JP5673338B2 - Solar cell encapsulant and method for producing the same - Google Patents

Solar cell encapsulant and method for producing the same Download PDF

Info

Publication number
JP5673338B2
JP5673338B2 JP2011105948A JP2011105948A JP5673338B2 JP 5673338 B2 JP5673338 B2 JP 5673338B2 JP 2011105948 A JP2011105948 A JP 2011105948A JP 2011105948 A JP2011105948 A JP 2011105948A JP 5673338 B2 JP5673338 B2 JP 5673338B2
Authority
JP
Japan
Prior art keywords
organic peroxide
solar cell
weight
eva
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011105948A
Other languages
Japanese (ja)
Other versions
JP2012238685A (en
Inventor
誠之 佐藤
誠之 佐藤
政博 椙江
政博 椙江
西川 徹
徹 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2011105948A priority Critical patent/JP5673338B2/en
Publication of JP2012238685A publication Critical patent/JP2012238685A/en
Application granted granted Critical
Publication of JP5673338B2 publication Critical patent/JP5673338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、太陽電池のセルを封止する太陽電池用封止材に関連し、特に、エチレン-酢酸ビニル共重合体(以下、EVAと称す場合がある)を有機過酸化物(架橋剤)によって架橋する太陽電池用封止材に関するものである。 The present invention relates to a solar cell encapsulant that seals cells of a solar cell, and particularly an ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as EVA) as an organic peroxide (crosslinking agent). It is related with the sealing material for solar cells bridge | crosslinked by.

近年、水力・風力・原子力発電や太陽光・熱発電、バイオマス発電などの二次エネルギーが、化石燃料の代替エネルギー源として注目されており、中でも無尽蔵の太陽光のエネルギーを電気エネルギーに変換することのできる太陽電池による発電方式が注目され、開発が進められている。 In recent years, secondary energy such as hydropower, wind power, nuclear power generation, solar power generation, thermal power generation, and biomass power generation has been attracting attention as an alternative energy source for fossil fuels, and in particular, converting inexhaustible solar energy into electrical energy. A solar power generation system that can be used is attracting attention and is being developed.

一般的に太陽電池モジュールは、上部透明保護基材(1)と下部保護基材(2)との間において、有機過酸化物を含んだEVA封止材(3)により、シリコン発電素子等の太陽電池用セル(4)が封止された構造となっている。このような太陽電池モジュールは、上記各部材を(1)−(3)−(4)−(3)−(2)の順で積層させた後に、真空ラミネーターで135〜180℃、脱気時間0.1〜5分、プレス圧力0.1〜1.2kg/cm、プレス時間5〜15分の条件で加熱・加圧することにより、EVAの融解と、有機過酸化物の分解による架橋とを同時に行い、全ての部材を一体化することにより製造される。 In general, a solar cell module is made of an EVA sealing material (3) containing an organic peroxide between an upper transparent protective substrate (1) and a lower protective substrate (2), so that a silicon power generation element or the like is used. The solar cell (4) is sealed. In such a solar cell module, after laminating the above members in the order of (1)-(3)-(4)-(3)-(2), the vacuum laminator is used for 135 to 180 ° C., deaeration time. By heating and pressurizing under conditions of 0.1 to 5 minutes, press pressure of 0.1 to 1.2 kg / cm 2 and press time of 5 to 15 minutes, melting of EVA and crosslinking by decomposition of organic peroxide Are simultaneously performed, and all the members are integrated.

太陽電池モジュールに用いられるEVA封止材は、EVAと有機過酸化物を含む組成物を押出成形、もしくはカレンダー成形によりシート状に成形したものである。EVAに加えられた有機過酸化物が熱により分解してEVAを架橋させると、架橋密度の指標となるゲル分率が向上される。EVAのゲル分率を向上することによりEVA封止材の耐熱性及び強度を向上することができ、屋外等の環境下で使用される太陽電池にはゲル分率が80%以上であるEVAが必要である。したがって、屋外等で使用される太陽電池を提供するためには、有機過酸化物をEVA中に含有させてEVAを架橋することが不可欠となっている。   The EVA sealing material used for the solar cell module is obtained by molding a composition containing EVA and an organic peroxide into a sheet by extrusion molding or calendar molding. When the organic peroxide added to EVA is decomposed by heat to cross-link EVA, the gel fraction serving as an index of cross-linking density is improved. By improving the gel fraction of EVA, the heat resistance and strength of the EVA sealing material can be improved. For solar cells used in environments such as outdoors, EVA having a gel fraction of 80% or more is used. is necessary. Therefore, in order to provide a solar cell used outdoors or the like, it is essential to include EVA in the EVA to crosslink the EVA.

しかし、一般的な有機過酸化物による架橋においては、有機過酸化物が熱分解することによりガスが発生する。このガスは太陽電池モジュール内部の前記した各部材(1)−(3)−(4)−(3)−(2)の各界面に滞留し、これにより太陽電池モジュール内部に発泡が生じるという問題を引き起こす。この発泡は、EVA封止材の密着性を低下させる要因となり、封止性能が低下することになる。そのため、太陽電池の寿命と発電効率が低下する問題が生じる。したがって、発泡の抑制のためには、ガス発生量が少ない有機過酸化物を用いなくてはならない。 However, in general crosslinking with an organic peroxide, gas is generated due to thermal decomposition of the organic peroxide. This gas stays at each interface of each member (1)-(3)-(4)-(3)-(2) inside the solar cell module, thereby causing foaming inside the solar cell module. cause. This foaming causes a decrease in the adhesion of the EVA sealing material, and the sealing performance is reduced. Therefore, the problem that the lifetime and power generation efficiency of a solar cell fall arises. Therefore, in order to suppress foaming, an organic peroxide with a small amount of gas generation must be used.

