JP4669253B2 - Processing apparatus and powder processing method - Google Patents

Processing apparatus and powder processing method Download PDF

Info

Publication number
JP4669253B2
JP4669253B2 JP2004258375A JP2004258375A JP4669253B2 JP 4669253 B2 JP4669253 B2 JP 4669253B2 JP 2004258375 A JP2004258375 A JP 2004258375A JP 2004258375 A JP2004258375 A JP 2004258375A JP 4669253 B2 JP4669253 B2 JP 4669253B2
Authority
JP
Japan
Prior art keywords
rotating shaft
casing
powder
processing
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004258375A
Other languages
Japanese (ja)
Other versions
JP2005270955A (en
Inventor
雅裕 猪木
雅浩 吉川
大樹 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP2004258375A priority Critical patent/JP4669253B2/en
Publication of JP2005270955A publication Critical patent/JP2005270955A/en
Application granted granted Critical
Publication of JP4669253B2 publication Critical patent/JP4669253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Crushing And Grinding (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

本発明は、粉体等の処理物の混合、乾燥等の処理を行う装置、特に複数の攪拌部材を外周部に設けた回転軸と、前記攪拌部材に対して微小間隙を隔てて位置する内周部を有したケーシングとを備え、前記回転軸の回転に伴い移動する前記攪拌部材によってケーシング内の処理物を攪拌処理する処理装置、及び、当該処理装置を用いた粉体処理方法に関する。   The present invention relates to an apparatus for performing processing such as mixing and drying of processed materials such as powder, and in particular, a rotary shaft provided with a plurality of stirring members on the outer peripheral portion, and an inner portion positioned with a minute gap with respect to the stirring members. The present invention relates to a processing apparatus that includes a casing having a peripheral portion and that stirs a processed product in the casing by the stirring member that moves as the rotating shaft rotates, and a powder processing method using the processing apparatus.

粉体等の処理物を混合、乾燥等する装置として、従来からケーシング内部で攪拌部材の一種である攪拌翼を設けた回転軸を回転駆動させることで、ケーシング内部の粉体を分散、攪拌する構造の装置が広く用いられている。   As a device for mixing and drying processed materials such as powder, the powder in the casing is dispersed and stirred by rotating the rotary shaft provided with a stirring blade, which is a kind of stirring member, inside the casing. Structural devices are widely used.

このような攪拌部材が回転移動する回転翼型の装置は、ケーシングを回転させることで粉体を攪拌する装置などの他の構造の装置に比べ、連続処理が可能であるという利点がある。   Such a rotary blade-type device in which the stirring member rotates is advantageous in that continuous processing is possible as compared with devices having other structures such as a device for stirring powder by rotating the casing.

回転翼型の装置は、攪拌の効果を上げるために、攪拌翼の形状や並べ方を様々に工夫しており、例えば、回転軸方向に短小なボスに軸方向に対して水平あるいは傾斜させた攪拌翼を設けたものを回転軸方向に複数個並べることで、攪拌翼の形状や角度にバリエーションをもたせるもの(例えば特許文献1、特許文献2参照)や、隣接する攪拌翼を交差する方向に設定することで攪拌効果の向上を狙ったもの(例えば、特許文献3、特許文献4参照)などがある。   In order to increase the agitation effect, the rotary blade type device is devised variously in the shape and arrangement of the agitation blades. For example, the agitation is performed horizontally or inclined with respect to the axial direction on a short boss in the rotational axis direction. By arranging a plurality of blades with blades in the direction of the rotation axis, the shape and angle of the stirring blades can be varied (see, for example, Patent Document 1 and Patent Document 2), or the direction in which adjacent stirring blades intersect is set. By doing so, there are those aimed at improving the stirring effect (for example, see Patent Document 3 and Patent Document 4).

特公昭42−5302号公報Japanese Patent Publication No.42-5302 特公昭51−39383号公報Japanese Patent Publication No. 51-39383 特開2002−301349号公報JP 2002-301349 A 特開2002−318072号公報JP 2002-318072 A

近年、粉体の微細化が進み、ときにはナノメートルサイズの粉体を精密に混合、分散したいとの要望がある。しかし、粉体は微細化が進むほど、その凝集が強くなる性質があり、前述のような装置では、その凝集を十分にほぐし、緻密な分散、混合をすることができなかった。   In recent years, finer powders have been developed, and there is a desire to sometimes precisely mix and disperse nanometer-sized powders. However, the finer the powder, the stronger the agglomeration, and the above-described apparatus could not sufficiently agglomerate and perform fine dispersion and mixing.

また、粉体に強力な力を与えることができる装置であれば、混合、乾燥処理のみでなく、粉体の解砕、粉砕、球形化、複合化といった別の機能をも満たすことが考えられるが、前述のような装置では、それだけの力を粉体に与えることはできなかった。   In addition, if it is an apparatus that can give a powerful force to the powder, it can be considered to satisfy not only mixing and drying processes but also other functions such as crushing, crushing, spheroidizing, and compositing of the powder. However, the apparatus as described above cannot apply such a force to the powder.

本発明は、上記実情に鑑みてなされたものであって、第1の目的は、回転翼型の装置の利点を生かしつつ、従来にない強い力を粉体等の処理物に与えて攪拌効果を高めることにより、混合、乾燥処理のみならず、粉体等の処理物の解砕、粉砕、複合化(融合化)、表面改質、平滑化、形状制御(球形化等)などの各処理をなしうる処理装置を提供することにある。
第2の目的は、上記処理装置を用いて、粉体に対して各種処理を効率良く良好に行うことができる粉体処理方法を提供することにある。
The present invention has been made in view of the above circumstances, and a first object is to provide an agitation effect by applying unprecedented strong force to a processed material such as powder while taking advantage of a rotary blade type device. In addition to mixing and drying processes, various processes such as crushing, crushing, compositing (combining), surface modification, smoothing, shape control (spheroidizing, etc.) It is to provide a processing apparatus capable of achieving the above.
A second object is to provide a powder processing method capable of efficiently and satisfactorily performing various types of processing on powder using the above processing apparatus.

上記課題に鑑み、本願発明者らは、以下の発明を完成するにいたった。
上記第1の目的を実現するための処理装置の第1発明は、複数の攪拌部材を外周部に設けた回転軸と、前記攪拌部材に対して間隙を隔てて位置する内周部を有したケーシングとを備え、前記回転軸の回転に伴い移動する前記攪拌部材によってケーシング内の処理物を攪拌処理する処理装置であって、その特徴構成は、前記回転軸の軸方向と平行な方向で、前記複数の攪拌部材夫々の端部が前記回転軸の周方向で間隔を置いて隣り合う他の攪拌部材の端部よりも内側に位置し、前記回転軸の周方向の全周で順次隣り合う前記攪拌部材の一方が、前記回転軸の回転に伴って処理物を前記回転軸の軸方向の一方向に送る送り用攪拌部材であり、他方が前記回転軸の回転に伴って処理物を前記回転軸の軸方向の他方向に戻す戻し用攪拌部材である点にある。
In view of the above problems, the present inventors have completed the following invention.
First aspect of the apparatus for realizing the first object is used, the number a rotating shaft provided with a plurality of agitating members on the outer peripheral portion, the inner peripheral portion positioned at intervals gap with respect to the agitating member and a casing was, the processing of the casing by the stirring member to be moved with the rotation of the rotating shaft to a processing device for stirring treatment, its characteristic configuration, the axial direction parallel to the previous SL rotation axis in the ends of a plurality of agitating members each is located inside the end portion of the other agitating member adjacent at intervals in the circumferential direction of the rotary shaft, successively in the entire circumference in the circumferential direction of the rotary shaft One of the adjacent stirring members is a feeding stirring member that feeds a processed material in one axial direction of the rotating shaft with the rotation of the rotating shaft, and the other is a processed material with the rotation of the rotating shaft. to point Ru stirring member der for returning back in the other direction of the axial direction of the rotary shaft That.

このような攪拌部材の位置関係を保つことにより、攪拌部材によって攪拌されたケーシング内の処理物が、回転軸の軸方向と平行な方向における当該攪拌部材の端部から回転軸の周方向で間隔を置いて隣り合う他の攪拌部材の内側へ深く入り、加えて、回転軸の周方向の全周において順次隣り合う攪拌部材の一方を送り用に他方を戻し用に構成することで、処理物は回転軸の軸方向の一方向に送る力と回転軸の軸方向の他方向に戻す力とを交互に受けることとなり、同じ方向の力を連続して受ける場合と比べ、ケーシング内における処理物の移動経路が一層複雑かつ長くなり、その結果、攪拌部材の力を強く処理物に伝えることができる。
従って、回転翼型の装置の利点を生かしつつ、従来にない強い力を粉体等の処理物に与えて攪拌効果を高めることができる処理装置が提供される。
By maintaining such a positional relationship of the agitating members, the processed material in the casing agitated by each agitating member is moved from the end of the agitating member in the direction parallel to the axial direction of the rotating shaft in the circumferential direction of the rotating shaft. By entering deeply inside the other stirring members adjacent to each other at an interval , in addition, one of the adjacent stirring members is sequentially configured for feeding and the other for returning in the entire circumference in the circumferential direction of the rotation shaft. The object receives alternately the force sent in one axial direction of the rotating shaft and the force returning in the other axial direction of the rotating shaft, and the processing in the casing is compared to the case of continuously receiving the force in the same direction. The moving path of the object becomes more complicated and long, and as a result, the force of the stirring member can be transmitted strongly to the processed object.
Accordingly, there is provided a processing apparatus capable of enhancing the stirring effect by applying an unprecedented strong force to the processed material such as powder while taking advantage of the rotary blade type apparatus.

同第2発明は、第1発明において、前記ケーシングの内周部の径が、前記回転軸の外周部の径の2倍以下である点である。
このようにケーシングの内周部と回転軸の外周部の径の関係を規制すると、ケーシング内の処理物に力が作用する空間が限定され、その結果、攪拌部材の力を強く処理物に伝えることができる
The second invention is that, in the first invention, the diameter of the inner peripheral portion of the casing is not more than twice the diameter of the outer peripheral portion of the rotating shaft.
When the relationship between the diameters of the inner peripheral portion of the casing and the outer peripheral portion of the rotating shaft is restricted in this way, the space where the force acts on the processed material in the casing is limited, and as a result, the force of the stirring member is strongly transmitted to the processed material. it is possible.

同第発明は、第1または第2発明において、前記回転軸の軸方向の一端に位置する前記攪拌部材が、当該軸方向の一端から他端へ処理物を送る送り用攪拌部材であり、前記回転軸の軸方向の他端に位置する前記攪拌部材が、当該軸方向の他端から一端へ処理物を戻す戻し用攪拌部材である点である。
このように回転軸の両端部に送り用および戻し用の攪拌部材を配置することにより、攪拌部材の作用が及びにくい回転軸の両端部側への処理物の移動を抑制し、その結果、攪拌作用を受けないまま排出される処理物の発生を防止することができる。
The third invention, in the first or second invention, the agitating member located axial end of said rotary shaft, a stirring member for feeding to send the axial direction of the workpiece from one end to the other, wherein the agitating member positioned in the axial direction of the other end of the rotary shaft, a point Ru stirring member der for returning back the processed product to the one end from the other end of the axial direction.
By arranging the stirring members for feeding and returning at both ends of the rotating shaft in this way, the movement of the processed material to the both ends of the rotating shaft, which is difficult for the stirring member to act, is suppressed. Generation | occurrence | production of the processed material discharged | emitted without receiving an effect | action can be prevented.

同第発明は、第1〜第発明のいずれかにおいて、前記ケーシングの内周部の径が大きくなるに従い、前記回転軸の軸方向から見たときに前記回転軸の周方向に沿って配置される前記攪拌部材の数を多くする点である。
このように回転軸の軸方向から見て周方向に沿って配置される攪拌部材の数をケーシングの内周部の径の増大に伴って多くすることで、例えばケーシング内の処理物量を多くするためにケーシング内周部の径を大きくする一方、ケーシング内周部に対向して移動する攪拌部材の移動速度がケーシング内周部の径を小さくするときと同等の速度になるように回転軸の回転速度を低下させた場合でも、各攪拌部材がケーシング内の各箇所を通過する時間間隔を同等にして処理物に対する処理不足が発生しないようにすることができる。
According to the fourth invention, in any one of the first to third inventions, the diameter of the inner peripheral portion of the casing increases along the circumferential direction of the rotating shaft when viewed from the axial direction of the rotating shaft. The number of the stirring members arranged is increased.
Thus, by increasing the number of stirring members arranged along the circumferential direction when viewed from the axial direction of the rotating shaft as the diameter of the inner peripheral portion of the casing increases, for example, the amount of processed material in the casing is increased. Therefore, while increasing the diameter of the casing inner peripheral portion, the rotating shaft is set so that the moving speed of the stirring member that moves opposite the casing inner peripheral portion is the same as that when the diameter of the casing inner peripheral portion is reduced. Even when the rotation speed is reduced, it is possible to equalize the time interval for each stirring member to pass through each location in the casing so as not to cause insufficient processing for the processed material.

同第発明は、第1〜第発明のいずれかにおいて、前記回転軸の端面部に拡散部材を設けている点である。
このように回転軸の端面部に拡散部材を設けることにより、攪拌部材の作用が及びにくい当該端面部とケーシングとの間隙に入り込もうとする処理物に対し、拡散部材によって遠心力を生ぜしめ、当該端面部への処理物の移動を抑制し、その結果、攪拌作用を受けないまま排出される処理物の発生を防止することができる。
The fifth invention is that in any one of the first to fourth inventions, a diffusing member is provided on an end surface portion of the rotating shaft.
By providing a diffusion member at the end surface portion of the rotating shaft in this way, centrifugal force is generated by the diffusion member on the processed material that tends to enter the gap between the end surface portion and the casing, where the action of the stirring member is difficult to be achieved. It is possible to suppress the movement of the processed material to the end surface portion, and as a result, it is possible to prevent the generated processed material from being discharged without being subjected to the stirring action.

同第発明は、第1〜第発明のいずれかにおいて、前記攪拌部材が板状に形成されている点である。
攪拌部材の形状を板状にすることで、ブロック状の攪拌部材に比べ、攪拌部材を含む回転軸全体を軽量化することができるため、より高速に回転する回転軸を設計することが可能となり、その結果、攪拌部材の力をさらに強く処理物に伝えることができる。
The sixth invention is that, in any one of the first to fifth inventions, the stirring member is formed in a plate shape.
By making the shape of the stirring member plate-like, the entire rotating shaft including the stirring member can be reduced in weight compared to the block-shaped stirring member, so it is possible to design a rotating shaft that rotates at a higher speed. As a result, the force of the stirring member can be transmitted to the processed material more strongly.

