JPH08299827A - Mechanical grinder - Google Patents

Mechanical grinder

Info

Publication number
JPH08299827A
JPH08299827A JP11434895A JP11434895A JPH08299827A JP H08299827 A JPH08299827 A JP H08299827A JP 11434895 A JP11434895 A JP 11434895A JP 11434895 A JP11434895 A JP 11434895A JP H08299827 A JPH08299827 A JP H08299827A
Authority
JP
Japan
Prior art keywords
liner
groove
peripheral surface
particles
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11434895A
Other languages
Japanese (ja)
Inventor
Hitoshi Kato
仁 加藤
Akihiro Nakamura
昭裕 中村
Hideyuki Yoshida
秀幸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11434895A priority Critical patent/JPH08299827A/en
Publication of JPH08299827A publication Critical patent/JPH08299827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crushing And Pulverization Processes (AREA)

Abstract

PURPOSE: To finely grind roughly ground matter, in an apparatus wherein a cylinder having grooves provided to the outer peripheral surface thereof is arranged in a cylindrical container having grooves provided in the inner peripheral surface thereof and grinding is performed by air laminar flow and eddy current motion generated in a gap by accompanying the rotation of the cylinder, by forming projections in the grooves of the inner peripheral surface of the cylindrical container. CONSTITUTION: A grinder suitable for producing fine particles of a toner with a small particle size for developing an electrostatic latent image is equipped with a freely rotatably cylinder (rotor) 1 having grooves provided in the outer peripheral surface thereof and a cylindrical container 2 provided with a liner 2 having grooves provided in the inner peripheral surface thereof in its rotary axis direction attached thereto. Vortex air streams and pressure vibration are generated by the high speed rotation of the rotor and a raw material is sucked from a suction port 3 to be supplied to a grinding chamber not only to be ground by vortex air streams but also raised under rotation to be discharged from an exhaust port 4. In this case, by providing projections 7 in the grooves provided in the liner 2, it is eliminated that particles with a particle size of above 100μm are mixed with ground toner particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真、静電記録お
よび静電印刷等に用いられる小粒径の静電潜像現像用ト
ナー等の微粉粒子を製造するのに適した粉砕機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crusher suitable for producing fine powder particles such as toner for developing electrostatic latent images having a small particle size used in electrophotography, electrostatic recording and electrostatic printing. .

【0002】[0002]

【従来の技術】一般に静電潜像の現像に用いられるトナ
ー微粒子は、バインダー樹脂、染顔料、およびその他の
添加剤を混合、混練し、得られた混練物を一旦粉砕し、
その粗粉砕物を微粉砕し、粗粉を分級し、さらに微粉を
分級することにより得られる。
2. Description of the Related Art In general, toner fine particles used for developing an electrostatic latent image are prepared by mixing and kneading a binder resin, dyes and pigments, and other additives, and then crushing the obtained kneaded product.
It is obtained by finely pulverizing the coarsely pulverized product, classifying the coarse powder, and further classifying the fine powder.

【0003】粗粉砕物を微粉砕する手段として、例え
ば、高速で回転するカッターとメッシュにより粉砕を行
う粉砕機、高速で回転するハンマーとライナーとのクリ
アランスの間で剪断が起こるハンマーミルやターボミ
ル、円盤上に突き出たピンが高速で回転することにより
剪断を行うピンミル、大きなローターとライナーとの間
で剪断と摩砕を行うクリプトロン粉砕機、被粉砕物をジ
ェットエアーに乗せ衝突板に衝突させることにより粉砕
を行うジェットミル等がある。
Means for finely pulverizing the coarsely pulverized product include, for example, a pulverizer for pulverizing with a cutter and a mesh which rotate at high speed, a hammer mill or a turbo mill in which shearing occurs between clearances between a hammer and liner which rotate at high speed, A pin mill that performs shear by rotating a pin protruding on a disk at high speed, a Kriptron crusher that performs shearing and grinding between a large rotor and a liner, and put the object to be crushed on jet air to collide with a collision plate There are jet mills and the like for crushing.

【0004】従来はこのような方法により、例えば、平
均粒径11μm程度のトナーを製造する場合には、大き
いものは2000〜2500μmの粒径を有する粗粉砕
物を一気に小粒径粒子まで微粉砕していた。
Conventionally, when a toner having an average particle size of about 11 μm is produced by such a method, a large one is a coarsely pulverized product having a particle size of 2000 to 2500 μm and finely pulverized at once to a small particle size. Was.

【0005】しかしながら、微粉砕されたトナー粒子の
中には粒径100μmを越える大きな粒子(粗粉とい
う)が混入する。トナーとして使用するためには、この
ような大粒子を取り除く必要があった。除去された大粒
子は再度微粉砕し直すため、再び粉砕機に戻す必要があ
った。しかし、これではトナー製造工程において粗粉カ
ットの装置が必ず必要であり、プラントの設備投資の面
で問題が生じている。また、粗粉を粉砕機に戻すため、
処理能力向上にも弊害がある。
However, in the finely pulverized toner particles, large particles (referred to as coarse powder) having a particle diameter of more than 100 μm are mixed. It was necessary to remove such large particles for use as a toner. The large particles thus removed had to be finely pulverized again, and therefore had to be returned to the pulverizer again. However, this necessitates a device for cutting coarse powder in the toner manufacturing process, which causes a problem in terms of plant capital investment. Also, to return the coarse powder to the crusher,
It also has an adverse effect on improving the processing capacity.

