μm)したものを用いた。評価結果を表6に示す。   Next, after hot rolling the ingot of the alloy for endothelial material to obtain a hot rolled material having a thickness of 6 mm, the hot rolled material and the ingot of the core material alloy are combined as shown in Table 6. Hot-rolled to obtain a clad material. Thereafter, the clad material was subjected to cold rolling, intermediate annealing, and cold rolling to obtain a clad material (H14) having a thickness of 0.25 mm (clad materials 30 to 48). In the cladding configuration, the thickness of the endothelial material was 0.050 mm. The final cold rolling roll was prepared by adjusting the surface quality of the rolling roll surface to a smooth surface (center line average roughness: 0.2 μm). The evaluation results are shown in Table 6.

なお、表6において、クラッド材29は、芯材用合金および内皮材用合金とともに、Si:10%を含有し、残部Alおよび不可避的不純物からなるろう材用合金を造塊し、芯材用合金および内皮材用合金の鋳塊については600℃×10時間の均質化処理を行い、内皮材用合金の鋳塊およびろう材用合金の鋳塊については所定厚さまで熱間圧延し、これに芯材用合金の鋳塊を表6に示すように組み合わせて熱間圧延してクラッド素材とし、その後、クラッド素材に冷間圧延、中間焼鈍、冷間圧延を行い、厚さ0.20mmのクラッド材(H14)としたものである。クラッドの構成は、内皮材の厚さ0.020mm、ろう材の厚さ0.030mmとした。得られたクラッド材のろう材面にフッ化物系フラックスを塗布し、窒素ガス雰囲気中で、ろう付け温度に相当する600℃(材料温度)に3分間加熱した後、前記の評価を行った。   In Table 6, the clad material 29 contains Si: 10% together with the core material alloy and the endothelium alloy, and ingots the brazing material alloy composed of the balance Al and inevitable impurities. The ingot of the alloy and the alloy for the endothelial material is subjected to a homogenization treatment at 600 ° C. for 10 hours, and the ingot of the alloy for the endothelial material and the ingot of the alloy for the brazing material are hot-rolled to a predetermined thickness. As shown in Table 6, the ingots for core material are combined and hot-rolled to make a clad material, and then the clad material is cold-rolled, intermediate-annealed and cold-rolled, and a clad having a thickness of 0.20 mm The material (H14) is used. The configuration of the clad was 0.020 mm for the thickness of the endothelial material and 0.030 mm for the brazing material. The fluoride-based flux was applied to the brazing material surface of the obtained clad material, heated in a nitrogen gas atmosphere to 600 ° C. (material temperature) corresponding to the brazing temperature, and then evaluated as described above.

Figure 0005680857
Figure 0005680857

Figure 0005680857
Figure 0005680857

Figure 0005680857
Figure 0005680857

表6に示すように、クラッド材29は、ろう材を配したものであるため、芯材表面の表面粗さが大きくなり、低サイクル疲労強度が劣っていた。クラッド材30は、内皮材のZn量が多いため自己耐食性が低下して耐食性不良となった。クラッド材31は、内皮材のZn量が少ないため耐食性が劣っていた。クラッド材32は、内皮材のMg量が多いため、圧延加工性が低下してクラッド材の製造ができなかった。クラッド材33は、内皮材のMg量が少ないため引張強さが低かった。   As shown in Table 6, since the clad material 29 was provided with a brazing material, the surface roughness of the core material surface was increased, and the low cycle fatigue strength was inferior. Since the clad material 30 had a large amount of Zn in the endothelial material, the self-corrosion resistance was lowered and the corrosion resistance was poor. The clad material 31 was inferior in corrosion resistance because the amount of Zn in the endothelial material was small. Since the clad material 32 has a large amount of Mg in the endothelium material, the rolling processability is lowered and the clad material cannot be manufactured. The clad material 33 had a low tensile strength because the amount of Mg in the endothelial material was small.

クラッド材34、35は、それぞれ内皮材のMn量、Si量が多いため、いずれも耐食性が劣っていた。クラッド材37は、内皮材のNi量が多いため、耐食性が低下した。クラッド材38は、芯材のSi量が多いため融点が低下して、ろう付け加熱時に局部溶融が生じて芯材表面の三重点数が多くなったため、低サイクルの疲労強度が低下した。クラッド材39は、芯材のSi量が少ないため引張強さが低下した。 The clad materials 34 and 35 were inferior in corrosion resistance because of the large amount of Mn and Si in the endothelial material, respectively. Since the clad material 37 has a large amount of Ni in the endothelial material, the corrosion resistance is reduced. Since the clad material 38 has a high Si content in the core material, the melting point is lowered, and local melting occurs during brazing heating, resulting in an increase in the number of triple points on the surface of the core material. The clad material 39 has a low tensile strength due to a small amount of Si in the core material.