同第発明は、第1〜第発明のいずれかにおいて、前記ケーシングの内周部に対向する前記攪拌部材の先端部分が、前記回転軸の軸方向から見たときの断面視で鋭角形状に形成されるとともに、その先端鋭角部分の中心線が前記ケーシングの内周面に対して直角方向から傾斜した状態に配置されている点である。
このような攪拌部材の先端部分形状と配置により、例えば有機材料等の融点が低く溶着しやすい処理物のときは、上記中心線が進行方向前方側のケーシング内周部に対して直角よりも大きい角度となる方向に回転軸を回転させることで、攪拌部材の先端部分とケーシング内周部の間に処理物を挟みこんで剪断力が働くような状態を避けて、当該溶着しやすい材料に極力剪断力が働かないようにして溶着の発生を防止することができ、一方、例えば無機材料等の融点が高く剛性の大きい処理物とき、上記中心線が進行方向前方側のケーシング内周部に対して直角よりも小さい角度となる方向に回転軸を回転させることで、当該材料を攪拌部材の先端部分とケーシング内周部の間に挟み込んで剪断力が働くようにして強い力で処理することができる。
In the seventh invention, in any one of the first to sixth inventions, the tip portion of the stirring member facing the inner peripheral portion of the casing has an acute-angle shape in a sectional view when viewed from the axial direction of the rotating shaft. And the center line of the tip acute angle portion is disposed in a state inclined from the direction perpendicular to the inner peripheral surface of the casing.
Due to the shape and arrangement of the tip portion of such a stirring member, for example, when the processed material has a low melting point such as an organic material and is easily welded, the center line is larger than a right angle with respect to the casing inner periphery on the front side in the traveling direction. By rotating the rotating shaft in the direction of the angle, avoid the state where the processed material is sandwiched between the tip part of the stirring member and the inner peripheral part of the casing and the shearing force is applied, and as much as possible to the material that is easy to weld as a shearing force does not act it is possible to prevent the occurrence of welding, whereas, for example, when the high melting point greater processing of rigidity, such as inorganic materials, in the center line in the traveling direction front side casing periphery By rotating the rotary shaft in a direction that is smaller than a right angle to the right angle, the material is sandwiched between the tip portion of the agitating member and the inner peripheral portion of the casing, and a shearing force is applied to process the material with a strong force. Can Kill.

同第発明は、第1〜第発明のいずれかにおいて、前記ケーシングを構成する部材が冷却用又は加熱用媒体の流路を備えている点である。
このようなケーシング構成部材に備えた流路に冷却用媒体を流すことにより、ケーシング内の処理物がケーシング部材を通して冷却されるので、例えば融点が低く溶着しやすい処理物を処理する場合において、当該処理物の温度上昇が抑制され、溶着の発生を有効に防止することができる。一方、上記流路に加熱用媒体を流すことにより、ケーシング内の処理物がケーシング部材を通して加熱されるので、例えば処理物における複合化、乾燥等の処理及び各種反応を促進させるために、当該処理物の温度を上昇させた状態で処理を行うことができる。
The eighth invention is that in any one of the first to seventh inventions, a member constituting the casing is provided with a cooling or heating medium flow path.
By flowing a cooling medium through the flow path provided in such a casing component member, the processed material in the casing is cooled through the casing member. For example, when processing a processed material having a low melting point and easily welded, The temperature rise of the processed material is suppressed, and the occurrence of welding can be effectively prevented. On the other hand, by flowing a heating medium through the flow path, the processed material in the casing is heated through the casing member. For example, in order to promote processing such as compositing and drying in the processed material and various reactions, the processing is performed. The treatment can be performed with the temperature of the object raised.

同第発明は、第1〜第発明のいずれかにおいて、前記回転軸を構成する部材が冷却用又は加熱用媒体の流路を備えている点である。
このような回転軸構成部材に備えた流路に冷却用媒体を流すことにより、ケーシング内の処理物が回転軸構成部材を通して冷却されるので、例えば融点が低く溶着しやすい処理物を処理する場合において、当該処理物の温度上昇が抑制され、溶着の発生を有効に防止することができる。一方、上記流路に加熱用媒体を流すことにより、ケーシング内の処理物が回転軸構成部材を通して加熱されるので、例えば処理物における複合化、乾燥等の処理及び各種反応を促進させるため、当該処理物の温度を上昇させた状態で処理を行うことができる。
なお、上記第発明と第発明は夫々単独で実施することもできるが、両発明を同時に実施することにより、ケーシング内の処理物を内部側と外部側の両方から確実に冷却又は加熱することができる。
The ninth invention is that, in any one of the first to eighth inventions, the member constituting the rotating shaft includes a flow path for a cooling or heating medium.
When the processing medium in the casing is cooled through the rotating shaft constituent member by flowing the cooling medium through the flow path provided in such a rotating shaft constituent member, for example, when processing a processing object having a low melting point and easily welded , The temperature rise of the processed product is suppressed, and the occurrence of welding can be effectively prevented. On the other hand, by flowing a heating medium in the flow path, since the processing of the casing is heated through the rotation shaft constituent members, for example, compounding the treated product order to accelerate the processing and various reactions such as drying, The treatment can be performed in a state where the temperature of the treatment object is increased.
In addition, although the said 8th invention and 9th invention can also each be implemented independently, by implementing both invention simultaneously, the processed material in a casing is reliably cooled or heated from both an internal side and an external side. be able to.

同第10発明は、第1〜第発明のいずれかにおいて、前記ケーシング内の処理空間の雰囲気を調整する雰囲気調整手段を備えている点である。
上記雰囲気調整手段により、前記ケーシング内の処理空間を所望の雰囲気に調整した状態で処理を行うことができる。雰囲気調整手段は、例えば、処理物の酸化等を防止するために窒素ガス等の不活性ガスを処理空間に供給する手段、逆に酸素等の反応ガスを供給する手段、湿度を調整した水蒸気を供給する手段、処理空間の真空度を高めるための減圧手段などで構成される。
従って、処理物の種類や状態、処理の目的等に合わせて処理空間内の雰囲気を調整することができる処理装置が得られる。
The tenth aspect of the present invention is that in any one of the first to ninth aspects, an atmosphere adjusting means for adjusting the atmosphere of the processing space in the casing is provided.
By the atmosphere adjusting means, processing can be performed in a state where the processing space in the casing is adjusted to a desired atmosphere. The atmosphere adjusting means includes, for example, a means for supplying an inert gas such as nitrogen gas to the processing space in order to prevent oxidation of the processed material, a means for supplying a reactive gas such as oxygen, and a water vapor whose humidity is adjusted. It is comprised by the means to supply, the pressure reduction means for raising the vacuum degree of processing space, etc.
Therefore, it is possible to obtain a processing apparatus capable of adjusting the atmosphere in the processing space in accordance with the type and state of the processing object, the purpose of processing, and the like.

同第11発明は、第1〜第10発明のいずれかにおいて、前記回転軸が軸方向の一端側のみで支持され、前記ケーシングが前記回転軸の軸方向の一端側でのみ開口した有底筒状に形成されて、前記回転軸との間の処理空間を覆う作動位置と前記処理空間を覆わない非作動位置とに前記回転軸の軸方向に沿って移動可能に構成されている点である。
上記構成により、有底筒状のケーシングをその開口端側を前にして回転軸の支持されていない端部側から回転軸の軸方向に沿って作動位置まで移動させてケーシングが処理空間を覆った状態で、ケーシング内の処理物の処理を行うことができ、一方、上記有底筒状のケーシングを作動位置から非作動位置に移動させてケーシングが処理空間を覆わない状態で、処理装置内部の点検、清掃等を容易に行うことができる。
従って、回転軸の支持を片側支持として簡素に構成しつつ、ケーシングの移動構造により清掃等の容易化も確保し、特に小型の処理装置に適した装置構成が実現できる。
The eleventh invention is the bottomed cylinder according to any one of the first to tenth inventions, wherein the rotating shaft is supported only at one end side in the axial direction and the casing is opened only at one end side in the axial direction of the rotating shaft. And is configured to be movable along an axial direction of the rotating shaft between an operating position that covers the processing space between the rotating shaft and a non-operating position that does not cover the processing space. .
With the above structure, the casing covers the processing space by moving the bottomed cylindrical casing from the end side where the rotating shaft is not supported to the operating position along the axial direction of the rotating shaft with the opening end side in front. The processed product in the casing can be processed in a state where the casing is in the state where the bottomed cylindrical casing is moved from the operating position to the non-operating position so that the casing does not cover the processing space. Inspection, cleaning, etc. can be performed easily.
Therefore, while simplifying the support of the rotating shaft as a one-side support, the casing moving structure can also facilitate cleaning and the like, and an apparatus configuration particularly suitable for a small processing apparatus can be realized.

同第12発明は、第1〜第11発明のいずれかにおいて、前記回転軸が軸方向の両端側で支持され、前記ケーシングが複数個に分割可能に形成されて、前記回転軸との間の処理空間を覆う作動状態と前記処理空間を覆わない非作動状態とに変更可能に構成されている点である。
上記構成において、分割可能に形成されたケーシングの分割形態を回転軸との間の処理空間を覆う作動状態に変更させて、ケーシング内の処理物の処理を行うことができ、一方、上記分割形成されたケーシングの分割形態を処理空間を覆わない非作動状態に位置変更させて、処理装置内部の点検、清掃等を容易に行うことができる。
従って、両側支持により回転時の負荷が大きい大型で重い回転軸を確実に支持しつつ、ケーシングの分割構造により清掃等の容易化も確保することで、特に大型の処理装置に適した装置構成が実現できる。
In the twelfth invention according to any one of the first to eleventh inventions, the rotating shaft is supported at both ends in the axial direction, the casing is formed so as to be divided into a plurality of parts, and between the rotating shaft and the rotating shaft. It is the point which is comprised so that a change to the operation state which covers process space and the non-operation state which does not cover the process space is possible.
In the above configuration, the division form of the casing formed to be separable can be changed to an operating state that covers the processing space between the rotating shafts, and the processed material in the casing can be processed. It is possible to easily inspect, clean, etc. the inside of the processing apparatus by changing the position of the divided form of the casing to a non-operating state that does not cover the processing space.
Therefore, while supporting the large and heavy rotating shaft with a large load at the time of rotation by supporting both sides surely and ensuring the ease of cleaning etc. by the divided structure of the casing, an apparatus configuration particularly suitable for a large processing apparatus is provided. realizable.

前記第2の目的を実現するための粉体処理方法の第1発明は、上記処理装置の第1〜第12発明のいずれかを用いて、処理物としての粉体粒子を粒子単位で混合させる精密混合処理を行う点にある。
本発明に係る処理装置は粉体に対して強力な攪拌効果を有しているので、凝集状態の粉体粒子を粒子単位に分散させて粉体粒子を粒子単位で混合させる精密混合処理を効率良く行うことができる。
The first invention of the powder processing method for realizing the second object uses any one of the first to twelfth inventions of the processing apparatus to mix the powder particles as a processed product in units of particles. The point is that precision mixing is performed.
Since the processing apparatus according to the present invention has a strong stirring effect on the powder, it is efficient to perform a precision mixing process in which the powder particles in an agglomerated state are dispersed in units of particles and the powder particles are mixed in units of particles. Can be done well.

同第2発明は、処理装置の第1〜第12発明のいずれかを用いて、処理物としての粉体粒子をこれと径が同等の粒子もしくはこれより径が大きい粒子に結合させる融合化処理を行う点にある。
本発明に係る処理装置は粉体に対して強力な攪拌効果を有しているので、凝集状態の粉体粒子を良好に分散させるとともに、分散した粉体粒子をこれと径が同等の粒子もしくはこれよりも径が大きい粒子に結合させる融合化処理を効率良く良好に行うことができる。
上記融合化処理は、例えば微粉粒子をこれよりも径が大きい粒子に結合させる場合は微粉融合化処理になる。
The second invention uses any one of the first to twelfth inventions of the processing apparatus, and combines the powder particles as the processed product with particles having the same diameter or larger diameter. The point is to do.
Since the processing apparatus according to the present invention has a strong stirring effect on the powder, the powder particles in an agglomerated state are well dispersed, and the dispersed powder particles It is possible to efficiently and satisfactorily perform the fusing process for binding to particles having a larger diameter.
The fusion process is a fine powder fusion process when, for example, fine particles are bonded to particles having a larger diameter.

同第3発明は、処理装置の第1〜第12発明のいずれかを用いて、処理物としての粉体粒子の表面に改質剤を結合させる表面改質処理を行う点にある。
本発明に係る処理装置は粉体に対して強力な攪拌効果を有しているので、粉体中の凝集粒子及び改質剤を良好に分散させるとともに、分散した粉体粒子の表面に分散した改質剤を結合させる表面改質処理を効率良く良好に行うことができる。
The third invention is that, using any one of the first to twelfth inventions of the processing apparatus, a surface modification treatment is performed in which a modifying agent is bonded to the surface of the powder particles as a treated product.
Since the treatment apparatus according to the present invention has a strong stirring effect on the powder, the agglomerated particles and the modifier in the powder are well dispersed and dispersed on the surface of the dispersed powder particles. The surface modification treatment for bonding the modifier can be performed efficiently and satisfactorily.

同第4発明は、処理装置の第1〜第12発明のいずれかを用いて、処理物としての粉体粒子の表面を滑らかにする平滑化処理を行う点にある。
本発明に係る処理装置は粉体に対して強力な攪拌効果を有しているので、粉体粒子の表面に対して強い研磨力、摩擦力、圧縮変形力等を与えて粉体粒子の表面を滑らかにする平滑化処理を効率良く行うことができる。
The fourth invention resides in that a smoothing process for smoothing the surface of the powder particles as a processed product is performed using any one of the first to twelfth inventions of the processing apparatus.
Since the processing apparatus according to the present invention has a strong stirring effect on the powder, the surface of the powder particle is given by giving a strong polishing force, frictional force, compressive deformation force, etc. to the surface of the powder particle. Smoothing processing for smoothing can be performed efficiently.

同第5発明は、処理装置の第1〜第12発明のいずれかを用いて、処理物としての粉体粒子の形状を変化させる形状制御処理を行う点にある。
本発明に係る処理装置は粉体に対して強力な攪拌効果を有しているので、粉体粒子に対して強い研磨力や磨砕力や圧縮変形力や剪断力等を与えて形状を変化させる形状制御処理を効率良く行うことができる。
上記形状制御処理は、例えば、粉体粒子中の異形粒子を球形化させる場合は球形化処理になり、粉体粒子を扁平化させる場合は扁平化処理になる。
The fifth invention is that a shape control process for changing the shape of powder particles as a processed product is performed using any one of the first to twelfth inventions of the processing apparatus.
Since the processing apparatus according to the present invention has a strong stirring effect on the powder, the shape is changed by giving a strong polishing force, grinding force, compressive deformation force, shearing force, etc. to the powder particles. The shape control process to be performed can be performed efficiently.
The shape control process is, for example, a spheronization process when the irregularly shaped particles in the powder particles are spheroidized, and a flattening process when the powder particles are flattened.

同第6発明は、上記第1〜第5発明のいずれかの粉体処理方法において、前記ケーシング内の処理空間の内容積100%に対する処理物の投入体積を5%〜95%の範囲に設定する点にある。
上記処理物の投入体積が5%未満であると、処理空間に占める粉体の量が少な過ぎて攪拌部材に当たった粉体が逃げ易くなるために粉体粒子に強い力が作用せず、逆に上記処理物の投入体積が95%を超えると、処理空間に占める粉体の量が多くなり過ぎて、粉体の移動が抑制されるために各粉体粒子に作用する力が不均一になり易く、いずれの場合も攪拌効果が低下するおそれがあるが、上記処理物の投入体積をケーシング内の処理空間の内容積100%に対して5%〜95%の範囲に設定することにより、各粉体粒子に対して均一に強い力を作用させて有効な攪拌効果を得て、粉体に対する処理を良好に行うことができる。
The sixth invention is the powder processing method according to any one of the first to fifth inventions, wherein the input volume of the processed material is set in a range of 5% to 95% with respect to 100% of the internal volume of the processing space in the casing. There is in point to do.
When the input volume of the processed material is less than 5%, the amount of powder occupying the processing space is too small, and the powder hitting the stirring member is likely to escape, so a strong force does not act on the powder particles, Conversely, if the input volume of the processed material exceeds 95%, the amount of powder occupying the processing space becomes too large, and the force acting on each powder particle is uneven because the movement of the powder is suppressed. In any case, the stirring effect may be reduced, but by setting the input volume of the processed material in a range of 5% to 95% with respect to 100% of the internal volume of the processing space in the casing. By applying a strong force uniformly to each powder particle to obtain an effective stirring effect, the powder can be processed satisfactorily.