【0006】一方で、上記の装置で粗粉を含まないよう
に小粒径トナーを製造しようとすると、多くのエネルギ
ーを必要として生産能力が低下しコストアップになる。
また、そのようにしてトナーを製造したとしても、過粉
砕によるトナー粒子が多く混在することになる。二成分
トナーの場合この超微粉がキャリアに付着しやすいた
め、キャリアに対するスペントが生じやすく、耐久性に
問題が生じる。
On the other hand, if an attempt is made to manufacture a toner having a small particle diameter so as not to contain coarse powder with the above-mentioned apparatus, a large amount of energy is required, the production capacity is lowered and the cost is increased.
Further, even if the toner is manufactured in this manner, a large amount of toner particles due to overpulverization are mixed. In the case of a two-component toner, since this ultrafine powder easily adheres to the carrier, the spent on the carrier is likely to occur, causing a problem in durability.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記事情に鑑
みなされたものであり、粗粉砕物を一気に粒径11μm
の粒子まで微粉砕しても、粗粉が混入せず、該トナー製
造工程において粗粉分級処理が不要であり、そのためプ
ラントの簡素化を可能にする機械式粉砕機を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a coarsely pulverized product is suddenly treated to have a particle size of 11 μm.
Even if finely pulverized to particles, coarse powder does not mix, coarse powder classification processing is unnecessary in the toner manufacturing process, and an object thereof is to provide a mechanical pulverizer that enables simplification of a plant. To do.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、内周
面に溝を有する円筒容器の内部に、前記内周面から所定
の間隙を有して、外周面に溝を有する回転自由な円筒が
配置されており、該円筒の回転に伴って前記間隙に生じ
る空気の層流および渦流運動により粉砕を行う機械式粉
砕機において、前記内周面の溝は前記円筒の回転軸方向
に延設されかつ該溝の内部に突起物を有することを特徴
とする機械式粉砕機に関する。
That is, the present invention provides a rotation-free cylinder having a groove on the outer peripheral surface of a cylindrical container having an inner peripheral surface with a predetermined gap from the inner peripheral surface. In a mechanical crusher for crushing by laminar flow and vortex motion of air generated in the gap as the cylinder rotates, the groove on the inner peripheral surface extends in the rotation axis direction of the cylinder. And a protrusion inside the groove.

【0009】本発明の機械式粉砕機は、粗粉砕物を一気
に粒径11μmの粒子まで微粉砕しても、粗粉が混入せ
ず、該トナー等の微粒子製造工程において粗粉分級処理
の不要な開回路で利用可能であり、そのためプラントの
簡素化を通じて設備費用の抑制を可能にする。
In the mechanical crusher of the present invention, even if the coarsely pulverized product is finely pulverized at once into particles having a particle size of 11 μm, coarse powder is not mixed in, and no coarse powder classification treatment is required in the step of producing fine particles such as toner. It can be used in a simple open circuit, which enables facility costs to be suppressed through simplification of the plant.

【0010】本発明の粉砕機は内周面に溝を有する円筒
容器の内部に、前記内周面から所定の間隙を有して、外
周面に溝を有する回転自由な円筒が配置されている。か
かる粉砕機の概略構成図を図1に示した。
In the crusher of the present invention, a freely rotatable cylinder having a groove on its outer peripheral surface is arranged inside a cylindrical container having a groove on its inner peripheral surface with a predetermined gap from the inner peripheral surface. . A schematic configuration diagram of such a crusher is shown in FIG.

【0011】回転自由な円筒(1)は回転軸方向に多数
の溝を外周面に有し、ローター(1)と呼ばれる。円筒
容器(2)は回転軸方向に切り込み状に多数の溝を内面
に有するライナー(2)が取り付けられている。そして
ローター(1)が高速回転することにより、機内に激し
い渦流と圧力振動を発生させると、原料は空気と共に吸
気口(3)より吸い込まれ空気流で粉砕室へ供給され
る。続いて激しい空気の渦流により粉砕され、ローター
(1)に沿って回転しながら上昇し、排気口(4)より
空気と共に排出される。ローター(1)とライナー
(2)との隙間は通常1mm程度である。
The freely rotatable cylinder (1) has a large number of grooves on the outer peripheral surface in the direction of the rotation axis and is called a rotor (1). The cylindrical container (2) is fitted with a liner (2) having a large number of grooves on the inner surface in a cut shape in the rotation axis direction. Then, when the rotor (1) rotates at high speed to generate a strong vortex flow and pressure oscillation in the machine, the raw material is sucked together with air from the intake port (3) and is supplied to the crushing chamber by the air flow. Subsequently, it is pulverized by a violent vortex of air, rises while rotating along the rotor (1), and is discharged together with air from the exhaust port (4). The gap between the rotor (1) and the liner (2) is usually about 1 mm.

【0012】従来、ライナーに設けられる溝は図3
(a)に示すようにライナーが取り付けられる円筒容器
の軸方向に容器の上から下へ何の障害もなく、ストンと
した空間として設けられていた。
Conventionally, the groove provided in the liner is shown in FIG.
As shown in (a), there was no obstacle in the axial direction of the cylindrical container to which the liner was attached, and it was provided as a stony space.

【0013】本発明では、そのような溝にシキリを設け
る。詳しくは、図3(b)に示すようにライナーの溝
(6)の中に1以上のシキリ(7)を取り付ける。かか
る装置により粉砕されたトナー粒子には粒径100μm
を越える粒子が混入することがなくなり、トナー等の微
粉製造工程において粗粉分級処理を行い、再度微粉砕し
直す必要がなくなった。
In the present invention, the groove is provided with a crimp. Specifically, as shown in FIG. 3 (b), one or more holes (7) are installed in the groove (6) of the liner. Toner particles crushed by such an apparatus have a particle size of 100 μm.
No more than 100 particles are mixed in, and it is no longer necessary to perform coarse powder classification treatment in the fine powder manufacturing process for toner and the like and to perform fine pulverization again.

