JP5680044B2 - Powder processing equipment and powder processing equipment - Google Patents

Powder processing equipment and powder processing equipment Download PDF

Info

Publication number
JP5680044B2
JP5680044B2 JP2012242522A JP2012242522A JP5680044B2 JP 5680044 B2 JP5680044 B2 JP 5680044B2 JP 2012242522 A JP2012242522 A JP 2012242522A JP 2012242522 A JP2012242522 A JP 2012242522A JP 5680044 B2 JP5680044 B2 JP 5680044B2
Authority
JP
Japan
Prior art keywords
raw material
powder
processing
powder processing
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242522A
Other languages
Japanese (ja)
Other versions
JP2013063432A (en
Inventor
明紀 上野
明紀 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earthtechnica Co Ltd
Original Assignee
Earthtechnica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earthtechnica Co Ltd filed Critical Earthtechnica Co Ltd
Priority to JP2012242522A priority Critical patent/JP5680044B2/en
Publication of JP2013063432A publication Critical patent/JP2013063432A/en
Application granted granted Critical
Publication of JP5680044B2 publication Critical patent/JP5680044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鱗片状、不定(多角)形または表面に凹凸のある粉体、および、粉砕しやすい粉体の球形度や表面の平滑度を向上させる球形化処理、さらに、粉体(母粉体)の表面に他の粉体(子粉体)を付着させて粉体を複合化処理する粉体処理装置および粉体処理設備に関するものである。 The present invention relates to a powder having a flaky shape, an indefinite (polygonal) shape or uneven surface, and a spheroidizing treatment for improving the sphericity and smoothness of the powder that is easily pulverized. The present invention relates to a powder processing apparatus and a powder processing facility for making a powder composite by attaching another powder (child powder) to the surface of the body.

最近、電子技術用材料、光学技術用材料、高分子材料、医用材料として使用される粉体において、粉体形状の改善、特に、不規則粒形の球形化により流動性や充填性等を向上させるニーズが高くなってきた。さらに、粉体物性の改善、特に、2種以上の粉体の複合化により粉体表面を改質し、機能性を向上させるニーズも高くなってきた。このような粉体の球形化処理、さらに複合化処理に使用される粉体処理装置および粉体処理設備として、従来、特許文献1、2では、円筒状をなす回転子とその回転子の外側に僅少な間隙を存して嵌挿された固定子とを備えた本体と、本体の一端に備えられ、粉体を気流と共に回転子の接線方向に供給する供給口と、本体の他端に備えられ、球形化、さらに複合化された粉体と気流とを回転子の接線方向に排出させる排出口とを備える粉体処理装置が記載されている。 Recently, in powders used as materials for electronic technology, materials for optical technology, polymer materials, and medical materials, improvement of powder shape, especially improvement of fluidity and filling properties by irregular spheres. Needs to make it high. Furthermore, there is an increasing need for improving the physical properties of powders, particularly by modifying the powder surface by combining two or more powders to improve functionality. Conventionally, in Patent Documents 1 and 2, as a powder processing apparatus and a powder processing equipment used for such a spheroidizing process and a composite process, a cylindrical rotor and an outer side of the rotor are disclosed. A main body provided with a stator inserted with a slight gap, a supply port provided at one end of the main body for supplying powder in a tangential direction of the rotor together with an air flow, and a second end of the main body. A powder processing apparatus is described that is provided with a discharge port that is provided, spheroidized, and further combined to discharge powder and airflow in the tangential direction of the rotor.

この粉体処理装置においては、回転子の外側表面および固定子の内側表面には母線と平行な多数の突起材が周方向に連続して設けられている。そして、回転子の回転により、各々の突起材間に形成される間隙に多数の微少渦流を形成して、気流中に分散した不規則粒形の粉体または2種以上の粉体が相互に強力に接触するようにしている。その結果、粉体処理装置では、粉体が連続して球形化、さらに複合化される。 In this powder processing apparatus, a large number of protrusions parallel to the bus bar are continuously provided in the circumferential direction on the outer surface of the rotor and the inner surface of the stator. Then, by rotating the rotor, a large number of minute vortex flows are formed in the gaps formed between the respective projection materials, and irregularly shaped powders or two or more kinds of powders dispersed in the airflow are mutually exchanged. I try to make strong contact. As a result, in the powder processing apparatus, the powder is continuously spheroidized and further combined.

また、粉体処理設備としては、粉体処理装置の上流側に、粉体を粉体処理装置に供給するための気流を発生させる気流発生手段と、この気流を加熱および/または冷却するための熱交換手段と、この温度調整された気流中に粉体を分散させるための原料供給器(原料混合機を含む)とを配設し、粉体処理装置の下流側に、粉体処理装置で処理(球形化、さらに複合化)された粉体を気流から分離、捕集するための捕集器と、粉体処理設備内で気流を流動させるための送風機とを配設したものが記載されている。 In addition, as the powder processing equipment, an air flow generating means for generating an air flow for supplying powder to the powder processing apparatus on the upstream side of the powder processing apparatus, and for heating and / or cooling the air flow A heat exchange means and a raw material feeder (including a raw material mixer) for dispersing the powder in the temperature-controlled airflow are disposed, and the powder processing device is disposed downstream of the powder processing device. Describes a collector that separates and collects processed (spheroidized and further compounded) powder from the airflow and a blower that flows the airflow in the powder processing facility. ing.

特公平05-032094号公報(2頁左欄10〜38行、3頁左欄34行〜右欄21行、第1図、第3図)Japanese Examined Patent Publication No. 05-032094 (page 2, left column, lines 10 to 38, page 3, left column, lines 34 to right column, lines 21, FIGS. 1 and 3) 特公平5−032095号公報(2頁左欄27行〜右欄9行、3頁左欄41行〜右欄33行、第1図、第3図)Japanese Patent Publication No. 5-032095 (page 2, left column, line 27 to right column, line 9; page 3, left column, line 41 to right column, line 33, FIGS. 1 and 3)

しかしながら、従来の特許文献1に記載の粉体処理装置においては、球形化処理に際し、60℃以下程度で塑性変形し易くなるような(融点の低い)粉体は球形化処理が可能であったが、塑性変形に100℃以上を必要とする(融点の高い)粉体、黒鉛のような塑性変形しない粉体の球形化処理は不可能であった。そのため、球形化処理を可能にするために、粉体処理装置の回転子の回転数を高くすることも検討されたが、回転数を高くすると、突起材間に形成される間隙に強い渦流が発生し、粉体の球形化よりも、粉体が粉砕し易くなり、粉体の細径化が進み易いという問題があった。 However, in the conventional powder processing apparatus described in Patent Document 1, powder that can be easily plastically deformed at a temperature of about 60 ° C. or less (low melting point) can be spheroidized during the spheronization process. However, it has been impossible to spheroidize powder that requires 100 ° C. or higher for plastic deformation (high melting point) and powder that does not undergo plastic deformation such as graphite. Therefore, in order to enable the spheroidization process, it has been considered to increase the rotational speed of the rotor of the powder processing apparatus. However, if the rotational speed is increased, a strong eddy current is generated in the gap formed between the protrusions. There is a problem that the powder is easily pulverized and the diameter of the powder is easily reduced rather than the spherical shape of the powder.

そして、特許文献2に記載の粉体処理装置においても、複合化処理に際し、粉砕されやすい粉体を処理する場合には、回転子と固定子との間に形成される間隙を広くすることや回転数を下げた運転条件とすることで粉体が粉砕されないようにする必要があった。ここで、回転数を下げた場合には、間隙内に形成される渦流が弱くなり、複合化作用が低下するという問題があった。これは、使用できる回転数範囲が限られ、複合化作用そのものの調整範囲が狭まることとなる。また、間隙を調整するためには、固定子の内径あるいは回転子の外径を変える必要があり、部品交換による調整となり、自由に運転条件を調整することは難しいこととなる。 Also in the powder processing apparatus described in Patent Document 2, when processing powder that is easily pulverized during the compounding process, the gap formed between the rotor and the stator can be widened. It was necessary to prevent the powder from being pulverized by setting the operating conditions at a reduced rotational speed. Here, when the number of rotations is lowered, there is a problem that the vortex formed in the gap becomes weak and the compounding action is lowered. This limits the range of rotation speed that can be used, and narrows the adjustment range of the compounding action itself. Further, in order to adjust the gap, it is necessary to change the inner diameter of the stator or the outer diameter of the rotor, which is an adjustment by replacing parts, and it is difficult to freely adjust the operating conditions.

また、従来の粉体処理装置の固定子の軸方向の溝を無くし、平滑な円筒にすると、回転子の回転を高くしても、粉体が粉砕しないで球形化処理、さらに複合化処理されることがわかった。ただし、この方法では、球形化処理、さらに複合化処理の進み具合が遅く、粉体を装置に1回通過しただけでは、粉体が十分に球形化処理、さらに複合化処理されず、装置に何回も通す必要があり、粉体の大量処理が困難であるという問題があった。さらに、従来の粉体処理装置においては、通常の1/3程度まで風量(流量)を下げると球形化処理、さらに複合化処理が進むことがわかった。しかしながら、風量を下げると、粉体の流れが不安定になると共に、処理温度の上昇が大きくなり、熱に弱い粉体(融点の低い粉体)においては、粉体同士の融着が発生し、球形化処理、さらに複合化処理が不可能になるという問題があった。 In addition, when the axial groove of the stator of the conventional powder processing apparatus is eliminated and the cylinder is smooth, even if the rotation of the rotor is increased, the powder is not crushed and spheroidized and further combined. I found out. However, in this method, the progress of the spheroidizing process and further the compounding process is slow, and the powder is not sufficiently spheroidized and further combined by simply passing the powder once through the apparatus. There was a problem that it was necessary to pass many times and it was difficult to process a large amount of powder. Furthermore, in the conventional powder processing apparatus, it was found that when the air volume (flow rate) is reduced to about 1/3 of the normal, the spheroidizing process and the composite process proceed. However, if the air volume is lowered, the flow of powder becomes unstable and the processing temperature increases, and in powders that are weak against heat (powders with a low melting point), fusion of the powders occurs. However, there is a problem that the spheroidizing process and the composite process become impossible.

したがって、回の球形化処理、さらに複合化処理で粉体の処理を進めるためには、風量を下げることなく、装置内を粉体が通過する時間(滞留時間)を長くする必要がある。従来の装置においては、固定子と回転子の全長を長くすればよいが、装置の重量増加による機械的強度、設置スペース、コスト等の問題で限界があった。

Therefore, in order to advance the powder processing by one spheroidization process and further the composite process, it is necessary to lengthen the time (the residence time) for the powder to pass through the apparatus without reducing the air volume. In the conventional apparatus, the total length of the stator and the rotor may be increased, but there are limitations due to problems such as mechanical strength, installation space, and cost due to an increase in the weight of the apparatus.

そこで、本発明は、このような問題を解決すべく創案されたもので、その目的は、粉体が粉砕されることなく、大量の粉体を1回で球形化処理、さらに複合化処理できると共に、粉体の特性に影響されず、すなわち、黒鉛のような塑性変形しない粉体から融点の低い粉体まで球形化処理、さらに複合化処理することができる粉体処理装置および粉体処理設備を提供することにある。 Therefore, the present invention was devised to solve such a problem, and its purpose is to spheroidize a large amount of powder at a time and further combine it without pulverizing the powder. In addition, a powder processing apparatus and a powder processing equipment that are not affected by the characteristics of the powder, that is, can be spheroidized from a powder that does not undergo plastic deformation, such as graphite, to a powder having a low melting point, and further combined. Is to provide.

前記課題を解決するために、本発明に係る粉体処理装置は、高速回転する円筒状の回転子と、前記回転子の外側に間隙を形成するように当該回転子と同軸に配置された円筒状の固定子とを備えた本体部と、前記本体部の一端に設けられ、処理原料を気流と共に前記間隙に供給する供給口と、前記本体部の他端に設けられ、前記処理原料が前記回転子と前記固定子との間で球形化された処理物を前記間隙から排出させる排出口とを備えた粉体処理装置において、前記固定子の内周面に、当該固定子の軸線に対して直交する複数の円周溝、または、前記軸線に対して空気流の下流に向かう方向から回転子の回転方向に60度以上90度未満の角度をなすらせん溝が形成された粉体処理装置として構成したものである。 In order to solve the above problems, a powder processing apparatus according to the present invention includes a cylindrical rotor that rotates at a high speed, and a cylinder that is arranged coaxially with the rotor so as to form a gap outside the rotor. A main body provided with a stator in a shape, a supply port that is provided at one end of the main body, supplies a processing raw material to the gap together with an air flow, is provided at the other end of the main body, and the processing raw material is In a powder processing apparatus provided with a discharge port for discharging a processed product spheroidized between a rotor and the stator from the gap, an inner peripheral surface of the stator is arranged with respect to an axis of the stator. a plurality of circumferential grooves powder or, the spiral grooves forming an angle of less than 60 degrees 90 degrees or more from the direction toward the downstream in the rotational direction of the rotor of the air flow with respect to the axis is made form, orthogonal Te It is configured as a processing device.

前記構成によれば、供給口から間隙に気流と共に供給された処理原料が、回転子の回転により発生した旋回流により、固定子に押し付けられながら、間隙内を供給口から排出口に向けて通過する。この際、固定子内周面に円周溝またはらせん溝が設けられていることにより、旋回流による遠心力で処理原料が溝底に押し付けられる。そして、処理原料が溝から出るには遠心力と逆方向に移動することとなるので、処理原料は容易には溝から出られず、溝内に長時間滞留することとなる。また、滞留時間を長くするために風量(気流の流速)を下げる必要がなくなる。そのため、壁面と処理原料との接触、および、処理原料同士の接触が多くなり、処理原料の球形化処理が進み、処理能力が向上すると共に、球形化処理により発生する熱を気流によって冷却でき、処理温度の温度上昇が少なくなる。また、従来の粉体処理装置に設けられた軸線と平行な突起材により形成された間隙と異なり、間隙内に強力な渦流が発生することを抑えることが可能となり、処理原料の粉砕が防止される。さらに、回転子と固定子との間で球形化処理された処理物は、間隙から排出口に気流と共に排出される。 According to the above configuration, the processing raw material supplied together with the air flow from the supply port passes through the gap from the supply port toward the discharge port while being pressed against the stator by the swirling flow generated by the rotation of the rotor. To do. At this time, since the circumferential groove or the spiral groove is provided on the inner peripheral surface of the stator, the processing raw material is pressed against the groove bottom by centrifugal force due to the swirling flow. Then, since the processing raw material moves in the direction opposite to the centrifugal force in order to exit the groove, the processing raw material cannot easily exit the groove and stays in the groove for a long time. Further, it is not necessary to reduce the air volume (flow velocity of airflow) in order to lengthen the residence time. Therefore, the contact between the wall surface and the processing raw material, and the contact between the processing raw materials increases, the spheroidization processing of the processing raw material proceeds, the processing capacity is improved, and the heat generated by the spheronization processing can be cooled by the airflow, The temperature rise of the processing temperature is reduced. In addition, unlike the gap formed by the projection material parallel to the axis provided in the conventional powder processing apparatus, it is possible to suppress the generation of a strong vortex in the gap, and the processing raw material is prevented from being crushed. The Further, the processed material that has been spheroidized between the rotor and the stator is discharged together with the airflow from the gap to the discharge port.

