JP5671912B2 - Manufacturing method of semiconductor package - Google Patents

Manufacturing method of semiconductor package Download PDF

Info

Publication number
JP5671912B2
JP5671912B2 JP2010216735A JP2010216735A JP5671912B2 JP 5671912 B2 JP5671912 B2 JP 5671912B2 JP 2010216735 A JP2010216735 A JP 2010216735A JP 2010216735 A JP2010216735 A JP 2010216735A JP 5671912 B2 JP5671912 B2 JP 5671912B2
Authority
JP
Japan
Prior art keywords
semiconductor element
wiring board
multilayer wiring
manufacturing
semiconductor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010216735A
Other languages
Japanese (ja)
Other versions
JP2012074450A (en
Inventor
典子 狩野
典子 狩野
清智 中村
清智 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010216735A priority Critical patent/JP5671912B2/en
Publication of JP2012074450A publication Critical patent/JP2012074450A/en
Application granted granted Critical
Publication of JP5671912B2 publication Critical patent/JP5671912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

本発明は半導体素子を多層配線基板にフリップチップ実装することにおいて、特に半導体素子と多層配線基板のギャップを樹脂封止する半導体パッケージの製造方法に関するものである。 The present invention relates to a method of manufacturing a semiconductor package in which a semiconductor element is flip-chip mounted on a multilayer wiring board, and in particular, a gap between the semiconductor element and the multilayer wiring board is resin-sealed.

近年、高度情報化時代を迎え、情報通信技術が急速に発達し、それに伴って各種半導体素子の高密度化、高速化が図られている。この結果として、半導体素子が搭載された多層配線基板からなる半導体パッケージにおいても、有機絶縁層上に微細な配線パターンを有する多層配線基板が提案されている。これによって、多層配線基板のサイズはますます小型化され実装面積は低減されている。また半導体素子との接続端子であるバンプおよびバンプピッチは狭小化され、半導体素子の電極は増加傾向にある。   In recent years, with the advent of advanced information technology, information communication technology has been rapidly developed, and accordingly, various semiconductor elements have been increased in density and speed. As a result, a multilayer wiring board having a fine wiring pattern on an organic insulating layer is also proposed in a semiconductor package including a multilayer wiring board on which a semiconductor element is mounted. As a result, the size of the multilayer wiring board is further reduced, and the mounting area is reduced. In addition, bumps and bump pitches, which are connection terminals with the semiconductor element, are narrowed, and the electrodes of the semiconductor element tend to increase.

上記のように実装面積の低減や半導体素子の電極の増加に対応するには、フリップチップ実装が適していると言われている。   Flip chip mounting is said to be suitable for reducing the mounting area and increasing the number of electrodes of semiconductor elements as described above.

従来、フリップチップ実装においては、半導体素子と多層配線基板を接合した後、両者の約数十μmのギャップに対して、封止樹脂を充填することが一般に行われている。これは、熱衝撃による半導体素子と多層配線基板の熱膨張係数の差から生じる応力が、半導体素子上の突起電極に集中するのを防ぐため、封止樹脂全体に応力を分散させることを目的の一つとして行っている。樹脂の充填によって、これを実施していないフリップチップ実装体よりも接続信頼性が飛躍的に向上することが知られている。   Conventionally, in flip-chip mounting, after bonding a semiconductor element and a multilayer wiring board, a sealing resin is generally filled into a gap of about several tens of μm between the two. The purpose of this is to disperse the stress throughout the sealing resin in order to prevent the stress caused by the difference in thermal expansion coefficient between the semiconductor element and the multilayer wiring board due to thermal shock from concentrating on the protruding electrodes on the semiconductor element. As one. It is known that the connection reliability is remarkably improved by filling the resin as compared with a flip chip mounting body in which this is not performed.

従来方法については、図1を用いて説明する。まず、図1に示される様に、半導体素子1の電極2上に突起電極としてのはんだバンプ3を形成する。配線基板に対しては、その後に充填される液状熱硬化樹脂が均一に半導体素子と基板のあいだに形成されるギャップに均一に進入されるように、プラズマによる表面活性処理を行う。半導体素子1をフェイスダウン方式で、配線基板4に位置あわせして搭載する。その後、リフロー処理などの熱処理によって、はんだバンプを溶融させて、半導体素子と配線基板を電気的に接続できるようにする。   The conventional method will be described with reference to FIG. First, as shown in FIG. 1, solder bumps 3 as protruding electrodes are formed on the electrodes 2 of the semiconductor element 1. For the wiring board, surface activation treatment by plasma is performed so that the liquid thermosetting resin filled thereafter is uniformly entered into the gap formed between the semiconductor element and the substrate. The semiconductor element 1 is mounted in alignment with the wiring board 4 by a face-down method. Thereafter, the solder bumps are melted by a heat treatment such as a reflow process so that the semiconductor element and the wiring board can be electrically connected.