同第7発明は、上記第1〜第6発明のいずれかの粉体処理方法において、前記ケーシングの内周部と前記攪拌部材との間隙を0.3mm〜50mmの範囲に設定する点にある。
上記ケーシングの内周部と前記攪拌部材との間隙が広くなり過ぎると、攪拌部材に当たった粉体がケーシングの内周部で受け止められず逃げ易くなるため粉体粒子に強い力が作用せず、逆に上記間隙が狭いと、攪拌部材に当たった粉体がケーシングの内周部で受け止められて逃げ難くなるため粉体粒子に強い力が作用するが、一方で上記間隙が狭くなり過ぎて、有機樹脂(例えば熱可塑性樹脂)等の融点の低い処理物に強い力が働くと溶着してしまうおそれがある。そこで、処理物の種類や特性に応じて上記間隙を0.3mm〜50mm内の範囲の値に設定することにより、各種の粉体粒子に対して有効な攪拌効果を得て処理を良好に行うことができる。
The seventh invention is that, in the powder processing method of any one of the first to sixth inventions, a gap between the inner peripheral portion of the casing and the stirring member is set in a range of 0.3 mm to 50 mm. .
If the gap between the inner peripheral part of the casing and the stirring member becomes too wide, the powder hitting the stirring member will not be received by the inner peripheral part of the casing and will be easy to escape, so no strong force will act on the powder particles. On the contrary, if the gap is narrow, the powder hitting the stirring member is received by the inner periphery of the casing and is difficult to escape, so a strong force acts on the powder particles, but the gap is too narrow. If a strong force is applied to a processed material having a low melting point such as an organic resin (for example, a thermoplastic resin), there is a risk of welding. Therefore, by setting the gap to a value in the range of 0.3 mm to 50 mm according to the type and characteristics of the processed material, an effective stirring effect can be obtained for various powder particles and the processing can be performed satisfactorily. be able to.

同第8発明は、上記第1〜第7発明のいずれかの粉体処理方法において、前記ケーシングの内周部に対する前記攪拌部材の周速を処理物に応じて変更設定する点にある。
すなわち、上記ケーシングの内周部に対する前記攪拌部材の周速が遅いと、粉体粒子に対して作用する力が弱くなり、逆に周速が速くなると粉体粒子に対して作用する力が強くなるので、処理対象の粉体粒子の種類や特性に応じて上記周速を適切な値に設定することにより、各種の粉体粒子に対して有効な攪拌効果を得て処理を良好に行うことができる。例えば、有機樹脂含有物等の融点の低い粉体粒子については溶着等の発生を防止するために周速を遅くする。後述のトナー粒子の場合は、例えば10〜30m/sec程度の低周速状態が好ましい。
The eighth invention resides in that, in the powder processing method of any one of the first to seventh inventions, the peripheral speed of the stirring member relative to the inner peripheral portion of the casing is changed and set according to the processing object.
That is, when the peripheral speed of the stirring member with respect to the inner peripheral portion of the casing is low, the force acting on the powder particles is weak, and conversely, when the peripheral speed is high, the force acting on the powder particles is strong. Therefore, by setting the peripheral speed to an appropriate value according to the type and characteristics of the powder particles to be processed, it is possible to obtain an effective stirring effect for various powder particles and perform the processing well. Can do. For example, for powder particles having a low melting point such as an organic resin-containing material, the peripheral speed is slowed to prevent the occurrence of welding or the like. In the case of toner particles described later, a low peripheral speed state of, for example, about 10 to 30 m / sec is preferable.

同第9発明は、上記第1〜第8発明のいずれかの粉体処理方法において、前記粉体粒子が樹脂含有粒子である点にあり、第10発明は、当該樹脂含有粒子がトナー粒子である点にある。尚、ここでいうトナー粒子には、最終製品としてのトナー粒子の他に、製造工程の途中にある中間品も含む。またトナー粒子以外の樹脂含有粒子としては、例えば粉体塗料粒子が挙げられる。   The ninth invention is the powder processing method of any one of the first to eighth inventions, wherein the powder particles are resin-containing particles, and the tenth invention is that the resin-containing particles are toner particles. There is a point. The toner particles here include intermediate products in the course of the manufacturing process in addition to the toner particles as the final product. Examples of resin-containing particles other than toner particles include powder coating particles.

すなわち、粉体粒子が樹脂含有粒子の場合に、前記精密混合処理によって、凝集し易い樹脂含有粒子を解砕し分散させて粒子単位で精密に混合させることができる。
特に樹脂含有粒子がトナー粒子の場合に、凝集したトナー粒子を解砕分散させて粒子単位で混合させることで、画像特性に優れたトナー粒子を効率良く生成することができる。
That is, when the powder particles are resin-containing particles, the resin-containing particles that are likely to aggregate can be crushed and dispersed by the precision mixing process, and can be precisely mixed in units of particles.
Particularly when the resin-containing particles are toner particles, the aggregated toner particles are pulverized and dispersed and mixed in units of particles, whereby toner particles having excellent image characteristics can be efficiently generated.

また、前記融合化処理によって、樹脂含有粒子同士を良好に結合させることができる。
特に樹脂含有粒子がトナー粒子の場合に、トナー粒子中の微粉を適正サイズの粒子に結合させることで、微粉を分級して除去するような面倒操作を行うことなく、所定の粒度分布のトナー粒子を効率良く生成することができる。
Moreover, resin-containing particle | grains can be favorably couple | bonded by the said fusion process.
In particular, when the resin-containing particles are toner particles, the toner particles having a predetermined particle size distribution can be obtained by combining the fine particles in the toner particles with particles of an appropriate size without performing the troublesome operation of classifying and removing the fine particles. Can be generated efficiently.

また、前記表面改質処理によって、樹脂含有粒子の表面に、各種の改質剤を結合させることで、所望の表面特性を持つ樹脂含有粒子に処理することができる。
特に樹脂含有粒子がトナー粒子の場合に、トナー粒子の表面に、流動性向上剤や帯電制御剤等の改質剤を結合させることで、良好な流動性を有するトナー粒子や適正に帯電されるトナー粒子を効率良く生成することができる。
Moreover, the resin-containing particles having desired surface characteristics can be processed by bonding various modifiers to the surface of the resin-containing particles by the surface modification treatment.
In particular, when resin-containing particles are toner particles, toner particles having good fluidity and appropriately charged by bonding a modifier such as a fluidity improver or a charge control agent to the surface of the toner particles. Toner particles can be generated efficiently.

また、前記平滑化処理によって、各種用途のために樹脂含有粒子の表面を滑らかにすることができる。
特に樹脂含有粒子がトナー粒子の場合に、トナー粒子の表面を滑らかにすることで、画像特性に優れるとともに、転写効率が高くなり、さらに、現像装置内に収容したときに表面が滑らかであるために攪拌による変形が少なく現像剤としての耐久性に優れたトナー粒子を効率良く生成することができる。
Moreover, the surface of the resin-containing particles can be smoothed for various uses by the smoothing treatment.
In particular, when the resin-containing particles are toner particles, the surface of the toner particles is smooth, so that the image characteristics are excellent, the transfer efficiency is high, and the surface is smooth when accommodated in the developing device. In addition, toner particles with little deformation due to stirring and excellent durability as a developer can be efficiently produced.

また、前記形状制御処理によって、各種用途のために樹脂含有粒子の形状を種々変化させることができる。
特に樹脂含有粒子がトナー粒子の場合に、球形化処理によって、トナー粒子中の異形粒子を球形化させることで、画像特性に優れたトナー粒子を効率良く生成することができ、あるいは、扁平化処理によって、球形のトナー粒子を扁平化させることで、クリーニング性に優れたトナー粒子を効率良く生成することができる。
Further, the shape control treatment can change the shape of the resin-containing particles for various uses.
In particular, when the resin-containing particles are toner particles, the toner particles having excellent image characteristics can be efficiently generated by spheroidizing the irregularly shaped particles in the toner particles by the spheronization process, or the flattening process. Thus, by flattening the spherical toner particles, toner particles having excellent cleaning properties can be efficiently generated.

このように本発明に係る処理装置によれば、処理物に対して従来にない強い力を与えて攪拌効果を高めることができるので、当該処理装置を用いて、微細な粉体等の処理物を精密に分散、混合することが可能になるばかりでなく、解砕、粉砕、複合化(粒子同士を結合させる融合化)、表面改質、平滑化、形状制御(球形化等)などの各処理を効率良く良好に行うことが可能となる。   As described above, according to the processing apparatus according to the present invention, it is possible to increase the stirring effect by applying an unprecedented strong force to the processed object. Can be precisely dispersed and mixed, as well as pulverization, pulverization, compositing (combination that combines particles), surface modification, smoothing, shape control (spheroidization, etc.) Processing can be performed efficiently and satisfactorily.

以下、本発明の処理装置の一実施形態について、粉体処理装置を例として説明する。
図1に本発明における粉体処理装置の構成を示す。本装置はジャケット4に包まれた円筒形のケーシング1の中心部に、複数の攪拌部材3を外周部に設けた回転軸2を備えている。ケーシング1は攪拌部材3に対し微小間隙(クリアランス)を隔てて位置する内周部を有し、回転軸2の回転に伴い移動する攪拌部材3によってケーシング1内の処理物を攪拌処理するよう構成している。回転軸2は軸受部7によって片側で支持され、モーター等で構成される駆動部8と連結している。原料投入口5はケーシング1の端部側面あるいは上部に、製品排出口6は粉体投入口5に対し反対の端部にあたるケーシング1の下部に設けられている。
Hereinafter, an embodiment of the processing apparatus of the present invention will be described using a powder processing apparatus as an example.
FIG. 1 shows the configuration of a powder processing apparatus according to the present invention. This apparatus includes a rotating shaft 2 having a plurality of stirring members 3 provided on the outer peripheral portion at the center of a cylindrical casing 1 wrapped in a jacket 4. The casing 1 has an inner peripheral portion that is located with a small gap (clearance) with respect to the stirring member 3, and is configured to stir the processed material in the casing 1 by the stirring member 3 that moves as the rotating shaft 2 rotates. is doing. The rotating shaft 2 is supported on one side by a bearing portion 7 and is connected to a driving portion 8 constituted by a motor or the like. The raw material inlet 5 is provided at the side or upper end of the casing 1, and the product outlet 6 is provided at the lower part of the casing 1 corresponding to the end opposite to the powder inlet 5.

即ち、上記回転軸2が軸方向の一端側(図1で左側)のみで支持され、上記ケーシング1が回転軸2の軸方向の一端側(図1で左側)でのみ開口し他端側(図1で右側)で閉塞した有底筒状に形成されて、回転軸2との間の処理空間9を覆う作動位置(図1の位置)と処理空間9を覆わない非作動位置(図示せず)とに回転軸2の軸方向に沿って移動可能に構成されている。   That is, the rotating shaft 2 is supported only at one end side in the axial direction (left side in FIG. 1), and the casing 1 is opened only at one end side in the axial direction of the rotating shaft 2 (left side in FIG. 1). An operation position (position in FIG. 1) that covers the processing space 9 between the rotating shaft 2 and a non-operation position that does not cover the processing space 9 (not shown). 2) is configured to be movable along the axial direction of the rotary shaft 2.

本装置は連続処理に用いることも、バッチ処理に用いることもできる。連続処理に用いる場合は、原料投入口5に定量式フィーダー(図示せず)を接続してもよく、製品排出口6にはロータリーバルブ等の連続式排出機構(図示せず)を設けてもよい。本装置をバッチ処理に用いる場合は、スライドゲートバルブ等の排出抑制機構(図示せず)を原料投入口5、製品排出口6に設ける。なお、バッチ処理のみに使用するのであれば、原料投入口5と製品排出口6はケーシング1の端部に設ける必要はない。   The apparatus can be used for continuous processing or batch processing. When used for continuous processing, a quantitative feeder (not shown) may be connected to the raw material inlet 5, and a continuous discharge mechanism (not shown) such as a rotary valve may be provided at the product outlet 6. Good. When this apparatus is used for batch processing, a discharge suppression mechanism (not shown) such as a slide gate valve is provided at the raw material inlet 5 and the product outlet 6. If used only for batch processing, the raw material inlet 5 and product outlet 6 need not be provided at the end of the casing 1.

図1の装置では加熱、冷却等の温度管理ができるようにジャケット4を備えている。即ち、前記ケーシング1を構成する部材が冷却用又は加熱用媒体の流路であるジャケット4を備えている。尚、ジャケット4に対する冷却用又は加熱用媒体の入口、出口は図示を省略している。温度管理が不要な場合は、ジャケット4は無くても構わない。また図1では本装置は回転軸2が水平方向に向いた横軸構造となっているが、必要に応じて回転軸2が垂直方向に向いた縦軸構造としても構わない。また、必要に応じて回転軸2を斜めの角度に配置した斜め軸構造とすることもできる。   In the apparatus of FIG. 1, a jacket 4 is provided so that temperature management such as heating and cooling can be performed. That is, a member constituting the casing 1 includes a jacket 4 that is a flow path for a cooling or heating medium. Incidentally, the inlet and outlet of the cooling or heating medium for the jacket 4 are not shown. If temperature management is not required, the jacket 4 may be omitted. In FIG. 1, the apparatus has a horizontal axis structure in which the rotary shaft 2 is oriented in the horizontal direction. However, a vertical axis structure in which the rotary shaft 2 is oriented in the vertical direction may be used as necessary. Moreover, it can also be set as the diagonal axis | shaft structure which has arrange | positioned the rotating shaft 2 at the diagonal angle as needed.

次に図2および図3を用いて回転軸2および攪拌部材3について説明する。回転軸2の外周部には軸方向に対し傾斜をつけた角度で板状の攪拌部材3a,3bを備え、回転軸2の両端面部2aには拡散部材10を備えている。   Next, the rotating shaft 2 and the stirring member 3 will be described with reference to FIGS. The outer periphery of the rotating shaft 2 is provided with plate-like stirring members 3 a and 3 b at an angle inclined with respect to the axial direction, and the diffusion member 10 is provided on both end surface portions 2 a of the rotating shaft 2.