【0014】図3(c)では本発明によるライナーの溝
の中央部を溝の延設方向に切った時の断面図を示す。該
ライナーの溝(6)の深さをH0とした場合、該シキリ
の厚さD1は0.5H0〜2H0である。好ましくは0.
8H0〜1.2H0である。D1が0.5H0より小さいと
シキリの効果が無くなり、2H0を越えると負荷が大き
くなりすぎる。ライナー溝の深さH0は通常、2〜5m
mであり、好ましくは3〜4mmである。2mmより浅
いと負荷が大きくなりすぎ粉砕性が低下し、5mmより
深いと飛び込みが多くなる。
FIG. 3 (c) is a sectional view of the liner according to the present invention when the central portion of the groove is cut in the extending direction of the groove. When the depth of the groove (6) of the liner is H 0 , the thickness D 1 of the crimp is 0.5H 0 to 2H 0 . Preferably 0.
It is 8H 0 to 1.2H 0 . If D 1 is less than 0.5H 0 , the effect of crimping is lost, and if it exceeds 2H 0 , the load becomes too large. Liner groove depth H 0 is usually 2-5 m
m, preferably 3 to 4 mm. If the depth is less than 2 mm, the load will be too large and the pulverizability will be deteriorated.

【0015】本発明によるシキリを取り付けるライナー
の溝の形状は、従来用いらているライナー溝でよく、溝
の延設方向に垂直な断面が図2(a)〜(b)に示され
るような形状をしている。図2(a)に示すライナー溝
は、その断面形状が二等辺三角形であり、繰り返し単位
Rは5〜9mmであり、好ましくは7〜8mmである。
5mmより小さいと負荷が大きくなりすぎ、9mmより
大きいと粉砕性が低下する。溝の深さH0は2〜5mm
であり、好ましくは3〜4mmである。2mmより浅い
と負荷が大きくなり粉砕性が低下し、5mmより深いと
飛び込みが多くなる。図2(b)に示すライナー溝の断
面形状は直角三角形であり、繰り返し単位Tは5〜9m
mであり、好ましくは7〜8mmである。5mmより小
さいと負荷が大きくなり粉砕性が低下し、9mmより大
きいと飛び込みが多くなる。その内、傾斜部分が占める
長さUの割合はTの長さの70〜100%であり、好ま
しくは70〜80%である。70%より少ないと負荷が
大きくなりすぎる。溝の深さH0は2〜5mmであり、
好ましくは3〜4mmである。2mmより浅いと負荷が
大きくなり粉砕性が低下し、5mmより深いと飛び込み
が多くなる。
The groove of the liner for attaching the crimp according to the present invention may be a liner groove which has been used conventionally, and a cross section perpendicular to the extending direction of the groove is as shown in FIGS. 2 (a) and 2 (b). It has a shape. The liner groove shown in FIG. 2 (a) has an isosceles triangular cross section, and the repeating unit R is 5 to 9 mm, preferably 7 to 8 mm.
If it is less than 5 mm, the load becomes too large, and if it is more than 9 mm, the pulverizability decreases. Groove depth H 0 is 2-5 mm
And preferably 3 to 4 mm. If it is shallower than 2 mm, the load becomes large and the pulverizability deteriorates, and if it is deeper than 5 mm, the number of dips increases. The cross-sectional shape of the liner groove shown in FIG. 2B is a right triangle, and the repeating unit T is 5 to 9 m.
m, preferably 7 to 8 mm. If it is smaller than 5 mm, the load becomes large and the pulverizability is deteriorated, and if it is larger than 9 mm, the number of jumps increases. The proportion of the length U occupied by the inclined portion is 70 to 100%, preferably 70 to 80% of the length of T. If it is less than 70%, the load becomes too large. The depth H 0 of the groove is 2 to 5 mm,
It is preferably 3 to 4 mm. If it is shallower than 2 mm, the load becomes large and the pulverizability deteriorates, and if it is deeper than 5 mm, the number of dips increases.

【0016】また、図2(b)に示したライナー溝に本
発明によるシキリ(7)を取り付けた時の断面図を図2
(c)に示した。溝(6)の深さをH0とした場合、該
シキリ(7)の奥行きH1は0.5H0〜0.8H0であ
り、好ましくは0.6H0〜0.7H0である。H1
0.5H0より小さいと粗粉の飛び込み防止の効果がな
くなり、0.8H0を越えると負荷が大きくなりすぎ
る。この関係は、図2(a)に示した断面形状が二等辺
三角形のライナー溝にシキリを取り付ける場合も同様に
あてはまる。
FIG. 2 is a sectional view of the liner groove shown in FIG. 2 (b), to which the shim (7) according to the present invention is attached.
It is shown in (c). When the depth of the groove (6) is H 0 , the depth H 1 of the hollow (7) is 0.5H 0 to 0.8H 0 , preferably 0.6H 0 to 0.7H 0 . If H 1 is less than 0.5H 0, the effect of preventing coarse powder from jumping in is lost, and if it exceeds 0.8H 0 , the load becomes too large. This relationship also applies to the case where a crimp is attached to a liner groove having an isosceles triangular cross-sectional shape shown in FIG.

【0017】該シキリの取り付け位置は、ライナーの上
端部に近付けると、徐々に、該ライナーの受ける負荷が
大きくなり、ライナーの下端部に近付けると、徐々に、
該シキリの効果がなくなる。このため、1つのシキリを
取り付ける場合、そのシキリの位置はライナーの高さを
0とした時、底面よりE0/2のところとし、2つのシ
キリを取り付ける場合、これらのシキリの位置は、底面
よりE0/3および2E0/3とすることが好ましい。す
なわち、取り付けるシキリの位置は、その数でライナー
の高さを等分するように取り付けることが好ましい。好
ましいシキリの数は2である。また、この取り付け位置
はライナーの溝の1つ毎に取り付けてもよいし、2以上
の溝毎に取り付けてもよく、バランスがよければランダ
ムでも、規則的に取り付けてもよい。しかし、好ましく
は全ての溝にシキリを取り付けることである。ライナー
の高さE0は型式により異なるが、ローターの長さと同
等である。
When the shikiri is installed at a position closer to the upper end of the liner, the load on the liner is gradually increased, and when it is closer to the lower end of the liner, the load is gradually increased.
The effect of the shikiri is lost. Therefore, when attaching one partition, when the position of the divider with the E 0 of the height of the liner, and at the bottom surface of the E 0/2, when mounting the two partition, the position of these dividers, it is preferable that the E 0/3 and 2E 0/3 from the bottom. In other words, it is preferable that the positions of the crimps to be attached are such that the height of the liner is equally divided by the number. The preferred number of crickets is two. Further, this mounting position may be mounted in each groove of the liner, may be mounted in each of two or more grooves, and may be random or regularly if the balance is good. However, it is preferable to install a crimp in all the grooves. The height E 0 of the liner differs depending on the model, but is equal to the length of the rotor.