次に、フリップチップ実装体を洗浄し、ディスペンサステージ13上に配置し、その片側1辺にディスペンサ12によって液状熱硬化樹脂7を塗布する。液状熱硬化樹脂は、毛細管現象によって半導体素子と配線基板のギャップに充填される。樹脂封止が完了した状態でオーブンを用いて硬化させ半導体パッケージを形成する。   Next, the flip chip mounting body is cleaned, placed on the dispenser stage 13, and the liquid thermosetting resin 7 is applied to one side of the flip chip mounting body by the dispenser 12. The liquid thermosetting resin is filled in the gap between the semiconductor element and the wiring board by a capillary phenomenon. After the resin sealing is completed, the semiconductor package is formed by curing using an oven.

しかし、接続端子の微細化に伴い、前記半導体素子と前記多層配線基板のギャップが狭くなるにつれて、毛細管現象による樹脂封止の進入速度に部分的なムラが生じ、それをもとに液状熱硬化樹脂に巻き込みボイドが発生する問題が生じる。   However, with the miniaturization of the connection terminals, as the gap between the semiconductor element and the multilayer wiring board becomes narrow, partial unevenness occurs in the speed of resin sealing due to capillary phenomenon, and liquid thermosetting is based on that. There arises a problem that voids are generated in the resin.

毛細管への液体の浸透速度を表わす、ルーカス・ウォシュバーンの式から、浸透長は   From the Lucas Washburn equation, which represents the rate of liquid penetration into the capillary, the penetration length is

Figure 0005671912
で表される。
Figure 0005671912
It is represented by

式中、Lは浸透長 [m]、rは毛管半径 [m]、γは液体の表面張力 [N/m]、θは液体と毛細管との接触角、ηは液体の粘性係数 [Pa・s]、tは時間 [s]である。上式から、狭ギャップの構造になるにつれ、毛管半径rが小さくなり、全体的に浸透速度は低下するが、バンプ間の毛管半径rが大となる開放部分に近い外周部から充填され、塗布位置からみて半導体素子を2等分割する対面側で巻き込みボイドを生じるといった問題を引き起こす。例えば、半導体素子のある一辺の中央から注入した場合は、対辺の中央部付近にボイドが発生しやすい。半導体パッケージ内に残存したボイドは半導体パッケージに繰り返し加えられる熱処理などによって隣接するバンプに応力をかけ、結果として前記多層配線基板と前記半導体素子間の接続破壊や、剥離が生じる原因となっている。図2は、半導体素子の片側1辺にディスペンサ12によって液状熱硬化樹脂7の塗布を開始してから、液状熱硬化樹脂7が塗布開始位置から半導体素子外周部から回り込むように放射状に流れこんでボイドが発生する様子を表したものである。   Where L is the penetration length [m], r is the capillary radius [m], γ is the surface tension of the liquid [N / m], θ is the contact angle between the liquid and the capillary, η is the viscosity coefficient of the liquid [Pa · s] and t are times [s]. From the above equation, as the narrow gap structure is obtained, the capillary radius r becomes smaller and the penetration rate decreases as a whole. However, the capillary radius r between the bumps is filled from the outer peripheral portion close to the open portion where the capillary radius r becomes large. When viewed from the position, the semiconductor element is divided into two equal parts. For example, when the semiconductor element is injected from the center of one side, a void is likely to occur near the center of the opposite side. The voids remaining in the semiconductor package apply stress to adjacent bumps by heat treatment or the like repeatedly applied to the semiconductor package, and as a result, breakage of connection between the multilayer wiring board and the semiconductor element, or peeling. FIG. 2 shows that after the liquid thermosetting resin 7 is applied to one side of the semiconductor element by the dispenser 12, the liquid thermosetting resin 7 flows radially from the outer periphery of the semiconductor element from the application start position. It shows how voids are generated.

このようなことから、例えば、特許文献1にあるように、フリップチップ実装を行った上で、半導体素子の一つの側に封止材料を充填し、密閉した容器に入れ、容器内の圧力を減圧する方法で、空気の流れを利用して液状熱硬化樹脂の充填速度を上げるとともにボイドの防止をはかっている。   For this reason, for example, as disclosed in Patent Document 1, after performing flip chip mounting, one side of the semiconductor element is filled with a sealing material, placed in a sealed container, and the pressure in the container is set. In the method of reducing the pressure, the flow rate of the liquid thermosetting resin is increased by utilizing the flow of air and voids are prevented.