図2に示すように、本装置の回転軸2を軸方向と直交する位置から見た場合、例えば攪拌部材3b(2)は、回転軸2の軸方向と平行な方向における端部位置が、隣接する他の攪拌部材3a(1),3a(3)の端部位置よりも当該他の攪拌部材3a(1),3a(3)の内側に位置している。言い換えれば、攪拌部材3b(2)の端部から垂直方向に延長線L1,L3を引くと、隣接する攪拌部材3a(1),3a(3)の一部に重なる位置関係にある。他の攪拌部材3a(1),3a(3),3b(4),3a(5),3b(6)についても同様の位置関係にある。攪拌部材3a,3bがこのような位置関係にあると、粉体が攪拌部材3a,3bの端部から隣接する他の攪拌部材3a,3bの内側へ深く入り、その結果、攪拌部材の力を強く粉体に伝えることができる。   As shown in FIG. 2, when the rotary shaft 2 of the present apparatus is viewed from a position orthogonal to the axial direction, for example, the stirring member 3b (2) has an end position in a direction parallel to the axial direction of the rotary shaft 2. It is located inside the other stirring members 3a (1) and 3a (3) with respect to the positions of the end portions of the other adjacent stirring members 3a (1) and 3a (3). In other words, when the extension lines L1 and L3 are drawn in the vertical direction from the end of the stirring member 3b (2), they are in a positional relationship overlapping with a part of the adjacent stirring members 3a (1) and 3a (3). The other stirring members 3a (1), 3a (3), 3b (4), 3a (5), and 3b (6) have the same positional relationship. When the stirring members 3a and 3b are in such a positional relationship, the powder enters deeply into the other stirring members 3a and 3b from the end of the stirring members 3a and 3b, and as a result, the force of the stirring members is reduced. Can be transmitted to powder strongly.

また本装置は、図3に示すように、ケーシング1の内周部の径D1が回転軸2の外周部の径D2の2倍以下である。すなわちD1≦D2×2の関係で表される。図3において、D1がD2の1.8倍である例を示す。D1に対し、D2を比較的大きくとることにより、粉体に力が作用する空間(処理空間)9が限定され、その結果、同じ攪拌部材3a,3bの周速であっても攪拌部材3a,3bの力を強く粉体に伝えることができる。D1がD2の2倍を越えると、処理物に力が作用する空間9が大きくなりすぎるため、粉体に与える力が小さくなってしまう。   Further, as shown in FIG. 3, in the present apparatus, the diameter D1 of the inner peripheral portion of the casing 1 is not more than twice the diameter D2 of the outer peripheral portion of the rotating shaft 2. That is, it is expressed by a relationship of D1 ≦ D2 × 2. FIG. 3 shows an example in which D1 is 1.8 times D2. By making D2 relatively large with respect to D1, the space (processing space) 9 in which the force acts on the powder is limited. As a result, even if the peripheral speed of the same stirring member 3a, 3b is the same, the stirring member 3a, The force of 3b can be transmitted strongly to the powder. When D1 exceeds twice D2, the space 9 on which the force acts on the processed material becomes too large, and the force applied to the powder becomes small.

前記複数の攪拌部材3a,3bの少なくとも一部が、前記回転軸2の回転に伴って処理物を前記回転軸2の軸方向の一方向に送る送り用攪拌部材3aに形成され、前記複数の攪拌部材3a,3bの他の一部が、前記回転軸2の回転に伴って処理物を前記回転軸2の軸方向の他方向に戻す戻し用攪拌部材3bに形成されている。以下、具体的に説明する。   At least a part of the plurality of agitating members 3a and 3b is formed on the agitating member 3a for feeding that feeds a processed material in one axial direction of the rotating shaft 2 as the rotating shaft 2 rotates. Another part of the stirring members 3 a and 3 b is formed on a return stirring member 3 b that returns the processed material in the other direction in the axial direction of the rotating shaft 2 as the rotating shaft 2 rotates. This will be specifically described below.

図2に示すように、送り用攪拌部材3aの板面は送り方向、すなわち回転軸2の回転に伴って回転軸2の軸方向の一方向に粉体を送るように傾斜している。原料投入口5と製品排出口6がケーシング1の両端部に設けられている場合(図1の場合)は、原料投入口5から粉体排出口6へ向かう方向(図2で右方向)を送り方向という。一方、戻し用攪拌部材3bの板面は戻り方向、すなわち回転軸2の回転に伴って回転軸2の軸方向の送り方向とは逆方向に粉体を戻すように傾斜している。原料投入口5と製品排出口6がケーシング1の両端部に設けられている場合(図1の場合)は、製品排出口6から原料投入口5へ向かう方向(図2で左方向)を戻り方向という。攪拌部材3a,3bの傾斜角度は回転軸2の軸方向に対して±5〜±85度の範囲に設定するのが好ましい。   As shown in FIG. 2, the plate surface of the feeding stirring member 3 a is inclined so as to send the powder in the feeding direction, that is, in one axial direction of the rotating shaft 2 as the rotating shaft 2 rotates. When the raw material inlet 5 and the product outlet 6 are provided at both ends of the casing 1 (in the case of FIG. 1), the direction from the raw material inlet 5 toward the powder outlet 6 (right direction in FIG. 2) This is called the feed direction. On the other hand, the plate surface of the return stirring member 3b is inclined so as to return the powder in the return direction, that is, in the direction opposite to the feed direction in the axial direction of the rotary shaft 2 as the rotary shaft 2 rotates. When the raw material inlet 5 and the product outlet 6 are provided at both ends of the casing 1 (in the case of FIG. 1), the direction from the product outlet 6 toward the raw material inlet 5 (left direction in FIG. 2) is returned. It is called direction. The inclination angle of the stirring members 3a and 3b is preferably set in a range of ± 5 to ± 85 degrees with respect to the axial direction of the rotary shaft 2.

攪拌部材3a,3bは回転軸2の円周方向に間隔を置いて配置した複数枚の部材が一組となっている。ちなみに3a,3bの後に付した(1)、(2)、(3)等で各組の攪拌部材3a,3bを区別している。図2においては、同一組内の攪拌部材3a,3bは同じ方向、すなわち、送り方向か戻り方向かのいずれかに粉体を導くように回転軸2に対し傾斜しているが、これに限定されるものではない。また図2においては、攪拌部材3a,3bが回転軸2に互いに180度の間隔で2枚の部材が一組をなしているが、120度の間隔で3枚、あるいは90度の間隔で4枚、というように多数の部材を一組としてもよい。   The stirring members 3a and 3b are a set of a plurality of members disposed at intervals in the circumferential direction of the rotating shaft 2. By the way, (1), (2), (3), etc. attached after 3a, 3b distinguish each set of stirring members 3a, 3b. In FIG. 2, the stirring members 3a and 3b in the same group are inclined with respect to the rotating shaft 2 so as to guide the powder in the same direction, that is, in either the feed direction or the return direction. Is not to be done. In FIG. 2, the stirring members 3a and 3b form a pair of two members on the rotating shaft 2 at intervals of 180 degrees, but three members at intervals of 120 degrees or four at intervals of 90 degrees. It is good also as a set of many members, such as a sheet.

また、回転軸2の周方向で隣接する攪拌部材3a,3bの一方が前記送り用攪拌部材3aに形成され、他方3bが前記戻し用攪拌部材3bに形成されている。具体的には、図3に示すように、回転軸2の周方向で隣接する攪拌部材3a(5),3b(6)の一方3a(5)が前記送り用攪拌部材3aに形成され、他方3b(6)が前記戻し用攪拌部材3bに形成されている。なお、攪拌部材3a,3bの各組は回転軸2の軸方向で隣接する他の組の攪拌部材3a,3bと回転軸方向から見て一定の角度をずらして設けることが望ましい。図3においては90度の角度でずらしているが、この角度に限定されるわけではない。   One of the stirring members 3a and 3b adjacent in the circumferential direction of the rotating shaft 2 is formed on the feeding stirring member 3a, and the other 3b is formed on the returning stirring member 3b. Specifically, as shown in FIG. 3, one of the stirring members 3a (5) and 3b (6) adjacent in the circumferential direction of the rotating shaft 2 is formed on the feeding stirring member 3a, and the other 3b (6) is formed in the return stirring member 3b. It is desirable that each set of the agitating members 3a and 3b is provided with a certain angle shifted from the other agitating members 3a and 3b adjacent in the axial direction of the rotating shaft 2 when viewed from the rotating axis direction. In FIG. 3, the angle is shifted by 90 degrees, but the angle is not limited to this.

送り用攪拌部材3aと戻し用攪拌部材3bは図2においては回転軸2の軸方向に交互に各3組、合計6組設けられており、この場合、粉体は「送り→戻り→送り→戻り→送り→戻り」という力を交互に受けることとなり、一方向の力のみを受ける場合と比べ、ケーシング内における粉体の移動経路が複雑かつ長くなり、その結果、粉体は攪拌部材3a,3bの力をさらに強く受けることとなる。
攪拌部材3a,3bの組み合わせはこれに限定されるものではなく、必要に応じて自由に変更することができる。図4においては、送り用攪拌部材3aおよび戻し用攪拌部材3bは各2組で間に送り中立の攪拌部材3c(3)を挟み、その配列も「送り→戻り→中立→送り→戻り」で図2とは異なっている。また、図5においては、送り用攪拌部材3aが3組、戻し用攪拌部材3bが2組設けられ、その配列は「送り→送り→戻り→送り→戻り」である。
In FIG. 2, the stirring member 3 a for feeding and the stirring member 3 b for returning are alternately provided in the axial direction of the rotating shaft 2, and a total of six sets are provided. In this case, the powder is “feed → return → feed → The force of “return → feed → return” is alternately received, and the movement path of the powder in the casing becomes complicated and long as compared with the case where only the force in one direction is received. As a result, the powder is mixed with the stirring member 3a, The force of 3b will be received more strongly.
The combination of the stirring members 3a and 3b is not limited to this, and can be freely changed as necessary. In FIG. 4, the feed stirring member 3 a and the return stirring member 3 b sandwich the feed neutral stirring member 3 c (3) between each pair, and the arrangement thereof is also “feed → return → neutral → feed → return”. This is different from FIG. Further, in FIG. 5, three sets of feed stirring members 3a and two sets of return stirring members 3b are provided, and the arrangement thereof is “feed → feed → return → feed → return”.

また図2、図4、図5においては、送り用攪拌部材3a(1),3a(2),3a(3),3a(4),3a(5)、あるいは戻し用攪拌部材3b(2),3b(3),3b(4),3b(5),3b(6)の傾斜角度は、それぞれ同一であるが、これに限定されるわけではなく、攪拌部材3a,3bの傾斜角度を全て異ならせる、あるいは一部だけ傾斜角度を異ならせても構わない。   2, 4 and 5, the feed stirring member 3a (1), 3a (2), 3a (3), 3a (4), 3a (5), or the return stirring member 3b (2). , 3b (3), 3b (4), 3b (5), 3b (6) have the same inclination angle, but the present invention is not limited to this, and the inclination angles of the stirring members 3a, 3b are all the same. It is also possible to make them different, or to change the inclination angle by a part.

攪拌部材3a,3bを図6の如きハブ状に設計し、回転軸2の軸方向に並べる構造にすれば、送りと戻りの組み合わせを変更することが容易である。
攪拌部材3a,3bの形状は板状に形成されている。攪拌部材3a,3bの形状を板状にすることで、ブロック状の攪拌部材に比べ、回転軸2全体を軽量化することができるため、より高速に回転する回転軸2を設計することが可能となり、その結果、攪拌部材3a,3bの力をさらに強く粉体に伝えることができる。
なお板状とは、少なくとも攪拌部材3a,3bのケーシング1の内周部に近い部位が板状になっていれば足り、回転軸2と攪拌部材3a、3bを棒状のアーム等で接合しても構わない。
また図6においては、攪拌部材3aおよび3bは、回転軸2の軸方向に対し湾曲した板状の部材としているが、これを直線的に設けても構わない。
If the stirring members 3a and 3b are designed in a hub shape as shown in FIG. 6 and arranged in the axial direction of the rotary shaft 2, it is easy to change the combination of feed and return.
The shape of the stirring members 3a and 3b is formed in a plate shape. By making the shape of the stirring members 3a and 3b into a plate shape, the entire rotating shaft 2 can be reduced in weight compared to the block-shaped stirring member, so that the rotating shaft 2 rotating at a higher speed can be designed. As a result, the force of the stirring members 3a and 3b can be transmitted to the powder more strongly.
The plate shape is sufficient if at least the portion of the stirring members 3a and 3b close to the inner peripheral portion of the casing 1 has a plate shape, and the rotary shaft 2 and the stirring members 3a and 3b are joined by a bar-shaped arm or the like. It doesn't matter.
In FIG. 6, the stirring members 3 a and 3 b are plate-like members curved with respect to the axial direction of the rotating shaft 2, but they may be provided linearly.

ケーシング1の内周部と、攪拌部材3との間隙(クリアランス)は一定かつ微小に保つことが望ましい。クリアランスを一定に保つのは、粉体に均一に力を与えるためであり、微小に保つのは粉体の逃げ場を減らすことで、より強い力を与えるためである。攪拌部材3a,3bとして、回転軸2に軸方向に交差する方向から見て単純な長方形の板状部材を設けると、板状部材の両端部に比べ、板状部材中央部とケーシング1の内周部とのクリアランスが広がってしまうため、攪拌部材3a,3bのケーシング1の内周部側の形状はクリアランスを一定に保つよう考慮することが望ましい。   It is desirable to keep the gap (clearance) between the inner peripheral portion of the casing 1 and the stirring member 3 constant and minute. The reason why the clearance is kept constant is to apply force uniformly to the powder, and the reason why the clearance is kept small is to give a stronger force by reducing the escape space of the powder. When a simple rectangular plate-like member is provided as the agitating members 3a and 3b as viewed from the direction intersecting the axial direction on the rotary shaft 2, the central part of the plate-like member and the inside of the casing 1 are compared with both ends of the plate-like member. Since the clearance with the peripheral part spreads, it is desirable to consider the shape of the stirring member 3a, 3b on the inner peripheral part side of the casing 1 so as to keep the clearance constant.

ただしケーシング1の内周部と一組の攪拌部材3とのクリアランスと、当該内周部と他の組の攪拌部材3とのクリアランスが同一である必要はない。例えば図2において原料投入口5に近い送り基端側の攪拌部材3a(1)のクリアランスを製品排出口6に近い送り終端側の攪拌部材3a(5)のクリアランスより広くする、といった設定にしても構わない。またクリアランスの幅はケーシング内周部の径D1の0.05〜7.5%、望ましくは0.75〜3%にすることが好ましい。7.5%を超えると粉体の逃げ場が大きくなり、強い力を与えることができない。0.05%以下のクリアランスでは運転中に生じる振動のため、攪拌部材3a,3bとケーシング1が接触してしまうおそれがある。具体的な数値で示すと、ケーシング1の内周部と攪拌部材3a,3bとの間隙を0.3mm〜50mmの範囲に設定するのが望ましい。   However, the clearance between the inner peripheral portion of the casing 1 and the set of stirring members 3 and the clearance between the inner peripheral portion and the other set of stirring members 3 do not have to be the same. For example, in FIG. 2, the clearance of the agitating member 3 a (1) on the feed proximal side near the raw material inlet 5 is made wider than the clearance of the agitating member 3 a (5) on the feed end side near the product outlet 6. It doesn't matter. The clearance width is 0.05 to 7.5% of the diameter D1 of the inner peripheral portion of the casing, and preferably 0.75 to 3%. If it exceeds 7.5%, the powder escape area becomes large and a strong force cannot be applied. If the clearance is 0.05% or less, the stirring members 3a and 3b and the casing 1 may come into contact with each other due to vibrations generated during operation. In terms of specific numerical values, it is desirable to set the gap between the inner peripheral portion of the casing 1 and the stirring members 3a and 3b within a range of 0.3 mm to 50 mm.