特許文献1には、下記式(I)で表される有機過酸化物(I)(1,1−ビス(t−ブチルパーオキシ)シクロヘキサン)がEVA封止材用の有機過酸化物として使用可能であることが開示されており、有機過酸化物(I)の熱分解によるEVAの架橋においては、ガスの発生が少なく、気泡が生じないことが見出された。しかし、この有機過酸化物(I)は自己反応性が非常に高いために消防法第5類第1種に分類されており、取り扱い時の危険性が極めて高いことが知られている。

Figure 0005673338
In Patent Document 1, an organic peroxide (I) represented by the following formula (I) (1,1-bis (t-butylperoxy) cyclohexane) is used as an organic peroxide for an EVA sealing material. It has been disclosed that this is possible, and it has been found that in EVA crosslinking by pyrolysis of organic peroxide (I), less gas is generated and no bubbles are formed. However, since this organic peroxide (I) is very high in self-reactivity, it is classified as the first class of the Fire Service Law Class 5 and is known to have a very high risk during handling.
Figure 0005673338

一般に、有機過酸化物は、自己反応性という性質を有するために取り扱い時の危険性が非常に高い。そのため、安全性を確保するために、希釈剤無しでは消防法第5類2種に該当する有機過酸化物しか工業的には使用されない。有機過酸化物(I)のような消防法第5類第1種に該当する有機過酸化物を用いる場合には、当該有機過酸化物に希釈剤を加えることにより、第5類2種に該当する混合物にして使用される。   In general, an organic peroxide has a self-reactive property, and therefore has a very high risk during handling. For this reason, in order to ensure safety, only organic peroxides corresponding to the second class of the Fire Service Law Type 5 are industrially used without a diluent. When using an organic peroxide that falls under Category 5 of the Fire Service Act, such as an organic peroxide (I), add a diluent to the organic peroxide to make it Class 2 Used in the appropriate mixture.

有機過酸化物の希釈剤としては、一般にトルエン、エチルベンゼン、キシレン、炭化水素溶剤、2,2,4−トリメチル−1,3−ペンタンジオールジイソブチレートが用いられるが、希釈剤を添加した場合、EVA封止材中の希釈剤が気化して、発泡を生じてしまう。そのため、有機過酸化物(I)を工業的に用いる場合、有機過酸化物(I)の熱分解により発生するガスは少ないものの、希釈剤の気化による発泡が起こる問題がある。   As a diluent for organic peroxide, generally toluene, ethylbenzene, xylene, hydrocarbon solvent, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate is used, but when a diluent is added, The diluent in the EVA sealing material is vaporized to cause foaming. For this reason, when the organic peroxide (I) is used industrially, there is a problem that foaming occurs due to evaporation of the diluent, although there is little gas generated by thermal decomposition of the organic peroxide (I).

一方、特許文献2には、消防法第5類2種に該当し、有機過酸化物(I)よりも安全に使用できる有機過酸化物(II)(1−(t−ブチルパーオキシ)−1−メトキシシクロヘキサン、下記式(II)参照)が重合開始剤および不飽和ポリエステル樹脂組成物の硬化剤として利用可能であることが開示されている。しかし、有機過酸化物(II)によるEVAの架橋効率は有機過酸化物(I)よりも低いため、有機過酸化物(II)のみを用いてEVAのゲル分率を80%以上にすることは困難である。

Figure 0005673338
On the other hand, Patent Document 2 falls under category 5 of the Fire Service Law, and is an organic peroxide (II) (1- (t-butylperoxy)-that can be used more safely than the organic peroxide (I). It is disclosed that 1-methoxycyclohexane (see the following formula (II)) can be used as a polymerization initiator and a curing agent for an unsaturated polyester resin composition. However, since EVA crosslinking efficiency with organic peroxide (II) is lower than organic peroxide (I), the gel fraction of EVA should be 80% or more using only organic peroxide (II). It is difficult.
Figure 0005673338

特開平6−177412号公報Japanese Patent Laid-Open No. 6-177412 特開平1−228957号公報JP-A-1-228957

有機過酸化物(I)に関しては、安全性を確保するために希釈剤を含まざるを得なく、その希釈剤により発泡が引き起こされるため、太陽電池用封止材の製造においては、工業的な使用が困難となっている。 Regarding the organic peroxide (I), a diluent must be included to ensure safety, and foaming is caused by the diluent. It is difficult to use.

そこで、本発明の目的は、安全性の高められた有機過酸化物(I)を含み、発泡が抑制される太陽電池用封止材及びその製造方法を提供することである。 Then, the objective of this invention is providing the sealing material for solar cells which contains organic peroxide (I) with improved safety | security, and foaming is suppressed, and its manufacturing method.

本発明者らは、有機過酸化物(I)の合成反応時において、ガスが生成し難く、かつ安全性の高い構造をもつ有機過酸化物(II)を所定の重量比で同時に副生させた混合有機過酸化物(B)を架橋剤として用いることにより、上記目的を達成し得ることを見出した。つまり、希釈剤非存在下において、有機過酸化物(I)及び(II)を所定の重量比で使用することにより、有機過酸化物(I)の安全性を向上するとともに、太陽電池用封止材に要求される架橋密度と発泡の抑制とが同時に達成されることが明らかとなった。 In the synthesis reaction of the organic peroxide (I), the inventors of the present invention simultaneously produced a by-product of the organic peroxide (II) having a highly safe structure that hardly generates gas at a predetermined weight ratio. It has been found that the above object can be achieved by using the mixed organic peroxide (B) as a crosslinking agent. That is, in the absence of a diluent, the organic peroxides (I) and (II) are used in a predetermined weight ratio, thereby improving the safety of the organic peroxide (I) and encapsulating the solar cell. It was revealed that the crosslink density required for the stopper and the suppression of foaming were achieved at the same time.