【0018】該シキリの材料は特に限定されず、回転中
砕けない適度な硬度および強度を有するものであればよ
いが、耐久性を考慮すれば、ライナーと同じ材質が望ま
しい。
The material of the shikiri is not particularly limited as long as it has appropriate hardness and strength so as not to be crushed during rotation, but in consideration of durability, the same material as the liner is desirable.

【0019】また、粗粉の混入を防止する対策として、
ライナー溝に1以上の変曲点をもたせる、つまりライナ
ーに溝をジグザグ状に施しても効果的である。そのライ
ナーの概略展開図を図4に示した。
As a measure to prevent the mixture of coarse powder,
It is also effective to give the liner groove one or more inflection points, that is, to form the groove in a zigzag shape on the liner. A schematic development view of the liner is shown in FIG.

【0020】図4では、溝一本当たりに変曲点(9)が
2つ示されている。変曲点の数は1〜5であり、好まし
くは2〜3である。変曲点の数は、ジグザグ状の溝
(8)の変曲点における角度(図4のx)をも勘案して
設定しなければならない。つまり、たとえ上述の許容範
囲内で変曲点の数を設定したとしても、例えば、変曲点
の数を上限にして角度(x)をできるだけ小さくした場
合、負荷がライナーに加わり過ぎ、該粉砕機の運転が不
可能となり、本発明による効果は得られない。したがっ
て、変曲点の数を多くすることにより許容範囲内ではあ
るがライナーに負荷が加わる場合には、該角度をつける
ことにより生じるライナーへの負荷をあまり大きくしな
いように該角度を設定する必要があり、反対に該角度を
小さくすることにより許容範囲内ではあるがライナーに
負荷が加わる場合には、変曲点によるライナーへの負荷
をあまり大きくしないようにその数を設定することが必
要である。
In FIG. 4, two inflection points (9) are shown per groove. The number of inflection points is 1 to 5, preferably 2 to 3. The number of inflection points must be set in consideration of the angle (x in FIG. 4) at the inflection point of the zigzag groove (8). That is, even if the number of inflection points is set within the above-mentioned allowable range, for example, if the number of inflection points is set as the upper limit and the angle (x) is made as small as possible, the load is excessively applied to the liner and the crushing is performed. The operation of the machine becomes impossible and the effect of the present invention cannot be obtained. Therefore, if a load is applied to the liner within the allowable range by increasing the number of inflection points, it is necessary to set the angle so that the load on the liner caused by setting the angle is not too large. On the contrary, if the liner is loaded by reducing the angle, which is within the allowable range, it is necessary to set the number so that the load on the liner due to the inflection point is not too large. is there.

【0021】また、上述したシキリとライナー溝のジグ
ザグ化を組み合わせて、ライナーに適用することもでき
る。しかし、この場合もジグザグ状ライナー溝の角度と
変曲点の数との関係と同様に、ライナー溝のジグザグ化
により許容範囲内ではあるがライナーに負荷が加わる場
合に、ライナー溝へのシキリ数を制限する必要があり、
反対に該シキリにより許容範囲内ではあるがライナーに
負荷が加わる場合には該ジグザグ化を制限することが必
要である。
It is also possible to combine the above-mentioned crimping and zigzag forming of the liner groove and apply it to the liner. However, in this case as well, similar to the relationship between the angle of the zigzag liner groove and the number of inflection points, when the load is applied to the liner within the allowable range due to the zigzag of the liner groove, the number of crimps to the liner groove is increased. Must be restricted,
On the contrary, it is necessary to limit the zigzag formation when the liner loads the liner, although it is within an allowable range.

【0022】ジグザグ化した溝の断面形状、特に溝の進
行方向についての直角断面形状は図2(a)〜(b)に
示す通常用いられているライナー溝の断面形状を適用す
ることができ、図中のH0、R、TおよびUは上述の値
を採用することができる。
As for the cross-sectional shape of the zigzag groove, particularly the cross-sectional shape perpendicular to the traveling direction of the groove, the cross-sectional shape of the commonly used liner groove shown in FIGS. 2A and 2B can be applied. The values described above can be adopted for H 0 , R, T, and U in the figure.

【0023】通常用いられる粉砕機では主に下部では体
積粉砕が行われ、上部では表面粉砕が行われていると考
えられている。体積粉砕では下側から空気流と共に流入
する粗粉砕物が主に体積を減らすように粉砕され、粗大
粒子が比較的多く発生する。表面粉砕では表面が削ら
れ、形状がまるみを帯びるように粉砕されることを意味
する。本発明による粉砕機では、ライナー溝にシキリを
付けたり、ライナー溝をジグザグ化させたりすることに
より、粗粉のスリ抜けを防止して上部でもある程度の確
率で体積粉砕が行えるようになり、微粉中への粗粉の混
入を防止することが可能になると考えられる。
It is considered that in a commonly used crusher, volume crushing is mainly performed in the lower part and surface crushing is performed in the upper part. In the volume pulverization, the coarsely pulverized material flowing in from the lower side together with the airflow is pulverized so as to reduce the volume, and relatively large numbers of coarse particles are generated. Surface grinding means that the surface is ground and the shape is rounded. In the crusher according to the present invention, the liner groove is provided with a crimp or the liner groove is formed into a zigzag shape so that the coarse powder can be prevented from slipping off and volume pulverization can be performed with a certain probability even in the upper portion, and the fine powder can be obtained. It is considered possible to prevent the mixture of coarse powder into the inside.