特開平8−241900号公報JP-A-8-241900

しかしながら、上記の方法では、従来の方法に加え、真空引きを行う工程を増やすことになり、製造プロセスが複雑化する。また、塗布から真空状態への移行時間と、大気圧に戻す時間の管理が必要となり、急激な減圧をすれば、封止材料が半導体素子の外周に飛び散り、外観をそこねることがある。   However, in the above method, the number of steps for evacuation is increased in addition to the conventional method, and the manufacturing process becomes complicated. In addition, it is necessary to manage the transition time from application to the vacuum state and the time for returning to the atmospheric pressure, and if the pressure is suddenly reduced, the sealing material may be scattered around the outer periphery of the semiconductor element, and the appearance may be lost.

本発明が前述のごとき、従来の問題点を解消し、接続信頼性に優れる半導体パッケージの製造方法を提供することを課題とする。   As described above, it is an object of the present invention to provide a method for manufacturing a semiconductor package that solves the conventional problems and has excellent connection reliability.

発明の一態様は、導体層と絶縁層を交互に少なくとも1層以上積み重ねてなる多層配線基板の表層絶縁層上に、フェイスダウン方式で半導体素子を、突起電極を介して接続し、前記半導体素子と前記多層配線基板とのギャップに液状熱硬化樹脂を塗布し突起電極を封止して製造する半導体パッケージの製造方法において、少なくとも該半導体素子が搭載される表層絶縁層上の領域に対しプラズマ放電を利用した表面活性処理を均一に施した後、前記表層絶縁層上の領域に対し前記表面活性処理を不均一に施すことを特徴とする該半導体パッケージの製造方法であることをその要旨とした。 According to one aspect of the present invention, a semiconductor element is connected in a face-down manner via a protruding electrode on a surface insulating layer of a multilayer wiring board in which at least one conductor layer and an insulating layer are alternately stacked. In a manufacturing method of a semiconductor package in which a liquid thermosetting resin is applied to a gap between an element and the multilayer wiring board and a protruding electrode is sealed, plasma is applied to at least a region on a surface insulating layer on which the semiconductor element is mounted The gist of the semiconductor package manufacturing method is that the surface activation treatment using discharge is uniformly applied, and then the surface activation treatment is applied nonuniformly to the region on the surface insulating layer. did.

発明の一態様は、前記プラズマ放電のパージガスに酸素を用いることを特徴とする、上述の半導体パッケージの製造方法であることをその要旨とした。 One aspect of the present invention is characterized by the use of oxygen purge gas of the plasma discharge, and its gist that the manufacturing method of the above-mentioned semi-conductor package.

発明の一態様は、プラズマ放電を利用した表面活性処理が、少なくとも該液状熱硬化樹脂の塗布開始位置から該半導体素子を2分割する投影線を含む帯状の領域の表面活性を高めることを特徴とする、上述の多層配線基板を用いた半導体パッケージの製造方法であることをその要旨とした。 One embodiment of the present invention is characterized in that the surface activation treatment using plasma discharge enhances the surface activity of a band-shaped region including a projection line dividing the semiconductor element into two at least from the application start position of the liquid thermosetting resin. that was the gist that the method of manufacturing a semiconductor package using a multi-layer wiring board described above.

発明の一態様は、前記帯状領域が、前記半導体素子の搭載領域から外にでていないことを特徴とする、上述の多層配線基板を用いた半導体パッケージの製造方法であることをその要旨とした。 One aspect of the present invention, the gist that the strip-like regions, wherein characterized in that the mounting region of the semiconductor device not to go outside, which is a method of manufacturing a semiconductor package using a multi-layer wiring board of the above It was.

発明の一態様は、前記帯状領域の幅が、前記半導体素子の塗布開始位置の辺の幅の、1/10から1/5の範囲であることを特徴とする、上述の多層配線基板を用いた半導体パッケージの製造方法であることをその要旨とした。 One aspect of the present invention, the width of the strip-like regions, the edges of the width of the application start position of the semiconductor elements, characterized in that from 1/10 in the range of 1/5, the above-mentioned multi-layer wiring board The gist of the invention is that it is a method of manufacturing a semiconductor package using

発明の一態様は、前記表面活性の指標として、純水を用いた接触角の差が、表面活性処理する領域の内外で7°より大きいことを特徴とする、上述の多層配線基板を用いた半導体パッケージの製造方法であることをその要旨とした。 One aspect of the present invention, as an indication of the surface activity, the difference of the contact angle with pure water, that you being greater than 7 ° in and out of the area to surface activation treatment, the above-mentioned multi-layer wiring board The gist of the invention is that it is a method of manufacturing a semiconductor package using