また、ケーシング1内で処理物が有効な攪拌作用を受けることができるように、空間ケーシング1内の処理空間9の内容積100%に対する処理物の投入体積は、下限値5%〜上限値95%の範囲に設定することが望ましい。ここで、ケーシング1内の処理空間9の内容積とは、ケーシング1自身の内容積から回転軸2が占める体積を引き算した空間(ケーシング1内で処理物が動き回ることができる実質的な空間)の容積を意味する。   Further, the input volume of the processed product with respect to 100% of the internal volume of the processing space 9 in the space casing 1 is set to a lower limit value of 5% to an upper limit value of 95 so that the processed product can receive an effective stirring action in the casing 1. It is desirable to set in the range of%. Here, the internal volume of the processing space 9 in the casing 1 is a space obtained by subtracting the volume occupied by the rotating shaft 2 from the internal volume of the casing 1 itself (substantial space in which the processed material can move around in the casing 1). Means volume.

本装置においては、送り用攪拌部材3aと戻し用攪拌部材3bを設けているが、必要に応じて回転軸2の軸方向に垂直な部材、あるいは図7に示すような回転軸2の軸方向に水平な攪拌部材3cを設けても構わない。このような送り中立の攪拌部材3cを設けた回転軸2の例を図4に示す。垂直の攪拌部材あるいは水平の攪拌部材3cをつける回転軸2上の位置は、回転軸2の両端部でなければ、特段の制限はない。   In this apparatus, a feed stirring member 3a and a return stirring member 3b are provided, but if necessary, a member perpendicular to the axial direction of the rotating shaft 2 or the axial direction of the rotating shaft 2 as shown in FIG. Alternatively, a horizontal stirring member 3c may be provided. An example of the rotating shaft 2 provided with such a feed neutral stirring member 3c is shown in FIG. The position on the rotary shaft 2 where the vertical stirring member or the horizontal stirring member 3c is attached is not particularly limited as long as it is not at both ends of the rotary shaft 2.

回転軸2の両端部側は攪拌部材3a,3bの作用が及びにくい部位である。そこで回転軸2の一方の端部に送り用攪拌部材3aを、もう一方の端部に戻し用攪拌部材3bを設けることで、回転軸2の両端部側への粉体の移動を抑制し、その結果、攪拌部材3による強力な攪拌作用を受けないまま排出される粉体の発生を防止することができる。
即ち、前記回転軸2の軸方向の一端(図2、図4、図5の左端)に位置する攪拌部材3a(1)が、当該軸方向の一端から他端(図2、図4、図5の右端)へ処理物を送る送り用攪拌部材3aに形成され、前記回転軸2の軸方向の他端(図2、図4、図5の右端)に位置する攪拌部材3b(5),3b(6)が、当該軸方向の他端から一端へ処理物を戻す戻し用攪拌部材3bに形成されている。
Both end portions of the rotating shaft 2 are portions where the action of the stirring members 3a and 3b is difficult to reach. Therefore, by providing a stirring member 3a for feeding at one end of the rotating shaft 2 and a stirring member 3b for returning at the other end, the movement of the powder toward both ends of the rotating shaft 2 is suppressed, As a result, it is possible to prevent generation of powder that is discharged without receiving a strong stirring action by the stirring member 3.
That is, the stirring member 3a (1) positioned at one end (the left end in FIGS. 2, 4 and 5) of the rotating shaft 2 is moved from one end to the other end (FIGS. 2, 4, and 5). Agitating member 3b (5), which is formed on the agitating member 3a for sending the processed material to the right end of 5 and located at the other axial end of the rotating shaft 2 (the right end in FIGS. 2, 4, and 5). 3b (6) is formed in the return stirring member 3b for returning the processed material from the other end in the axial direction to the other end.

以上の説明では省略したが、図1〜図7に示す前記攪拌部材3a,3bは、実際には図8に示すように、ケーシング1の内周部に対向する攪拌部材3a,3bの先端部分が、前記回転軸2の軸方向から見たときの断面視で鋭角形状に形成されるとともに、その先端鋭角部分の中心線Lがケーシング1の内周面に対して直角方向から傾斜した状態に配置されている。具体的に、図8には、上記先端鋭角部分を形成する左右の斜辺S1,S1のなす角度が60度程度で、その両斜辺S1,S1の一方S1がケーシング1の内周面に対し直角方向に位置している場合を示しており、上記中心線Lはケーシング1の内周面に対して直角方向から約30度傾斜した状態になる。なお、上記先端鋭角部分の角度は60度に限定されるものではなく、90度に近い角度から60度よりも小さい任意の角度に設定することができる。但し、先端部分の磨耗を考慮すると、あまり小さい角度は好ましくない。また、上記中心線Lの傾斜角度についても適宜の値に設定することができる。   Although omitted in the above description, the stirring members 3a and 3b shown in FIGS. 1 to 7 are actually the tip portions of the stirring members 3a and 3b facing the inner peripheral portion of the casing 1, as shown in FIG. Is formed in an acute angle shape when viewed from the axial direction of the rotating shaft 2, and the center line L of the tip acute angle portion is inclined from the direction perpendicular to the inner peripheral surface of the casing 1. Has been placed. Specifically, FIG. 8 shows that the angle formed by the left and right oblique sides S1 and S1 forming the sharp tip portion is about 60 degrees, and one of the oblique sides S1 and S1 is perpendicular to the inner peripheral surface of the casing 1. The center line L is in a state inclined about 30 degrees from the direction perpendicular to the inner peripheral surface of the casing 1. Note that the angle of the sharp tip portion is not limited to 60 degrees, and can be set to an arbitrary angle smaller than 60 degrees from an angle close to 90 degrees. However, considering the wear of the tip portion, a very small angle is not preferable. Also, the inclination angle of the center line L can be set to an appropriate value.

そして、本実施形態の処理装置では、上記中心線Lが進行方向前方側のケーシング内周部に対して直角よりも大きい角度となる方向(図8の矢印の方向)に回転軸2を回転させることで、溶着しやすい樹脂材料等を処理する場合に、攪拌部材3a,3bの先端部分とケーシング内周部の間に処理物を挟みこんで剪断力が働らく状態を避けて溶着の発生を防止している。なお、例えば無機材料等の融点が高く剛性の大きい処理物に対して強い力を働かせて処理する場合には、図8の矢印と反対の方向に回転軸2を回転させることで、当該材料を攪拌部材3a,3bの先端部分とケーシング内周部の間に処理物を挟みこんでケーシング内周部側に押し付けて剪断力が働くようにすることができる。   And in the processing apparatus of this embodiment, the said rotating shaft 2 is rotated in the direction (direction of the arrow of FIG. 8) in which the said centerline L becomes an angle larger than a right angle with respect to the casing inner peripheral part of the advancing direction front side. Therefore, when processing resin materials that are easily welded, avoid the state in which shearing force is applied by sandwiching the processed material between the tip portions of the stirring members 3a and 3b and the inner peripheral portion of the casing. It is preventing. In addition, for example, when processing a strong force on a processed material having a high melting point and high rigidity such as an inorganic material, the rotating shaft 2 is rotated in a direction opposite to the arrow in FIG. A processed product can be sandwiched between the tip portions of the agitating members 3a and 3b and the inner peripheral portion of the casing and pressed against the inner peripheral portion of the casing so that a shearing force can be applied.

回転軸2の両端面部2aには拡散部材10が設けられる。拡散部材10が回転軸2の回転に伴い移動することにより、攪拌部材3の作用が及びにくい当該両端面部2a側に入り込もうとする粉体に対し、拡散部材10によって遠心力を生ぜしめ、当該両端面部2a側への粉体の移動を抑制し、その結果、攪拌部材3による強力な攪拌作用を受けないまま排出される粉体の発生を防止することができる。
図3に示すように、拡散部材10は各端面部2aにおいて回転軸2の中心部から反対方向に向かって伸びた2枚の板状部材で構成されている。尚、実線と破線で示すように、上記両端面部2aの攪拌部材10は回転軸2の軸方向視で互いに90度ずれた状態に配置されている。但し、これに限定されるわけではなく、遠心力を発生させうるならば他の形状、角度、枚数であっても構わず、回転軸2の軸方向から見て回転軸2の中心部を横切る形で拡散部材を設けてもよい。また拡散部材10は回転軸2の一方の端面部2aにのみ設けても構わないが、両端面部2aに設けることが望ましい。
Diffusion members 10 are provided on both end surface portions 2 a of the rotating shaft 2. When the diffusing member 10 moves with the rotation of the rotary shaft 2, the diffusing member 10 generates a centrifugal force by the diffusing member 10 on the powder that tends to enter the both end surface portions 2a side where the action of the stirring member 3 is difficult. The movement of the powder toward the surface portion 2a is suppressed, and as a result, it is possible to prevent the generation of the powder that is discharged without receiving a strong stirring action by the stirring member 3.
As shown in FIG. 3, the diffusing member 10 is composed of two plate-like members extending in the opposite direction from the center of the rotating shaft 2 at each end surface portion 2a. In addition, as shown by a solid line and a broken line, the stirring members 10 of the both end surface portions 2a are arranged in a state of being shifted from each other by 90 degrees as viewed in the axial direction of the rotary shaft 2. However, the shape is not limited to this, and other shapes, angles, and numbers may be used as long as centrifugal force can be generated, and the center of the rotating shaft 2 is crossed when viewed from the axial direction of the rotating shaft 2. The diffusion member may be provided in the form. Further, the diffusing member 10 may be provided only on one end surface portion 2a of the rotating shaft 2, but it is desirable to provide the diffusing member 10 on both end surface portions 2a.

本装置の攪拌部材3の周速は5m/sec〜200m/secである。攪拌部材3の周速が5m/secより遅くなると、粉体に十分な力を与えることができない。攪拌部材3の周速が200m/secを超えると、軸受構造の設計が困難となる。   The peripheral speed of the stirring member 3 of this apparatus is 5 m / sec to 200 m / sec. When the peripheral speed of the stirring member 3 is slower than 5 m / sec, sufficient force cannot be applied to the powder. When the peripheral speed of the stirring member 3 exceeds 200 m / sec, it becomes difficult to design the bearing structure.

次に、本発明に係る処理装置の他の例を、図9〜図12に示す。
図9と図10に示す装置は、図1の装置と同様に回転軸2が片側だけで支持されたパドル構造であるが、図1の装置よりも筒状ケーシング1の径が大きく形成されている。また、筒状ケーシング1を作動位置にセットする操作を容易にするために、装置本体側に設けた2本のガイド棒12にケーシングの上部外周に設けたボス13のガイド孔を通して支持させた状態でケーシング1を回転軸2の軸方向に沿って挿入できるように構成されている。さらに、ジャケット4によってケーシング1を冷却又は加熱するとともに、回転軸2を冷却又は加熱するために、回転軸2を構成する部材が冷却用又は加熱用媒体の流路11を備えている。具体的には、回転軸部材の内部中心軸方向に沿って空洞が形成され、この空洞に回転軸2を支持する本体側から差し込んだパイプで冷水を供給し、空洞内を通流した水(冷却用の冷水又は加熱用の温水)を本体側に回収して循環させる構造である。なお、図9では、原料投入口5と製品排出口6をケーシング1の軸方向の両端位置に設けているが、軸方向の中央位置の上部と下部に設けてもよい。
Next, other examples of the processing apparatus according to the present invention are shown in FIGS.
The apparatus shown in FIGS. 9 and 10 has a paddle structure in which the rotating shaft 2 is supported only on one side as in the apparatus of FIG. 1, but the diameter of the cylindrical casing 1 is formed larger than that of the apparatus of FIG. Yes. Further, in order to facilitate the operation of setting the cylindrical casing 1 at the operating position, the two guide rods 12 provided on the apparatus main body side are supported through the guide holes of the bosses 13 provided on the upper outer periphery of the casing. Thus, the casing 1 can be inserted along the axial direction of the rotary shaft 2. Furthermore, in order to cool or heat the casing 1 by the jacket 4 and to cool or heat the rotating shaft 2, a member constituting the rotating shaft 2 includes a cooling or heating medium flow path 11. Specifically, a cavity is formed along the inner central axis direction of the rotating shaft member, and cold water is supplied to the cavity from a main body side that supports the rotating shaft 2, and water flowing through the cavity ( Cooling water for cooling or warm water for heating) is collected and circulated on the main body side. In FIG. 9, the raw material inlet 5 and the product outlet 6 are provided at both end positions in the axial direction of the casing 1, but may be provided at the upper part and the lower part of the central position in the axial direction.

攪拌部材3は、先端羽根部分が棒状アームで回転軸2に結合されたパドル構造であり、回転軸2の軸方向に沿って、3組の送り用攪拌部材3aと3組の戻し用攪拌部材3bが「送り→戻り→送り→戻り→送り→戻り」の配列で設けられている。そして、ケーシング1の径が大きくなったのに対応させて、攪拌部材3による攪拌作用が低下しないように、回転軸2の円周方向で配置される攪拌部材3の数を多くしている。即ち、ケーシング1の内周部の径が大きくなるに従い、前記回転軸2の軸方向から見たときに前記回転軸2の周方向に沿って配置される前記攪拌部材3の数を多くしている。具体的には、各組の攪拌部材3a,3bが90度の間隔で4個配置されている。従って、回転軸2の軸方向から見たとき、送り用攪拌部材3aと戻し用攪拌部材3bとが、図1の装置では90度の間隔で4個配置される(図3参照)のに対し、図10のように45度の間隔で8個配置される。   The stirring member 3 has a paddle structure in which the tip blade portion is coupled to the rotating shaft 2 with a rod-shaped arm, and along the axial direction of the rotating shaft 2, three sets of feed stirring members 3a and three sets of return stirring members 3b is provided in an array of “feed → return → feed → return → feed → return”. And the number of the stirring members 3 arranged in the circumferential direction of the rotating shaft 2 is increased so that the stirring action by the stirring member 3 does not decrease in response to the increase in the diameter of the casing 1. That is, as the diameter of the inner peripheral portion of the casing 1 increases, the number of the agitating members 3 arranged along the circumferential direction of the rotating shaft 2 is increased when viewed from the axial direction of the rotating shaft 2. Yes. Specifically, four stirring members 3a and 3b in each group are arranged at intervals of 90 degrees. Accordingly, when viewed from the axial direction of the rotary shaft 2, four feed stirring members 3a and four return stirring members 3b are arranged at intervals of 90 degrees in the apparatus of FIG. 1 (see FIG. 3). As shown in FIG. 10, eight are arranged at intervals of 45 degrees.

さらに、図9と図10に示す装置では、回転軸2の両端面部2aに設ける前記攪拌部材10は、攪拌部材3a,3bの基端部分がアームだけで攪拌力がない点を補うために、回転軸2の外周部の位置を越えて攪拌部材3a,3bの先端羽根部分に達する長さまで延長形成されている。そして、拡散部材10は各端面部2aにおいて回転軸2の中心部から放射状に伸びた4枚の板状部材で構成されている。   Furthermore, in the apparatus shown in FIG. 9 and FIG. 10, the stirrer 10 provided on both end surfaces 2a of the rotating shaft 2 is supplemented by the fact that the base end portions of the stirrers 3a and 3b are only arms and there is no stirring force. It extends beyond the position of the outer periphery of the rotating shaft 2 to a length that reaches the tip blades of the stirring members 3a and 3b. The diffusing member 10 is composed of four plate-like members that extend radially from the central portion of the rotating shaft 2 at each end surface portion 2a.