【0024】本発明における粉砕機を運転する際の他の
条件としては、約5℃以下の冷風により粗粉砕物を送り
込み、その総風量は型式により異なるが、ローター径約
180mmにおいて4〜6m3/分、つまり、従来時の
50%以上を増量する。これにより、ローターおよびラ
イナーへの融着と粉体の粉砕機内での閉塞を防止するこ
とが可能となる。冷風温度が5℃を越えるとローターお
よびライナーへの融着が始まり、総風量が4m3/分よ
り小さいと粉体の粉砕機内での閉塞を防止できなくな
り、6m3/分を越えるとブロアー等を能力アップしな
ければならなくなる。
As another condition for operating the crusher of the present invention, the coarsely crushed material is fed by cold air of about 5 ° C. or less, and the total air volume varies depending on the model, but 4 to 6 m 3 at a rotor diameter of about 180 mm. / Min, that is, 50% or more of the conventional amount is increased. This makes it possible to prevent fusion to the rotor and liner and blockage of the powder in the crusher. If the cold air temperature exceeds 5 ° C, fusion to the rotor and liner will start, and if the total air volume is less than 4 m 3 / min, it will not be possible to prevent clogging of the powder inside the crusher, and if it exceeds 6 m 3 / min, a blower, etc. Will have to improve their abilities.

【0025】本発明を以下の実施例により、さらに詳し
く説明する。
The present invention will be described in more detail by the following examples.

【0026】[0026]

【実施例】実施例1 ・スチレンアクリル系共重合樹脂(Mn:5000、Mn/Mw:28) 100重量部 ・カーボンブラック(MA♯8;三菱化学工業社製) 8重量部 ・ニグロシン系染料(ニグロシンベースEX;オリエント化学工業社製) 5重量部 ・低分子量ポリプロピレン(ビスコール550P;三洋化成工業社製) 2重量部 Example 1 100 parts by weight of styrene-acrylic copolymer resin (Mn: 5000, Mn / Mw: 28) 8 parts by weight of carbon black (MA # 8; manufactured by Mitsubishi Chemical Industry Co., Ltd.) Nigrosine dye ( Nigrosine base EX; manufactured by Orient Chemical Industry Co., Ltd.) 5 parts by weight Low molecular weight polypropylene (Viscor 550P; manufactured by Sanyo Chemical Industry Co., Ltd.) 2 parts by weight

【0027】上記原料をボールミルにて混合し、連続押
出機(池貝鉄工社製)にて混練した。その後、冷却ロー
ラーおよび冷却コンベアーにて冷却し、フェザーミル
(ホソカワミクロン社製)にて粗粉砕して平均粒径1m
mの粗粉砕物を得た。そして、ローター回転型粉砕機
(KTM0型;川崎重工業社製)のライナー部を、全て
の溝に以下のシキリを取り付けたライナーに代えた粉砕
機により、風量4.5m3/分、周速130m/秒に
て、該粗粉砕物を粉砕した。
The above raw materials were mixed by a ball mill and kneaded by a continuous extruder (made by Ikegai Tekko Co., Ltd.). After that, it is cooled with a cooling roller and a cooling conveyor, coarsely crushed with a feather mill (manufactured by Hosokawa Micron Co., Ltd.), and has an average particle diameter of 1 m.
m coarsely pulverized product was obtained. Then, the liner portion of the rotor rotary type crusher (KTM0 type; manufactured by Kawasaki Heavy Industries, Ltd.) was replaced with a liner having the following slits in all grooves, and the flow rate was 4.5 m 3 / min and the peripheral speed was 130 m. The coarsely pulverized product was pulverized at a speed of about 1 / sec.

【0028】ライナー条件:ライナー溝の断面形状;図
2(c)と同様、H0=3.5mm、T=8mm、U=
7mm シキリの奥行き;H1=0.7H0 シキリの厚さ;D1=H0 溝1本当たりのシキリの数;2(位置はライナーの底面
からE0/3と2E0/3)
Liner conditions: cross-sectional shape of liner groove; similar to FIG. 2 (c), H 0 = 3.5 mm, T = 8 mm, U =
Depth of 7mm partition; H 1 = 0.7 H 0 partition thickness; D 1 = H 0 number of partition per groove one; 2 (position E 0/3 from the bottom surface of the liner and 2E 0/3)

【0029】得られた粒子の粒度分布をコールターカウ
ンターTAII型により調べた。その結果、平均粒径は
11.0μmであり、粒径が20μm以上の粒子は0.
15%存在したが、105μm以上の粒子は存在しなか
った。この後、微粉分級するだけで目的の粒径のトナー
粒子を得ることができた。
The particle size distribution of the obtained particles was examined by a Coulter counter type TAII. As a result, the average particle size was 11.0 μm, and the particles having a particle size of 20 μm or more had an average particle size of 0.
15% was present, but no particles of 105 μm or larger were present. After that, the toner particles having the target particle diameter could be obtained only by classifying the fine powder.

【0030】実施例2 実施例1と同様にして、粗粉砕物を得た。そして、ライ
ナー部を、全ての溝に以下のシキリを取り付けたライナ
ーに代えたことと、風量を6m3/分にしたこと以外、
実施例1と同様にして該粗粉砕物を粉砕した。
Example 2 A coarsely pulverized product was obtained in the same manner as in Example 1. And, except that the liner portion was replaced with a liner having the following crimps attached to all the grooves and the air volume was set to 6 m 3 / min,
The coarsely pulverized product was pulverized in the same manner as in Example 1.