本発明によれば、多層配線基板において半導体素子搭載領域に対してプラズマ放電を用いた表面活性処理が意図したパターンになるように実施することによって、半導体素子搭載後の半導体パッケージ内へ液状熱硬化樹脂を充填する際、充填が遅延する領域での充填時間を短縮し、これにより樹脂充填時に巻き込みやすいボイドを防ぐことができ、接続信頼性を高める半導体パッケージの製造方法とすることが出来る。   According to the present invention, by performing surface activation treatment using plasma discharge on a semiconductor element mounting region in a multilayer wiring board so as to have an intended pattern, liquid thermosetting into a semiconductor package after mounting the semiconductor element is performed. When filling the resin, the filling time in the region where filling is delayed can be shortened, thereby preventing voids that are likely to be caught when filling the resin, and a method for manufacturing a semiconductor package that improves connection reliability can be obtained.

従来のフリップチップ実装を示した図Diagram showing conventional flip chip mounting 従来の半導体パッケージ内への液状硬化樹脂の浸透を表す図Diagram showing penetration of liquid curable resin into conventional semiconductor package 本発明の多層配線基板表面処理エリア。The multilayer wiring board surface treatment area of this invention. 本発明を実施するために作製したマスキングシートの図Figure of masking sheet prepared to carry out the present invention 本発明で用いるプラズマパターン処理の形状例Examples of shapes of plasma pattern processing used in the present invention 本発明でのフリップチップ実装フロー図Flip chip mounting flowchart in the present invention

次に、本発明の一実施の形態について、図6のフリップチップ実装工程の流れに沿って説明していく。さらに詳しい部分に関しては、図1、図2、図3、図4、図5に基づき、説明する。   Next, an embodiment of the present invention will be described along the flow of the flip chip mounting process of FIG. Further details will be described with reference to FIGS. 1, 2, 3, 4, and 5. FIG.

(A)乾燥工程
まず、本発明における多層配線基板においては、表層絶縁層として使用するソルダレジスト中に残留する溶媒を蒸発させ、表層絶縁層と基板の密着性を強化する目的で、乾燥工程が実施される。これは半導体パッケージの組立てにおいて、200℃を越える高温にさらされることがあるため、内部の水分が一気に気化して膨張し、パッケージ・クラックを発生させるのを防ぐためである。
(A) Drying process
First, in the multilayer wiring board according to the present invention, a drying process is performed for the purpose of evaporating the solvent remaining in the solder resist used as the surface insulating layer and enhancing the adhesion between the surface insulating layer and the substrate. This is because in assembly of a semiconductor package, the internal moisture may be exposed to a high temperature exceeding 200 ° C., so that the internal moisture is vaporized at a stretch to prevent expansion and generation of package cracks.

(B)プラズマパターン
本発明に用いる多層配線基板においては熱硬化樹脂を塗布開始する辺からみて半導体素子を2分割、好ましくは2等分割する投影線を含む帯状の領域以外をマスキングシートで覆い、開口部に対してプラズマパターン処理を行う。プラズマパターン処理領域の形状は、図5の(a)から(f)などの形状が、考えられるが、投影線が含まれている形状であれば、これに限定されるものではない。また、マスキングするために用いるシートはポリイミド系の材料が好ましいが、材質については、変形しにくく、熱耐性が強いものであれば、これに限定されるものではない。また、厚みについても、プラズマ処理をマスキングする目的で使用するため、任意でよい。感光性レジストを用いてパターンニングすることも有効である。
(B) Plasma pattern In the multilayer wiring board used in the present invention, the semiconductor element is divided into two, preferably two parts, preferably covered with a masking sheet, as viewed from the side where the thermosetting resin is applied. Plasma pattern processing is performed on the opening. As the shape of the plasma pattern processing region, shapes such as (a) to (f) in FIG. 5 are conceivable, but the shape is not limited to this as long as it includes a projection line. The sheet used for masking is preferably a polyimide-based material, but the material is not limited to this as long as it is difficult to deform and has high heat resistance. Moreover, since it uses for the purpose of masking plasma processing, thickness may be arbitrary. It is also effective to perform patterning using a photosensitive resist.