すなわち、本発明の太陽電池用封止材は、酢酸ビニルより形成される構造単位を25〜35重量%有するエチレン-酢酸ビニル共重合体(A)と、下記式(I)に示す有機過酸化物(I)及び下記式(II)に示す有機過酸化物(II)からなる混合有機過酸化物(B)と、を含み、前記混合有機過酸化物(B)の含有量が、前記エチレン-酢酸ビニル共重合体(A)100重量部に対して、0.1〜3.0重量部であり、前記混合有機過酸化物(B)中の、有機過酸化物(I)と有機過酸化物(II)との重量比(I:II)が、100:30〜150であることを特徴とする。

Figure 0005673338

Figure 0005673338
That is, the sealing material for solar cells of the present invention comprises an ethylene-vinyl acetate copolymer (A) having a structural unit of 25 to 35% by weight formed from vinyl acetate and an organic peroxidation represented by the following formula (I). A mixed organic peroxide (B) comprising the product (I) and an organic peroxide (II) represented by the following formula (II), wherein the content of the mixed organic peroxide (B) is the ethylene -0.1 to 3.0 parts by weight relative to 100 parts by weight of the vinyl acetate copolymer (A), and the organic peroxide (I) and the organic peroxide in the mixed organic peroxide (B) The weight ratio (I: II) with the oxide (II) is 100: 30 to 150.
Figure 0005673338

Figure 0005673338

また、本発明の太陽電池用封止材の製造方法は、
(a)シクロヘキサノンに、1,1−ジメチルエチルハイドロパーオキサイドとメタノールとを混合し、下記式(I)に示す有機過酸化物(I)及び下記式(II)に示す有機過酸化物(II)からなる混合有機過酸化物(B)を合成する段階、及び
(b)酢酸ビニルより形成される構造単位を25〜35重量%有するエチレン-酢酸ビニル共重合体(A)100重量部に前記混合有機過酸化物(B)を0.1〜3.0重量部混合して得られた組成物を成形する段階
を有し、

Figure 0005673338

Figure 0005673338

1,1−ジメチルエチルハイドロパーオキサイドとメタノールのモル比が1.0:3.5〜10.0であることを特徴とする。 Moreover, the manufacturing method of the sealing material for solar cells of the present invention includes:
(A) 1,1-dimethylethyl hydroperoxide and methanol are mixed with cyclohexanone, and an organic peroxide (I) represented by the following formula (I) and an organic peroxide (II) represented by the following formula (II): (B) synthesizing the mixed organic peroxide (B), and (b) 100 parts by weight of the ethylene-vinyl acetate copolymer (A) having 25 to 35% by weight of structural units formed from vinyl acetate. A step of molding a composition obtained by mixing 0.1 to 3.0 parts by weight of the mixed organic peroxide (B),
Figure 0005673338

Figure 0005673338

The molar ratio of 1,1-dimethylethyl hydroperoxide to methanol is 1.0: 3.5 to 10.0.

本発明の太陽電池用封止材によれば、ガスの生成が少ない有機過酸化物(I)及び有機過酸化物(II)が用いられており且つ希釈剤を含んでいないために、太陽電池内部の発泡が抑制される。また、有機過酸化物(I)と有機過酸化物(II)を所定の割合で含むことにより、混合有機過酸化物の安全性が高められているとともに、架橋によりEVAのゲル分率を十分に向上することができる。一方、本発明の太陽電池用封止材の製造方法によれば、希釈剤を用いることなく有機過酸化物(I)を含む太陽電池用封止材を安全に製造することができる。   According to the solar cell encapsulant of the present invention, the organic peroxide (I) and the organic peroxide (II), which generate less gas, are used and do not contain a diluent. Internal foaming is suppressed. In addition, by containing the organic peroxide (I) and the organic peroxide (II) in a predetermined ratio, the safety of the mixed organic peroxide is improved and the gel fraction of EVA is sufficiently increased by crosslinking. Can be improved. On the other hand, according to the manufacturing method of the sealing material for solar cells of this invention, the sealing material for solar cells containing organic peroxide (I) can be manufactured safely, without using a diluent.

本発明の太陽電池用封止材は、エチレン−酢酸ビニル共重合体(EVA)(A)と、混合有機過酸化物(B)とを含んでおり、太陽電池モジュールにおいて太陽電池用セルを封止するために用いられる。以下において、その構成を説明する。   The sealing material for solar cells of the present invention contains an ethylene-vinyl acetate copolymer (EVA) (A) and a mixed organic peroxide (B), and seals the solar cell in the solar cell module. Used to stop. The configuration will be described below.

<エチレン−酢酸ビニル共重合体(EVA)(A)>
エチレン−酢酸ビニル共重合体(EVA)はエチレンと酢酸ビニルとの共重合体であり、本発明で用いられるEVA(A)は、酢酸ビニルを構造単位で25〜35重量%含んでいる。この酢酸ビニル含有率が35重量%を超えると、粘着性が増大して取り扱いが困難になる。一方、酢酸ビニル含有率が25重量%未満になると、封止材が硬くなるため加工性が低下し、また、封止材は硬化に伴い緩衝材としての機能が低下するため、封止材で保護されている太陽電池用セルが衝撃により割れやすくなるので好ましくない。
<Ethylene-vinyl acetate copolymer (EVA) (A)>
The ethylene-vinyl acetate copolymer (EVA) is a copolymer of ethylene and vinyl acetate, and EVA (A) used in the present invention contains 25 to 35% by weight of vinyl acetate as a structural unit. When the vinyl acetate content exceeds 35% by weight, the tackiness increases and handling becomes difficult. On the other hand, when the vinyl acetate content is less than 25% by weight, the sealing material becomes hard and the workability is lowered. Also, the sealing material has a function as a cushioning material as it is cured. Since the protected solar cell is easily broken by impact, it is not preferable.