【0031】ライナー条件:ライナー溝の断面形状;図
2(c)と同様、H0=3.5mm、T=8mm、U=
7mm シキリの奥行き;H1=0.8H0 シキリの厚さ;D1=2H0 溝1本当たりのシキリの数;2(位置はライナーの底面
からE0/3と2E0/3)
Liner conditions: cross-sectional shape of liner groove; similar to FIG. 2 (c), H 0 = 3.5 mm, T = 8 mm, U =
Depth of 7mm partition; H 1 = 0.8H 0 partition thickness; D 1 = 2H 0 number of partition per groove one; 2 (position E 0/3 from the bottom surface of the liner and 2E 0/3)

【0032】得られた粒子の粒度分布を実施例1と同様
にして調べた。その結果、平均粒径は11.2μmであ
り、粒径が20μm以上の粒子は0.10%存在した
が、105μm以上の粒子は存在しなかった。この後、
微粉分級するだけで目的の粒径のトナー粒子を得ること
ができた。
The particle size distribution of the obtained particles was examined in the same manner as in Example 1. As a result, the average particle size was 11.2 μm, and 0.10% of the particles having a particle size of 20 μm or more were present, but the particles of 105 μm or more were not present. After this,
It was possible to obtain toner particles having a target particle diameter simply by classifying fine particles.

【0033】実施例3 実施例1と同様にして、粗粉砕物を得た。そして、ライ
ナー部を、以下の溝をジグザグ状に施したライナーに代
えたこと以外、実施例1と同様にして該粗粉砕物を粉砕
した。
Example 3 A coarsely pulverized product was obtained in the same manner as in Example 1. Then, the coarsely pulverized product was pulverized in the same manner as in Example 1 except that the liner portion was replaced with a liner having the following grooves formed in a zigzag shape.

【0034】ライナー条件:ライナー溝の断面形状;図
2(a)と同様、H0=3.5mm、R=7.5mm ジグザグ化した溝の変曲点;2(位置はライナーの底面
からE0/3と2E0/3) ジグザグ化した溝の角度;x=85°
Liner conditions: cross-sectional shape of liner groove; similar to FIG. 2A, H 0 = 3.5 mm, R = 7.5 mm Inflection point of zigzag groove; 2 (position E from the bottom of the liner 0/3 and 2E 0/3) the angle of the zigzag grooves; x = 85 °

【0035】得られた粒子の粒度分布を実施例1と同様
にして調べた。その結果、平均粒径は10.8μmであ
り、粒径が20μm以上の粒子は0.10%存在した
が、105μm以上の粒子は存在しなかった。この後、
微粉分級するだけで目的の粒径のトナー粒子を得ること
ができた。
The particle size distribution of the obtained particles was examined in the same manner as in Example 1. As a result, the average particle size was 10.8 μm, and 0.10% of the particles having a particle size of 20 μm or more were present, but the particles of 105 μm or more were not present. After this,
It was possible to obtain toner particles having a target particle diameter simply by classifying fine particles.

【0036】実施例4 実施例1と同様にして、粗粉砕物を得た。そして、ライ
ナー部を、以下の溝をジグザグ状に施したライナーに代
えたことと、風量を6m3/分にしたこと以外、実施例
1と同様にして該粗粉砕物を粉砕した。
Example 4 A coarsely pulverized product was obtained in the same manner as in Example 1. Then, the coarsely pulverized product was pulverized in the same manner as in Example 1 except that the liner portion was replaced with a liner having the following grooves in a zigzag shape and the air flow rate was 6 m 3 / min.

【0037】ライナー条件:ライナー溝の断面形状;図
2(a)と同様、H0=3.5mm、R=7.5mm ジグザグ化した溝の変曲点;3(位置はライナーの底面
からE0/4、E0/2および3E0/4) ジグザグ化した溝の角度;x=90°
Liner conditions: sectional shape of liner groove; similar to FIG. 2A, H 0 = 3.5 mm, R = 7.5 mm Inflection point of zigzag groove; 3 (position E from the bottom of the liner 0/4, E 0/2 and 3E 0/4) the angle of the zigzag grooves; x = 90 °

【0038】得られた粒子の粒度分布を実施例1と同様
にして調べた。その結果、平均粒径は10.5μmであ
り、粒径が20μm以上の粒子は0.10%存在した
が、105μm以上の粒子は存在しなかった。この後、
微粉分級するだけで目的の粒径のトナー粒子を得ること
ができた。
The particle size distribution of the obtained particles was examined in the same manner as in Example 1. As a result, the average particle size was 10.5 μm, and 0.10% of the particles having a particle size of 20 μm or more were present, but the particles of 105 μm or more were not present. After this,
It was possible to obtain toner particles having a target particle diameter simply by classifying fine particles.

【0039】実施例5 実施例1においてトナー原料を以下の通り代えたこと以
外、実施例1と同様にして粗粉砕物を得た。
Example 5 A coarsely pulverized product was obtained in the same manner as in Example 1 except that the toner raw materials in Example 1 were changed as follows.

【0040】 ・ポリエステル系樹脂(Mn:6800、Mw:86000、ゲル分率:9%) 100重量部 ・カーボンブラック(MA♯8;三菱化学工業社製) 8重量部 ・Cr含金油溶性染料(ボントロンN−01;オリエント化学工業社製) 2重量部 ・低分子量ポリプロピレン(ビスコールTS200P;三洋化成工業社製) 2重量部100 parts by weight of polyester resin (Mn: 6800, Mw: 86000, gel fraction: 9%) 8 parts by weight of carbon black (MA # 8; manufactured by Mitsubishi Chemical Industry Co., Ltd.) Cr-containing oil-soluble dye (Bontron N-01; manufactured by Orient Chemical Industry Co., Ltd.) 2 parts by weight Low molecular weight polypropylene (Viscor TS200P; manufactured by Sanyo Chemical Industry Co., Ltd.) 2 parts by weight

【0041】そして、実施例1と同様にして該粗粉砕物
を粉砕した。
Then, the coarsely pulverized product was pulverized in the same manner as in Example 1.