また、本発明における多層配線基板上のプラズマパターン処理は、半導体素子の塗布開始位置の辺の1/5から1/10の幅の帯状領域で実施されることが望ましい。これは、巻き込みボイドを防止する目的において、半導体素子搭載領域全体にプラズマパターン処理をかけてしまうことで、樹脂流路と浸透速度を意図的に変化させるという効果が薄れて
しまうためである。さらにプラズマパターン処理は熱硬化樹脂が流れる半導体素子の搭載領域から外に出ていないことが好ましい。これは、プラズマ表面活性による濡れ性の向上によって、充填した熱硬化樹脂が封止領域を超えて半導体素子から流れ出すなどの問題に対処するためである。
In addition, the plasma pattern processing on the multilayer wiring board in the present invention is preferably performed in a band-like region having a width of 1/5 to 1/10 of the side of the application start position of the semiconductor element. This is because, for the purpose of preventing entrainment voids, the effect of intentionally changing the resin flow path and the permeation speed is reduced by subjecting the entire semiconductor element mounting region to plasma pattern processing. Furthermore, it is preferable that the plasma pattern processing does not go out of the mounting area of the semiconductor element through which the thermosetting resin flows. This is to cope with problems such as filling the thermosetting resin flowing out of the semiconductor element beyond the sealing region due to the improvement of wettability due to plasma surface activity.

本発明におけるプラズマパターン処理の目的は、熱硬化樹脂を塗布する際に多層配線基板表面での濡れ性を向上させるため行うものであり、処理の内外で純水を用いた接触角の差が7°以上あることが好ましい。このようにして樹脂流路と浸透速度を意図的に変化させ、半導体素子下での熱硬化樹脂の充填時に巻き込みボイドを防止できる。このため、半導体素子を搭載する前の多層配線基板の任意の表層絶縁層に対して、プラズマ放電を用いて表面活性を高める処理を行い、さらに半導体素子搭載領域の帯状領域にプラズマ処理を実施し、帯状領域内外で純水を用いた接触角の差が7°以上となるようにしてもよい。   The purpose of the plasma pattern processing in the present invention is to improve the wettability on the surface of the multilayer wiring board when applying the thermosetting resin, and the difference in contact angle using pure water between the inside and outside of the processing is 7. It is preferable that the angle is at least. In this way, the resin flow path and the permeation rate can be changed intentionally, and entrainment voids can be prevented when filling the thermosetting resin under the semiconductor element. For this reason, any surface insulating layer of the multilayer wiring board before the semiconductor element is mounted is subjected to a process for enhancing the surface activity by using plasma discharge, and further, a plasma process is performed on the belt-shaped area of the semiconductor element mounting area. The contact angle difference using pure water inside and outside the belt-like region may be 7 ° or more.

(C)チップマウント
エリア配置された多層配線基板電極に対して同一のエリア配置された半導体素子電極2上の突起電極3をフェイスダウン方式で搭載装置を使用して位置決め搭載をする。尚、発明の実施の形態では、接続を目的とした電極がエリア配置されているものとしたが、半導体素子の辺の周辺に配置されているようなペリフェラル配置をとったものであっても同様の効果を得られる。
(C) The bump electrode 3 on the semiconductor element electrode 2 arranged in the same area is positioned and mounted using a mounting device in a face-down manner with respect to the multilayer wiring board electrode arranged in the chip mount area. In the embodiment of the invention, the electrodes intended for connection are arranged in the area, but the same applies to peripheral arrangements arranged around the sides of the semiconductor element. The effect of.

(D)リフロー
次に、フリップチップ実装体をリフローにかけ、接合を完了する。バンプ6の材質の例としては、Sn/Pb、Sn/Ag、Su/Cu、Su/Sb、Su/Zn、Su/Biなどが挙げられる。また、突起電極は、バンプ6と同じでもAuなどの材質でもよい。尚、任意でバンプ6が形成された半導体素子1と多層配線基板4を短時間で接続するのに、ローカルリフローで加熱とともに加圧を行ったり、振動を用いたりする方法を実施してもよい。ローカルリフローで接合する場合などは、リフローを必要としないため、本工程は任意で実施するものとする。
(D) Reflow Next, the flip chip mounting body is subjected to reflow to complete the bonding. Examples of the material of the bump 6 include Sn / Pb, Sn / Ag, Su / Cu, Su / Sb, Su / Zn, and Su / Bi. Further, the protruding electrode may be the same as the bump 6 or a material such as Au. In addition, in order to connect the semiconductor element 1 on which the bumps 6 are formed and the multilayer wiring board 4 in a short time, a method of applying pressure with heating or using vibration by local reflow may be implemented. . In the case of joining by local reflow, etc., since this process does not require reflow, this process is carried out arbitrarily.