<混合有機過酸化物(B)>
混合有機過酸化物は、下記式(I)で表される有機過酸化物(I)、すなわち、1,1−ビス(t−ブチルパーオキシ)シクロヘキサンと、下記式(II)で表される有機過酸化物(II)、すなわち1−(t−ブチルパーオキシ)−1−メトキシシクロヘキサンの混合物である。上述したように、有機過酸化物(I)は、熱分解時におけるガスの発生が少なく、ゲル分率が80%以上になるようEVAを架橋することができるが、自己反応性が非常に高いために取り扱い時の危険性が高く、工業的に使用するためには一般に希釈剤を添加することにより安全性を高める必要がある。一方、有機過酸化物(II)は、熱分解時におけるガスの発生が少なく、有機過酸化物(I)よりも自己反応性が低いためより安全に使用できるが、EVAのゲル分率を80%以上にすることができない。

Figure 0005673338

Figure 0005673338
<Mixed organic peroxide (B)>
The mixed organic peroxide is represented by the organic peroxide (I) represented by the following formula (I), that is, 1,1-bis (t-butylperoxy) cyclohexane and the following formula (II). Organic peroxide (II), that is, a mixture of 1- (t-butylperoxy) -1-methoxycyclohexane. As described above, the organic peroxide (I) generates less gas at the time of thermal decomposition and can crosslink EVA so that the gel fraction is 80% or more, but it has very high self-reactivity. Therefore, the danger at the time of handling is high, and in order to use it industrially, it is generally necessary to increase safety by adding a diluent. On the other hand, the organic peroxide (II) can be used more safely because it generates less gas during pyrolysis and is less self-reactive than the organic peroxide (I), but the gel fraction of EVA is 80%. % Cannot be over.
Figure 0005673338

Figure 0005673338

混合有機過酸化物(B)中の、有機過酸化物(I)と有機過酸化物(II)との重量比(I:II)は、100:30〜150(すなわち、100:30〜100:150)である。有機過酸化物(I)100重量部に対して、有機過酸化物(II)が30重量部より少ないと、混合有機過酸化物(B)の自己反応性が高く、消防法第5類第1種に該当するため、取り扱い時の危険性が高く、工業的な使用が困難となる。一方、混合有機過酸化物(I)100重量部に対して、有機過酸化物(II)が150重量部より多くなると、架橋後のEVAの架橋密度(ゲル分率)が80%より低くなる、又は架橋時間が長くなるため好ましくない。このように有機過酸化物(I)を有機過酸化物(II)と所定の割合で混合することにより、希釈剤を用いることなく有機過酸化物(I)を安全に使用することができるとともに、ゲル分率が80%以上になるようEVAを架橋することができる。   The weight ratio (I: II) of the organic peroxide (I) to the organic peroxide (II) in the mixed organic peroxide (B) is 100: 30 to 150 (that is, 100: 30 to 100). : 150). When the organic peroxide (II) is less than 30 parts by weight with respect to 100 parts by weight of the organic peroxide (I), the mixed organic peroxide (B) has high self-reactivity, and the Fire Service Law Class 5 Since it corresponds to 1 type, the danger at the time of handling is high and industrial use becomes difficult. On the other hand, when the organic peroxide (II) is more than 150 parts by weight with respect to 100 parts by weight of the mixed organic peroxide (I), the crosslinking density (gel fraction) of EVA after crosslinking becomes lower than 80%. Or, it is not preferable because the crosslinking time becomes long. Thus, by mixing the organic peroxide (I) with the organic peroxide (II) at a predetermined ratio, the organic peroxide (I) can be used safely without using a diluent. The EVA can be crosslinked so that the gel fraction is 80% or more.

<混合有機過酸化物(B)の製造方法>
有機過酸化物(I)は、シクロヘキサノンと1,1−ジメチルエチルハイドロパーオキサイドとを反応させることにより合成される。有機過酸化物(I)の合成時にメタノールを添加し、1,1−ジメチルエチルハイドロパーオキサイドとメタノールを競合させることで、有機過酸化物(I)及び有機過酸化物(II)を含む混合有機過酸化物(B)が合成される。この反応においては、添加させるメタノールの増加に伴い合成される有機過酸化物(II)の割合が増加するため、メタノールの添加量を変更することにより、混合有機過酸化物(B)中の有機過酸化物(I)と有機過酸化物(II)の重量比を調節することができる。具体的には、競合させる1,1−ジメチルエチルハイドロパーオキサイドとメタノールのモル比を1.0:3.5〜10.0(すなわち、1,1−ジメチルエチルハイドロパーオキサイド:メタノール=1.0:3.5〜1.0:10.0)とすることにより、得られる混合有機過酸化物(B)中の有機化酸化物(I)と有機化酸化物(II)との重量比(I:II)を100:30〜150とすることができる。また、有機過酸化物(I)100重量部に対して、有機過酸化物(II)が30重量部より多くなるようにメタノールの量を調節することによって、安全に有機過酸化物(B)を合成することができる。
<Method for producing mixed organic peroxide (B)>
The organic peroxide (I) is synthesized by reacting cyclohexanone and 1,1-dimethylethyl hydroperoxide. Mixing containing organic peroxide (I) and organic peroxide (II) by adding methanol during synthesis of organic peroxide (I) and competing 1,1-dimethylethyl hydroperoxide with methanol An organic peroxide (B) is synthesized. In this reaction, since the proportion of the organic peroxide (II) synthesized increases with the amount of methanol to be added, the organic content in the mixed organic peroxide (B) can be changed by changing the amount of methanol added. The weight ratio of the peroxide (I) to the organic peroxide (II) can be adjusted. Specifically, the molar ratio of competing 1,1-dimethylethyl hydroperoxide and methanol is 1.0: 3.5 to 10.0 (that is, 1,1-dimethylethyl hydroperoxide: methanol = 1. 0: 3.5 to 1.0: 10.0), the weight ratio of the organic oxide (I) to the organic oxide (II) in the mixed organic peroxide (B) obtained. (I: II) can be set to 100: 30 to 150. Further, by adjusting the amount of methanol so that the organic peroxide (II) is more than 30 parts by weight with respect to 100 parts by weight of the organic peroxide (I), the organic peroxide (B) can be safely obtained. Can be synthesized.