さらに、図9と図10に示す処理装置は、ケーシング1内の処理空間9の雰囲気を調整する雰囲気調整手段20を備えている。具体的には、図9のA部拡大図で示すように、回転軸2の根元側を封止材17で封止するように配置された軸カバー14に流路14aが形成され、当該流路14aが軸カバー14と回転軸2の外周面で挟まれた領域Cを経て処理空間9に連通している。そして、例えば、処理物の酸化等を防止するために流路14aを通して外部から窒素ガス等の不活性ガスを処理空間9に流入させることができ、また、酸素や空気(Air)等の反応ガスを処理空間9に供給することができ、また、処理空間9を加湿状態にするために湿度を調整した水蒸気を供給することができる。あるいは、乾燥等の目的のために、図示しない真空ポンプを流路14aに接続して処理空間9を減圧させて処理空間9の真空度を高めるようにすることもできる。尚、上記処理空間9は、気密性を維持しつつ外部から供給されたガスを排気して圧力上昇を緩和するために、排気管15及びフィルタ16等が接続されて外気に連絡している。以上より、雰囲気調整手段20が上記流路14a、領域Cなどによって構成される。なお、処理空間9を高真空度にして、例えばケーシング1の内周部に備えた電極等によって放電を発生させることにより、プラズマ放電のエネルギーで処理物の表面を活性化させた状態で機械的な処理を行い、MCB(メカノケミカルボンディング)処理を一層有効に行うことも可能である。   Further, the processing apparatus shown in FIGS. 9 and 10 includes an atmosphere adjusting means 20 for adjusting the atmosphere of the processing space 9 in the casing 1. Specifically, as shown in the enlarged view of part A in FIG. 9, a flow path 14a is formed in the shaft cover 14 disposed so as to seal the root side of the rotating shaft 2 with the sealing material 17, and the flow The path 14 a communicates with the processing space 9 through a region C sandwiched between the shaft cover 14 and the outer peripheral surface of the rotary shaft 2. For example, an inert gas such as nitrogen gas can be flowed into the processing space 9 from the outside through the flow path 14a in order to prevent oxidation of the processed material, and a reactive gas such as oxygen or air (Air). Can be supplied to the processing space 9, and water vapor whose humidity has been adjusted to bring the processing space 9 into a humidified state can be supplied. Alternatively, for the purpose of drying or the like, a vacuum pump (not shown) may be connected to the flow path 14a to depressurize the processing space 9 to increase the degree of vacuum in the processing space 9. The processing space 9 communicates with the outside air by connecting an exhaust pipe 15 and a filter 16 in order to exhaust the gas supplied from the outside and reduce the pressure rise while maintaining airtightness. As described above, the atmosphere adjusting means 20 is constituted by the flow path 14a, the region C and the like. In addition, the processing space 9 is set to a high degree of vacuum, and, for example, a discharge is generated by an electrode or the like provided on the inner peripheral portion of the casing 1, so that the surface of the processing object is activated with plasma discharge energy. It is also possible to perform MCB (mechanochemical bonding) treatment more effectively.

図11と図12に示す装置は、図9の装置よりもさらに筒状ケーシング1の径が大きく形成されている。そして、図1、図9の装置と異なり、回転軸2が軸方向の両端側で支持され、ケーシング1が複数個に分割可能に形成されて、回転軸2との間の処理空間9を覆う作動状態と処理空間9を覆わない非作動状態とに変更可能に構成されている。具体的には、円筒状のケーシング1が回転軸2の軸方向から見て、上側の取り外し可能な半円筒部分と下側の固定された半円筒部分の2部分に分割できる構造となっている。尚、上側の半円筒部分の移動は、例えば、クレーン等を用いた吊り下げ移動か、あるいは、軸方向視での左右いずれかの端部を支点とした回動操作で行う。但し、上記ケーシング1の分割形態は上下2分割に限定されるものではない。また、回転軸2を冷却又は加熱するために、回転軸2を構成する部材が、図9の装置と同様に冷却用又は加熱用媒体の流路11を備えている(図12参照)。   The apparatus shown in FIGS. 11 and 12 is formed such that the diameter of the cylindrical casing 1 is larger than that of the apparatus of FIG. 1 and 9, the rotary shaft 2 is supported at both ends in the axial direction, and the casing 1 is formed so as to be divided into a plurality of parts to cover the processing space 9 between the rotary shaft 2. It is configured to be changeable between an operating state and a non-operating state that does not cover the processing space 9. Specifically, the cylindrical casing 1 can be divided into two parts, an upper removable semi-cylindrical part and a lower fixed semi-cylindrical part as seen from the axial direction of the rotary shaft 2. . The upper semi-cylindrical portion is moved by, for example, a hanging movement using a crane or the like, or a turning operation with the left or right end as viewed in the axial direction as a fulcrum. However, the division form of the casing 1 is not limited to the upper and lower divisions. Moreover, in order to cool or heat the rotating shaft 2, the member which comprises the rotating shaft 2 is provided with the flow path 11 of the medium for cooling or heating similarly to the apparatus of FIG. 9 (refer FIG. 12).

攪拌部材3は、図9の装置と同様に先端羽根部分が棒状アームで回転軸2に結合された構造であり、回転軸2の軸方向に沿って、7組の送り用攪拌部材3aと7組の戻し用攪拌部材3bが交互に「送り→戻り→送り→(中略)→戻り→送り→戻り」の配列で設けられている。そして、ケーシング1の径が大きくなったのに対応させて、回転軸2の円周方向で配置される攪拌部材3の数をさらに多くしている。具体的には、各組の攪拌部材3a,3bが45度の間隔で8個配置される。従って、回転軸2の軸方向から見たとき、送り用攪拌部材3aと戻し用攪拌部材3bとが、22.5度の間隔で16個配置されている。
さらに、図9に示す装置と同様に、回転軸2の両端面部2aに、回転軸2の中心部から放射状に伸びて攪拌部材3a,3bの先端羽根部分に達する長さまで延長形成された4枚の板状部材で構成された攪拌部材10を備えている。
The stirring member 3 has a structure in which the tip blade portion is coupled to the rotating shaft 2 by a rod-like arm in the same manner as the apparatus of FIG. 9, and along the axial direction of the rotating shaft 2, seven sets of the feeding stirring members 3 a and 7 A pair of return stirring members 3b are alternately arranged in an array of “feed → return → feed → (omitted) → return → feed → return”. And the number of the stirring members 3 arrange | positioned in the circumferential direction of the rotating shaft 2 is further increased corresponding to the diameter of the casing 1 becoming large. Specifically, eight sets of stirring members 3a and 3b are arranged at intervals of 45 degrees. Accordingly, when viewed from the axial direction of the rotary shaft 2, 16 feed stirring members 3a and 16 return stirring members 3b are arranged at intervals of 22.5 degrees.
Further, as with the apparatus shown in FIG. 9, four sheets are formed on both end surface portions 2a of the rotating shaft 2 so as to extend radially from the central portion of the rotating shaft 2 to reach the tip blade portions of the stirring members 3a and 3b. The stirring member 10 comprised with the plate-shaped member of is provided.

次に、本発明に係る粉体処理方法の実施形態について実施例とともに説明する。
本実施形態では、上記の処理装置を用いて、処理物としての各種の粉体に対して、以下の精密混合処理、融合化処理としての微粉融合化処理、表面改質処理、平滑化処理、形状制御処理としての球形化処理等を行う。即ち、精密混合処理は、粉体粒子を粒子単位で混合させる処理であり、微粉融合化処理、粉体中の微粉粒子をこれより径が大きい粒子に結合させる処理であり、表面改質処理は、粉体粒子の表面に改質剤を結合させる処理であり、平滑化処理は、粉体粒子の表面を滑らかにする処理であり、球形化処理は、粉体中の異形粒子を球形化させる処理である。なお、図13に上記各処理内容のモデル図を示すが、図13では、融合化処理と表面改質処理を複合化処理で表している。
Next, embodiments of the powder processing method according to the present invention will be described together with examples.
In the present embodiment, using the above-described processing apparatus, for various powders as processed products, the following fine mixing processing, fine powder fusion processing as fusing processing, surface modification processing, smoothing processing, A spheroidizing process is performed as a shape control process. That is, the precision mixing process is a process in which powder particles are mixed in units of particles, a fine powder fusion process, a process in which fine powder particles in the powder are bonded to particles having a larger diameter, and a surface modification process. The process of bonding the modifier to the surface of the powder particles, the smoothing process is a process of smoothing the surface of the powder particles, and the spheronization process spheroidally deformed particles in the powder It is processing. FIG. 13 shows a model diagram of the above-described processing contents. In FIG. 13, the fusion process and the surface modification process are represented by a composite process.

本発明による処理装置と従来のパドル型の混合機(タービュライザTCX−8:ホソカワミクロン株式会社製)を用い、混合速度を比較した。各々の装置で、平均粒径5μmの炭酸カルシウム(白色)とこれに対し混合比5wt%で平均粒径300nmの酸化鉄(赤色)を周速25m/secで混合し、混合到達度をフォトメータ(PM−3:株式会社ミナミデシステムエンジニアリング製)で評価した。上記パドル型混合機は本発明の処理装置と同様にパドルを送り、戻し方向に設定しているが、パドルの回転軸に対して直交する方向から見て、軸方向に平行な方向におけるパドル端部位置は、隣接する他のパドル端部位置よりも内側にはなかった。即ち、隣接するパドル端部同士が重なっていない状態である。結果を図14に示す。○が本発明の処理装置、■が従来のパドル型混合機の結果である。従来のパドル型混合機に比べ、本発明の処理装置は混合到達度が高く、混合速度が速いことが分かる。   The mixing speed was compared using the processing apparatus according to the present invention and a conventional paddle type mixer (Turbulizer TCX-8: manufactured by Hosokawa Micron Corporation). In each device, calcium carbonate (white) with an average particle diameter of 5 μm and iron oxide (red) with an average particle diameter of 300 nm at a mixing ratio of 5 wt% are mixed at a peripheral speed of 25 m / sec. (PM-3: manufactured by Minamide System Engineering Co., Ltd.) The paddle type mixer is configured to feed and return the paddle in the same manner as the processing apparatus of the present invention, but the paddle end in the direction parallel to the axial direction when viewed from the direction orthogonal to the rotation axis of the paddle. The position of the part was not inside the position of the other adjacent paddle end part. That is, the adjacent paddle ends are not overlapped. The results are shown in FIG. ○ is the result of the processing apparatus of the present invention, and ■ is the result of the conventional paddle type mixer. Compared with the conventional paddle type mixer, it can be seen that the processing apparatus of the present invention has a high mixing reach and a high mixing speed.

実施例1に記載した各々の装置で平均粒径28μmのケイ砂と平均粒径15nmの酸化チタンを混合比10:1の条件で複合化処理を行い、BET比表面積をMACSORB HM model−1201(株式会社マウンテック製)で測定した。ケイ砂に比べ、酸化チタンは粒子径が小さく比表面積が大きいため、両者の混合物の比表面積は大きく、複合化が進むほどケイ砂の比表面積に近づくことになる。結果を図15に示す。○が本発明の処理装置、■が従来のパドル型混合機の結果である。従来のパドル型混合機はほとんど複合化が進まなかったのに対し、本発明の装置では複合化が進んでいることが分かる。   In each apparatus described in Example 1, silica sand having an average particle size of 28 μm and titanium oxide having an average particle size of 15 nm were combined under a mixing ratio of 10: 1, and the BET specific surface area was set to MACSORB HM model-1201 ( Measured by Mountec Co., Ltd. Compared to silica sand, titanium oxide has a small particle size and a large specific surface area. Therefore, the specific surface area of the mixture of both is large, and the more the composite, the closer to the specific surface area of silica sand. The results are shown in FIG. ○ is the result of the processing apparatus of the present invention, and ■ is the result of the conventional paddle type mixer. It can be seen that the conventional paddle type mixer has hardly been combined, whereas the apparatus of the present invention has been combined.

実施例1に記載した各々の装置で平均粒径が30μmのコークスの球形化処理を行った。本発明の装置の処理品を図16に、従来のパドル型混合機の処理品を図17に示す。従来のパドル型混合機に比べ、本発明の装置の処理品は球形化が進んでいることが分かる。   Coke spheroidizing treatment with an average particle diameter of 30 μm was performed in each apparatus described in Example 1. FIG. 16 shows a processed product of the apparatus of the present invention, and FIG. 17 shows a processed product of a conventional paddle type mixer. Compared with the conventional paddle type mixer, it can be seen that the processed product of the apparatus according to the present invention is becoming spherical.

本発明による処理装置と、ホソカワミクロン株式会社製のメカノフュージョンシステムAM−15F及びサイクロミックスCLX−50について、実施例1と同様に炭酸カルシウム(白色)と酸化鉄(赤色)を用い、周速20m/secで混合して混合速度を比較した。結果を図18に示す。上記メカノフュージョンシステム及びサイクロミックスに比べ、本処理装置は混合到達度が高く、混合速度が速いことが分かる。   Regarding the processing apparatus according to the present invention, the mechanofusion system AM-15F and cyclomix CLX-50 manufactured by Hosokawa Micron Co., Ltd., using calcium carbonate (white) and iron oxide (red) as in Example 1, a peripheral speed of 20 m / The mixing speed was compared by mixing at sec. The results are shown in FIG. It can be seen that, compared with the mechanofusion system and cyclomix, the present processing apparatus has a high degree of mixing and a high mixing speed.

実施例4に記載した各々の装置で、実施例2と同様に平均粒径28μmのケイ砂と平均粒径15nmの酸化チタンの複合化処理を行い、BET比表面積を測定した。結果を図19に示す。上記メカノフュージョンシステム及びサイクロミックスに比べ、本発明の処理装置では少ないエネルギで複合化が進んでいることが分かる。   In each apparatus described in Example 4, a composite treatment of silica sand having an average particle diameter of 28 μm and titanium oxide having an average particle diameter of 15 nm was performed in the same manner as in Example 2, and the BET specific surface area was measured. The results are shown in FIG. Compared to the mechanofusion system and cyclomix, it can be seen that the processing apparatus according to the present invention is more complex with less energy.

本発明の処理装置により、金属粒子(平均粒径30μmの銅)の表面に金属酸化物微粒子(平均粒径50nmの酸化タングステン微粒子)を被覆する表面改質処理を行った。処理品の写真を図20〜図22に示す。尚、図22は図21のA部分を拡大したものである。写真より、短時間(3分間)の処理で、アルミニウムの粒子表面に酸化タングステン微粒子の層が均一に形成されていることが分かる。   Using the treatment apparatus of the present invention, a surface modification treatment was performed in which metal oxide fine particles (tungsten oxide fine particles having an average particle size of 50 nm) were coated on the surfaces of metal particles (copper having an average particle size of 30 μm). A photograph of the processed product is shown in FIGS. FIG. 22 is an enlarged view of portion A in FIG. It can be seen from the photograph that a layer of tungsten oxide fine particles is uniformly formed on the surface of the aluminum particles in a short time (3 minutes).