(E)洗浄
次にフリップチップ実装体の洗浄を行うが、フラックス残留成分の除去を目的としているため、洗浄不要のフラックスを使用する場合などは、これを必要としないため、任意で行うこととする。
(E) Cleaning Next, the flip chip mounting body is cleaned. Since the purpose is to remove residual flux components, this is not necessary when using flux that does not require cleaning. To do.

(F)熱硬化樹脂の塗布
次にフリップチップ実装体を加熱したディスペンサステージ13におき、基板を昇温する。これは封止材料の流動性を高めるためであるのでステージの昇温温度については、使用される熱硬化樹脂の性能がもっとも発揮される条件を選択してよい。本発明では熱硬化樹脂をフリップチップ実装体の一辺より塗布し、充填の完了までステージ上に放置する。本発明で使用する液状熱硬化樹脂については、エポキシ樹脂系が主流であるが、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂などを用いてもよい。
(F) Application of thermosetting resin Next, the flip chip mounting body is placed on the heated dispenser stage 13 and the temperature of the substrate is raised. Since this is for improving the fluidity of the sealing material, the temperature at which the stage is heated may be selected so as to maximize the performance of the thermosetting resin used. In the present invention, a thermosetting resin is applied from one side of the flip chip mounting body and left on the stage until filling is completed. As the liquid thermosetting resin used in the present invention, an epoxy resin system is mainly used, but a phenol resin, a polyimide resin, a silicone resin, or the like may be used.

(G)樹脂の硬化
最後に、熱硬化樹脂の充填が完了したフリップチップ実装体を樹脂硬化可能な温度雰囲気に移して、樹脂を完全に硬化させ半導体パッケージを完成させる。使用する樹脂によって硬化時間と硬化温度については最適な条件を採用してさしつかえない。
(G) Curing of resin Finally, the flip chip mounting body in which the filling of the thermosetting resin is completed is moved to a temperature atmosphere in which the resin can be cured, and the resin is completely cured to complete the semiconductor package. Depending on the resin used, optimum conditions for the curing time and curing temperature may be employed.

尚、本実施の形態では、使用する半導体素子1に対しての表面処理、多層配線基板4の材質、表層絶縁層8の材質、半導体素子電極2、多層配線基板電極5の材質と配置、突起電極3の形成方法、突起電極3の材質、バンプ6のメタル構造、ならびに液状熱硬化樹脂
7の種類、マスキング使用したシート11の材質、開口部の形状、サイズなどは、ここに示すものに限定されるものではない。
In the present embodiment, the surface treatment for the semiconductor element 1 to be used, the material of the multilayer wiring board 4, the material of the surface insulating layer 8, the material and arrangement of the semiconductor element electrode 2 and the multilayer wiring board electrode 5, and the protrusions The formation method of the electrode 3, the material of the bump electrode 3, the metal structure of the bump 6, the type of the liquid thermosetting resin 7, the material of the sheet 11 used for masking, the shape of the opening, the size, etc. are limited to those shown here. Is not to be done.

上述した実施の形態の方法に従い、半導体パッケージを作成した。   A semiconductor package was created according to the method of the embodiment described above.

実験では、多層配線基板4の最外層上に表層絶縁層8としてソルダレジストでCuからなる多層配線基板電極5を露出する開口を形成し、金めっきを行った。図3は半導体素子を実装する前の多層配線基板を真上から見た図であり、搭載する半導体素子の寸法は、20mm*20mmとした。半導体素子1と接合させるための電極5の上にPbフリーのはんだからなるバンプ6を図3のエリア配置で形成した。バンプピッチは0.180mmとした。搭載時の半導体素子1と多層配線基板4のギャップは0.090mmとした。   In the experiment, an opening exposing the multilayer wiring board electrode 5 made of Cu with a solder resist was formed as a surface insulating layer 8 on the outermost layer of the multilayer wiring board 4, and gold plating was performed. FIG. 3 is a view of the multilayer wiring board before the semiconductor element is mounted as viewed from directly above. The dimension of the semiconductor element to be mounted is 20 mm * 20 mm. A bump 6 made of Pb-free solder was formed on the electrode 5 to be bonded to the semiconductor element 1 in the area arrangement of FIG. The bump pitch was 0.180 mm. The gap between the semiconductor element 1 and the multilayer wiring board 4 when mounted was 0.090 mm.