有機過酸化物(I)と有機過酸化物(II)を混合し、混合有機過酸化物(B)を得ることも可能であるが、希釈剤を含まない有機過酸化物(I)は消防法第5類1種に該当する自己反応性の高い化合物であるため、そのような方法は安全性に問題があるため避けることが好ましい。   It is possible to obtain a mixed organic peroxide (B) by mixing organic peroxide (I) and organic peroxide (II). Since it is a highly self-reactive compound that falls under Class 5 of Class 1, such a method is preferably avoided because it has a safety problem.

また、有機過酸化物(I)の合成時に、メタノールに加えて、メタノールよりも反応性の低いエタノール、プロパノール、ブタノールなどのアルキルアルコールが不純物として少量混入しても、有機過酸化物(I)と(II)との重量比(I:II)を変えることなく合成可能である。   Further, when synthesizing the organic peroxide (I), even if a small amount of an alkyl alcohol such as ethanol, propanol or butanol which is less reactive than methanol is mixed as an impurity in addition to methanol, the organic peroxide (I) And (II) can be synthesized without changing the weight ratio (I: II).

<太陽電池用封止材>
太陽電池用封止材は、上記EVA(A)と混合有機過酸化物(B)とを含有する組成物を成形することにより作成される。太陽電池用封止材は、押出成形又はカレンダー成形などにより、通常は0.2mm〜0.8mm厚のシート状に成形されるが、太陽電池用封止材の形状は用いられる太陽電池モジュールの形状などに合わせて適宜変更可能であり、上記形状に限定されない。
<Sealant for solar cell>
The sealing material for solar cells is created by molding a composition containing the EVA (A) and the mixed organic peroxide (B). The solar cell encapsulant is usually formed into a sheet having a thickness of 0.2 mm to 0.8 mm by extrusion molding or calendar molding, but the shape of the solar cell encapsulant is that of the solar cell module used. The shape can be appropriately changed according to the shape and the like and is not limited to the above shape.

太陽電池用封止材において、前記混合有機過酸化物(B)の含有量は、前記エチレン-酢酸ビニル共重合体(A)100重量部に対して、0.1〜3.0重量部である。混合有機過酸化物(B)の含有量が0.1重量部未満であると、架橋反応後のEVAのゲル分率が低い、若しくは架橋時間が長くなるため、実用に適さない。混合有機過酸化物(B)の含有量が3.0重量部より多いと、EVAの架橋が速く、太陽電池モジュール製造時の使い勝手が著しく悪くなり、さらには混合有機過酸化物の残存を引き起こす。この混合有機過酸化物(B)の残存は封止材の着色等を引き起こし、封止材の光透過性を低下させるため、封止材の間に配置される太陽電池用セルの受光量が低減し、結果的に太陽電池モジュールにおける光電変換効率が低下する。   In the solar cell encapsulant, the content of the mixed organic peroxide (B) is 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the ethylene-vinyl acetate copolymer (A). is there. If the content of the mixed organic peroxide (B) is less than 0.1 parts by weight, the gel fraction of EVA after the crosslinking reaction is low or the crosslinking time becomes long, so that it is not suitable for practical use. When the content of the mixed organic peroxide (B) is more than 3.0 parts by weight, the EVA is rapidly crosslinked, the usability at the time of manufacturing the solar cell module is remarkably deteriorated, and further, the mixed organic peroxide remains. . The remaining of the mixed organic peroxide (B) causes coloring of the encapsulant and lowers the light transmittance of the encapsulant, so that the amount of received light of the solar cell disposed between the encapsulant is reduced. As a result, the photoelectric conversion efficiency in the solar cell module is lowered.

本発明の太陽電池用封止材には上記EVA(A)および混合有機過酸化物(B)以外にも、従来公知のEVA封止材に用いられる添加剤、さらに封止材の性能(機械的強度、透明性、耐熱性、耐光性、架橋速度等)の向上に供する各種添加剤を含んでも良い。添加剤としては、例えばシランカップリング剤、架橋助剤、紫外線吸収剤、光安定剤および酸化防止剤などが挙げられる。これらの添加剤は、本発明の効果を阻害しない範囲で添加可能である。 In addition to the EVA (A) and the mixed organic peroxide (B), the solar cell encapsulant of the present invention includes additives used for conventionally known EVA encapsulants, and further the performance of the encapsulant (machine Various additives for improving the mechanical strength, transparency, heat resistance, light resistance, crosslinking speed, etc.). Examples of the additive include a silane coupling agent, a crosslinking aid, an ultraviolet absorber, a light stabilizer, and an antioxidant. These additives can be added as long as the effects of the present invention are not impaired.