【0042】得られた粒子の粒度分布を実施例1と同様
にして調べた。その結果、平均粒径は11.5μmであ
り、粒径が20μm以上の粒子は0.18%存在した
が、105μm以上の粒子は存在しなかった。この後、
微粉分級するだけで目的の粒径のトナー粒子を得ること
ができた。
The particle size distribution of the obtained particles was examined in the same manner as in Example 1. As a result, the average particle size was 11.5 μm, and 0.18% of the particles having a particle size of 20 μm or more existed, but the particles of 105 μm or more did not exist. After this,
It was possible to obtain toner particles having a target particle diameter simply by classifying fine particles.

【0043】比較例1 実施例1と同様にして、粗粉砕物を得た。そして、ライ
ナー部をシキリを付けない以下のライナーに再び代えた
ことと、風量を2m3/分にしたこと以外、実施例1と
同様にして該粗粉砕物を粉砕した。
Comparative Example 1 A coarsely pulverized product was obtained in the same manner as in Example 1. Then, the coarsely pulverized product was pulverized in the same manner as in Example 1 except that the liner portion was replaced with the following liner without crimp and the air flow rate was changed to 2 m 3 / min.

【0044】ライナー条件:ライナー溝の断面形状;図
2(b)と同様、H0=3.5mm、T=8mm、U=
7mm
Liner conditions: cross-sectional shape of liner groove; similar to FIG. 2 (b), H 0 = 3.5 mm, T = 8 mm, U =
7 mm

【0045】得られた粒子の粒度分布を実施例1と同様
にして調べた。その結果、平均粒径は12.0μmであ
り、粒径が20μm以上の粒子は0.31%存在し、1
05μm以上の粒子は0.22%存在した。該粉砕物に
は粗粉の飛び込みが多く、このままでは使用不可能であ
り、粗粉分級して再度、粉砕する必要があった。
The particle size distribution of the obtained particles was examined in the same manner as in Example 1. As a result, the average particle size was 12.0 μm, and 0.31% of the particles having a particle size of 20 μm or more were present.
There was 0.22% of particles having a size of 05 μm or more. The pulverized product contained a large amount of coarse powder and could not be used as it was, and it was necessary to classify the coarse powder and pulverize again.

【0046】以上の結果をまとめて表1に示す。The above results are summarized in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例1〜2および5のようにライナー内
周面の溝に規定のシキリを取り付けるか、または、実施
例3〜4のように該溝を規定通りにジグザク化すること
により、粗粉の混入しない平均粒径11μm前後のトナ
ー粒子が製造可能であることが明らかとなった。従来技
術として、比較例1で得られた粉砕物には、粒径105
μm以上の粒子が混入しており、微粉分級するだけでな
く粗粉分級をもしなければ目的のトナー粒子を得ること
はできなかった。
As in Examples 1 to 2 and 5, a specified crimp is attached to the groove on the inner peripheral surface of the liner, or as in Examples 3 to 4, the groove is zigzag as specified, thereby forming a rough surface. It has been clarified that it is possible to manufacture toner particles having an average particle size of about 11 μm, in which no powder is mixed. As a conventional technique, the pulverized product obtained in Comparative Example 1 has a particle size of 105
Particles with a size of μm or more were mixed in, and it was not possible to obtain the intended toner particles without classifying not only fine powder but also coarse powder.

【0049】[0049]

【発明の効果】粗粉砕物を一気に粒径11μmの粒子ま
で微粉砕しても、粗粉が混入せず、該トナー製造工程に
おいて粗粉分級処理の不要な開回路で利用可能であり、
そのため粉砕プラントの簡素化を通じて設備費用を抑制
できる。
EFFECTS OF THE INVENTION Even if a coarsely pulverized product is finely pulverized all at once into particles having a particle size of 11 μm, coarse powder is not mixed, and it can be used in an open circuit which does not require coarse powder classification treatment in the toner manufacturing process.
Therefore, the equipment cost can be suppressed by simplifying the crushing plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】 高速気流中衝撃粉砕装置の概略構成図を示
す。
FIG. 1 shows a schematic configuration diagram of an impact crushing device in a high-speed air stream.

【図2】 (a)および(b)はライナー溝の溝延設方
向に垂直な断面形状概略図を示し、(c)はシキリを取
り付けたライナー溝の溝延設方向に垂直な断面形状概略
図を示す。
2A and 2B are schematic cross-sectional views of a liner groove perpendicular to the groove extending direction, and FIG. 2C is a schematic cross-sectional view of a liner groove with a crimp attached perpendicular to the groove extending direction. Show.

【図3】 (a)は従来のライナーの溝の一部の斜視
図、(b)はシキリを取り付けたライナー溝の一部の斜
視図および(c)は(b)のライナー溝の溝延設方向の
断面概略図を示す。
3A is a perspective view of a part of a groove of a conventional liner, FIG. 3B is a perspective view of a part of a liner groove with a crimp, and FIG. 3C is an extension of the liner groove of FIG. 3B. FIG.

【図4】 本発明によるジグザグ化した溝を施したライ
ナーの概略展開図。
FIG. 4 is a schematic development view of a liner having a zigzag groove according to the present invention.