また、本発明に係る粉体処理装置は、前記固定子の内周面に、前記複数の円周溝が形成された第1溝形成領域と、この第1溝形成領域に連続して形成され、前記軸線に対して回転子の回転方向に0度を超え45度以下の角度をなす傾斜縦溝が形成された第2溝形成領域とを設けた粉体処理装置として構成したものであってもよい。 Further, the powder processing apparatus according to the present invention is formed on the inner peripheral surface of the stator, the first groove forming region in which the plurality of circumferential grooves are formed, and the first groove forming region. And a powder processing apparatus provided with a second groove forming region in which inclined vertical grooves having an angle of more than 0 degree and not more than 45 degrees with respect to the axis are formed in the rotation direction of the rotor. Also good.

前記構成によれば、さらに、旋回流による遠心力で、供給口から間隙に気流と共に供給された処理原料が第1溝形成領域の円周溝内に長時間滞留することとなり、風量を下げる必要がなくなる。そのため、処理温度を上昇させずに、かつ、処理原料の粉砕を抑えながら球形化処理することができ、処理減原料の球形化処理が進み、処理能力が向上する。また、球形化処理された処理物は、排出口から気流と共に排出される。 According to the above configuration, the processing raw material supplied together with the air flow from the supply port to the gap by the centrifugal force due to the swirling flow stays in the circumferential groove in the first groove forming region for a long time, and it is necessary to reduce the air volume. Disappears. Therefore, the spheroidizing process can be performed without increasing the processing temperature and suppressing the pulverization of the processing raw material, the spheroidizing process of the processing reduced raw material proceeds, and the processing capacity is improved. In addition, the spheroidized material is discharged from the discharge port together with the airflow.

また、固定子に複数の傾斜縦溝が形成された第2溝形成領域が設けられることにより、粉体が分散する。例えば、固定子の供給口側に第2溝形成領域が設けられた場合には気流と共に間隙に供給される処理原料が分散され、中間部に設けられた場合には、間隙内に凝集した処理原料または球形化処理された処理物が分散され、排出口側に設けられた場合には凝集した処理物が分散される。そのため、処理原料の球形化処理が促進される。 In addition, the powder is dispersed by providing the stator with a second groove forming region in which a plurality of inclined vertical grooves are formed. For example, when the second groove forming region is provided on the supply port side of the stator, the processing raw material supplied to the gap is dispersed together with the air flow, and when provided in the intermediate portion, the processing aggregated in the gap. When the raw material or the processed product that has been spheroidized is dispersed and provided on the outlet side, the agglomerated processed product is dispersed. Therefore, the spheroidization process of the processing raw material is promoted.

なお、本発明に係る粉体処理装置は、前記回転子の外周面に、当該回転子の軸線に対して平行な複数の縦凸部、または、前記軸線に対して回転子の回転方向に0度を超え45度以下の角度をなす複数の傾斜凸部が形成された粉体処理装置として構成したものであってもよい。
前記構成によれば、回転子の外周面に形成された縦凸部または傾斜凸部により、処理原料を固定子の溝内で旋回させる作用が強力になり、球形化処理がより一層促進される。
In the powder processing apparatus according to the present invention, a plurality of vertical convex portions parallel to the axis of the rotor on the outer peripheral surface of the rotor, or 0 in the rotation direction of the rotor with respect to the axis. It may be configured as a powder processing apparatus in which a plurality of inclined convex portions having an angle of more than 45 degrees and 45 degrees or less are formed.
According to the said structure, the effect | action which makes a process raw material swirl within the groove | channel of a stator becomes strong with the vertical convex part or inclination convex part formed in the outer peripheral surface of a rotor, and a spheroidization process is further accelerated | stimulated. .

本発明に係る粉体処理装置は、前記回転子の外周面に、当該回転子の軸線に対して平行な複数の縦凸部、または、前記軸線に対して空気流の下流に向かう方向から回転子の回転方向に0度を超え45度以下の角度をなす複数の傾斜凸部が形成された凸部形成領域と、この凸部形成領域に連続して形成され、前記凸部形成領域の最小外径より大きく最大外径以下の外径を有し、平滑に形成された円筒領域とを設けた粉体処理装置として構成したものであってもよい。 The powder processing apparatus according to the present invention rotates on the outer peripheral surface of the rotor from a plurality of vertical convex portions parallel to the axis of the rotor, or from the direction toward the downstream of the air flow with respect to the axis. A convex portion forming region in which a plurality of inclined convex portions having an angle of more than 0 degree and not more than 45 degrees in the rotation direction of the child is formed, and the convex portion forming region is formed continuously, and the minimum of the convex portion forming region It may be configured as a powder processing apparatus having an outer diameter larger than the outer diameter and not larger than the maximum outer diameter and provided with a smoothly formed cylindrical region.

前記構成によれば、処理原料が固定子の溝底に押し付けられずに、回転子の凸部形成領域における縦凸部間または傾斜凸部間に形成された凹部を移動するようなことが発生した場合でも、円筒領域を設けることにより、凹部を移動する処理原料を、固定子の溝底に移動させ、球形化処理を行なうことが可能となる。そのため、処理原料の球形化処理がより一層促進される。 According to the above configuration, the processing raw material does not press against the groove bottom of the stator, and the concave portion formed between the vertical convex portions or the inclined convex portions in the convex portion forming region of the rotor occurs. Even in this case, by providing the cylindrical region, it is possible to move the processing raw material that moves in the concave portion to the groove bottom of the stator and perform the spheroidizing process. Therefore, the spheroidization process of the processing raw material is further promoted.

本発明に係る粉体処理装置は、前記処理原料として2種以上の処理原料を使用し、2種以上の処理原料が前記回転子と前記固定子との間で複合化された処理物を前記間隙から前記排出口に排出する粉体処理装置として構成することができる。 The powder processing apparatus according to the present invention uses two or more processing raw materials as the processing raw material, and a processed product in which two or more processing raw materials are combined between the rotor and the stator. It can be configured as a powder processing apparatus that discharges from the gap to the discharge port.

前記構成によれば、壁面と処理原料との接触、および、処理原料同士の接触が多くなり、処理原料の複合化処理が進み、処理能力が向上すると共に、複合化処理により発生する熱を気流によって冷却でき、処理温度の温度上昇が少なくなる。また、従来の粉体処理装置に設けられた軸線と平行な突起材により形成された間隙と異なり、間隙内に強力な渦流が発生することを抑えることが可能となり、処理原料の粉砕が防止される。さらに、回転子と固定子との間で複合化処理された処理物は、間隙から排出口に気流と共に排出される。 According to the above-described configuration, the contact between the wall surface and the processing raw material and the contact between the processing raw materials increase, the processing raw material is compounded, the processing capacity is improved, and the heat generated by the compounding processing Can be cooled, and the temperature rise of the processing temperature is reduced. In addition, unlike the gap formed by the projection material parallel to the axis provided in the conventional powder processing apparatus, it is possible to suppress the generation of a strong vortex in the gap, and the processing raw material is prevented from being crushed. The Further, the processed product combined between the rotor and the stator is discharged from the gap to the discharge port together with the airflow.

本発明に係る粉体処理設備は、本発明に係る粉体処理装置と、前記粉体処理装置の下流側に配置され、前記供給口に供給され、かつ前記排出口から排出される気流を発生させる排風装置と、前記粉体処理装置の上流側に配置され、当該粉体処理装置の上流側に形成される気流と共に処理原料を前記供給口に供給するべく、当該処理原料を前記粉体処理装置の上流側に形成される気流に対して供給する原料供給装置と、前記排風装置の上流側に配置され、前記排出口から排出された気流から前記粉体処理装置で球形化された処理物を回収する回収装置とを備える粉体処理設備であって、前記供給口に供給される気流の温度を冷却する冷却装置を前記粉体処理装置の上流側に備えた粉体処理設備として構成したものである。 The powder processing facility according to the present invention is arranged on the downstream side of the powder processing apparatus according to the present invention and the powder processing apparatus, and generates an air flow that is supplied to the supply port and discharged from the discharge port. An exhausting device that is disposed on the upstream side of the powder processing apparatus, and for supplying the processing raw material to the supply port together with an airflow formed on the upstream side of the powder processing apparatus, A raw material supply device that supplies airflow formed on the upstream side of the processing device, and is arranged on the upstream side of the exhausting device, and is made spherical by the powder processing device from the airflow discharged from the discharge port. A powder processing facility comprising a recovery device for recovering a processed product, wherein the powder processing facility includes a cooling device for cooling the temperature of the airflow supplied to the supply port on the upstream side of the powder processing device. It is composed.

前記構成によれば、原料供給装置を備えることにより、供給口への処理原料の供給量が調整される。また、排風装置を備えることにより、処理原料と共に供給口に供給される気流の流速、粉体処理装置の間隙内を流通する気流の流速(風量)および球形化された処理物と共に排出口から排出される気流の流速が調整される。また、回収装置を備えることにより、球形化された処理物が効率よく回収される。さらに、冷却装置を備えることにより、粉体処理装置内に供給される処理原料の温度が低くなり、球形化処理の際の処理温度が低くなる。それにより、処理原料の融着を抑えることができる。その結果、処理原料の球形化処理が進み、処理能力が向上する。特に、融点の低い処理原料において顕著となる。 According to the said structure, the supply amount of the processing raw material to a supply port is adjusted by providing a raw material supply apparatus. In addition, by providing a wind exhaust device, the flow velocity of the air flow supplied to the supply port together with the processing raw material, the flow velocity (air flow) of the air flow flowing through the gap of the powder processing device, and the spherical processed product from the discharge port. The flow rate of the discharged airflow is adjusted. Further, by providing the recovery device, the spheroidized processed material is efficiently recovered. Furthermore, by providing the cooling device, the temperature of the processing raw material supplied into the powder processing device is lowered, and the processing temperature during the spheroidization processing is lowered. Thereby, fusion of the processing raw material can be suppressed. As a result, the spheroidization processing of the processing raw material proceeds and the processing capacity is improved. This is particularly noticeable in processing raw materials having a low melting point.

本発明に係る粉体処理設備は、前記排出口から分岐した気体導入ダクトを備え、前記気体導入ダクトに連続開閉ダンパを設ける粉体処理設備として構成することができる。 The powder processing facility according to the present invention can be configured as a powder processing facility including a gas introduction duct branched from the discharge port, and a continuous open / close damper provided in the gas introduction duct.

前記構成によれば、気体導入ダクトを備え、そのダクトに連続開閉ダンパを設けることにより、ダンパが閉じた際には粉体処理装置内を流れる気流が速くなり、開けた際には気流が遅くなる。ダンパを連続的に開閉することで粉体処理装置内の気流が脈動し、気流が速くなると処理原料は粉体処理装置内を供給口側から排出口側に移動し、気流が遅くなると固定子の円周溝またはらせん溝内に滞留する。したがって、ダンパの開閉タイミングを調整することで、処理原料の滞留時間を長くすることが可能となり、球形化処理が進み、処理能力が向上する。また、球形化処理された処理物は一定速の速い気流により排出口から排出されるため、処理物の排出口内への付着等が発生することがない。 According to the above configuration, the gas introduction duct is provided, and the continuous opening / closing damper is provided in the duct, so that the airflow flowing in the powder processing apparatus is faster when the damper is closed, and the airflow is slower when the damper is opened. Become. By continuously opening and closing the damper, the air flow in the powder processing device pulsates, and when the air flow increases, the processing raw material moves from the supply port side to the discharge port side when the air flow increases, and when the air flow becomes slow, the stator It stays in the circumferential groove or spiral groove. Therefore, by adjusting the opening / closing timing of the damper, it is possible to lengthen the residence time of the processing raw material, the spheronization process proceeds, and the processing capacity is improved. Further, since the processed product that has been spheroidized is discharged from the discharge port by a fast air flow at a constant speed, the processed product does not adhere to the discharge port.

本発明に係る粉体処理設備は、前記連続開閉ダンパの上流を前記冷却装置と前記原料供給装置との間に接続する粉体処理設備として構成することができる。 The powder processing facility according to the present invention can be configured as a powder processing facility that connects the upstream of the continuous open / close damper between the cooling device and the raw material supply device.

前記構成によれば、連続開閉ダンパの上流に冷却装置を備えることとなり、気体導入ダクトを介して排出口内に冷却された気流が供給され、球形化処理された処理物を冷却することが可能となる。その結果、処理物の排出口内への付着等が発生することがない。 According to the above configuration, the cooling device is provided upstream of the continuous open / close damper, and the cooled airflow is supplied into the discharge port via the gas introduction duct, and the spheroidized processed product can be cooled. Become. As a result, the treated product does not adhere to the discharge port.

本発明に係る第2の粉体処理設備は、本発明に係る粉体処理装置と、前記粉体処理装置の上流側に配置され、気流と共に処理原料を前記供給口に供給する原料供給装置と、前記粉体処理装置の下流側に配置され、前記供給口に供給され、かつ前記排出口から排出される気流を発生させる排風装置と、前記排風装置の上流側に配置され、前記排出口から排出された気流から前記粉体処理装置で球形化された処理物を回収する回収装置とを備える粉体処理設備であって、前記供給口に供給される気流の温度を加熱する加熱装置を前記粉体処理装置の上流側に備えた粉体処理設備として構成したものである。 A second powder processing facility according to the present invention includes a powder processing apparatus according to the present invention, a raw material supply apparatus that is disposed upstream of the powder processing apparatus and supplies a processing raw material to the supply port together with an air flow. An exhaust device that is disposed on the downstream side of the powder processing device, generates an airflow that is supplied to the supply port and is discharged from the exhaust port, and an exhaust device that is disposed on the upstream side of the exhaust device. A heating apparatus for heating the temperature of the airflow supplied to the supply port, the powder processing facility comprising: a recovery device that recovers the processed product spheroidized by the powder processing apparatus from the airflow discharged from the outlet Is configured as a powder processing facility provided on the upstream side of the powder processing apparatus.

前記構成によれば、本発明に係る先の粉体処理設備と同様に、処理原料の供給量、粉体処理設備を流通する気流の流速が調整されると共に、球形化された処理物が効率よく回収される。また、加熱装置を備えることにより、粉体処理装置内に供給される処理原料の温度が高くなり、球形化処理の際の温度が高くなる。それにより、処理原料を軟化させながら球形化処理することができる。その結果、処理原料の球形化処理が進み、処理能力が向上する。特に、融点の高い処理原料において顕著となる。なお、供給口に供給される気流を加熱(昇温)しても、球形化処理の際の温度が、処理原料の融着が発生する温度にまで高くなることはない。 According to the above configuration, as in the previous powder processing facility according to the present invention, the supply amount of the processing raw material and the flow rate of the airflow flowing through the powder processing facility are adjusted, and the spheroidized processed product is efficient. It is recovered well. Further, by providing the heating device, the temperature of the processing raw material supplied into the powder processing device is increased, and the temperature during the spheroidization processing is increased. Thereby, the spheroidizing treatment can be performed while the processing raw material is softened. As a result, the spheroidization processing of the processing raw material proceeds and the processing capacity is improved. This is particularly noticeable in processing raw materials having a high melting point. Even if the airflow supplied to the supply port is heated (heated up), the temperature during the spheronization process does not increase to a temperature at which the fusion of the processing raw material occurs.

発明に係る第2の粉体処理設備は、前記排出口から分岐した気体導入ダクトを備え、前記気体導入ダクトに連続開閉ダンパを設ける粉体処理設備として構成することができる。 The second powder processing facility according to the invention may be configured as a powder processing facility including a gas introduction duct branched from the discharge port, and a continuous open / close damper provided in the gas introduction duct.