クラッド材40は芯材のMn量が多いため、鋳造時に粗大な化合物が生成し圧延性が害されて、芯材表面の三重点数が多くなったため、低サイクルの疲労強度が低下した。クラッド材41は、芯材のMn量が少ないため引張強度が低かった。クラッド材42は、Cu量が多いため融点が低下して、ろう付け加熱時に局部溶融が生じて芯材表面の三重点数が多くなったため、低サイクルの疲労強度が低下した。クラッド材43は、芯材のCu量が少ないため引張強度が低かった。   Since the clad material 40 has a large amount of Mn in the core material, a coarse compound is produced during casting, the rollability is impaired, and the number of triple points on the surface of the core material is increased, resulting in a low cycle fatigue strength. The clad material 41 had a low tensile strength because the core material had a small amount of Mn. Since the clad material 42 has a large amount of Cu, the melting point is lowered, local melting occurs during brazing heating, and the number of triple points on the surface of the core material is increased, so that the low cycle fatigue strength is lowered. The clad material 43 had a low tensile strength because the amount of Cu in the core material was small.

クラッド材44は芯材のTi量が多いため、粗大化号物が生成して正常なクラッド材の製造ができなかった。クラッド材45は、芯材のTi量が少ないため耐食性が低下した。クラッド材46は芯材のFe量が多いため、耐食性が低下した。クラッド材47は芯材のMg量が多いため、ろう付け加熱時に芯材表面が酸化されて芯材表面の三重点数が多くなったため、低サイクルの疲労強度が低下した。また、フッ化物系フラックスを用いる不活性ガス雰囲気ろう付けを行った場合、Mgがフラックスと反応するため、ろう付け性が劣りフィン材などとのろう付けが困難となるものである。クラッド材48は芯材のろう付け後の表面粗さが大きいため、低サイクル疲労強度が劣っていた。   Since the clad material 44 has a large amount of Ti in the core material, a coarse product is generated and a normal clad material cannot be manufactured. Since the clad material 45 has a small amount of Ti in the core material, the corrosion resistance is lowered. Since the clad material 46 has a large amount of Fe in the core material, the corrosion resistance is lowered. Since the clad material 47 has a large amount of Mg in the core material, the surface of the core material is oxidized during brazing heating and the number of triple points on the surface of the core material is increased, so that the low cycle fatigue strength is reduced. In addition, when brazing with an inert gas atmosphere using a fluoride-based flux, Mg reacts with the flux, so that brazing is inferior and brazing with a fin material or the like becomes difficult. Since the clad material 48 had a large surface roughness after brazing of the core material, the low cycle fatigue strength was inferior.

Claims (6)

質量%(以下、同じ)で、Si:0.3〜1.2%、Fe:0.05〜0.7%、Cu:0.3〜1.0%、Mn:0.6〜1.8%、Ti:0.06〜0.35%を含有し、不純物としてのMgを0.5%未満に制限し、残部Alおよび不可避不純物からなる芯材の片面に、Zn:0.5〜5.0%、Mg:0.5〜3.0%を含有し、残部Alおよび不可避不純物からなる内皮材をクラッドした2層クラッド材を芯材が表面側となるよう曲げ成形して端部を高周波溶接してなり、Al−Si系合金ろう材をクラッドしたアルミニウムブレージングフィンを表面側に組み付けてろう付けする熱交換器用のアルミニウム合金偏平管であって、ろう付け加熱(600℃(材料温度)に加熱して3分間保持)後の芯材表面の中心線平均粗さをRa、1mm当たりの結晶粒界の三重点個数をNとしたとき、N・e2Ra<300(但し、eは自然対数の底)の関係を満足することを特徴とする熱交換器用アルミニウム合金偏平管。 In mass% (hereinafter the same) , Si: 0.3-1.2%, Fe: 0.05-0.7%, Cu: 0.3-1.0%, Mn: 0.6-1. 8%, Ti: 0.06 to 0.35%, Mg as an impurity is limited to less than 0.5%, and Zn: 0.5 to End portion by bending a two-layer clad material containing 5.0%, Mg: 0.5-3.0%, and clad with an endothelial material composed of the remaining Al and inevitable impurities so that the core is on the surface side Is an aluminum alloy flat tube for a heat exchanger that is brazed with an aluminum brazing fin clad with an Al—Si alloy brazing material on the surface side and brazed and heated (600 ° C. (material temperature ) And hold for 3 minutes) Raise the centerline average roughness of the core material surface after Ra An aluminum alloy flattening for heat exchangers that satisfies the relationship N · e 2Ra <300 (where e is the base of natural logarithm), where N is the number of triple points of grain boundaries per mm 2 tube. 前記内皮材が、さらにSi:0.3〜1.2%、Mn:0.6〜1.8%のうちの1種または2種を含むことを特徴とする請求項1に記載の熱交換器用アルミニウム合金偏平管。 The heat exchange according to claim 1, wherein the endothelial material further contains one or two of Si: 0.3 to 1.2% and Mn: 0.6 to 1.8%. Aluminum alloy flat tube for dexterity. 前記芯材が、さらにCr:0.01〜0.3%、Zr:0.01〜0.3%のうちの1種または2種を含むことを特徴とする請求項1または2に記載の熱交換器用アルミニウム合金偏平管。 3. The core material according to claim 1, wherein the core material further contains one or two of Cr: 0.01 to 0.3% and Zr: 0.01 to 0.3%. Aluminum alloy flat tube for heat exchanger. 前記内皮材が、さらにCr:0.01〜0.3%、Zr:0.01〜0.3%、Ti:0.01〜0.3%のうちの1種または2種以上を含むことを特徴とする請求項1〜3のいずれかに記載の熱交換器用アルミニウム合金偏平管。 The endothelium material further contains one or more of Cr: 0.01 to 0.3%, Zr: 0.01 to 0.3%, and Ti: 0.01 to 0.3%. The aluminum alloy flat tube for heat exchangers according to any one of claims 1 to 3. 前記内皮材が、さらにNi:0.1〜1.5%を含むことを特徴とする請求項1〜4のいずれかに記載の熱交換器用アルミニウム合金偏平管。 5. The aluminum alloy flat tube for a heat exchanger according to claim 1, wherein the endothelial material further contains Ni: 0.1 to 1.5% . 請求項1〜5のいずれかに記載のアルミニウム合金偏平管にAl−Si系合金ろう材をクラッドしたアルミニウムブレージングフィンを組み付けて、フッ化物系フラックスを用いる不活性ガス雰囲気ろう付けまたは真空ろう付けすることにより作製したことを特徴とするアルミニウム合金製熱交換器。 An aluminum brazing fin clad with an Al-Si alloy brazing material is assembled to the aluminum alloy flat tube according to any one of claims 1 to 5, and brazing or vacuum brazing in an inert gas atmosphere using a fluoride flux. An aluminum alloy heat exchanger produced by the above method.
JP2010001723A 2010-01-07 2010-01-07 Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger Active JP5680857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001723A JP5680857B2 (en) 2010-01-07 2010-01-07 Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001723A JP5680857B2 (en) 2010-01-07 2010-01-07 Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger

Publications (2)

Publication Number Publication Date
JP2011140690A JP2011140690A (en) 2011-07-21
JP5680857B2 true JP5680857B2 (en) 2015-03-04

Family

ID=44456746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001723A Active JP5680857B2 (en) 2010-01-07 2010-01-07 Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger

Country Status (1)

Country Link
JP (1) JP5680857B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453427B1 (en) * 2012-04-20 2014-10-23 한국생산기술연구원 An inner liner and pin material for heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565539B2 (en) * 1988-04-14 1996-12-18 三菱アルミニウム株式会社 A brazing sheet for structural members of a drone cup type heat exchanger with good brazing property
JPH05154689A (en) * 1991-12-10 1993-06-22 Furukawa Alum Co Ltd Aluminum alloy brazing sheet for vacuum brazing
JPH11269588A (en) * 1998-03-19 1999-10-05 Furukawa Electric Co Ltd:The High corrosion resistant aluminum clad material for heat exchanger, and heat exchanger tube material using the same
JP3326106B2 (en) * 1998-04-07 2002-09-17 住友軽金属工業株式会社 Aluminum alloy clad material for heat exchanger with excellent strength and corrosion resistance
JP4667065B2 (en) * 2005-02-17 2011-04-06 古河スカイ株式会社 Brazing fin material and manufacturing method thereof
JP5371173B2 (en) * 2005-07-27 2013-12-18 日本軽金属株式会社 Manufacturing method of high strength aluminum alloy fin material
JP5944088B2 (en) * 2008-02-12 2016-07-05 株式会社神戸製鋼所 Aluminum alloy laminate with excellent fatigue characteristics
JP5230231B2 (en) * 2008-03-19 2013-07-10 株式会社神戸製鋼所 Aluminum alloy brazing sheet, heat exchanger and method for producing the same

Also Published As

Publication number Publication date
JP2011140690A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US11408690B2 (en) Method for producing aluminum alloy clad material
JP5336812B2 (en) Brazing sheet for automotive heat exchanger for brazed pipe
JP5476029B2 (en) Clad material for welded tube of aluminum alloy heat exchanger and manufacturing method thereof
US20160319401A1 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
JP6132330B2 (en) Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP6147470B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
WO2014077237A1 (en) Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP5180565B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP5498229B2 (en) Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP4424568B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP6399438B2 (en) Heat exchanger
JP5506280B2 (en) Aluminum clad material for heat exchanger
JP5680857B2 (en) Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP5388084B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and pitting corrosion resistance
JP5554119B2 (en) Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP4424569B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP3968024B2 (en) Aluminum alloy clad material for heat exchanger
JP5476030B2 (en) Clad material for welded tube of aluminum alloy heat exchanger and manufacturing method thereof
JP5704678B2 (en) Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP2001026850A (en) Production of tube material for heat exchanger excellent in tube formability
JP3968023B2 (en) Aluminum alloy clad material for heat exchanger
JP4440550B2 (en) Aluminum heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150108

R150 Certificate of patent or registration of utility model

Ref document number: 5680857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150