プラズマ表面活性処理を多層配線基板4上のエリア9全面と、図4のポリイミドからなる厚さ0.2mmのマスキングシート11で露出する帯状領域のエリア10に施した。使用したシートは、耐熱性ポリイミドフィルムのデュポン製カプトン(R)を用いた。活性処理の順としては、プラズマ表面活性処理はエリア9に対して、まず、200wで4分の処理を行い、次にマスクとしてシート11を多層配線基板上に位置合わせした。シートには開口部14を設けてあり、それ以外の部分をマスキングする目的として使用した。シート11の開口形状は、樹脂充填時の経時変化を表す図2より、巻き込みボイドが発生しやすい(図3)部分であるエリア10に帯状の開口部を持つ図5(a)を採用し、開口径は半導体素子の熱硬化樹脂を塗布開始する辺の1/2サイズで20mm*10mmとした。マスキング後にエリア10に対して、200wで3分のプラズマパターン処理を施した。このようにして本発明の基板グループ(A)計5個を作成した。また、比較のため、エリア9へのプラズマ表面活性処理を行なっただけの基板グループ(B)計5個を作成した。   Plasma surface activation treatment was performed on the entire area 9 on the multilayer wiring board 4 and the area 10 of the belt-shaped area exposed by the masking sheet 11 made of polyimide of FIG. As the used sheet, heat-resistant polyimide film DuPont Kapton (R) was used. As the order of the activation treatment, the plasma surface activation treatment was performed for 200 minutes at 200 w for 4 minutes, and then the sheet 11 was aligned on the multilayer wiring board as a mask. The sheet was provided with an opening 14 and used for the purpose of masking other portions. The opening shape of the sheet 11 adopts FIG. 5 (a) having a band-like opening in the area 10 which is a portion where the entrainment void is likely to be generated (FIG. 3) from FIG. The opening diameter was 20 mm * 10 mm, which is a half size of the side where the application of the thermosetting resin of the semiconductor element is started. After masking, the area 10 was subjected to plasma pattern processing at 200 w for 3 minutes. In this way, a total of five substrate groups (A) of the present invention were created. For comparison, a total of five substrate groups (B) were prepared in which the plasma surface activation treatment for area 9 was performed.

続いて、半導体素子の搭載を多層配線基板グループ(A)、(B)に対して同様の方法で行いフラックス洗浄工程までを行う。こうして半導体素子の突起電極3と多層配線基板電極5とはバンプ6を介して接続が行われたフリップチップ実装体を得ることができる。   Subsequently, the semiconductor element is mounted on the multilayer wiring board groups (A) and (B) by the same method until the flux cleaning process. In this way, a flip chip mounting body in which the protruding electrodes 3 and the multilayer wiring board electrodes 5 of the semiconductor element are connected via the bumps 6 can be obtained.


このようにして得られた実施例、比較例のフリップチップ実装体において、ギャップに液状硬化樹脂を充填し、硬化の工程を経て半導体パッケージを作製した。液状熱硬化樹脂7はPbフリー仕様コアレス基板で標準であるナミックス製XS8410−73Bを用いた。充填は図2のように、半導体素子の1辺に沿うように塗出口を5mmの距離で2往復させて行った。

In the flip chip mounting bodies of the examples and comparative examples thus obtained, a liquid curable resin was filled in the gap, and a semiconductor package was manufactured through a curing process. As the liquid thermosetting resin 7, XS8410-73B manufactured by Namics, which is a standard Pb-free coreless substrate, was used. As shown in FIG. 2, the filling was performed by reciprocating the coating outlet two times at a distance of 5 mm along one side of the semiconductor element.

その後、これらの完成した半導体パッケージに吸湿リフローをかけ、その後PCT、HASTにおける電極の導通状態を比較した。PCT試験の実験条件としては圧力2.5気圧、温度125度、湿度100%(飽和状態)にて336時間保存とした。また、HAST試験の条件は、2.3気圧130度湿度85%にて168時間保存とした。
配線の導通試験の結果を表1にした。
また、ボイド発生の有無を調べるためSATによる観察を行った結果を表2にした。
Thereafter, moisture absorption reflow was applied to these completed semiconductor packages, and then the conductive states of the electrodes in PCT and HAST were compared. The experimental conditions for the PCT test were a pressure of 2.5 atm, a temperature of 125 degrees, and a humidity of 100% (saturated state) for 336 hours. The conditions for the HAST test were stored at 168 hours at 2.3 atmospheres, 130 degrees and 85% humidity.
The results of the wiring continuity test are shown in Table 1.
In addition, Table 2 shows the results of observation by SAT for examining the presence or absence of voids.

Figure 0005671912
Figure 0005671912

Figure 0005671912
試験の結果、プラズマパターンニング処理品(A)は、断線やボイドが確認されなかった。未処理品(B)はHAST試験で全数断線を起こしてしまった。SATの結果、充填樹脂内に巻き込みボイドが発見された。
Figure 0005671912
As a result of the test, no disconnection or void was confirmed in the plasma patterned product (A). All untreated products (B) were broken in the HAST test. As a result of SAT, entrained voids were found in the filled resin.