前記構成によれば、本発明に係る先の粉体処理設備と同様に、連続開閉ダンパを設け、その開閉タイミングを調整することで、処理原料の滞留時間を長くすることが可能となり、球形化処理が進み、処理能力が向上する。また、球形化処理された処理物は一定速の速い気流により排出口から排出されるため、処理物の排出口内への付着等が発生することがない。 According to the above-described configuration, as with the previous powder processing equipment according to the present invention, by providing a continuous opening / closing damper and adjusting the opening / closing timing, it becomes possible to lengthen the residence time of the processing raw material and make it spherical. Processing progresses and processing capacity improves. Further, since the processed product that has been spheroidized is discharged from the discharge port by a fast air flow at a constant speed, the processed product does not adhere to the discharge port.

本発明に係る第2の粉体処理設備は、前記連続開閉ダンパの上流に冷却装置を備える粉体処理設備として構成することができる。 The second powder processing facility according to the present invention can be configured as a powder processing facility including a cooling device upstream of the continuous open / close damper.

前記構成によれば、連続開閉ダンパの上流に冷却装置を備えることにより、気体導入ダクトを介して排出口内に冷却された気流が供給され、球形化処理された処理物を冷却することが可能となる。その結果、処理物の排出口内への付着等が発生することがない。 According to the above configuration, by providing the cooling device upstream of the continuous open / close damper, the cooled airflow is supplied into the discharge port via the gas introduction duct, and the spheroidized processed product can be cooled. Become. As a result, the treated product does not adhere to the discharge port.

本発明に係る粉体処理設備は、前記処理原料として2種以上の処理原料を使用し、2種以上の処理原料を供給する複数の原料供給装置が前記粉体処理装置の上流側に備えられ、前記粉体処理装置で複合化された処理物が前記回収装置で回収される粉体処理設備として構成することができる。 In the powder processing facility according to the present invention, two or more kinds of processing raw materials are used as the processing raw materials, and a plurality of raw material supply devices for supplying two or more kinds of processing raw materials are provided upstream of the powder processing apparatus. In addition, it can be configured as a powder processing facility in which a processed product combined by the powder processing apparatus is recovered by the recovery apparatus.

前記構成によれば、複数の原料供給装置から個別に温度調節された気流に対して供給され、温度調節された気流と共に粉体処理装置内に供給された2種以上の処理原料は、粉体処理装置の供給口側の間隙で混合され、母粉体(粒径の大きい粉体)となる処理原料表面に、子粉体(粒径の小さい粉体)となる処理原料が付着する。そして、排出口側の間隙に近づくにつれて、両処理原料が複合化される。 According to the above-described configuration, the two or more kinds of processing raw materials supplied from the plurality of raw material supply apparatuses to the individually controlled temperature airflow and supplied into the powder processing apparatus together with the temperature-controlled airflow are: A processing raw material to be a child powder (a powder having a small particle size) adheres to the surface of the processing raw material that is mixed in a gap on the supply port side of the processing apparatus and becomes a mother powder (a powder having a large particle size). And both processing raw materials are compounded as it approaches the gap on the discharge port side.

本発明に係るさらに別の粉体処理設備は、2種以上の処理原料が回転子と固定子との間で複合化された処理物を排出口に排出するようにした本発明に係る粉体処理装置と、前記粉体処理装置の下流側に配置され、前記供給口に供給され、かつ前記排出口から排出される気流を発生させる排風装置と、前記粉体処理装置の上流側に配置され、当該粉体処理装置の上流側に形成される気流と共に2種以上の処理原料を前記供給口に供給するべく、当該処理原料を前記粉体処理装置の上流側に形成される気流に対して供給する複数の原料供給装置と、前記排風装置の上流側に配置され、前記排出口から排出された気流から前記粉体処理装置で複合化された処理物を回収する回収装置とを備える粉体処理設備として構成したものである。 Still another powder processing facility according to the present invention is a powder according to the present invention in which a processed product in which two or more processing raw materials are combined between a rotor and a stator is discharged to a discharge port. Arranged on the upstream side of the powder processing apparatus, a processing apparatus, an exhaust apparatus that is disposed on the downstream side of the powder processing apparatus, generates an air flow that is supplied to the supply port and discharged from the discharge port In order to supply two or more kinds of processing raw materials to the supply port together with the air flow formed on the upstream side of the powder processing apparatus, the processing raw material is supplied to the air flow formed on the upstream side of the powder processing apparatus. A plurality of raw material supply devices, and a recovery device that is disposed on the upstream side of the exhaust device and recovers the processed product combined by the powder processing device from the air flow discharged from the discharge port. It is configured as a powder processing facility.

前記構成によれば、複数の原料供給装置から個別に粉体処理装置内に供給された2種以上の処理原料は、粉体処理装置の供給口側の間隙で混合され、母粉体(粒径の大きい粉体)となる処理原料表面に、子粉体(粒径の小さい粉体)となる処理原料が付着する。そして、排出口側の間隙に近づくにつれて、両処理原料が複合化される。 According to the above configuration, two or more kinds of processing raw materials supplied individually from the plurality of raw material supply devices into the powder processing device are mixed in the gap on the supply port side of the powder processing device, and the mother powder (particles) A processing raw material that becomes a child powder (a powder having a small particle size) adheres to the surface of the processing raw material that becomes a powder having a large diameter. And both processing raw materials are compounded as it approaches the gap on the discharge port side.

本発明に係る粉体処理設備は、前記原料供給装置の下流側に、さらに前記2種類以上の処理原料を混合する原料混合装置が備えられている粉体処理設備として構成したものである。 The powder processing facility according to the present invention is configured as a powder processing facility provided with a raw material mixing device for further mixing the two or more types of processing raw materials on the downstream side of the raw material supply device.

前記構成によれば、原料混合装置によって、2種以上の処理原料が混合され、母粉体(粒径の大きい粉体)となる処理原料表面に、子粉体(粒径の小さい粉体)となる処理原料が付着した混合処理原料が生成される。この混合処理原料が粉体処理装置(間隙)に供給されることによって、供給口側の間隙で処理原料の付着が進行する請求項12の粉体処理設備と異なり、供給口側から排出口側の間隙の全領域で処理原料が複合化される。したがって、複合化処理時間が長くなり、より強固な複合化状態が達成される。 According to the above configuration, two or more kinds of processing raw materials are mixed by the raw material mixing apparatus, and the sub-powder powder (small particle size powder) is formed on the surface of the processing raw material that becomes the mother powder (powder having a large particle size). The mixed processing raw material to which the processing raw material to be attached is generated. Unlike the powder processing equipment according to claim 12, the mixed processing raw material is supplied to the powder processing apparatus (gap), whereby the processing raw material adheres in the gap on the supply port side. The processing raw materials are combined in the entire region of the gap. Therefore, the composite processing time becomes long, and a stronger composite state is achieved.

本発明に係る粉体処理設備は、前記処理原料として予め混合された2種以上からなる処理原料を使用し、当該予め混合された処理原料を供給する1つの原料供給装置が前記粉体処理装置の上流側に備えられ、前記粉体処理装置で複合化された処理物が前記回収装置で回収される粉体処理設備として構成することができる。 The powder processing facility according to the present invention uses two or more kinds of pre-mixed processing raw materials as the processing raw material, and one raw material supply device for supplying the pre-mixed processing raw material is the powder processing apparatus. Can be configured as a powder processing facility in which a processed product combined by the powder processing apparatus is recovered by the recovery apparatus.

前記構成によれば、1つの原料供給装置によって、予め混合された2種以上からなる処理原料が温度調節された気流と共に粉体処理装置(間隙)に供給されることによって、供給口側から排出口側の間隙の全領域で処理原料が複合化される。したがって、複合化処理時間が長くなり、より強固な複合化状態が達成される。 According to the above configuration, two or more kinds of processing raw materials mixed in advance by one raw material supply device are supplied to the powder processing device (gap) together with the temperature-adjusted airflow, and discharged from the supply port side. The processing raw material is combined in the entire region of the gap on the outlet side. Therefore, the composite processing time becomes long, and a stronger composite state is achieved.

本発明に係るまた別の粉体処理設備は、2種以上の処理原料が回転子と固定子との間で複合化された処理物を排出口に排出するようにした本発明に係る粉体処理装置と、前記粉体処理装置の下流側に配置され、前記供給口に供給され、かつ前記排出口から排出される気流を発生させる排風装置と、前記粉体処理装置の上流側に配置され、当該粉体処理装置の上流側に形成される気流と共に、予め混合された2種以上の処理原料を前記供給口に供給するべく、当該処理原料を前記粉体処理装置の上流側に形成される気流に対して供給する1つの原料供給装置と、前記排風装置の上流側に配置され、前記排出口から排出された気流から前記粉体処理装置で複合化された処理物を回収する回収装置とを備える粉体処理設備として構成したものである。 Another powder processing facility according to the present invention is a powder according to the present invention in which a processed product in which two or more processing raw materials are combined between a rotor and a stator is discharged to a discharge port. Arranged on the upstream side of the powder processing apparatus, a processing apparatus, an exhaust apparatus that is disposed on the downstream side of the powder processing apparatus, generates an air flow that is supplied to the supply port and discharged from the discharge port In order to supply two or more kinds of pre-mixed processing raw materials to the supply port together with the airflow formed on the upstream side of the powder processing device, the processing raw materials are formed on the upstream side of the powder processing device. One raw material supply device that supplies the airflow to be generated and the upstream side of the exhaust device, and collects the processed product combined by the powder processing device from the airflow discharged from the discharge port It is configured as a powder processing facility equipped with a recovery device.

前記構成によれば、1つの原料供給装置によって、予め混合された2種以上の処理原料が気流と共に粉体処理装置(間隙)に供給されることによって、供給口側から排出口側の間隙の全領域で処理原料が複合化される。したがって、複合化処理時間が長くなり、より強固な複合化状態が達成される。 According to the above configuration, two or more kinds of processing raw materials mixed in advance are supplied to the powder processing apparatus (gap) together with the air flow by one raw material supply apparatus, so that the gap between the supply port side and the discharge port side is reduced. Process raw materials are combined in all areas. Therefore, the composite processing time becomes long, and a stronger composite state is achieved.

本発明に係る粉体処理装置によれば、固定子の外周面に円周溝またはらせん溝を形成することにより、または、固定子の外周面に円周溝またはらせん溝を形成した第1溝形成領域と、縦溝または傾斜縦溝を形成した第2溝形成領域とを設けることにより、間隙(溝内)の渦流の発生が抑えられ、旋回流が発生するため、処理原料の溝内での滞留時間が長くなると共に、処理温度の上昇も抑えられる。その結果、粉体が粉砕されることなく、大量の粉体を1回で処理できると共に、粉体の特性に影響されず、すなわち、黒鉛のような塑性変形しない粉体から融点の低い粉体まで球形化処理、さらに複合化処理することができる。 According to the powder processing apparatus of the present invention, the first groove is formed by forming a circumferential groove or a spiral groove on the outer peripheral surface of the stator, or by forming a circumferential groove or a spiral groove on the outer peripheral surface of the stator. By providing the formation region and the second groove formation region in which the vertical groove or the inclined vertical groove is formed, the generation of the vortex flow in the gap (in the groove) is suppressed and the swirl flow is generated. As a result, the residence time becomes longer and the rise in the processing temperature can be suppressed. As a result, a large amount of powder can be processed at one time without being pulverized, and it is not affected by the properties of the powder, that is, a powder that does not undergo plastic deformation such as graphite and has a low melting point. The spheroidizing process and further the compounding process can be performed.

また、粉体処理装置によれば、回転子の外周面に、縦凸部または傾斜凸部を形成することにより、また、縦凸部または傾斜凸部を形成した凸部形成領域と円筒領域とを設けることにより、球形化処理時間、さらに複合化処理時間が短縮化されると共に、球形化処理、さらに複合化処理された処理物の粒径が均一となる。 Further, according to the powder processing apparatus, by forming the vertical convex portion or the inclined convex portion on the outer peripheral surface of the rotor, the convex portion forming region and the cylindrical region formed with the vertical convex portion or the inclined convex portion, By providing the spheroidizing treatment time and the composite treatment time are shortened, and the particle size of the spheroidization treatment and the composite treatment product is made uniform.

本発明に係る粉体処理設備によれば、冷却装置または加熱装置を粉体処理装置の上流側に備えることにより、また、複数の原料供給装置(原料混合装置を含む)、または、予め混合された処理原料を供給する1つの原料供給装置を備えることにより、粉体が粉砕されることなく、大量の粉体を1回で処理できると共に、粉体の特性に影響されず、すなわち、黒鉛のような塑性変形しない粉体から融点の低い粉体まで球形化処理、さらに複合化処理することができる。 According to the powder processing facility according to the present invention, a cooling device or a heating device is provided on the upstream side of the powder processing device, and a plurality of raw material supply devices (including a raw material mixing device) or pre-mixed. By providing one raw material supply device for supplying the processed raw material, a large amount of powder can be processed at one time without being pulverized, and it is not affected by the characteristics of the powder. From such powder that does not undergo plastic deformation to powder with a low melting point, spheronization processing and further composite processing can be performed.

また、粉体処理設備によれば、排出口から分岐した気体導入ダクトを備え、そのダクトに連続開閉ダンパを設けることにより、また、連続開閉ダンパの上流を冷却装置と原料供給装置との間に接続することにより、さらに、連続開閉ダンパの上流に冷却装置を備えることにより、球形化処理時間、さらに複合化処理時間が短縮化されると共に、球形化処理、さらに複合化処理された処理物の粒径が均一となる。 In addition, according to the powder processing facility, a gas introduction duct branched from the discharge port is provided, and a continuous open / close damper is provided in the duct, and the upstream of the continuous open / close damper is disposed between the cooling device and the raw material supply device. By connecting, further, by providing a cooling device upstream of the continuous open / close damper, the spheroidization processing time and the composite processing time can be shortened, and the spheronization processing and the composite processing product The particle size becomes uniform.

(a)は本発明に係る粉体処理装置の構成を示す断面図、(b)は回転子および固定子の断面形状を示す要部拡大断面図である。(A) is sectional drawing which shows the structure of the powder processing apparatus which concerns on this invention, (b) is a principal part expanded sectional view which shows the cross-sectional shape of a rotor and a stator. (a)〜(d)は固定子の内周面を示す断面図である。(A)-(d) is sectional drawing which shows the internal peripheral surface of a stator. (a)、(b)は固定子に形成された円周溝またはらせん溝の断面形状を示す要部拡大断面図である。(A), (b) is a principal part expanded sectional view which shows the cross-sectional shape of the circumferential groove | channel or helical groove | channel formed in the stator. (a)〜(c)は他の回転子の外周面を示す正面図、(d)は(c)の要部拡大断面図である。(A)-(c) is a front view which shows the outer peripheral surface of another rotor, (d) is a principal part expanded sectional view of (c). (a)、(b)は回転子に形成された縦凸部または傾斜凸部の断面形状を示す要部拡大断面図である。(A), (b) is a principal part expanded sectional view which shows the cross-sectional shape of the vertical convex part or inclination convex part formed in the rotor. 他の縦凸部または傾斜凸部の断面形状を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the cross-sectional shape of another vertical convex part or an inclination convex part. 本発明に係る粉体処理設備(球形化処理用)の構成を示す模式図である。It is a schematic diagram which shows the structure of the powder processing equipment (for spheroidization processing) which concerns on this invention. 本発明に係る他の粉体処理設備(球形化処理用)の構成を示す模式図である。It is a schematic diagram which shows the structure of the other powder processing equipment (for spheroidization processing) which concerns on this invention. 本発明に係る他の粉体処理設備(球形化処理用)の構成を示す模式図である。It is a schematic diagram which shows the structure of the other powder processing equipment (for spheroidization processing) which concerns on this invention. 本発明に係る他の粉体処理設備(球形化処理用)の構成を示す模式図である。It is a schematic diagram which shows the structure of the other powder processing equipment (for spheroidization processing) which concerns on this invention. 本発明に係る粉体処理設備(複合化処理用)の構成を示す模式図である。It is a schematic diagram which shows the structure of the powder processing equipment (for compound processing) which concerns on this invention. 本発明に係る他の粉体処理設備(複合化処理用)の構成を示す模式図である。It is a schematic diagram which shows the structure of the other powder processing equipment (for composite processing) which concerns on this invention.