本発明の処理装置により、コバルト酸リチウム(平均粒径10μm)の表面にカーボン微粒子(平均粒径50nm)を被覆する表面改質処理を行った。図23にコバルト酸リチウム粒子を示し、図24に凝集状態のカーボン粒子を示す。表面改質処理品の写真を図25に示す。短時間(2分間)の処理で、凝集していたカーボン原料がコバルト酸リチウムの粒子表面に均一に被覆されていることが分かる。尚、当該カーボン被覆のコバルト酸リチウムは2次電池の正極活物質として使用される。また、詳述はしないが、カーボン原料を本発明の処理装置により球形化、分散化等したカーボン粒子を、2次電池の負極活物質として使用することができる。   With the treatment apparatus of the present invention, a surface modification treatment was performed in which the surface of lithium cobalt oxide (average particle size 10 μm) was coated with carbon fine particles (average particle size 50 nm). FIG. 23 shows lithium cobalt oxide particles, and FIG. 24 shows aggregated carbon particles. A photograph of the surface-modified product is shown in FIG. It can be seen that the agglomerated carbon raw material is uniformly coated on the surface of the lithium cobalt oxide particles in a short time (2 minutes) treatment. The carbon-coated lithium cobalt oxide is used as a positive electrode active material for a secondary battery. Although not described in detail, carbon particles obtained by spheroidizing or dispersing carbon raw materials with the processing apparatus of the present invention can be used as the negative electrode active material of the secondary battery.

本発明の処理装置により、トナー粒子(ジェットミル粉砕品で微粉を多量に含む)について微粉融合化処理、及び球形化処理を行った。処理前の写真を図26に、処理後の写真を図27に示し、処理前後の粒度分布の変化を図28に示す。短時間(5分間)の処理で、球形化が進行していることが分かる。なお、円形度(球形度)のデータとして、処理前0.919、処理後0.935のデータ(ホソカワミクロン株式会社製:ホソカワ/シスメックスFPIA−2100で測定)が得られている。また、図28のデータから、5.3μm以下の微粉の個数の割合で73%から48%に低下し、微粉融合化が進行していることが分かる。   The toner particles (jet mill pulverized product containing a large amount of fine powder) were subjected to fine powder fusion treatment and spheroidization treatment by the treatment apparatus of the present invention. A photograph before processing is shown in FIG. 26, a photograph after processing is shown in FIG. 27, and a change in particle size distribution before and after the processing is shown in FIG. It can be seen that spheroidization is progressing in a short time (5 minutes). In addition, as data of circularity (sphericity), data of 0.919 before treatment and 0.935 after treatment (manufactured by Hosokawa Micron Corporation: measured by Hosokawa / Sysmex FPIA-2100) are obtained. Further, from the data of FIG. 28, it is found that the ratio of the number of fine powders of 5.3 μm or less is reduced from 73% to 48%, and fine powder fusion is progressing.

なお、処理物がトナー粒子である場合の本処理装置の使用形態について、以下補足説明する。
先ず、トナー粒子は1成分系(磁性)トナー、2成分系(非磁性)トナーの何れであってもよく、また、バインダ樹脂としては、スチレンアクリル系、ポリエステル系等の何れの樹脂であってもよい。また、カラー用(シアン、マゼンタ、イエロー、ブラック)あるいはモノクロ用の何れのトナーであってもよい。
Note that a supplementary description will be given below of how the present processing apparatus is used when the processed material is toner particles.
First, the toner particles may be either one-component (magnetic) toner or two-component (non-magnetic) toner, and the binder resin may be any resin such as styrene acrylic or polyester. Also good. Further, any toner for color (cyan, magenta, yellow, black) or monochrome may be used.

トナー粒子の製造方法の違いについては、機械的に粉砕して作製する粉砕トナー、化学的な重合等により作製する化学トナーの何れの場合にも適用できる。粉砕トナーは、通常、原料の計量、混合、混練、冷却、粗砕、粉砕、第一分級(粗粉を除去して粉砕工程に戻す)、第二分級(微粉を除去して計量工程に戻す)、外添等の各工程を経て作製されるが、本処理装置によって、第一分級工程と第二分級工程の間で微粉の融合化処理を行い、また、外添工程で外添剤をトナー表面に結合させる表面改質処理を行い、また、外添工程の前あるいは後で球形化等の形状制御処理を行うことが可能である。また、化学トナーは、通常、重合槽での重合反応等、フィルタプレス、乾燥、分級(必要に応じて)、外添等の各工程を経て作製されるが、上記粉砕トナーの場合と同様に、外添工程での外添剤による表面改質処理、外添工程の前後での球形化等の形状制御処理を行うことが可能である。   The difference in the toner particle manufacturing method can be applied to either a pulverized toner prepared by mechanical pulverization or a chemical toner prepared by chemical polymerization or the like. The pulverized toner is usually metered, mixed, kneaded, cooled, coarsely pulverized, pulverized, first classified (removed coarse powder and returned to the pulverization process), and second classified (removed fine powder and returned to the measurement process). ), Which is produced through each process such as external addition, etc., but with this processing apparatus, the fine powder is fused between the first classification process and the second classification process, and the external additive is added in the external addition process. It is possible to perform a surface modification process for bonding to the toner surface, and to perform a shape control process such as spheroidization before or after the external addition process. Chemical toners are usually produced through various processes such as polymerization reaction in a polymerization tank, filter press, drying, classification (if necessary), external addition, etc., as in the case of the above pulverized toner. In addition, it is possible to perform surface control processing with an external additive in the external addition process, and shape control processing such as spheroidization before and after the external addition process.

本発明による処理装置並びに本処理装置を用いた粉体処理方法は、回転軸の回転に伴い移動する攪拌部材によって処理物を攪拌処理する処理装置の利点を生かしながら混合、乾燥等の効率を向上させ、さらに処理物の解砕、粉砕、球形化、複合化といった機能をも満たすものであり、プラスチック、セラミックス、ミネラル、金属、顔料(染料)等の各種材料、食品、医薬品、化粧品、電池、塗料、電子部品、各種化成品など、様々な分野における粉体等の処理プロセスに適用することができ、従来設備の簡素化、高効率化に資するものである。   The processing apparatus according to the present invention and the powder processing method using the processing apparatus improve the efficiency of mixing, drying, etc. while taking advantage of the processing apparatus that stirs the processed material by the stirring member that moves as the rotating shaft rotates. It also fulfills functions such as crushing, crushing, spheroidizing, and compounding of processed materials, and various materials such as plastics, ceramics, minerals, metals, pigments (dyes), foods, pharmaceuticals, cosmetics, batteries, It can be applied to processing processes for powders in various fields such as paints, electronic parts, and various chemical products, and contributes to the simplification and high efficiency of conventional equipment.

本発明に係る処理装置の構造を示す正面一部断面図Front sectional drawing which shows the structure of the processing apparatus which concerns on this invention 図1の処理装置における回転軸および攪拌部材を示す図The figure which shows the rotating shaft and stirring member in the processing apparatus of FIG. 本発明に係る処理装置の構造を示す側面断面図Side surface sectional drawing which shows the structure of the processing apparatus which concerns on this invention 回転軸および攪拌部材の他の例を示す図The figure which shows the other example of a rotating shaft and a stirring member 回転軸および攪拌部材の他の例を示す図The figure which shows the other example of a rotating shaft and a stirring member 傾斜させた攪拌部材を示した図The figure which showed the stirring member made to incline 水平な攪拌部材を示した図Figure showing a horizontal stirring member 攪拌部材の先端部分の断面形状を示した図The figure which showed the cross-sectional shape of the front-end | tip part of a stirring member 本発明の処理装置の他の構造例を示す正面断面図Front sectional view showing another structural example of the processing apparatus of the present invention 図9に示す処理装置の側面断面図Side surface sectional drawing of the processing apparatus shown in FIG. 本発明の処理装置の他の構造例を示す正面断面図Front sectional view showing another structural example of the processing apparatus of the present invention 図11に示す処理装置の側面断面図Side surface sectional drawing of the processing apparatus shown in FIG. 本発明の粉体処理方法の内容を模式的に示す説明図Explanatory drawing which shows the content of the powder processing method of this invention typically 混合到達度を示すグラフ(実施例1)Graph showing the degree of mixing (Example 1) BET比表面積を示すグラフ(実施例2)Graph showing BET specific surface area (Example 2) 本発明の処理装置による球形化処理品の電子顕微鏡写真(実施例3)Electron micrograph of a spheroidized product by the processing apparatus of the present invention (Example 3) 従来のパドル型混合機による球形化処理品の電子顕微鏡写真Electron micrograph of a spheroidized product using a conventional paddle type mixer 混合到達度を示すグラフ(実施例4)Graph showing degree of mixing (Example 4) BET比表面積を示すグラフ(実施例5)Graph showing BET specific surface area (Example 5) 本発明の処理装置による表面改質粒子のSEM写真(実施例6)SEM photograph of surface modified particles by treatment apparatus of the present invention (Example 6) 図20に示す表面改質粒子のTEM写真(実施例6)TEM photograph of surface modified particles shown in FIG. 20 (Example 6) 図21に示す表面改質粒子の一部拡大TEM写真(実施例6)Partially enlarged TEM photograph of the surface modified particles shown in FIG. 21 (Example 6) コバルト酸リチウム粒子のSEM写真(実施例7)SEM photograph of lithium cobaltate particles (Example 7) カーボン微粒子のSEM写真(実施例7)SEM photograph of carbon fine particles (Example 7) カーボン被覆コバルト酸リチウム粒子のSEM写真(実施例7)SEM photograph of carbon-coated lithium cobalt oxide particles (Example 7) 処理前のトナー粒子のSEM写真(実施例8)SEM photograph of toner particles before treatment (Example 8) 処理後のトナー粒子のSEM写真(実施例8)SEM photograph of toner particles after treatment (Example 8) 処理前後のトナー粒子の粒度分布のグラフ(実施例8)Graph of particle size distribution of toner particles before and after treatment (Example 8)

符号の説明Explanation of symbols

1 ケーシング
2 回転軸
2a 回転軸端面部
3 攪拌部材
3a 送り用攪拌部材
3b 戻し用攪拌部材
3c 水平攪拌部材
4 ジャケット(冷却用又は加熱用媒体の流路)
5 原料投入口
6 製品排出口
7 軸受部
8 駆動部
9 処理空間
10 拡散部材
11 冷却用又は加熱用媒体の流路
12 ガイド棒
13 ボス
14 軸カバー
14a 流路
15 排気管
16 フィルタ
17 封止材
20 雰囲気調整手段
C 領域
L 中心線
L1 垂直延長線
L3 垂直延長線
D1 ケーシング内周部の径
D2 回転軸外周部の径
S1 斜辺
S2 斜辺
DESCRIPTION OF SYMBOLS 1 Casing 2 Rotating shaft 2a End surface part of rotating shaft 3 Stirring member 3a Feeding stirring member 3b Returning stirring member 3c Horizontal stirring member 4 Jacket (flow path for cooling or heating medium)
DESCRIPTION OF SYMBOLS 5 Raw material inlet 6 Product outlet 7 Bearing part 8 Drive part 9 Processing space 10 Diffusion member 11 Flow path of cooling or heating medium 12 Guide rod 13 Boss 14 Shaft cover 14a Flow path 15 Exhaust pipe 16 Filter 17 Sealing material 20 Atmosphere adjusting means C region L center line L1 vertical extension line L3 vertical extension line D1 diameter of casing inner periphery D2 diameter of outer periphery of rotating shaft S1 hypotenuse S2 hypotenuse

Claims (22)