【符号の説明】[Explanation of symbols]

1:回転自由な円筒(ローター)、2:円筒容器(ライ
ナー)、3:吸気口、4:排気口、5:電動機、6:
溝、7:シキリ、8:ジグザグ化した溝、9:変曲点
1: Free-rotating cylinder (rotor), 2: Cylindrical container (liner), 3: Intake port, 4: Exhaust port, 5: Electric motor, 6:
Groove, 7: crimp, 8: zigzag groove, 9: inflection point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内周面に溝を有する円筒容器の内部に、
前記内周面から所定の間隙を有して、外周面に溝を有す
る回転自由な円筒が配置されており、該円筒の回転に伴
って前記間隙に生じる空気の層流および渦流運動により
粉砕を行う機械式粉砕機において、前記内周面の溝は前
記円筒の回転軸方向に延設され、かつ、該溝の内部に突
起物を有することを特徴とする機械式粉砕機。
1. Inside a cylindrical container having a groove on its inner peripheral surface,
A rotation-free cylinder having a groove on the outer peripheral surface is arranged with a predetermined gap from the inner peripheral surface, and pulverization is performed by laminar flow and vortex motion of air generated in the gap as the cylinder rotates. In the mechanical crusher to be performed, the groove of the inner peripheral surface is extended in the rotation axis direction of the cylinder, and a protrusion is provided inside the groove.
【請求項2】 内周面に溝を有する円筒容器の内部に、
前記内周面から所定の間隙を有して、外周面に溝を有す
る回転自由な円筒が配置されており、該円筒の回転に伴
って前記間隙に生じる空気の層流および渦流運動により
粉砕を行う機械式粉砕機において、前記内周面の溝は前
記円筒の回転軸方向にジグザグ状に延設されていること
を特徴とする機械式粉砕機。
2. Inside a cylindrical container having a groove on its inner peripheral surface,
A rotation-free cylinder having a groove on the outer peripheral surface is arranged with a predetermined gap from the inner peripheral surface, and pulverization is performed by laminar flow and vortex motion of air generated in the gap as the cylinder rotates. The mechanical crusher according to claim 1, wherein the groove on the inner peripheral surface extends in a zigzag shape in the rotation axis direction of the cylinder.
JP11434895A 1995-05-12 1995-05-12 Mechanical grinder Pending JPH08299827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11434895A JPH08299827A (en) 1995-05-12 1995-05-12 Mechanical grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11434895A JPH08299827A (en) 1995-05-12 1995-05-12 Mechanical grinder

Publications (1)

Publication Number Publication Date
JPH08299827A true JPH08299827A (en) 1996-11-19

Family

ID=14635513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11434895A Pending JPH08299827A (en) 1995-05-12 1995-05-12 Mechanical grinder

Country Status (1)

Country Link
JP (1) JPH08299827A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130627A (en) * 2005-10-13 2007-05-31 Earth Technica:Kk Powder treating device and powder treating facilities
JP2013063432A (en) * 2005-10-13 2013-04-11 Earth Technica:Kk Powder treating device and powder treating facility
CN105643473A (en) * 2015-12-28 2016-06-08 广州大学 Grinding device for peripheral surfaces of cylindrical workpieces
CN108465518A (en) * 2018-06-01 2018-08-31 襄阳远锐资源工程技术有限公司 A kind of cracking and sorting system for lead-acid accumulator
CN108686766A (en) * 2018-06-01 2018-10-23 襄阳远锐资源工程技术有限公司 A kind of high capacity crusher finely disassembled for lead-acid accumulator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130627A (en) * 2005-10-13 2007-05-31 Earth Technica:Kk Powder treating device and powder treating facilities
JP2013063432A (en) * 2005-10-13 2013-04-11 Earth Technica:Kk Powder treating device and powder treating facility
CN105643473A (en) * 2015-12-28 2016-06-08 广州大学 Grinding device for peripheral surfaces of cylindrical workpieces
CN108465518A (en) * 2018-06-01 2018-08-31 襄阳远锐资源工程技术有限公司 A kind of cracking and sorting system for lead-acid accumulator
CN108686766A (en) * 2018-06-01 2018-10-23 襄阳远锐资源工程技术有限公司 A kind of high capacity crusher finely disassembled for lead-acid accumulator
CN108686766B (en) * 2018-06-01 2023-09-08 襄阳远锐资源工程技术有限公司 A high-efficient breaker for meticulous disassembling of lead acid battery
CN108465518B (en) * 2018-06-01 2023-09-12 襄阳远锐资源工程技术有限公司 Crushing and sorting system for lead-acid storage battery

Similar Documents

Publication Publication Date Title
KR950006885B1 (en) Pneumatic impact pulverizer, fine powder production apparatus and toner production process
US5447275A (en) Toner production process
JP4787788B2 (en) Crushed coarse powder classifier, fine powder classifier
DE102005051851B4 (en) Method of manufacturing toner and toner
KR100238614B1 (en) Pneumatic impact pulverizer and process for producing toner
EP1970766B1 (en) Method of manufacturing toner
JPH08299827A (en) Mechanical grinder
DE102005044600B4 (en) Method of manufacturing toner
JP3273394B2 (en) Mechanical grinding equipment
EP0605169B1 (en) Method for producing toner for electrostatic development
JPH09187732A (en) Preparation of toner
JP3486524B2 (en) Method and system for manufacturing toner
JP3548192B2 (en) Method for producing toner for developing electrostatic images and impact-type pulverizer
JP3740202B2 (en) Toner production method
JPH11197527A (en) Mechanical pulverizer
JPH11319601A (en) Mechanically pulverizing device
JP2654989B2 (en) Powder grinding method
JPH0749583A (en) Production of electrophotographic toner
JP3693683B2 (en) Toner manufacturing method for developing electrostatic image
JPH07244399A (en) Production of electrostatic charge image developing toner
JP3779975B2 (en) Method for producing toner for developing electrostatic image and pulverizing and classifying device for toner
JPH0515803A (en) Grinding method and device by jet mill
JP3726409B2 (en) Mechanical pulverizer and toner production method using the same
JPH0820762B2 (en) Method of manufacturing toner for electrostatic charge development
JP3327762B2 (en) Manufacturing method of toner