本発明に係る粉体処理装置および粉体処理設備の実施の形態について、図面を参照して詳細に説明する。本発明において、粉体とは、有機、無機系を問わず、トナー、黒鉛、ナイロン、酸化チタン等に代表される、平均粒径が数百μm以下の粉末を言う。そして、粉体処理とは、不規則粒形の粉体(例えば、平均粒径が5〜50μmの粉体)を球形化処理すること、または、粉体(母粉体:例えば、平均粒径が5〜50μmの粉体)の表面に他の粉体(子粉体:母粉体の平均粒径に対して好ましくは1/10以下、より好ましくは1/100の粉体)を付着させて粉体を複合化する、すなわち、異なる機能を有する2種以上の粉体を複合化処理することを意味する。また、複合化処理においては、複合化した粉体の球形化処理も同時に行なわれる。 DESCRIPTION OF EMBODIMENTS Embodiments of a powder processing apparatus and powder processing equipment according to the present invention will be described in detail with reference to the drawings. In the present invention, the powder refers to a powder having an average particle size of several hundred μm or less, typified by toner, graphite, nylon, titanium oxide, etc., regardless of organic or inorganic type. The powder treatment is to spheroidize irregular-shaped powder (for example, powder having an average particle diameter of 5 to 50 μm), or to powder (base powder: for example, average particle diameter). Is adhered to the surface of the powder of 5 to 50 μm, preferably other powder (child powder: preferably 1/10 or less, more preferably 1/100 of the average particle diameter of the mother powder). This means that the powders are combined, that is, two or more powders having different functions are combined. In the compounding process, the compounded powder is spheroidized at the same time.

図1(a)は粉体処理装置の構成を示す断面図、(b)は回転子および固定子の断面形状を示す要部拡大断面図、図2(a)〜(d)は固定子の内周面を示す断面図、図3(a)、(b)は固定子に形成された円周溝またはらせん溝の断面形状を示す要部拡大断面図、図4(a)〜(c)は他の回転子の外周面を示す正面図、(d)は(c)の要部拡大断面図、図5(a)、(b)は回転子に形成された縦凸部または傾斜凸部の断面形状を示す要部拡大断面図、図6は他の縦凸部または傾斜凸部の断面形状を示す要部拡大断面図、図7〜図12は粉体処理設備の構成を示す模式図である。 1A is a cross-sectional view showing a configuration of a powder processing apparatus, FIG. 1B is an enlarged cross-sectional view of a main part showing cross-sectional shapes of a rotor and a stator, and FIGS. 2A to 2D are views of a stator. 3A and 3B are main part enlarged cross-sectional views showing a cross-sectional shape of a circumferential groove or a spiral groove formed in the stator, and FIGS. 4A to 4C. Is a front view showing the outer peripheral surface of another rotor, (d) is an enlarged cross-sectional view of the main part of (c), and FIGS. 5 (a) and 5 (b) are vertical convex portions or inclined convex portions formed on the rotor. FIG. 6 is an enlarged cross-sectional view of the main part showing the cross-sectional shape of another vertical convex part or inclined convex part, and FIGS. 7 to 12 are schematic views showing the configuration of the powder processing equipment. It is.

なお、本発明に係る粉体処理装置および粉体処理設備の実施の形態では、本体部の回転子および固定子の軸線が垂直となるように設けた図面を例示して説明しているが、本発明はこれらの図例に限定されるものではない。すなわち、本発明における回転子および固定子の軸線は、垂直以外の角度に設けてもよく、例えば、水平に設けてもよい。 In the embodiment of the powder processing apparatus and the powder processing facility according to the present invention, the drawings provided such that the axes of the rotor and the stator of the main body are vertical are described. The present invention is not limited to these illustrated examples. That is, the axes of the rotor and the stator in the present invention may be provided at an angle other than vertical, for example, horizontally.

<粉体処理装置>
本発明においては、粉体の球形化処理および複合化処理のいずれにおいても、同一構成の粉体処理装置が使用される。まず、粉体処理装置の第1実施形態について説明する。
第1実施形態の粉体処理装置は、図1(a)に示すように、粉体処理装置1が、回転子2aと固定子3aとを備えた本体部4と、本体部4の一端に設けられた供給口6と、本体部4の他端に設けられた排出口7とを備える。以下、各構成について説明する。
<Powder processing equipment>
In the present invention, a powder processing apparatus having the same configuration is used in both the spheroidizing process and the compounding process. First, a first embodiment of the powder processing apparatus will be described.
In the powder processing apparatus according to the first embodiment, as shown in FIG. 1A, the powder processing apparatus 1 includes a main body 4 including a rotor 2 a and a stator 3 a, and one end of the main body 4. A supply port 6 provided and a discharge port 7 provided at the other end of the main body 4 are provided. Each configuration will be described below.

(1)本体部
本体部4は、回転子2aと、回転子2aの外側に間隙5を形成するように回転子2aと同軸に配置された固定子3aとを備える。ここで、図1(b)に示すように、間隙5は、回転子2aの最外周面と、固定子3aの最内周面、すなわち固定子3aに形成された後記する円周溝14a間に形成された山部の頂点面との距離Sであって、0.5〜5mmが好ましい。なお、後記するように、回転子の外周面に縦凸部16aまたは傾斜凸部16b(図4(a)、(b)、図5(a)参照)が形成されている場合には、回転子の最外周面は各凸部の頂点面となる。また、後記するように、固定子の内周面にらせん溝14b、縦溝15aまたは傾斜縦溝15b(図2(b)〜(d)参照)が形成されている場合には、固定子の最内周面は各溝間に形成された山部の頂点面となる。距離Sが0.5mm未満の場合には、間隙5内での処理原料同士の接触、処理原料と最外周面(回転子2a)または最内周面(固定子3a)との接触が著しくなり、最外周面または最内周面に焼付き現象を起こし易くなる。また、距離Sが5mmを超える場合には、間隙5内に旋回流が発生し難くなり、処理原料の球形化処理、さらに複合化処理が進み難くなる。
(1) The main body part The main body part 4 includes a rotor 2a and a stator 3a arranged coaxially with the rotor 2a so as to form a gap 5 outside the rotor 2a. Here, as shown in FIG. 1B, the gap 5 is formed between the outermost circumferential surface of the rotor 2a and the innermost circumferential surface of the stator 3a, that is, a circumferential groove 14a described later formed on the stator 3a. It is distance S with the peak surface of the peak part formed in this, Comprising: 0.5-5 mm is preferable. In addition, as will be described later, when the vertical convex portion 16a or the inclined convex portion 16b (see FIGS. 4A, 4B, and 5A) is formed on the outer peripheral surface of the rotor, the rotation is performed. The outermost peripheral surface of the child is the apex surface of each convex portion. As will be described later, when the spiral groove 14b, the vertical groove 15a, or the inclined vertical groove 15b (see FIGS. 2B to 2D) is formed on the inner peripheral surface of the stator, The innermost peripheral surface becomes the apex surface of the crest formed between the grooves. When the distance S is less than 0.5 mm, the contact between the processing raw materials in the gap 5 and the contact between the processing raw material and the outermost peripheral surface (rotor 2a) or the innermost peripheral surface (stator 3a) become significant. The seizure phenomenon is likely to occur on the outermost peripheral surface or the innermost peripheral surface. In addition, when the distance S exceeds 5 mm, it is difficult for a swirling flow to be generated in the gap 5, and it becomes difficult for the spheroidizing process and the composite process to proceed.

(第1の回転子)
回転子2aは、回転軸9を有し、この回転軸9が頂板11に設けられた軸受12bおよび基台10に設けられた軸受12aにより支持されることにより、基台10の上に垂直に置かれている。また、回転軸9の下端部には駆動装置(図示せず)により駆動されるVプーリー13が装着されている。そして、この駆動装置の駆動により、回転子2aは回転軸9を中心に高速、例えば、通常周速100〜130m/s、最高周速170m/sで回転する。また、回転子2aは、円筒状に金属等で作製された円筒体であって、その外周面を硬質クロムメッキまたは超鋼等の溶射により耐磨耗処理されていることが好ましい。
(First rotor)
The rotor 2 a has a rotation shaft 9, and the rotation shaft 9 is supported by a bearing 12 b provided on the top plate 11 and a bearing 12 a provided on the base 10, so that the rotor 2 a is perpendicular to the base 10. It has been placed. A V pulley 13 driven by a driving device (not shown) is attached to the lower end portion of the rotating shaft 9. By driving the driving device, the rotor 2a rotates around the rotation shaft 9 at a high speed, for example, a normal peripheral speed of 100 to 130 m / s and a maximum peripheral speed of 170 m / s. Moreover, the rotor 2a is a cylindrical body made of a metal or the like in a cylindrical shape, and the outer peripheral surface thereof is preferably subjected to an abrasion resistance treatment by thermal spraying such as hard chrome plating or super steel.

(第1の固定子)
固定子3aは、前記したように、回転子2aの外側に間隙5を形成するように回転子2aと同軸に配置されたもので、円筒状に金属等で作製された円筒体であって、その内周面を硬質クロムメッキまたは超鋼等の溶射により耐磨耗処理されていることが好ましい。なお、固定子3aはライナ型、一体型のいずれでもよい。また、固定子3aは、冷却ジャケット8を備えることが、より好ましい。
(First stator)
As described above, the stator 3a is arranged coaxially with the rotor 2a so as to form the gap 5 outside the rotor 2a, and is a cylindrical body made of metal or the like in a cylindrical shape, It is preferable that the inner peripheral surface is subjected to wear resistance treatment by thermal spraying such as hard chrome plating or super steel. The stator 3a may be either a liner type or an integral type. The stator 3a more preferably includes a cooling jacket 8.

図2(a)に示すように、固定子3aには、その内周面に、固定子3aの軸線に対して直交する円周溝14aが多段に形成されている。また、固定子3aは、図2(b)に示すように、軸線に対して空気流の下流に向かう方向から回転子の回転方向に60度以上90度未満の角度θ1をなすらせん溝14bが形成されたものであってもよい。また、らせん溝は図示しないが、複数条のらせん溝であってもよい。 As shown in FIG. 2A, a circumferential groove 14a perpendicular to the axis of the stator 3a is formed in multiple stages on the inner circumferential surface of the stator 3a. In addition, as shown in FIG. 2B, the stator 3a has a helical groove 14b that forms an angle θ1 of 60 degrees or more and less than 90 degrees in the rotation direction of the rotor from the direction toward the downstream of the air flow with respect to the axis. May be formed. Moreover, although a spiral groove is not illustrated, a plurality of spiral grooves may be used.

ここで、らせん溝14bの角度θ1が90度の場合が円周溝14aであって、角度θ1が60度未満であると、溝内に旋回流が発生しないため、処理原料の溝内での滞留時間を長くできず、球形化処理、さらに複合化処理が進まない。また、らせん溝14bの固定子3aの下端から上端に向けての旋回方向は、回転子2aの回転方向と同一方向、異なる方向のいずれでもよいが、溝内に旋回流が発生し易い同一方向が好ましい。 Here, when the angle θ1 of the spiral groove 14b is 90 degrees, the circumferential groove 14a, and when the angle θ1 is less than 60 degrees, no swirling flow is generated in the groove, The residence time cannot be increased, and the spheroidizing process and the compounding process do not proceed. Further, the turning direction from the lower end to the upper end of the stator 3a of the spiral groove 14b may be either the same direction as the rotation direction of the rotor 2a or a different direction, but the same direction in which a swirling flow is easily generated in the groove. Is preferred.

円周溝14aまたはらせん溝14bの溝形状は、図3(a)に示すような四角(台形)、図3(b)に示すような三角(溝14c参照)、または、図示しないがU字であることが好ましい。そして、溝形状の寸法は、溝幅W2が5〜50mm、溝深さD1が3〜20mm、溝側面の角度は上流側の溝角度θ3が45〜90度、下流側の溝角度θ4が90〜150度が好ましい。また、溝間に形成された山の山頂幅W1が0〜50mmが好ましく、磨耗を考慮すると2〜50mmがより好ましい。さらに、溝底と溝側面の角r1、r2が0〜10mm、山頂と溝側面の角R1、R2が0〜10mmが好ましい。なお、溝幅W2、溝深さD1が下限値未満であると、渦流が発生し易く、処理原料に破砕がおき易くなる。溝幅W2、溝深さD1、山頂幅W1、角r1、r2、R1、R2が上限値を超えると、または、溝角度θ3、θ4が所定範囲外となると、旋回流が発生し難くなり、処理原料の溝内での滞留時間が短くなり易い。 The groove shape of the circumferential groove 14a or the spiral groove 14b can be a square (trapezoid) as shown in FIG. 3A, a triangle (see the groove 14c) as shown in FIG. It is preferable that The dimensions of the groove shape are as follows: the groove width W2 is 5 to 50 mm, the groove depth D1 is 3 to 20 mm, the groove side face angle is 45 to 90 degrees on the upstream groove angle θ3, and the downstream groove angle θ4 is 90 degrees. -150 degrees is preferred. Further, the peak width W1 of the peaks formed between the grooves is preferably 0 to 50 mm, and more preferably 2 to 50 mm in consideration of wear. Furthermore, the angles r1 and r2 between the groove bottom and the groove side surface are preferably 0 to 10 mm, and the angles R1 and R2 between the peak and the groove side surface are preferably 0 to 10 mm. In addition, when the groove width W2 and the groove depth D1 are less than the lower limit values, eddy currents are easily generated, and the processing raw material is easily crushed. When the groove width W2, the groove depth D1, the peak width W1, the angles r1, r2, R1, R2 exceed the upper limit values, or the groove angles θ3, θ4 are outside the predetermined range, the swirling flow becomes difficult to occur. The residence time of the processing raw material in the groove tends to be short.