複数の攪拌部材を外周部に設けた回転軸と、前記攪拌部材に対して間隙を隔てて位置する内周部を有したケーシングとを備え、前記回転軸の回転に伴い移動する前記攪拌部材によってケーシング内の処理物を攪拌処理する処理装置であって、前記回転軸の軸方向と平行な方向で、前記複数の攪拌部材夫々の端部が前記回転軸の周方向で間隔を置いて隣り合う他の攪拌部材の端部よりも内側に位置し
前記回転軸の周方向の全周で順次隣り合う前記攪拌部材の一方が、前記回転軸の回転に伴って処理物を前記回転軸の軸方向の一方向に送る送り用攪拌部材であり、他方が前記回転軸の回転に伴って処理物を前記回転軸の軸方向の他方向に戻す戻し用攪拌部材である処理装置。
Comprising a rotating shaft having a plurality of agitating members on the outer peripheral portion, and a casing inner having a peripheral portion located at intervals gap with respect to the agitating member, the agitating member to be moved with the rotation of the rotary shaft the treated product in the casing a processing device for stirring treatment by, in a direction parallel to the axial direction before Symbol rotary shaft, an end portion of said plurality of agitating members each have at intervals in the circumferential direction of the rotary shaft located inside the end of the other agitating member adjacent,
One of the stirring members that are successively adjacent to each other in the circumferential direction of the rotating shaft is a feeding stirring member that sends a processed material in one direction of the axial direction of the rotating shaft along with the rotation of the rotating shaft, and the other There axial agitating member der Ru processor for returning back in the other direction of the rotating shaft with and treated with rotation of the rotary shaft.
記ケーシングの内周部の径が、前記回転軸の外周部の径の2倍以下である請求項1記載の処理装置。 Diameter of the inner peripheral portion of the front Symbol casing, processing apparatus according to claim 1, wherein more than 2 times the diameter of the outer peripheral portion of the rotary shaft. 前記回転軸の軸方向の一端に位置する前記攪拌部材が、当該軸方向の一端から他端へ処理物を送る送り用攪拌部材であり、前記回転軸の軸方向の他端に位置する前記攪拌部材が、当該軸方向の他端から一端へ処理物を戻す戻し用攪拌部材である請求項1または2記載の処理装置。 The agitating member located at one end of the rotating shaft in the axial direction is a stirring member for sending a processed material from one end to the other end in the axial direction , and the agitating member located at the other end in the axial direction of the rotating shaft member, the axial direction of the other end processing apparatus according to claim 1 or 2, wherein Ru stirring member der for returning back the processed product to the one end from. 前記ケーシングの内周部の径が大きくなるに従い、前記回転軸の軸方向から見たときに前記回転軸の周方向に沿って配置される前記攪拌部材の数を多くする請求項1〜のいずれか1項に記載の処理装置。 According diameter of the inner peripheral portion of the casing is increased, according to claim 1-3 to increase the number of the agitating member disposed along the circumferential direction of the rotary shaft as viewed in the axial direction of the rotary shaft The processing apparatus of any one. 前記回転軸の端面部に拡散部材を設けている請求項1〜のいずれか1項に記載の処理装置。 The processing apparatus of any one of Claims 1-4 which has provided the diffusion member in the end surface part of the said rotating shaft. 前記攪拌部材が板状に形成されている請求項1〜のいずれか1項に記載の処理装置。 Processing apparatus according to any one of claims 1 to 5, wherein said stirring member is formed in a plate shape. 前記ケーシングの内周部に対向する前記攪拌部材の先端部分が、前記回転軸の軸方向から見たときの断面視で鋭角形状に形成されるとともに、その先端鋭角部分の中心線が前記ケーシングの内周面に対して直角方向から傾斜した状態に配置されている請求項1〜のいずれか1項に記載の処理装置。 The tip portion of the stirring member facing the inner peripheral portion of the casing is formed in an acute angle shape when viewed from the axial direction of the rotating shaft, and the center line of the tip acute angle portion is the center of the casing. The processing apparatus of any one of Claims 1-6 arrange | positioned in the state inclined from the orthogonal | vertical direction with respect to the internal peripheral surface. 前記ケーシングを構成する部材が冷却用又は加熱用媒体の流路を備えている請求項1〜のいずれか1項に記載の処理装置。 The processing apparatus according to any one of claims 1 to 7 , wherein a member constituting the casing includes a flow path for a cooling medium or a heating medium. 前記回転軸を構成する部材が冷却用又は加熱用媒体の流路を備えている請求項1〜のいずれか1項に記載の処理装置。 The processing apparatus according to any one of the members constituting the rotary shaft cooling, wherein comprises a flow path of the heating medium term 1-8. 前記ケーシング内の処理空間の雰囲気を調整する雰囲気調整手段を備えている請求項1〜のいずれか1項に記載の処理装置。 Processing apparatus according to any one of claims 1 to 9, which includes a atmosphere adjustment means for adjusting the atmosphere in the processing space within the casing. 前記回転軸が軸方向の一端側のみで支持され、前記ケーシングが前記回転軸の軸方向の一端側でのみ開口した有底筒状に形成されて、前記回転軸との間の処理空間を覆う作動位置と前記処理空間を覆わない非作動位置とに前記回転軸の軸方向に沿って移動可能に構成されている請求項1〜10のいずれか1項に記載の処理装置。 The rotating shaft is supported only at one end side in the axial direction, and the casing is formed in a bottomed cylindrical shape that opens only at one end side in the axial direction of the rotating shaft, and covers the processing space between the rotating shaft and the casing. The processing apparatus of any one of Claims 1-10 comprised so that it can move along the axial direction of the said rotating shaft to an operation position and the non-operation position which does not cover the said process space. 前記回転軸が軸方向の両端側で支持され、前記ケーシングが複数個に分割可能に形成されて、前記回転軸との間の処理空間を覆う作動状態と前記処理空間を覆わない非作動状態とに変更可能に構成されている請求項1〜10のいずれか1項に記載の処理装置。 The rotating shaft is supported at both ends in the axial direction, and the casing is formed so as to be divided into a plurality of parts. The operating state covers the processing space between the rotating shaft and the non-operating state that does not cover the processing space. The processing apparatus of any one of Claims 1-10 comprised so that change is possible. 請求項1〜12のいずれか1項に記載の処理装置を用いて、処理物としての粉体粒子を粒子単位で混合させる精密混合処理を行う粉体処理方法。 Using the processing device according to any one of claims 1 to 12 powder processing method for performing precise mixing process for mixing the powder particles as treated in grain units. 請求項1〜12のいずれか1項に記載の処理装置を用いて、処理物としての粉体粒子をこれと径が同等の粒子もしくはこれより径が大きい粒子に結合させる融合化処理を行う粉体処理方法。 Using the processing device according to any one of claims 1 to 12 flour which the fusion process the diameter and this powder particles as the processing object is to be bound to the same particles or than this diameter larger particles Body treatment method. 請求項1〜12のいずれか1項に記載の処理装置を用いて、処理物としての粉体粒子の表面に改質剤を結合させる表面改質処理を行う粉体処理方法。 Using the processing device according to any one of claims 1 to 12 powder processing method for performing a surface modification treatment to bond the modifying agent to the surface of the powder particles as treated. 請求項1〜12のいずれか1項に記載の処理装置を用いて、処理物としての粉体粒子の表面を滑らかにする平滑化処理を行う粉体処理方法。 Using the processing device according to any one of claims 1 to 12 powder processing method for performing smoothing processing for smoothing the surface of the powder particles as treated. 請求項1〜12のいずれか1項に記載の処理装置を用いて、処理物としての粉体粒子の形状を変化させる形状制御処理を行う粉体処理方法。 Using the processing device according to any one of claims 1 to 12 powder processing method for performing shape control process of changing the shape of the powder particles as treated. 前記ケーシング内の処理空間の内容積100%に対する処理物の投入体積を5%〜95%の範囲に設定する請求項1317のいずれか1項に記載の粉体処理方法。 The powder processing method according to any one of claims 13 to 17 , wherein an input volume of a processed material with respect to 100% of an internal volume of the processing space in the casing is set in a range of 5% to 95%. 前記ケーシングの内周部と前記攪拌部材との間隙を0.3mm〜50mmの範囲に設定する請求項1318のいずれか1項に記載の粉体処理方法。 The powder processing method according to any one of claims 13 to 18 , wherein a gap between an inner peripheral portion of the casing and the stirring member is set in a range of 0.3 mm to 50 mm. 前記ケーシングの内周部に対する前記攪拌部材の周速を処理物に応じて変更設定する請求項1319のいずれか1項に記載の粉体処理方法。 The powder processing method according to any one of claims 13 to 19 , wherein a peripheral speed of the stirring member with respect to an inner peripheral portion of the casing is changed and set according to a processing object. 前記粉体粒子が樹脂含有粒子である請求項1320のいずれか1項に記載の粉体処理方法。 The powder processing method according to any one of claims 13 to 20 , wherein the powder particles are resin-containing particles. 前記樹脂含有粒子がトナー粒子である請求項21記載の粉体処理方法。 The powder processing method according to claim 21 , wherein the resin-containing particles are toner particles.
JP2004258375A 2004-02-23 2004-09-06 Processing apparatus and powder processing method Active JP4669253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258375A JP4669253B2 (en) 2004-02-23 2004-09-06 Processing apparatus and powder processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004046151 2004-02-23
JP2004258375A JP4669253B2 (en) 2004-02-23 2004-09-06 Processing apparatus and powder processing method

Publications (2)

Publication Number Publication Date
JP2005270955A JP2005270955A (en) 2005-10-06
JP4669253B2 true JP4669253B2 (en) 2011-04-13

Family

ID=35171156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258375A Active JP4669253B2 (en) 2004-02-23 2004-09-06 Processing apparatus and powder processing method

Country Status (1)

Country Link
JP (1) JP4669253B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270043A (en) * 2006-03-31 2007-10-18 Hosokawa Funtai Gijutsu Kenkyusho:Kk Powdered coating particle and method for producing the same
JP2009022895A (en) * 2007-07-20 2009-02-05 Toyota Motor Corp Powder treatment apparatus
JP5064949B2 (en) * 2007-09-14 2012-10-31 株式会社リコー Method for producing toner for electrophotography
JP4739316B2 (en) 2007-12-20 2011-08-03 キヤノン株式会社 Electrophotographic carrier production method and electrophotographic carrier produced using the production method
JP5163468B2 (en) * 2008-12-16 2013-03-13 株式会社リコー Powder processing equipment
JP5398374B2 (en) * 2009-06-19 2014-01-29 キヤノン株式会社 Magnetic carrier manufacturing method and magnetic carrier manufactured by the manufacturing method
JP5361558B2 (en) * 2009-06-19 2013-12-04 キヤノン株式会社 Magnetic carrier manufacturing method and magnetic carrier manufactured using the manufacturing method
JP5495633B2 (en) * 2009-06-19 2014-05-21 キヤノン株式会社 Magnetic carrier and two-component developer
WO2010146814A1 (en) 2009-06-19 2010-12-23 キヤノン株式会社 Method for producing magnetic carrier and magnetic carrier produced using the same production method
JP5398373B2 (en) * 2009-06-19 2014-01-29 キヤノン株式会社 Method for producing electrophotographic carrier
JP5575139B2 (en) 2009-10-02 2014-08-20 日本コークス工業株式会社 Processing equipment
JP2011224447A (en) * 2010-04-16 2011-11-10 Hosokawa Micron Corp Apparatus for and method of treating powder
JP2012063636A (en) * 2010-09-16 2012-03-29 Ricoh Co Ltd Manufacturing method of toner, and toner
ES2560963T3 (en) 2011-02-28 2016-02-23 Sulzer Mixpac Ag Dynamic mixer
JP2013029587A (en) * 2011-07-27 2013-02-07 Ricoh Co Ltd Production method of resin particle, production method of toner, and toner
JP2013029790A (en) * 2011-07-29 2013-02-07 Ricoh Co Ltd Toner production method and toner
JP5879908B2 (en) * 2011-10-17 2016-03-08 富士ゼロックス株式会社 Method for producing carrier for electrostatic charge image two-component developer
US9200844B2 (en) 2012-06-07 2015-12-01 Nisshin Engineering Inc. Rotary agitation type heat treatment apparatus
KR101350039B1 (en) * 2012-06-08 2014-01-13 닛신 엔지니어링 가부시키가이샤 Rotary agitation type heat treatment apparatus
JP5996408B2 (en) * 2012-12-12 2016-09-21 日本コークス工業株式会社 Method for producing spheroidized graphite particles
US9658546B2 (en) 2014-11-28 2017-05-23 Canon Kabushiki Kaisha Toner and method of producing toner
JP6289432B2 (en) * 2014-11-28 2018-03-07 キヤノン株式会社 Toner and toner production method
JP2016166950A (en) 2015-03-09 2016-09-15 富士ゼロックス株式会社 Electrostatic charge image development toner, electrostatic charge image developer, toner cartridge, process cartridge, image formation device, and image formation method
JP6776564B2 (en) * 2015-05-12 2020-10-28 株式会社リコー Toner, developer, image forming equipment and process cartridge
JP6762698B2 (en) * 2015-10-01 2020-09-30 キヤノン株式会社 Mixing processing equipment, mixing processing method and toner manufacturing method
EP3213632A1 (en) 2016-03-01 2017-09-06 Sumitomo Chemical Company, Limited Agrochemical composite particles and production method thereof
JP2018014258A (en) 2016-07-21 2018-01-25 シャープ株式会社 Air electrode material, air electrode, metal-air battery, and fuel cell
JP2018030056A (en) * 2016-08-22 2018-03-01 ホソカワミクロン株式会社 Treatment apparatus and powder treatment method
JP6957871B2 (en) 2016-12-12 2021-11-02 住友化学株式会社 Agricultural chemical composite particles and their manufacturing method
JP7091033B2 (en) 2017-08-04 2022-06-27 キヤノン株式会社 toner
JP2019032365A (en) 2017-08-04 2019-02-28 キヤノン株式会社 toner
WO2019027039A1 (en) * 2017-08-04 2019-02-07 キヤノン株式会社 Toner
JP6888491B2 (en) 2017-09-12 2021-06-16 トヨタ自動車株式会社 Granulation manufacturing method and manufacturing equipment
CN107899499A (en) * 2017-11-21 2018-04-13 张龙强 A kind of gypsum mixed stirring device
JP2019215511A (en) * 2018-06-11 2019-12-19 キヤノン株式会社 toner
TWI732532B (en) 2019-04-24 2021-07-01 美商應用材料股份有限公司 Reactor for coating particles in stationary chamber with rotating paddles

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221071U (en) * 1975-08-01 1977-02-15
JPS5662534A (en) * 1979-10-29 1981-05-28 Yasuro Ito Continuous shell-forming mixer
JPS58128623U (en) * 1982-02-24 1983-08-31 遠藤 重治 Stirring blades used in rewashing machines
JPS60150821A (en) * 1984-01-19 1985-08-08 Chisso Corp Stirring apparatus of horizontal-type uniaxial cylindrical vessel
JPS60202724A (en) * 1984-03-27 1985-10-14 Dainippon Toryo Co Ltd Dispersing apparatus
JPS6323722A (en) * 1986-07-02 1988-02-01 Chisso Corp Stirring device
JPH04928U (en) * 1990-04-20 1992-01-07
JPH04180825A (en) * 1990-11-16 1992-06-29 Showa Shell Sekiyu Kk Minute sphere granulator
JPH09239254A (en) * 1996-03-07 1997-09-16 Fuji Photo Film Co Ltd Dispersing apparatus
JPH1076150A (en) * 1996-09-03 1998-03-24 Mitsubishi Heavy Ind Ltd Dust stop of pressurizing kneader
JPH1156247A (en) * 1997-08-20 1999-03-02 Izumi Food Mach:Kk Stirring and mixing apparatus in ice cream freezer
JP2000167370A (en) * 1998-12-07 2000-06-20 Hosokawa Micron Corp Granule treatment apparatus
JP2000355930A (en) * 1999-06-17 2000-12-26 Hitachi Constr Mach Co Ltd Soil improvement device
JP2003334459A (en) * 2002-05-17 2003-11-25 Nisshin Seifun Group Inc Mechanical crusher

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816795B2 (en) * 1987-08-07 1996-02-21 ホソカワミクロン株式会社 Toner manufacturing method and apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221071U (en) * 1975-08-01 1977-02-15
JPS5662534A (en) * 1979-10-29 1981-05-28 Yasuro Ito Continuous shell-forming mixer
JPS58128623U (en) * 1982-02-24 1983-08-31 遠藤 重治 Stirring blades used in rewashing machines
JPS60150821A (en) * 1984-01-19 1985-08-08 Chisso Corp Stirring apparatus of horizontal-type uniaxial cylindrical vessel
JPS60202724A (en) * 1984-03-27 1985-10-14 Dainippon Toryo Co Ltd Dispersing apparatus
JPS6323722A (en) * 1986-07-02 1988-02-01 Chisso Corp Stirring device
JPH04928U (en) * 1990-04-20 1992-01-07
JPH04180825A (en) * 1990-11-16 1992-06-29 Showa Shell Sekiyu Kk Minute sphere granulator
JPH09239254A (en) * 1996-03-07 1997-09-16 Fuji Photo Film Co Ltd Dispersing apparatus
JPH1076150A (en) * 1996-09-03 1998-03-24 Mitsubishi Heavy Ind Ltd Dust stop of pressurizing kneader
JPH1156247A (en) * 1997-08-20 1999-03-02 Izumi Food Mach:Kk Stirring and mixing apparatus in ice cream freezer
JP2000167370A (en) * 1998-12-07 2000-06-20 Hosokawa Micron Corp Granule treatment apparatus
JP2000355930A (en) * 1999-06-17 2000-12-26 Hitachi Constr Mach Co Ltd Soil improvement device
JP2003334459A (en) * 2002-05-17 2003-11-25 Nisshin Seifun Group Inc Mechanical crusher

Also Published As

Publication number Publication date
JP2005270955A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4669253B2 (en) Processing apparatus and powder processing method
KR900005175B1 (en) Particulate material treating apparatus
CN102933303B (en) Grinding mill
JP5575139B2 (en) Processing equipment
CN103620504A (en) Apparatus for heat-treating powder particles and method of producing toner
CN110405218A (en) A kind of high sphericity nanostructure powder of stainless steel and preparation method thereof
CN108348874A (en) Make the equipment that powder mixes by cryogen
JP5529419B2 (en) Method for producing composite oxide powder
JPWO2009110056A1 (en) Powder processing equipment
Sadeghi et al. Smart mechanical powder processing for producing carbon nanotube reinforced aluminum matrix composites
JP2002233787A (en) Apparatus and method for treating powder
TWI509081B (en) Method for producing granulation material for sintering
JP2000516533A (en) Dispersion equipment
JP3584582B2 (en) Powder mixing apparatus and toner manufacturing method
KR101414939B1 (en) Producing method for slurry for positive electrode and producing apparatus for the same
JPH0816795B2 (en) Toner manufacturing method and apparatus
JP4462894B2 (en) Powder processing equipment
JP2001255704A (en) Method for manufacturing toner
JP2005076058A (en) Method for manufacturing flaky metal powder
CN216499164U (en) Thermal cracking waste tire carbon powder stirring and granulating device
JP2021197239A (en) Method for manufacturing composite particles for electrode material and method for manufacturing electrode material
CN216224248U (en) A compounding and pelletization device for composite friction braking material
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP4208693B2 (en) Toner production method and toner particle surface modification device
JP2005087972A (en) Nanoparticle distribution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4669253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250