<太陽電池モジュール>
太陽電池モジュールにおいては、光電変換素子である太陽電池用セルの上下両側に太陽電池用封止材が配置されて太陽電池用セルを封止しており、その上下両側に保護基板が配置されている。本発明の太陽電池用封止材は、このように太陽電池モジュール内において太陽電池用セルを封止するためのものであるから、その他の太陽電池モジュール用部材については、従来公知の太陽電池モジュールと同様の構成を有していればよく、特に制限されない。
<Solar cell module>
In the solar cell module, solar cell encapsulants are arranged on both upper and lower sides of the solar cell as a photoelectric conversion element to seal the solar cell, and protective substrates are arranged on both upper and lower sides. Yes. Since the solar cell sealing material of the present invention is for sealing the solar cell in the solar cell module as described above, the other solar cell module members are conventionally known solar cell modules. There is no particular limitation as long as it has the same configuration.

以下、本発明を実施例により説明する。本発明は、以下の実施例により制限されるものではない。 Hereinafter, the present invention will be described with reference to examples. The present invention is not limited by the following examples.

<混合有機過酸化物(B)の合成>
実施例および比較例に使用した混合有機過酸化物(B)の合成に関しては、以下の手順で行った。
<Synthesis of mixed organic peroxide (B)>
About the synthesis | combination of the mixed organic peroxide (B) used for the Example and the comparative example, it performed in the following procedures.

(合成例1)
シクロヘキサノン(1mol)とメタノール(6.5mol)を7℃で混合撹拌し、さらに1,1−ジメチルエチルハイドロパーオキサイド(1.7mol)を加えて撹拌した(1,1−ジメチルエチルハイドロパーオキサイド:メタノール=1.0mol:3.8mol)。温度を7℃に保ったまま、70%硫酸(1.2mol)を滴下した。滴下終了後、温度を7℃に保ったまま、約1時間撹拌・反応を続けた。反応終了後、水層を分離し、有機層を6%水酸化ナトリウム水溶液で撹拌・洗浄を行った。その後、水層を分離し、再度6%水酸化ナトリウム水溶液で撹拌・洗浄を行った。水層を分離後、少量の酢酸でpH=5〜7程度に中和し、有機層と等量の水を加え、撹拌・分離した。pH=6〜7になるまで、水で洗浄し、硫酸マグネシウム等の脱水剤で脱水し、ろ過し、混合有機過酸化物(B)を得た。その収率は79%であり、有機過酸化物(I)及び(II)の重量比(I:II)は100:37であった。得られた混合有機過酸化物(B)を用いて下記消防法判定による判定を行った。判定結果を下記表1に示す。
(Synthesis Example 1)
Cyclohexanone (1 mol) and methanol (6.5 mol) were mixed and stirred at 7 ° C., and 1,1-dimethylethyl hydroperoxide (1.7 mol) was further added and stirred (1,1-dimethylethyl hydroperoxide: Methanol = 1.0 mol: 3.8 mol). While keeping the temperature at 7 ° C., 70% sulfuric acid (1.2 mol) was added dropwise. After completion of dropping, stirring and reaction were continued for about 1 hour while maintaining the temperature at 7 ° C. After completion of the reaction, the aqueous layer was separated, and the organic layer was stirred and washed with a 6% aqueous sodium hydroxide solution. Thereafter, the aqueous layer was separated, and again stirred and washed with a 6% aqueous sodium hydroxide solution. After separating the aqueous layer, the solution was neutralized with a small amount of acetic acid to about pH = 5-7, added with an amount of water equal to the organic layer, and stirred and separated. The mixture was washed with water until pH = 6-7, dehydrated with a dehydrating agent such as magnesium sulfate, and filtered to obtain a mixed organic peroxide (B). The yield was 79%, and the weight ratio (I: II) of the organic peroxides (I) and (II) was 100: 37. Using the obtained mixed organic peroxide (B), determination was made by the following Fire Service Law determination. The determination results are shown in Table 1 below.

(合成例2〜7)
合成例1と同様に、表1に示される量のメタノールを用いて、合成例2〜7の混合有機有機過酸化物(B)を合成し、有機過酸化物(I)及び(II)の重量比を算出すると共に消防法判定による判定を行った。重量比及び判定結果を表1に示す。
(Synthesis Examples 2 to 7)
In the same manner as in Synthesis Example 1, using the amount of methanol shown in Table 1, the mixed organic organic peroxides (B) of Synthesis Examples 2 to 7 were synthesized, and the organic peroxides (I) and (II) were synthesized. The weight ratio was calculated and a judgment was made based on the Fire Service Law judgment. Table 1 shows the weight ratio and the determination results.

<消防法判定>
各合成例において合成された有機過酸化物(B)について、消防法で規定された圧力容器試験を行い、消防法判定を行った。細孔径9.0mm、および1.0mmのオリフィス板での破裂回数を求めた。9.0mmのオリフィス板で5回以上破裂した場合、消防法の第5類第1種に分類した。9.0mmのオリフィス板で4回以下、かつ1.0mmのオリフィス板で5回以上破裂した場合を、消防法の第5類2種に分類した。

Figure 0005673338
<Fire Service Law Judgment>
About the organic peroxide (B) synthesize | combined in each synthesis example, the pressure vessel test prescribed | regulated by the Fire Service Act was done, and the Fire Service Act judgment was performed. The number of bursts with an orifice plate having a pore diameter of 9.0 mm and 1.0 mm was determined. When it broke more than 5 times with a 9.0 mm orifice plate, it was classified as Class 5 Class 1 of the Fire Service Act. Cases of bursting 4 times or less with a 9.0 mm orifice plate and 5 times or more with a 1.0 mm orifice plate were classified as Category 5 of the Fire Service Act.
Figure 0005673338

(実施例1)
酢酸ビニル含有量が28重量%のEVA(A)100重量部に対し、合成例1の混合有機過酸化物(B)を1.0重量部混合した組成物を用いて、80℃で押出成型により加熱圧延することにより0.5mm厚のEVA封止材を成形した。このEVA封止材を用いて下記発泡試験及びゲル分率の測定を行った。その結果を下記表2に示す。
Example 1
Extrusion at 80 ° C. using a composition obtained by mixing 1.0 part by weight of the mixed organic peroxide (B) of Synthesis Example 1 with 100 parts by weight of EVA (A) having a vinyl acetate content of 28% by weight The EVA sealing material having a thickness of 0.5 mm was formed by heating and rolling. The following foaming test and measurement of the gel fraction were performed using this EVA sealing material. The results are shown in Table 2 below.