(供給口、排出口)
図1(a)に示すように、供給口6は、本体部4の一端(下端)に設けられ、処理原料を気流と共に回転子2aと固定子3aとの間に形成された間隙5に供給するためのものである。また、排出口7は、本体部4の他端(上端)に設けられ、回転子2aと固定子3aとの間で球形化、さらに複合化された処理物を間隙5から排出するためのものある。そして、処理原料の供給および処理物の排出を容易なものとするために、供給口6、排出口7は共に、回転子2aの接線方向に設けられていることが好ましい。図において、供給口6、排出口7の配置は、互いに180度の角度をなす方向に配置されているが、同一方向(角度0度)または他の角度(例えば、90度)をなす方向に配置されていてもよい。また、本体部4の他端(上端)に供給口6、一端(下端)に排出口7を設けてもよい。
(Supply port, discharge port)
As shown in FIG. 1 (a), the supply port 6 is provided at one end (lower end) of the main body 4, and supplies the processing raw material to the gap 5 formed between the rotor 2a and the stator 3a together with the air flow. Is to do. The discharge port 7 is provided at the other end (upper end) of the main body 4, and is used to discharge the processed product that is spheroidized and combined between the rotor 2 a and the stator 3 a from the gap 5. is there. And in order to make supply of a processing raw material and discharge | emission of a processed material easy, it is preferable that both the supply port 6 and the discharge port 7 are provided in the tangent direction of the rotor 2a. In the drawing, the supply port 6 and the discharge port 7 are arranged in a direction that makes an angle of 180 degrees with each other, but in the direction that makes the same direction (angle 0 degree) or another angle (for example, 90 degrees). It may be arranged. Moreover, you may provide the supply port 6 in the other end (upper end) of the main-body part 4, and the discharge port 7 in one end (lower end).

次に、粉体処理装置の第2実施形態について説明する。
第2実施形態の粉体装置(図示せず)は、前記した第1実施形態の粉体処理装置を構成する固定子3aに代えて、図2(c)、(d)に示す固定子3bを使用したものである。他の構成は第1実施形態と同様なので説明を省略する。
Next, a second embodiment of the powder processing apparatus will be described.
In the powder device (not shown) of the second embodiment, a stator 3b shown in FIGS. 2 (c) and 2 (d) is used instead of the stator 3a constituting the powder processing device of the first embodiment. Is used. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

(第2の固定子)
固定子3bは、固定子3a(図2(a)、(b)参照)と同様に、円筒状に金属等で作製された円筒体であって、その内周面に第1溝形成領域Aと、この第1溝形成領域Aに連続して形成された第2溝形成領域Bとが設けられている。第1溝形成領域Aは、処理原料を球形化、さらに複合化する作用を有する領域で、第2溝形成領域Bは、処理原料または球形化処理、さらに複合化処理された処理物を分散する作用を有する領域である。第2溝形成領域Bは、固定子3bの上端側(図1の排出口7側)、中間部、下端部(図1の供給口6側)のいずれの位置に設けてもよい。また、第1溝形成領域Aおよび第2溝形成領域Bは複数設けてもよい。そして、第2溝形成領域Bの第1溝形成領域Aに対する軸方向での長さの比(B/A)は、球形化作用(複合化作用)および分散作用を考慮して、1/5〜1/2が好ましい。ここで、長さは、各領域の合計長さである。さらに、固定子3bの内周面が、耐磨耗処理されていることが好ましい。
(Second stator)
Like the stator 3a (see FIGS. 2A and 2B), the stator 3b is a cylindrical body made of metal or the like in a cylindrical shape, and has a first groove forming region A on its inner peripheral surface. And a second groove forming region B formed continuously with the first groove forming region A is provided. The first groove forming region A is a region having a function of spheroidizing and further compounding the processing raw material, and the second groove forming region B disperses the processing raw material or the spheroidizing treatment and the composite processed material. This is a region having an action. The second groove forming region B may be provided at any position on the upper end side (the discharge port 7 side in FIG. 1), the intermediate portion, and the lower end portion (the supply port 6 side in FIG. 1) of the stator 3b. A plurality of first groove forming regions A and second groove forming regions B may be provided. The ratio (B / A) of the length in the axial direction of the second groove forming region B to the first groove forming region A is 1/5 in consideration of the spheroidizing action (compositing action) and the dispersing action. ~ 1/2 is preferred. Here, the length is the total length of each region. Furthermore, it is preferable that the inner peripheral surface of the stator 3b is subjected to wear resistance treatment.

(第1溝形成領域)
第1溝形成領域Aは、固定子3bの内周面に、固定子3bの軸線に対して直交する円周溝14a、または、軸線に対して空気流の下流に向かう方向から回転子の回転方向に60度以上90度未満の角度をなすらせん溝14b(図示せず)が形成された領域である。円周溝14a、らせん溝14bについては、第1実施形態(第1の固定子3a)と同様なので、説明を省略する。
(First groove forming region)
The first groove forming area A is formed on the inner circumferential surface of the stator 3b, the circumferential groove 14a orthogonal to the axis of the stator 3b, or the rotation of the rotor from the direction toward the downstream of the air flow with respect to the axis. This is a region in which a spiral groove 14b (not shown) having an angle of 60 degrees or more and less than 90 degrees is formed. Since the circumferential groove 14a and the spiral groove 14b are the same as those in the first embodiment (first stator 3a), description thereof is omitted.

(第2溝形成領域)
第2溝形成領域Bは、固定子3bの内周面に、固定子3bの軸線に対して平行な縦溝15a、または、軸線に対して空気流の下流に向かう方向から回転子の回転方向に0度を超え45度以下の角度θ2をなす傾斜縦溝15bが形成された領域である。傾斜縦溝15bの角度θ2が0度の場合が縦溝15aであって、角度θ2が45度を超えると、傾斜縦溝15bによる処理原料または処理物の分散作用がなくなる。また、傾斜縦溝15bの固定子3bの下端から上端に向けての傾斜方向は、回転子2aの回転方向の前方側、後方側のいずれでもよいが、図2(d)に示すような、処理原料が溝内へ供給され易い、または、処理物が溝内から排出され易い後方側への傾斜が好ましい。
(Second groove forming region)
The second groove forming region B is formed on the inner peripheral surface of the stator 3b on the longitudinal groove 15a parallel to the axis of the stator 3b, or the direction of rotation of the rotor from the direction toward the downstream of the air flow with respect to the axis. In this region, the inclined vertical groove 15b having an angle θ2 of more than 0 degree and not more than 45 degrees is formed. When the angle θ2 of the inclined vertical groove 15b is 0 degrees, the vertical groove 15a is present, and when the angle θ2 exceeds 45 degrees, the dispersing action of the processing raw material or the processed material by the inclined vertical groove 15b is lost. Further, the inclination direction from the lower end to the upper end of the stator 3b of the inclined vertical groove 15b may be either the front side or the rear side in the rotation direction of the rotor 2a, but as shown in FIG. It is preferable that the processing raw material is easily supplied into the groove, or the rearward inclination in which the processed material is easily discharged from the groove is preferable.

縦溝15aおよび傾斜縦溝15bの溝形状は、四角(台形)またはU字であることが好ましい(図5(a)凹部19a、図6(b)の凹部19c参照)。そして、溝形状の寸法は、図示しないが、溝深さが5〜15mm、溝間に形成された山の山頂幅が2〜10mm、山頂ピッチが5〜50mmが好ましい。溝深さ、山頂幅または山頂ピッチが下限値未満であると粉砕作用が強くなり、上限値を超えると分散作用が低下し易い。 The groove shapes of the vertical grooves 15a and the inclined vertical grooves 15b are preferably square (trapezoidal) or U-shaped (see the recess 19a in FIG. 5A and the recess 19c in FIG. 6B). The dimensions of the groove shape are preferably not shown, but the groove depth is preferably 5 to 15 mm, the peak width between the peaks formed between the grooves is 2 to 10 mm, and the peak pitch is 5 to 50 mm. When the groove depth, peak width, or peak pitch is less than the lower limit value, the pulverizing action becomes strong, and when the groove depth, peak width or peak pitch exceeds the upper limit value, the dispersing action tends to decrease.

次に、粉体処理装置の好ましい実施形態について説明する。
好ましい粉体処理装置(図示せず)は、前記した第1、2実施形態の粉体処理装置を構成する回転子2aに代えて、図4(a)、(b)に示す回転子2bを使用したものである。他の構成は第1、2実施形態と同様なので説明を省略する。
Next, a preferred embodiment of the powder processing apparatus will be described.
A preferred powder processing apparatus (not shown) has a rotor 2b shown in FIGS. 4A and 4B instead of the rotor 2a constituting the powder processing apparatus of the first and second embodiments. It is what was used. Since other configurations are the same as those of the first and second embodiments, description thereof is omitted.

(第2の回転子)
回転子2bは、回転子2a(図1参照)と同様に、円筒状に金属等で作製された円筒体であって、その外周面に、回転子2bの軸線に対して平行な縦凸部16a、または、軸線に対して空気流の下流に向かう方向から回転子の回転方向に0度を超え45度以下の角度θ5をなす傾斜凸部16bが形成されている。傾斜凸部16bの角度θ5が0度の場合が縦凸部16aであって、角度θ5が45度超えると、傾斜凸部16bによる旋回流の向上作用が小さくなる。また、傾斜凸部16bの回転子2bの下端から上端に向けての傾斜方向は、回転子2bの回転方向の前方側、後方側のいずれでもよいが、図4(b)に示すような、旋回流が向上し易い後方側が好ましい。
(Second rotor)
Like the rotor 2a (see FIG. 1), the rotor 2b is a cylindrical body made of metal or the like in the shape of a cylinder, and has a longitudinal protrusion parallel to the axis of the rotor 2b on the outer peripheral surface thereof. An inclined convex portion 16b having an angle θ5 of more than 0 degree and not more than 45 degrees in the rotation direction of the rotor from the direction toward the downstream of the air flow with respect to the axis line 16a is formed. When the angle θ5 of the inclined convex portion 16b is 0 degrees, the vertical convex portion 16a is used. When the angle θ5 exceeds 45 degrees, the effect of improving the swirling flow by the inclined convex portion 16b is reduced. Further, the inclination direction from the lower end to the upper end of the rotor 2b of the inclined convex portion 16b may be either the front side or the rear side in the rotation direction of the rotor 2b, but as shown in FIG. The rear side where the swirl flow is easy to improve is preferable.

縦凸部16aまたは傾斜凸部16bの凸部間に形成される凹部形状は、四角(台形)(図5(a)の凹部19a参照)、三角(図6(a)の凹部19b参照)またはU字(図6(b)の凹部19c参照)であることが好ましく、凹部の底面は、回転子2bの外周面と平行な円弧または平面で形成される。また、回転子2bは、縦凸部16aまたは傾斜凸部16bの代わりに、ブレード16c(図6(c)参照)を回転子外表面に埋め込んだものであってもよい。 The concave shape formed between the convex portions of the vertical convex portion 16a or the inclined convex portion 16b is a square (trapezoid) (see the concave portion 19a in FIG. 5A), a triangle (see the concave portion 19b in FIG. 6A) or It is preferably U-shaped (see the concave portion 19c in FIG. 6B), and the bottom surface of the concave portion is formed by an arc or a plane parallel to the outer peripheral surface of the rotor 2b. Further, the rotor 2b may be one in which a blade 16c (see FIG. 6C) is embedded in the outer surface of the rotor instead of the vertical convex portion 16a or the inclined convex portion 16b.

図5(a)に示すように、縦凸部16aまたは傾斜凸部16bの凸部形状の寸法は、凸部高さD2が5〜15mm、凸部頂点幅W3が0〜10mm、頂点ピッチPが5〜100mm、凸部底面の角r3が0<r3<2D2が好ましい。凸部高さD2、頂点ピッチPが下限値未満であると、凹部19aでの渦流が強くなり、処理原料を固定子の溝底部に押し付ける力が低下し、処理原料の溝内での滞留時間が短くなり易い。凸部高さD2、凸部頂点幅W3、頂点ピッチP、角r3が上限値を超えると旋回流が発生し難くなり、処理原料の溝内での滞留時間が短くなり易い。なお、頂点ピッチPは、20〜60mmがより好ましい。 As shown in FIG. 5A, the dimensions of the convex shape of the vertical convex portion 16a or the inclined convex portion 16b are as follows: the convex height D2 is 5 to 15 mm, the convex vertex width W3 is 0 to 10 mm, and the vertex pitch P. Is preferably 5 to 100 mm, and the angle r3 of the bottom surface of the convex portion is preferably 0 <r3 <2D2. When the convex portion height D2 and the apex pitch P are less than the lower limit values, the vortex flow in the concave portion 19a becomes strong, the force for pressing the processing raw material against the groove bottom of the stator is reduced, and the residence time of the processing raw material in the groove Tends to be short. When the convex height D2, convex vertex width W3, vertex pitch P, and angle r3 exceed the upper limit values, it becomes difficult for the swirling flow to occur, and the residence time of the processing raw material in the groove tends to be short. The vertex pitch P is more preferably 20 to 60 mm.

図5(b)に示すように、縦凸部16aまたは傾斜凸部16bは、回転子2bの回転方向前方側または後方側に傾斜した形状でもよい。そして、前方側の凸部側面17の傾斜角度θ6は−5〜45度、後方側の凸部側面18の傾斜角度θ7は−45〜45度であることが好ましい。ここで、傾斜角度θ6は、凸部側面17の延長線と、回転子2bの回転中心と凸部頂点面の前方側の角とを結ぶ直線で形成されたもので、傾斜角度θ7は、凸部側面18の延長線と、回転子2bの回転中心と凸部頂点面の後方側の角とを結ぶ直線で形成されたものである。 As shown in FIG.5 (b), the vertical convex part 16a or the inclination convex part 16b may be the shape inclined in the rotation direction front side or back side of the rotor 2b. The inclination angle θ6 of the convex side surface 17 on the front side is preferably −5 to 45 degrees, and the inclination angle θ7 of the convex side surface 18 on the rear side is preferably −45 to 45 degrees. Here, the inclination angle θ6 is formed by a straight line connecting the extension line of the convex portion side surface 17 and the rotation center of the rotor 2b and the front angle of the convex portion vertex surface. It is formed by a straight line connecting the extension line of the part side surface 18 and the center of rotation of the rotor 2b and the corner on the rear side of the convex vertex surface.

また、他の好ましい実施形態の粉体処理装置(図示せず)は、前記した第1、2実施形態の粉体処理装置を構成する回転子2aに代えて、図4(c)、(d)に示す回転子2cを使用したものである。他の構成は第1、2実施形態と同様なので説明を省略する。 Further, in another preferred embodiment of the powder processing apparatus (not shown), instead of the rotor 2a constituting the powder processing apparatus of the first and second embodiments described above, FIGS. The rotor 2c shown in FIG. Since other configurations are the same as those of the first and second embodiments, description thereof is omitted.

(第3の回転子)
回転子2cは、回転子2a(図1参照)と同様に、円筒状に金属等で作製された円筒体であって、その外周面に、凸部形成領域Cと、この凸部形成領域Cに連続して形成された円筒領域Dとが設けられている。なお、回転子2cの外周面の複数箇所に、凸部形成領域Cと円筒領域Dとを設けてよい。また、回転子2cの外周面が耐磨耗処理されていることが好ましい。さらに、回転子2cは、1つの円筒体の外周面に凸部形成領域C、円筒領域Dの両者を加工して設けたもの、または、凸部形成領域Cを外周面に設けた円筒体と、円筒領域Dを外周面に設けた円筒体とを一体に結合したもののいずれでもよい。
(Third rotor)
The rotor 2c is a cylindrical body made of metal or the like in the same manner as the rotor 2a (see FIG. 1), and has a convex portion forming region C and a convex portion forming region C on the outer peripheral surface thereof. And a cylindrical region D formed continuously. In addition, you may provide the convex part formation area | region C and the cylindrical area | region D in the multiple places of the outer peripheral surface of the rotor 2c. Moreover, it is preferable that the outer peripheral surface of the rotor 2c is subjected to wear resistance treatment. Further, the rotor 2c is formed by processing both the convex portion forming region C and the cylindrical region D on the outer peripheral surface of one cylindrical body, or the cylindrical member having the convex portion forming region C provided on the outer peripheral surface. Any of those obtained by integrally joining a cylindrical body provided with a cylindrical region D on the outer peripheral surface may be used.

凸部形成領域Cは、処理原料を球形化処理、さらに複合化処理する作用を有する領域である。そして、円筒領域Dは、縦凸部16aまたは傾斜凸部16b(図示せず)間に形成された凹部を移動する処理原料を、図2に示す固定子3a、3bの円周溝14aまたはらせん溝14bの溝底に移動させて球形化処理、さらに複合化処理する作用を有する領域である。なお、各円筒領域Dの長さは、50mm以下が好ましい。また、円筒領域Dの合計長さは、凸部形成領域Cの合計長さに対して20%以下であることが好ましい。各円筒領域Dの長さが50mmを超える、または、円筒領域Dの合計長さが20%を超えると、処理原料の球形化処理、さらに複合化処理に強く関与する凸部形成領域Cの面積が小さくなり、処理原料が球形化処理、さらに複合化処理され難くなる。 The convex portion forming region C is a region having an action of spheroidizing and further combining the processing raw material. In addition, the cylindrical region D is formed by processing raw material that moves in the concave portions formed between the vertical convex portions 16a or the inclined convex portions 16b (not shown), and the circumferential grooves 14a or spirals of the stators 3a and 3b shown in FIG. This is a region having the action of moving to the groove bottom of the groove 14b to spheroidize and further combine. The length of each cylindrical region D is preferably 50 mm or less. Further, the total length of the cylindrical region D is preferably 20% or less with respect to the total length of the convex portion forming region C. When the length of each cylindrical region D exceeds 50 mm, or the total length of the cylindrical regions D exceeds 20%, the area of the convex portion forming region C that is strongly involved in the spheroidization processing of the processing raw material and further the composite processing Becomes small, and it becomes difficult for the processing raw material to be spheroidized and further combined.

(凸部形成領域)
凸部形成領域Cは、回転子2cの外周面に、回転子2cの軸線に対して平行な縦凸部16a、または、軸線に対して空気流の下流に向かう方向から回転子の回転方向に0度を超え45度以下の角度をなす傾斜凸部16b(図示せず)が形成された領域である。縦凸部16aまたは傾斜凸部16bについては、第2の回転子2bと同様なので、説明を省略する。

(Projection formation area)
The convex portion forming region C is formed on the outer peripheral surface of the rotor 2c on the longitudinal convex portion 16a parallel to the axis of the rotor 2c, or in the direction of rotation of the rotor from the direction toward the downstream of the air flow with respect to the axis. This is a region where inclined convex portions 16b (not shown) having an angle of more than 0 degree and not more than 45 degrees are formed. About the vertical convex part 16a or the inclination convex part 16b, since it is the same as that of the 2nd rotor 2b, description is abbreviate | omitted.

(円筒領域)
円筒領域Dは、前記凸部形成領域Cに連続して形成され、凸部形成領域Cの最小外径より大きく最大外径以下の外径を有する、平滑に形成された領域である。ここで、円筒領域Dの外径が、凸部形成領域Cの最小外径(図5(a)の凹部19a底部の位置での外径)より小さいと、凹部19a内の処理原料を固定子3a、3bへ移動させる作用がなくなる。また、円筒領域Dの外径が、凸部形成領域Cの最大外径(図5(a)の縦凸部16a頂点面または傾斜凸部16b頂点面の位置での外径)を超えると、凹部19a内の処理原料の固定子3a、3bへの移動の妨げとなり易い。
(Cylindrical region)
The cylindrical region D is a smoothly formed region formed continuously from the convex portion forming region C and having an outer diameter that is larger than the minimum outer diameter of the convex portion forming region C and equal to or smaller than the maximum outer diameter. Here, when the outer diameter of the cylindrical region D is smaller than the minimum outer diameter of the convex portion forming region C (the outer diameter at the bottom of the concave portion 19a in FIG. 5A), the processing raw material in the concave portion 19a is treated as a stator. The action of moving to 3a, 3b is lost. Further, when the outer diameter of the cylindrical region D exceeds the maximum outer diameter of the convex portion forming region C (the outer diameter at the position of the vertex surface of the vertical convex portion 16a or the inclined convex portion 16b in FIG. 5A), This tends to hinder the movement of the processing raw material in the recess 19a to the stators 3a and 3b.

<粉体処理設備>
次に、粉体処理設備について説明する。まず、粉体の球形化処理に使用される粉体処理設備(球形化処理用)の第1実施形態について説明する。
図7に示すように、粉体処理設備(球形化処理用)20aは、図1〜図6において説明した粉体処理装置1を使用するものであって、その粉体処理装置1の上流側に配置され、供給ダクト29を介して、気流と共に処理原料を粉体処理装置1(図1の供給口6)に供給する原料供給装置21と、粉体処理装置1の下流側に配置され、排出ダクト30を介して空気を吸引することによって、粉体処理装置1(供給口6)に供給され、かつ、粉体処理装置1(図1の排出口7)から排出される気流を発生させる排風装置22と、その排風装置22の上流側に配置され、粉体処理装置1(排出口7)から排出された気流から粉体処理装置1で球形化された処理物を回収する回収装置23とを備え、さらに、粉体処理装置1(供給口6)に供給される気流の温度を冷却する冷却装置24を粉体処理装置1の上流側に備える。
<Powder processing equipment>
Next, the powder processing facility will be described. First, a first embodiment of a powder processing facility (for spheronization processing) used for powder spheronization processing will be described.
As shown in FIG. 7, the powder processing facility (for spheroidizing processing) 20 a uses the powder processing apparatus 1 described in FIGS. 1 to 6 and is upstream of the powder processing apparatus 1. The raw material supply device 21 that supplies the processing raw material together with the air flow to the powder processing device 1 (supply port 6 in FIG. 1) via the supply duct 29, and the downstream side of the powder processing device 1, By sucking air through the discharge duct 30, an air flow that is supplied to the powder processing apparatus 1 (supply port 6) and discharged from the powder processing apparatus 1 (discharge port 7 in FIG. 1) is generated. A wind exhaust device 22 and a recovery unit disposed on the upstream side of the air exhaust device 22 and recovering a spheroidized product by the powder processing device 1 from an air flow discharged from the powder processing device 1 (discharge port 7). And an air flow that is supplied to the powder processing apparatus 1 (supply port 6). A cooling device 24 for cooling the temperature on the upstream side of the powder processing apparatus 1.

原料供給装置21は、スクリュー式またはテーブル式等の従来公知の供給装置を使用し、その種類は問わない。回収装置23は、サイクロン23a、バッグフィルタ23b等の従来公知の回収装置を使用し、図7ではサイクロン23a、バッグフィルタ23bを併用しているが、バッグフィルタ23bのみでもよい。 The raw material supply device 21 uses a conventionally known supply device such as a screw type or a table type, and the type thereof is not limited. As the recovery device 23, a conventionally known recovery device such as a cyclone 23a and a bag filter 23b is used. Although the cyclone 23a and the bag filter 23b are used in combination in FIG. 7, only the bag filter 23b may be used.

冷却装置24は、従来公知のクーラ等を使用し、気流の冷却のみならず除湿も行なうことが好ましい。冷却温度については、処理原料によって適宜設定され、例えば、トナーの場合には、気流を0〜5℃に冷却する。また、図7では、冷却装置24を原料供給装置21の上流側に設けたが、原料供給装置21の下流側に設けてもよい。そして、粉体処理設備(球形化処理用)20aが冷却装置24を備えることにより、処理原料の球形化処理能力(処理量)が向上し、特に、処理原料が低融点原料の場合、または、処理原料の供給量が多い場合に顕著である。 The cooling device 24 preferably uses a conventionally known cooler or the like, and performs not only airflow cooling but also dehumidification. The cooling temperature is appropriately set depending on the processing raw material. For example, in the case of toner, the airflow is cooled to 0 to 5 ° C. In FIG. 7, the cooling device 24 is provided on the upstream side of the raw material supply device 21, but may be provided on the downstream side of the raw material supply device 21. The powder processing facility (for spheroidizing treatment) 20a includes the cooling device 24, so that the spheroidizing processing capacity (processing amount) of the processing raw material is improved, and particularly when the processing raw material is a low melting point raw material, or This is remarkable when the supply amount of the processing raw material is large.

図8に示すように、粉体処理設備(球形化処理用)20aは、粉体処理装置1(排出口7)から分岐した気体導入ダクト25を備え、その気体導入ダクト25に連続開閉ダンパ26を設けることが好ましい。
気体導入ダクト25に導入される気体は、外気であって、窒素等の不活性ガスを使用してもよい。連続開閉ダンパ26は、ロータリー式、バタフライ式またはゲート式等の従来公知のダンパを使用する。この連続開閉ダンパ26の使用により、粉体処理装置1内の気流の速度(流量)が調整され、粉体処理装置1内での処理原料の滞留時間を長くすることができ、球形化処理能力が向上する。また、一定速の速い気流により、粉体処理装置1(排出口7)から処理物が排出されるため、排出口7内への処理物の付着、下流に配置された回収装置23への悪影響を防止し易い。なお、原料供給装置21より上流側に固定ダンパ31を設け、外気側と粉体処理装置1側との流量バランス調整を行なってもよい。
As shown in FIG. 8, the powder processing facility (for spheroidizing treatment) 20 a includes a gas introduction duct 25 branched from the powder processing apparatus 1 (discharge port 7), and a continuous open / close damper 26 is provided in the gas introduction duct 25. Is preferably provided.
The gas introduced into the gas introduction duct 25 is outside air, and an inert gas such as nitrogen may be used. As the continuous opening / closing damper 26, a conventionally known damper such as a rotary type, a butterfly type or a gate type is used. By using this continuous opening / closing damper 26, the velocity (flow rate) of the air flow in the powder processing apparatus 1 is adjusted, the residence time of the processing raw material in the powder processing apparatus 1 can be lengthened, and the spheroidizing processing capability Will improve. Further, since the processed material is discharged from the powder processing apparatus 1 (discharge port 7) by a fast air flow at a constant speed, the processed material adheres to the discharge port 7 and adversely affects the recovery device 23 disposed downstream. It is easy to prevent. Note that a fixed damper 31 may be provided on the upstream side of the raw material supply device 21 to adjust the flow rate balance between the outside air side and the powder processing device 1 side.

図9に示すように、連続開閉ダンパ26の上流を冷却装置24と原料供給装置21との間に接続することが好ましい。これにより、球形化された処理物を冷却することができ、粉体処理装置1(排出口7)内での処理物の付着を防止できる。 As shown in FIG. 9, the upstream of the continuous opening / closing damper 26 is preferably connected between the cooling device 24 and the raw material supply device 21. Thereby, the spheroidized processed material can be cooled, and adhesion of the processed material in the powder processing apparatus 1 (discharge port 7) can be prevented.

次に、粉体処理設備(球形化処理用)の第2実施形態について説明する。
図10に示すように、粉体処理設備(球形化処理用)20bは、前記した第1実施形態の粉体処理設備(球形化処理用)20a(図8参照)の冷却装置24に代えて、加熱装置27を備える。他の構成は、第1実施形態の粉体処理設備(球形化処理用)20aと同様なので、他の構成については説明を省略する。
Next, a second embodiment of the powder processing facility (for spheroidization processing) will be described.
As shown in FIG. 10, the powder processing facility (for spheroidizing treatment) 20b is replaced with the cooling device 24 of the powder processing facility (for spheroidizing processing) 20a (see FIG. 8) of the first embodiment. The heating device 27 is provided. The other configuration is the same as that of the powder processing facility (for spheroidizing treatment) 20a of the first embodiment, and thus the description of the other configuration is omitted.

加熱装置27は、従来公知のヒータ等を使用し、加熱温度については、処理原料によって適宜設定される。また、図10では、加熱装置27を原料供給装置21の上流側に設けたが、原料供給装置21の下流側に設けてもよい。そして、粉体処理設備(球形化処理用)20bが加熱装置27を備えることにより、処理原料の球形化処理能力が向上し、特に、処理原料が、熱に強い高融点原料で、高温で球形化処理が進む場合に顕著である。 The heating device 27 uses a conventionally known heater or the like, and the heating temperature is appropriately set depending on the processing raw material. In FIG. 10, the heating device 27 is provided on the upstream side of the raw material supply device 21, but may be provided on the downstream side of the raw material supply device 21. The powder processing facility (for spheroidizing treatment) 20b includes the heating device 27, whereby the spheroidizing ability of the processing raw material is improved. In particular, the processing raw material is a high-melting-point raw material resistant to heat, and is spherical at a high temperature. This is conspicuous when the digitization process proceeds.

粉体処理設備(球形化処理用)20bは、前記粉体処理設備(球形化処理用)20aと同様に、気体導入ダクト25を備え、その気体導入ダクト25に連続開閉ダンパ26を設けることが好ましい。また、連続開閉ダンパ26の上流に冷却装置28を備えることが好ましい。この冷却装置28を備えることにより、昇温して球形化された処理物を冷却することができ、粉体処理装置1(排出口7)内での処理物の付着を防止できる。
なお、粉体処理設備(球形化処理用)20a、20bは、処理原料の特性によって、必ずしも、冷却装置24、28および加熱装置27を備えていなくてもよい。
The powder processing facility (for spheroidizing treatment) 20b is provided with a gas introduction duct 25 as in the case of the powder processing facility (for spheroidizing treatment) 20a, and a continuous open / close damper 26 is provided in the gas introduction duct 25. preferable. Further, it is preferable to provide a cooling device 28 upstream of the continuous opening / closing damper 26. By providing this cooling device 28, the processed product that has been heated to a spherical shape can be cooled, and adhesion of the processed product in the powder processing apparatus 1 (discharge port 7) can be prevented.
Note that the powder processing facilities (for spheroidizing treatment) 20a and 20b may not necessarily include the cooling devices 24 and 28 and the heating device 27 depending on the characteristics of the processing raw materials.

次に、粉体の複合化処理に使用される粉体処理設備(複合化処理用)の第1実施形態を図11に示す。図11に示すように、粉体処理設備(複合化処理用)20cは、図1〜図6において説明した粉体処理装置1を使用するものであって、原料供給装置21(図7参照)として、2種の処理原料を個別に供給する第1原料供給装置21a、第2原料供給装置21bを使用すること以外は、図7に示す粉体処理設備(球形化処理用)20aと同一構成を備える。このような構成により、処理原料の複合化処理能力(処理量)が向上し、特に、処理原料が低融点原料の場合、または、処理原料の供給量が多い場合に顕著である。 Next, FIG. 11 shows a first embodiment of a powder processing facility (for composite processing) used for powder composite processing. As shown in FIG. 11, the powder processing facility (for composite processing) 20 c uses the powder processing apparatus 1 described in FIGS. 1 to 6, and is a raw material supply apparatus 21 (see FIG. 7). As the powder processing equipment (for spheroidizing treatment) 20a shown in FIG. 7 except that the first raw material supply device 21a and the second raw material supply device 21b for supplying two kinds of processing raw materials individually are used. Is provided. With such a configuration, the composite processing capacity (processing amount) of the processing raw material is improved, and is particularly remarkable when the processing raw material is a low melting point raw material or when the processing raw material is supplied in a large amount.