(実施例2〜7及び比較例1〜5)
下記表2の組成で配合された組成物を用いて、実施例1と同様にしてEVA封止材を作成した。それぞれのEVA封止材を用いた試験結果を表2に示す。なお、希釈剤としては、炭化水素溶剤であるShell sol TK(シェルケミカルズジャパン(株)製)を使用した。
(Examples 2-7 and Comparative Examples 1-5)
Using the composition blended with the composition shown in Table 2 below, an EVA sealing material was prepared in the same manner as in Example 1. Table 2 shows the test results using each EVA sealing material. In addition, Shell Sol TK (made by Shell Chemicals Japan Co., Ltd.) which is a hydrocarbon solvent was used as a diluent.

<発泡試験>
各実施例および比較例において作製されたEVA封止材を縦3cm、横6cmに切り出し、MSパウチフィルム(株式会社明光商会製)に挟み、加熱してラミネート加工したものを135℃で15分間加熱し、その際に発生するガスによるフィルムの膨れを目視で観察し、評価した。比較例3と同等レベルの膨らみであった場合を○、比較例3よりも膨らみが顕著に大きい場合を×として評価した。
<Foaming test>
The EVA sealing material produced in each Example and Comparative Example was cut into a length of 3 cm and a width of 6 cm, sandwiched between MS pouch films (manufactured by Meiko Shokai Co., Ltd.), heated and laminated, and heated at 135 ° C. for 15 minutes. Then, the swelling of the film due to the gas generated at that time was visually observed and evaluated. The case where the bulge was at the same level as in Comparative Example 3 was evaluated as ◯, and the case where the bulge was significantly larger than that in Comparative Example 3 was evaluated as x.

<ゲル分率の測定>
各実施例および比較例において作製されたEVA封止材を用いて、JSRトレーディング(株)製キュラストメーターにより、135℃で15分架橋を行った。架橋後のEVA封止材を秤量し(Xg)、これを110℃のキシレン中に12時間浸漬して、110℃のキシレン中で洗浄・乾燥させた200メッシュの金網で不溶解分をろ過し、金網上の残渣を真空乾燥して乾燥残渣の重量を測定し(Yg)、ゲル分率を算出した(ゲル分率(重量%)=(Y/X)×100)。

Figure 0005673338
<Measurement of gel fraction>
Using the EVA sealing material prepared in each Example and Comparative Example, crosslinking was performed at 135 ° C. for 15 minutes using a curast meter manufactured by JSR Trading Co., Ltd. The EVA sealing material after cross-linking is weighed (Xg), immersed in xylene at 110 ° C. for 12 hours, and the insoluble matter is filtered through a 200 mesh wire net washed and dried in xylene at 110 ° C. The residue on the wire net was vacuum dried, the weight of the dried residue was measured (Yg), and the gel fraction was calculated (gel fraction (% by weight) = (Y / X) × 100).
Figure 0005673338

実施例1〜7においては、発泡が少なく、ゲル分率が80%以上のEVA封止材が得られた。また、これらの実施例で用いた混合有機過酸化物(B)は、有機過酸化物(I)100重量部に対して有機過酸化物(II)を30重量部以上含んでいるため、自己反応性が低く、より安全な使用が可能であった。一方、比較例1及び2のEVA封止材は、希釈剤を含んでいるため多くの発泡が生じた。比較例3及び4のEVA封止材は、混合有機過酸化物(B)における有機過酸化物(II)の割合が低すぎるため、混合有機過酸化物(B)が消防法第5類第1種に該当してしまい、取り扱い時の危険性が高かった。比較例5のEVA封止材は、混合有機過酸化物(B)における有機過酸化物(II)の割合が高すぎるため、EVAを十分に架橋することが出来ず、必要な架橋密度(ゲル分率80%)に達しなかった。 In Examples 1 to 7, an EVA sealing material with less foaming and a gel fraction of 80% or more was obtained. In addition, the mixed organic peroxide (B) used in these examples contains 30 parts by weight or more of organic peroxide (II) with respect to 100 parts by weight of organic peroxide (I). The reactivity was low and safer use was possible. On the other hand, since the EVA sealing materials of Comparative Examples 1 and 2 contained a diluent, a lot of foaming occurred. In the EVA sealing materials of Comparative Examples 3 and 4, since the ratio of the organic peroxide (II) in the mixed organic peroxide (B) is too low, the mixed organic peroxide (B) is the fifth class of the Fire Service Act. It was classified as one, and the danger during handling was high. In the EVA sealing material of Comparative Example 5, the proportion of the organic peroxide (II) in the mixed organic peroxide (B) is too high, so that the EVA cannot be sufficiently crosslinked, and the necessary crosslinking density (gel The fraction did not reach 80%).