そして、第1原料供給装置21a、第2原料供給装置21bは、粉体処理設備(球形化処理用)20aの原料供給装置21と同様な装置を使用し、他の構成については、粉体処理設備(球形化処理用)20aと同様なので説明を省略する。 And the 1st raw material supply apparatus 21a and the 2nd raw material supply apparatus 21b use the apparatus similar to the raw material supply apparatus 21 of the powder processing equipment (for spheroidization processing) 20a, and about other structures, it is a powder processing. Since it is the same as the equipment (for spheroidization processing) 20a, the description is omitted.

次に、粉体処理設備(複合化処理用)の第2実施形態を図12に示す。図12に示すように、粉体処理設備(複合化処理用)20dは、粉体処理設備(複合化処理用)20c(図11参照)の第1原料供給装置21a、第2原料供給装置21bの下流側に、原料混合装置21cを備えるものであって、2種の処理原料を予め混合した後、混合した処理原料を粉体処理装置1に供給するものである。また、混合された処理原料の供給量を調節するために、原料混合装置21cの下流側に第3原料供給装置21dを備えてもよい。このような構成により、処理原料の複合化処理能力(処理量)がより一層向上する。 Next, FIG. 12 shows a second embodiment of the powder processing facility (for composite processing). As shown in FIG. 12, the powder processing facility (for composite processing) 20d includes a first raw material supply device 21a and a second raw material supply device 21b of the powder processing facility (for composite processing) 20c (see FIG. 11). The raw material mixing device 21c is provided on the downstream side of the two, and after mixing two kinds of processing raw materials in advance, the mixed processing raw material is supplied to the powder processing device 1. Moreover, in order to adjust the supply amount of the mixed process raw material, you may provide the 3rd raw material supply apparatus 21d in the downstream of the raw material mixing apparatus 21c. With such a configuration, the combined processing capacity (processing amount) of the processing raw material is further improved.

そして、第1〜3原料供給装置21a、21b、21dは、粉体処理設備(球形化処理用)20aの原料供給装置21と同様な装置を使用し、原料混合装置21cは従来公知の混合装置を使用する。また、他の構成については、粉体処理設備(複合化処理用)20cと同様なので説明を省略する。 And the 1st-3rd raw material supply apparatus 21a, 21b, 21d uses the apparatus similar to the raw material supply apparatus 21 of the powder processing equipment (for spheroidizing process) 20a, and the raw material mixing apparatus 21c is a conventionally well-known mixing apparatus. Is used. Other configurations are the same as those of the powder processing facility (for composite processing) 20c, and thus the description thereof is omitted.

また、粉体処理設備(複合化処理用)20c、20dは、図示しないが、粉体処理装置1から分岐した気体導入ダクト25、連続開閉ダンパ26(図8参照)を備えることが好ましい。また、連続開閉ダンパ26の上流を冷却装置24と第1原料供給装置21aまたは第3原料供給装置21dとの間に接続することが好ましい。このような構成により、処理原料の複合化処理能力がさらに向上すると共に、粉体処理装置1内への処理物の付着、下流に配置された回収装置23への悪影響が防止される。さらに、冷却装置24は、第1原料供給装置21aまたは第3原料供給装置21dの上流側に設けたが、下流側に設けてもよい。 Further, although not shown, the powder processing facilities (for composite processing) 20c and 20d preferably include a gas introduction duct 25 branched from the powder processing apparatus 1 and a continuous opening / closing damper 26 (see FIG. 8). Moreover, it is preferable to connect the upstream of the continuous opening / closing damper 26 between the cooling device 24 and the first raw material supply device 21a or the third raw material supply device 21d. With such a configuration, the composite processing capability of the processing raw material is further improved, and the adhesion of the processed material in the powder processing apparatus 1 and the adverse effect on the recovery apparatus 23 arranged downstream are prevented. Furthermore, although the cooling device 24 is provided on the upstream side of the first raw material supply device 21a or the third raw material supply device 21d, it may be provided on the downstream side.

さらに、粉体処理設備(複合化処理用)20c、20dは、図示しないが、前記の冷却装置24に代えて加熱装置27(図10参照)を備えるものであってもよい。このような構成により、処理原料の複合化処理能力が向上し、特に、処理原料が、熱に強い高融点原料で、高温で複合化処理が進む場合に顕著である。なお、加熱装置27を備えた粉体処理設備(複合化処理用)においても、気体導入ダクト25、連続開閉ダンパ26(図10参照)を設けることが好ましく、連続開閉ダンパ26の上流に冷却装置28(図10参照)を備えることがより好ましい。これによって、粉体処理装置1内での処理物の付着を防止できる。そして、加熱装置27は第1原料供給装置21aまたは第3原料供給装置21dの上流側および下流側のいずれに備えてもよい。 Furthermore, although not shown, the powder processing equipment (for complex processing) 20c, 20d may include a heating device 27 (see FIG. 10) instead of the cooling device 24. Such a configuration improves the composite treatment capacity of the processing raw material, and is particularly remarkable when the processing raw material is a high-melting-point raw material resistant to heat and the composite processing proceeds at a high temperature. Also in the powder processing facility (for composite processing) provided with the heating device 27, it is preferable to provide the gas introduction duct 25 and the continuous open / close damper 26 (see FIG. 10), and the cooling device upstream of the continuous open / close damper 26. More preferably, 28 (see FIG. 10) is provided. Thereby, adhesion of the processed material in the powder processing apparatus 1 can be prevented. The heating device 27 may be provided on either the upstream side or the downstream side of the first raw material supply device 21a or the third raw material supply device 21d.

なお、粉体処理設備(複合化処理用)20c、20dの第1実施形態及び第2実施形態においては、処理原料の特性によって、必ずしも、冷却装置24および加熱装置(図示せず)を備えていなくてもよい。また、粉体処理設備(複合化処理用)20c、20dの第1実施形態及び第2実施形態では、複数の原料供給装置を用いているが、複数の処理原料を予め設備外で十分に混合しておき、予混合された処理原料を1つの原料供給装置で供給するようにしてもよい(図示せず)。 In the first and second embodiments of the powder processing equipment (for composite processing) 20c and 20d, a cooling device 24 and a heating device (not shown) are necessarily provided depending on the characteristics of the processing raw material. It does not have to be. Further, in the first and second embodiments of the powder processing equipment (for composite processing) 20c and 20d, a plurality of raw material supply apparatuses are used, but a plurality of processing raw materials are sufficiently mixed in advance outside the equipment. In addition, the premixed processing raw materials may be supplied by one raw material supply device (not shown).

次に、粉体処理装置および粉体処理設備(球形化処理用)における球形化処理方法について、図1(a)、図1(b)、図7を参照して説明する。
(1)粉体処理設備(球形化処理用)20aの排風装置22を駆動して、供給ダクト29内、粉体処理装置1内、排出ダクト30内に気流を発生させる。
(2)粉体処理装置1の回転子2aを、図示しない駆動装置の駆動により、高速回転させ、回転子2aの外側に形成された間隙5内に、すなわち、固定子3aの内周面に形成された円周溝14a内に旋回流を発生させる。
(3)粉体処理設備(球形化処理用)20aの原料供給装置21を駆動して、供給ダクト29内に処理原料を供給する。供給ダクト29内の気流によって、気流内に分散した処理原料が、粉体処理装置1の供給口6に供給される。
(4)供給口6から気流と共に供給された処理原料は、固定子3aの円周溝14aに発生した旋回流によって、円周溝14aに押し付けられながら、固定子3aの下端から上端に移動する。このとき、処理原料は、円周溝14aの壁面と強く接触、または、処理原料同士が強く接触して、球形化される。球形化された処理物は、間隙5から排出口7に排出される。
(5)排出口7に排出された処理物は、排出ダクト30内の気流により、回収装置23であるサイクロン23a、バッグフィルタ23bに、順次、排出される。ここで、サイクロン23a、バッグフィルタ23bによって、球形化された処理物が回収される。
Next, the spheronization processing method in the powder processing apparatus and the powder processing facility (for spheronization processing) will be described with reference to FIG. 1 (a), FIG. 1 (b), and FIG.
(1) The air exhaust device 22 of the powder processing facility (for spheroidizing processing) 20a is driven to generate an air flow in the supply duct 29, the powder processing device 1, and the exhaust duct 30.
(2) The rotor 2a of the powder processing apparatus 1 is rotated at a high speed by driving of a driving device (not shown), and is placed in the gap 5 formed outside the rotor 2a, that is, on the inner peripheral surface of the stator 3a. A swirling flow is generated in the formed circumferential groove 14a.
(3) The raw material supply device 21 of the powder processing facility (for spheroidizing treatment) 20 a is driven to supply the processing raw material into the supply duct 29. The processing raw material dispersed in the airflow is supplied to the supply port 6 of the powder processing apparatus 1 by the airflow in the supply duct 29.
(4) The processing raw material supplied together with the airflow from the supply port 6 moves from the lower end to the upper end of the stator 3a while being pressed against the circumferential groove 14a by the swirling flow generated in the circumferential groove 14a of the stator 3a. . At this time, the processing raw material is brought into a spherical shape by being in strong contact with the wall surface of the circumferential groove 14a or by being in strong contact with each other. The spheroidized product is discharged from the gap 5 to the discharge port 7.
(5) The processed material discharged to the discharge port 7 is sequentially discharged to the cyclone 23a and the bag filter 23b, which are the recovery device 23, by the airflow in the discharge duct 30. Here, the spheroidized product is collected by the cyclone 23a and the bag filter 23b.

また、粉体処理装置および粉体処理設備(複合化処理用)における複合化処理方法について、図1(a)、図1(b)、図11、図12を参照して説明する。
(1)粉体処理設備(複合化処理用)20cの排風装置22を駆動して、供給ダクト29内、粉体処理装置1内、排出ダクト30内に気流を発生させる。
(2)粉体処理装置1の回転子2aを、図示しない駆動装置の駆動により、高速回転させ、回転子2aの外側に形成された間隙5内に、すなわち、固定子3aの内周面に形成された円周溝14a内に旋回流を発生させる。
(3)粉体処理設備(複合化処理用)20cの第1原料供給装置21a、第2原料供給装置21bを駆動して、第1処理原料(母粉体)、第2処理原料(子粉体)を個別に供給ダクト29内に供給する。供給ダクト29内の気流によって、気流内に分散した第1、2処理原料が、粉体処理装置1の供給口6に供給される。
(4)供給口6から気流と共に供給された第1、2処理原料は、固定子3aの円周溝14aに発生した旋回流によって、円周溝14aに押し付けられながら、固定子3aの下端から上端に移動する。このとき、第1、2処理原料は、円周溝14aの壁面と強く接触、または、処理原料同士が強く接触する。それにより、第1処理原料(母粉体)の表面に第2処理原料(子粉体)が付着し、複合化される。複合化された処理物は、間隙5から排出口7に排出される。
(5)排出口7に排出された処理物は、排出ダクト30内の気流により、回収装置23であるサイクロン23a、バッグフィルタ23bに、順次、排出される。ここで、サイクロン23a、バッグフィルタ23bによって、複合化された処理物が回収される。
Further, a composite processing method in the powder processing apparatus and the powder processing equipment (for composite processing) will be described with reference to FIGS. 1 (a), 1 (b), 11, and 12. FIG.
(1) The air exhaust device 22 of the powder processing facility (for complex processing) 20c is driven to generate an air flow in the supply duct 29, the powder processing device 1, and the exhaust duct 30.
(2) The rotor 2a of the powder processing apparatus 1 is rotated at a high speed by driving of a driving device (not shown), and is placed in the gap 5 formed outside the rotor 2a, that is, on the inner peripheral surface of the stator 3a. A swirling flow is generated in the formed circumferential groove 14a.
(3) Driving the first raw material supply device 21a and the second raw material supply device 21b of the powder processing facility (for complex processing) 20c, the first processing raw material (base powder) and the second processing raw material (child powder) The body) individually into the supply duct 29. The first and second processing raw materials dispersed in the airflow are supplied to the supply port 6 of the powder processing apparatus 1 by the airflow in the supply duct 29.
(4) The first and second processing raw materials supplied together with the airflow from the supply port 6 are pressed against the circumferential groove 14a by the swirling flow generated in the circumferential groove 14a of the stator 3a, and from the lower end of the stator 3a. Move to the top. At this time, the first and second processing raw materials are in strong contact with the wall surface of the circumferential groove 14a, or the processing raw materials are in strong contact with each other. As a result, the second processing raw material (child powder) adheres to the surface of the first processing raw material (mother powder) and is combined. The combined processed product is discharged from the gap 5 to the discharge port 7.
(5) The processed material discharged to the discharge port 7 is sequentially discharged to the cyclone 23a and the bag filter 23b, which are the recovery device 23, by the airflow in the discharge duct 30. Here, the combined processed product is collected by the cyclone 23a and the bag filter 23b.

また、粉体処理設備(複合化処理用)20dでは、前記(3)の手順は、以下のとおりである。第1原料供給装置21a、第2原料供給装置21bを駆動して、原料混合装置21cに第1処理原料(母粉体)、第2処理原料(子粉体)を供給する。原料混合装置21cを駆動して、第1処理原料(母粉体)と第2処理原料(子粉体)とを均一に混合すると共に、第1処理原料(母粉体)の表面に第2処理原料(子粉体)が付着した混合処理原料が生成される。この混合処理原料が、第3原料供給装置21dの駆動によって、供給ダクト29内に供給され、供給ダクト29内の気流によって、粉体処理装置1の供給口6に供給される。また、前記(4)の手順では、第1処理原料(母粉体)の表面に第2処理原料(子粉体)が付着した混合処理原料が複合化される。なお、第3原料供給装置21dを使用しないで、原料混合装置21cから供給ダクト29内に混合処理原料を供給してもよい。これ以外の手順は、粉体処理設備(複合化処理用)20cと同様であるので、説明は省略する。 In the powder processing facility (for composite processing) 20d, the procedure of (3) is as follows. The first raw material supply device 21a and the second raw material supply device 21b are driven to supply the first processing raw material (base powder) and the second processing raw material (child powder) to the raw material mixing device 21c. The raw material mixing device 21c is driven to uniformly mix the first processing raw material (mother powder) and the second processing raw material (child powder), and the second processing material (mother powder) is second on the surface of the first processing raw material (mother powder). A mixed processing raw material to which the processing raw material (child powder) is attached is generated. This mixed processing raw material is supplied into the supply duct 29 by driving the third raw material supply device 21d, and is supplied to the supply port 6 of the powder processing device 1 by the air flow in the supply duct 29. In the procedure (4), the mixed processing raw material in which the second processing raw material (child powder) adheres to the surface of the first processing raw material (base powder) is combined. In addition, you may supply a mixing process raw material in the supply duct 29 from the raw material mixing apparatus 21c, without using the 3rd raw material supply apparatus 21d. Since other procedures are the same as those of the powder processing facility (for composite processing) 20c, description thereof will be omitted.

また、粉体処理設備(複合化処理用)20c、20dでは、複数の原料供給装置21a、21b、21cから処理原料を供給しているが、複数の処理原料を予め設備外で十分に混合しておき、予混合された処理原料を1つの原料供給装置から供給するようにしてもよい(図示せず)。 Further, in the powder processing facilities (for complex processing) 20c and 20d, the processing raw materials are supplied from the plurality of raw material supply devices 21a, 21b and 21c, but the plurality of processing raw materials are sufficiently mixed in advance outside the equipment. In addition, the premixed processing raw materials may be supplied from one raw material supply device (not shown).