Claims (2)

酢酸ビニルより形成される構造単位を25〜35重量%有するエチレン-酢酸ビニル共重合体(A)と、下記式(I)に示す有機過酸化物(I)及び下記式(II)に示す有機過酸化物(II)からなる混合有機過酸化物(B)と、を含む太陽電池用封止材であって、
前記混合有機過酸化物(B)の含有量が、前記エチレン-酢酸ビニル共重合体(A)100重量部に対して、0.1〜3.0重量部であり、
前記混合有機過酸化物(B)中の、有機過酸化物(I)と有機過酸化物(II)との重量比(I:II)が、100:30〜150であることを特徴とする太陽電池用封止材。
Figure 0005673338

Figure 0005673338
An ethylene-vinyl acetate copolymer (A) having 25 to 35% by weight of a structural unit formed from vinyl acetate, an organic peroxide (I) represented by the following formula (I), and an organic represented by the following formula (II) A mixed organic peroxide (B) comprising a peroxide (II), and a solar cell encapsulant comprising:
The mixed organic peroxide (B) content is 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the ethylene-vinyl acetate copolymer (A),
The weight ratio (I: II) of the organic peroxide (I) to the organic peroxide (II) in the mixed organic peroxide (B) is 100: 30 to 150. Solar cell encapsulant.
Figure 0005673338

Figure 0005673338
太陽電池用封止材の製造方法であって、
(a)シクロヘキサノンに、1,1−ジメチルエチルハイドロパーオキサイドとメタノールとを混合し、下記式(I)に示す有機過酸化物(I)及び下記式(II)に示す有機過酸化物(II)からなる混合有機過酸化物(B)を合成する段階、及び
(b)酢酸ビニルより形成される構造単位を25〜35重量%有するエチレン-酢酸ビニル共重合体(A)100重量部に前記混合有機過酸化物(B)を0.1〜3.0重量部混合して得られた組成物を成形する段階
を有し、
Figure 0005673338

Figure 0005673338

1,1−ジメチルエチルハイドロパーオキサイドとメタノールのモル比が、1.0:3.5〜10.0であることを特徴とする製造方法。
A method for producing a solar cell encapsulant comprising:
(A) 1,1-dimethylethyl hydroperoxide and methanol are mixed with cyclohexanone, and an organic peroxide (I) represented by the following formula (I) and an organic peroxide (II) represented by the following formula (II): (B) synthesizing the mixed organic peroxide (B), and (b) 100 parts by weight of the ethylene-vinyl acetate copolymer (A) having 25 to 35% by weight of structural units formed from vinyl acetate. A step of molding a composition obtained by mixing 0.1 to 3.0 parts by weight of the mixed organic peroxide (B),
Figure 0005673338

Figure 0005673338

The manufacturing method, wherein the molar ratio of 1,1-dimethylethyl hydroperoxide to methanol is 1.0: 3.5 to 10.0.
JP2011105948A 2011-05-11 2011-05-11 Solar cell encapsulant and method for producing the same Active JP5673338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105948A JP5673338B2 (en) 2011-05-11 2011-05-11 Solar cell encapsulant and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105948A JP5673338B2 (en) 2011-05-11 2011-05-11 Solar cell encapsulant and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012238685A JP2012238685A (en) 2012-12-06
JP5673338B2 true JP5673338B2 (en) 2015-02-18

Family

ID=47461351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105948A Active JP5673338B2 (en) 2011-05-11 2011-05-11 Solar cell encapsulant and method for producing the same

Country Status (1)

Country Link
JP (1) JP5673338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699183B1 (en) * 2015-12-24 2017-01-23 한화토탈 주식회사 Method for manufacturing ethylene vinyl acetate copolymer and the resin by the same and solar cell encapsulant sheet made by the same resin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550644B2 (en) * 1988-03-10 1996-11-06 日本油脂株式会社 Cyclic monoperoxyketal
JP4034382B2 (en) * 1997-07-08 2008-01-16 三井・デュポンポリケミカル株式会社 Protection sheet for solar cell module
PL2105457T5 (en) * 2008-03-27 2019-05-31 Arkema France Process for the preparation of expandable polystyrene

Also Published As

Publication number Publication date
JP2012238685A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP4616388B2 (en) Solar cell sealing film and solar cell using the sealing film
JP4560001B2 (en) Solar cell sealing film and solar cell using the sealing film
CN102687283B (en) Sealing film for solar cell
CN102217083B (en) Solar cell sealing film and solar cell using same
JP6387053B2 (en) Method for producing ethylene vinyl acetate copolymer resin for solar cell encapsulant sheet and resin produced by the method
JP5914323B2 (en) Solar cell sealing film and solar cell using the same
CN101878537A (en) Sealing film for solar cell and solar cell using the same
EP2685508B1 (en) Sealing film for solar cells and solar cell using same
CN101341598A (en) Sealing films for solar cell and solar cell employing the sealing films
CN104081540B (en) Sealing films for solar cell and the solaode using it
JP2011173937A (en) Ethylene-vinyl acetate copolymer sheet, and solar cell and laminated glass using the same
JP2012004146A (en) Sealing film for solar cell and solar cell using the same
EP2770541B1 (en) Solar cell sealing film and solar cell using same
JP2013133447A (en) Phosphor composite material
CN103333398A (en) Resin composition for solar cell-sealing materials
CN112538334B (en) Organic silicon packaging material for photovoltaic module and preparation method thereof
JP5673338B2 (en) Solar cell encapsulant and method for producing the same
JP6608693B2 (en) Co-crosslinking agent system for sealing film containing bis- (alkenylamide) compound
CN109810639B (en) Photovoltaic packaging material POE (polyolefin elastomer) adhesive film resisting potential induced attenuation
KR20140017044A (en) Preparing process of an encapsulation sheet for a solarcell module by using master batch
JP5942565B2 (en) Solar cell encapsulant composition
JP2024518357A (en) Composition for sealing material film and sealing material film containing the same
JP2012241169A (en) Ethylene-polar monomer copolymer sheet, and intermediate film for glass laminate, glass laminate, solar cell sealing film and solar cell using the same
TW201109352A (en) EVM pellets
CN115491152A (en) Heat-conducting packaging adhesive film and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250