前記では、第1実施形態の粉体処理装置1および粉体処理設備(球形化処理用)20a、粉体処理設備(複合化処理用)20c、20dについて説明したが、他の実施形態においても球形化処理方法および複合化処理方法は同様であるので、説明は省略する。 In the above description, the powder processing apparatus 1 and the powder processing equipment (for spheroidizing processing) 20a and the powder processing equipment (for composite processing) 20c and 20d according to the first embodiment have been described, but in other embodiments as well. Since the spheroidization processing method and the composite processing method are the same, description thereof is omitted.

1 粉体処理装置
2a、2b、2c 回転子
3a、3b 固定子
4 本体部
5 間隙
6 供給口
7 排出口
14a 円周溝
14b らせん溝
15a 縦溝
15b 傾斜縦溝
16a 縦凸部
16b 傾斜凸部
20a、20b、20c、20d 粉体処理設備
21 原料供給装置
21a 第1原料供給装置
21b 第2原料供給装置
21c 原料混合装置
22 排風装置
23 回収装置
24、28 冷却装置
27 加熱装置
A 第1溝形成領域
B 第2溝形成領域
C 凸部形成領域
D 円筒領域
θ1、θ2、θ5 角度
DESCRIPTION OF SYMBOLS 1 Powder processing apparatus 2a, 2b, 2c Rotor 3a, 3b Stator 4 Main body part 5 Gap 6 Supply port 7 Discharge port 14a Circumferential groove 14b Spiral groove 15a Vertical groove 15b Inclined vertical groove 16a Vertical convex part 16b Inclined convex part 20a, 20b, 20c, 20d Powder processing equipment 21 Raw material supply device 21a First raw material supply device 21b Second raw material supply device 21c Raw material mixing device 22 Ventilation device 23 Recovery device 24, 28 Cooling device 27 Heating device A First groove Formation region B Second groove formation region C Protrusion formation region D Cylindrical region θ1, θ2, θ5 Angle

Claims (12)

高速回転する円筒状の回転子と、前記回転子の外側に間隙を形成するように当該回転子と同軸に配置された円筒状の固定子とを備えた本体部と、前記本体部の一端に設けられ、処理原料を気流と共に前記間隙に供給する供給口と、前記本体部の他端に設けられ、前記処理原料が前記回転子と前記固定子との間で球形化された処理物を前記間隙から排出させる排出口とを備えた粉体処理装置において、
前記固定子の内周面に、当該固定子の軸線に対して直交する複数の円周溝、または、前記軸線に対して空気流の下流に向かう方向から回転子の回転方向に60度以上90度未満の角度をなすらせん溝が形成され、前記回転子が回転すると前記処理原料が前記円周溝又は前記らせん溝の溝底に押し付けられながら溝に沿って旋回するようにしたことを特徴とする粉体処理装置。
A main body provided with a cylindrical rotor that rotates at high speed, and a cylindrical stator that is arranged coaxially with the rotor so as to form a gap outside the rotor, and at one end of the main body A supply port for supplying a processing raw material to the gap together with an air flow, and a processing object provided at the other end of the main body, wherein the processing raw material is spheroidized between the rotor and the stator. In the powder processing apparatus provided with a discharge port for discharging from the gap,
On the inner peripheral surface of the stator, a plurality of circumferential grooves orthogonal to the axis of the stator, or 60 degrees or more in the rotation direction of the rotor from the direction toward the downstream of the air flow with respect to the axis. A spiral groove having an angle of less than an angle is formed, and when the rotor rotates, the processing material is swung along the groove while being pressed against the circumferential groove or the groove bottom of the spiral groove. Powder processing equipment.
高速回転する円筒状の回転子と、前記回転子の外側に間隙を形成するように当該回転子と同軸に配置された円筒状の固定子とを備えた本体部と、前記本体部の一端に設けられ、処理原料を気流と共に前記間隙に供給する供給口と、前記本体部の他端に設けられ、前記処理原料が前記回転子と前記固定子との間で球形化された処理物を前記間隙から排出させる排出口とを備えた粉体処理装置において、
前記固定子の内周面に、当該固定子の軸線に対して直交する複数の円周溝、または、前記軸線に対して空気流の下流に向かう方向から回転子の回転方向に60度以上90度未満の角度をなすらせん溝が形成された第1溝形成領域と、この第1溝形成領域に連続して形成され、前記軸線に対して平行な縦溝、または、当該軸線に対して空気流の下流に向かう方向から回転子の回転方向に0度を超え45度以下の角度をなす傾斜縦溝が形成された第2溝形成領域とを設けて、前記回転子が回転すると前記処理原料が前記第1溝形成領域の前記円周溝又は前記らせん溝の溝底に押し付けられながら溝に沿って旋回するようにしたことを特徴とする粉体処理装置。
A main body provided with a cylindrical rotor that rotates at high speed, and a cylindrical stator that is arranged coaxially with the rotor so as to form a gap outside the rotor, and at one end of the main body A supply port for supplying a processing raw material to the gap together with an air flow, and a processing object provided at the other end of the main body, wherein the processing raw material is spheroidized between the rotor and the stator. In the powder processing apparatus provided with a discharge port for discharging from the gap,
On the inner peripheral surface of the stator, a plurality of circumferential grooves orthogonal to the axis of the stator, or 60 degrees or more in the rotation direction of the rotor from the direction toward the downstream of the air flow with respect to the axis. A first groove forming region in which a spiral groove having an angle of less than an angle is formed, and a longitudinal groove formed continuously with the first groove forming region and parallel to the axis, or with respect to the axis A second groove forming region having inclined vertical grooves formed at an angle of more than 0 degree and not more than 45 degrees in the direction of rotation of the rotor from a direction toward the downstream of the air flow, and the processing when the rotor rotates A powder processing apparatus, wherein the raw material is swung along the groove while being pressed against the circumferential groove or the groove bottom of the spiral groove in the first groove forming region .
前記回転子の外周面に、当該回転子の軸線に対して平行な複数の縦凸部、または、前記軸線に対して空気流の下流に向かう方向から回転子の回転方向に0度を超え45度以下の角度をなす複数の傾斜凸部が形成されたことを特徴とする請求項1または請求項2に記載の粉体処理装置。   On the outer peripheral surface of the rotor, a plurality of vertical protrusions parallel to the axis of the rotor, or from the direction toward the downstream of the air flow with respect to the axis to more than 0 degree in the rotation direction of the rotor 45 The powder processing apparatus according to claim 1, wherein a plurality of inclined convex portions having an angle of less than or equal to degrees are formed. 請求項1ないし請求項3のいずれか一項に記載の粉体処理装置と、
前記粉体処理装置の下流側に配置され、前記供給口に供給されかつ前記排出口から排出される気流を発生させる排風装置と、
前記粉体処理装置の上流側に配置され、当該粉体処理装置の上流側に形成される気流と共に処理原料を前記供給口に供給するべく、当該処理原料を前記粉体処理装置の上流側に形成される気流に対して供給する原料供給装置と、
前記排風装置の上流側に配置され、前記排出口から排出された気流から前記粉体処理装置で球形化された処理物を回収する回収装置とを備える粉体処理設備であって、
前記供給口に供給される気流の温度を冷却する冷却装置を前記粉体処理装置の上流側に備えたことを特徴とする粉体処理設備。
A powder processing apparatus according to any one of claims 1 to 3,
An exhaust device that is disposed downstream of the powder processing apparatus and that generates an air flow that is supplied to the supply port and discharged from the discharge port;
In order to supply the processing raw material to the supply port together with the air flow formed on the upstream side of the powder processing apparatus and formed on the upstream side of the powder processing apparatus, the processing raw material is placed upstream of the powder processing apparatus. A raw material supply device for supplying air flow formed;
A powder processing facility that is disposed upstream of the air exhaust device and includes a recovery device that recovers a processed product spheroidized by the powder processing device from an airflow discharged from the discharge port;
A powder processing facility comprising a cooling device for cooling the temperature of the airflow supplied to the supply port on the upstream side of the powder processing device.
前記排出口から分岐した気体導入ダクトを備え、前記気体導入ダクトに連続開閉ダンパを設けることを特徴とする請求項4に記載の粉体処理設備。   The powder processing facility according to claim 4, further comprising a gas introduction duct branched from the discharge port, and a continuous open / close damper provided in the gas introduction duct. 前記連続開閉ダンパの上流を前記冷却装置と前記原料供給装置との間に接続することを特徴とする請求項5に記載の粉体処理設備。   The powder processing facility according to claim 5, wherein an upstream of the continuous opening / closing damper is connected between the cooling device and the raw material supply device. 請求項1または請求項2に記載の粉体処理装置と、
前記粉体処理装置の上流側に配置され、気流と共に処理原料を前記供給口に供給する原料供給装置と、
前記粉体処理装置の下流側に配置され、前記供給口に供給され、かつ前記排出口から排出される気流を発生させる排風装置と、
前記排風装置の上流側に配置され、前記排出口から排出された気流から前記粉体処理装置で球形化された処理物を回収する回収装置とを備える粉体処理設備であって、
前記供給口に供給される気流の温度を加熱する加熱装置を前記粉体処理装置の上流側に備えたことを特徴とする粉体処理設備。
The powder processing apparatus according to claim 1 or 2,
A raw material supply device that is disposed upstream of the powder processing device and supplies a processing raw material to the supply port together with an air flow;
A wind exhaust device that is disposed downstream of the powder processing apparatus, generates an air flow that is supplied to the supply port and discharged from the discharge port;
A powder processing facility that is disposed upstream of the air exhaust device and includes a recovery device that recovers a processed product spheroidized by the powder processing device from an airflow discharged from the discharge port;
A powder processing facility comprising a heating device for heating the temperature of the airflow supplied to the supply port on the upstream side of the powder processing device.
前記排出口から分岐した気体導入ダクトを備え、前記気体導入ダクトに連続開閉ダンパを設けることを特徴とする請求項7に記載の粉体処理設備。   The powder processing facility according to claim 7, further comprising a gas introduction duct branched from the discharge port, and a continuous open / close damper provided in the gas introduction duct. 前記連続開閉ダンパの上流に冷却装置を備えることを特徴とする請求項8に記載の粉体処理設備。   The powder processing facility according to claim 8, further comprising a cooling device upstream of the continuous open / close damper. 前記処理原料として2種以上の処理原料を使用し、
2種以上の処理原料を供給する複数の原料供給装置が前記粉体処理装置の上流側に備えられ、
前記粉体処理装置で複合化された処理物が前記回収装置で回収されることを特徴とする請求項4ないし請求項9のいずれか一項に記載の粉体処理設備。
Two or more kinds of treatment raw materials are used as the treatment raw materials,
A plurality of raw material supply devices for supplying two or more kinds of processing raw materials are provided on the upstream side of the powder processing device,
The powder processing facility according to any one of claims 4 to 9, wherein the processed product combined by the powder processing apparatus is recovered by the recovery apparatus.
前記原料供給装置の下流側に、さらに前記2種類以上の処理原料を混合する原料混合装置が備えられていることを特徴とする請求項10に記載の粉体処理設備。   The powder processing facility according to claim 10, further comprising a raw material mixing device for mixing the two or more types of processing raw materials on the downstream side of the raw material supply device. 前記処理原料として予め混合された2種以上からなる処理原料を使用し、
当該予め混合された処理原料を供給するつの原料供給装置が前記粉体処理装置の上流側に備えられ、
前記粉体処理装置で複合化された処理物が前記回収装置で回収されることを特徴とする請求項4ないし請求項9のいずれか一項に記載の粉体処理設備。
Using a processing raw material composed of two or more kinds mixed in advance as the processing raw material,
One raw material supply device for supplying the premixed process material is provided on the upstream side of the powder treatment apparatus,
The powder processing facility according to any one of claims 4 to 9, wherein the processed product combined by the powder processing apparatus is recovered by the recovery apparatus.
JP2012242522A 2005-10-13 2012-11-02 Powder processing equipment and powder processing equipment Active JP5680044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242522A JP5680044B2 (en) 2005-10-13 2012-11-02 Powder processing equipment and powder processing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005298349 2005-10-13
JP2005298349 2005-10-13
JP2012242522A JP5680044B2 (en) 2005-10-13 2012-11-02 Powder processing equipment and powder processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006152847A Division JP5148075B2 (en) 2005-10-13 2006-05-31 Powder processing equipment and powder processing equipment

Publications (2)

Publication Number Publication Date
JP2013063432A JP2013063432A (en) 2013-04-11
JP5680044B2 true JP5680044B2 (en) 2015-03-04

Family

ID=48187455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242522A Active JP5680044B2 (en) 2005-10-13 2012-11-02 Powder processing equipment and powder processing equipment

Country Status (1)

Country Link
JP (1) JP5680044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015278232B2 (en) * 2014-06-16 2019-11-28 Commonwealth Scientific And Industrial Research Organisation Method of producing a powder product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA974980A (en) * 1972-05-09 1975-09-23 Edward H. Cumpston (Jr.) Mixer-refiner having automatic throughput control
JPH02119926A (en) * 1988-10-28 1990-05-08 Kawasaki Heavy Ind Ltd Device for spheroidizing thermoplastic particle
JPH02122821A (en) * 1988-10-31 1990-05-10 Kawasaki Heavy Ind Ltd Particle mixture making apparatus
JPH0545384Y2 (en) * 1989-10-13 1993-11-19
JPH08299827A (en) * 1995-05-12 1996-11-19 Minolta Co Ltd Mechanical grinder
JP3900311B2 (en) * 1995-11-24 2007-04-04 株式会社日清製粉グループ本社 Mechanical crusher
JP4123078B2 (en) * 2003-06-30 2008-07-23 ターボ工業株式会社 Fine grinding machine and its fine powder product

Also Published As

Publication number Publication date
JP2013063432A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5148075B2 (en) Powder processing equipment and powder processing equipment
JP4669253B2 (en) Processing apparatus and powder processing method
JP3139721B2 (en) Fluidized bed jet mill
US20130105607A1 (en) Pulverizing apparatus
CN105420525B (en) Preparation method of particle-reinforced aluminum-based composite material
JP2006136870A (en) Grinder and powder production method using the grinder
JP4205888B2 (en) Powder processing apparatus and powder processing method
JP5680044B2 (en) Powder processing equipment and powder processing equipment
JP3335312B2 (en) Jet mill
JP5511177B2 (en) Powder processing equipment
US6631861B1 (en) Grinding device for resin composition
JP3900311B2 (en) Mechanical crusher
JP4836026B2 (en) Powder reformer
JPH1128380A (en) Crusher
JP3625256B2 (en) Resin composition milling equipment
JP4123078B2 (en) Fine grinding machine and its fine powder product
JP4120981B2 (en) Mechanical crusher
JP4183388B2 (en) Grinding device, toner manufacturing device and toner
JP2005118725A (en) Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same
JPH08299827A (en) Mechanical grinder
JP2004513802A (en) Method for making powder from polymeric material and apparatus for performing this method
JP2003268419A (en) Method for manufacturing impalpable powder of sintered material with high melting point, and apparatus therefor
JP4522244B2 (en) Particle production equipment
JP4870885B2 (en) Grinding device and toner manufacturing method using the same
JP2006178195A (en) Method for manufacturing deformed toner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5680044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250