上述の発明は、半導体パッケージを製造する際の半導体素子を多層配線基板へ搭載するフリップチップ実装前の多層配線基板への表面処理として利用可能である。   The above-described invention can be used as a surface treatment on a multilayer wiring board before flip-chip mounting, in which a semiconductor element for manufacturing a semiconductor package is mounted on the multilayer wiring board.

1 半導体素子
2 半導体素子電極
3 突起電極
4 多層配線基板
5 基板電極
6 バンプ
7 液状熱硬化樹脂
8 表層絶縁層
9 エリア9:プラズマ表面活性処理領域
10 エリア10:プラズマパターン処理領域
11 マスキングシート
12 ディスペンサ
13 ディスペンサステージ
14 マスキングシート開口部
15 巻き込みボイド
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Semiconductor element electrode 3 Protruding electrode 4 Multilayer wiring board 5 Substrate electrode 6 Bump 7 Liquid thermosetting resin 8 Surface insulating layer 9 Area 9: Plasma surface activation processing area 10 Area 10: Plasma pattern processing area 11 Masking sheet 12 Dispenser 13 Dispenser stage 14 Masking sheet opening 15 Entrainment void

Claims (4)

導体層と絶縁層を交互に少なくとも1層以上積み重ねてなる多層配線基板の表層絶縁層上に、フェイスダウン方式で半導体素子を、突起電極を介して接続し、前記半導体素子と前記多層配線基板とのギャップに液状熱硬化樹脂を塗布し突起電極を封止して製造する半導体パッケージの製造方法において、少なくとも該半導体素子が搭載される表層絶縁層上の領域に対しプラズマ放電を利用した表面活性処理を均一に施した後、前記表層絶縁層上の領域に対し前記表面活性処理を不均一に施すことを特徴とする該半導体パッケージの製造方法。 A semiconductor element is connected via a protruding electrode on a surface insulating layer of a multilayer wiring board in which at least one or more conductor layers and insulating layers are alternately stacked, and the semiconductor element and the multilayer wiring board are connected to each other. In a method for manufacturing a semiconductor package, in which a liquid thermosetting resin is applied to a gap of the substrate and a protruding electrode is sealed, at least a region on a surface insulating layer on which the semiconductor element is mounted is surface-activated using plasma discharge After the process is uniformly applied, the surface activation treatment is applied nonuniformly to the region on the surface insulating layer . プラズマ放電を利用した表面活性処理が、少なくとも該液状熱硬化樹脂の塗布開始位置から該半導体素子を2分割する投影線を含む帯状の領域の表面活性を高めることを特徴とする、請求項1に記載の多層配線基板を用いた半導体パッケージの製造方法。   The surface activation treatment using plasma discharge enhances the surface activity of a band-shaped region including a projection line dividing the semiconductor element into two at least from the application start position of the liquid thermosetting resin. A manufacturing method of a semiconductor package using the multilayer wiring board described. 前記帯状領域が、前記半導体素子の搭載領域から外にでていないことを特徴とする、請求項2に記載の多層配線基板を用いた半導体パッケージの製造方法。   3. The method of manufacturing a semiconductor package using a multilayer wiring board according to claim 2, wherein the band-shaped region does not protrude from the mounting region of the semiconductor element. 前記帯状領域の幅が、前記半導体素子の塗布開始位置の辺の幅の、1/10から1/5の範囲であることを特徴とする、前記請求項2または3に記載の多層配線基板を用いた半導体パッケージの製造方法。   4. The multilayer wiring board according to claim 2, wherein the width of the band-shaped region is in the range of 1/10 to 1/5 of the width of the side of the application start position of the semiconductor element. The manufacturing method of the used semiconductor package.
JP2010216735A 2010-09-28 2010-09-28 Manufacturing method of semiconductor package Active JP5671912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216735A JP5671912B2 (en) 2010-09-28 2010-09-28 Manufacturing method of semiconductor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216735A JP5671912B2 (en) 2010-09-28 2010-09-28 Manufacturing method of semiconductor package

Publications (2)

Publication Number Publication Date
JP2012074450A JP2012074450A (en) 2012-04-12
JP5671912B2 true JP5671912B2 (en) 2015-02-18

Family

ID=46170342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216735A Active JP5671912B2 (en) 2010-09-28 2010-09-28 Manufacturing method of semiconductor package

Country Status (1)

Country Link
JP (1) JP5671912B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873092A1 (en) * 2012-07-13 2015-05-20 Nordson Corporation Method for vacuum assisted underfilling of an electronic device
JP2023062213A (en) * 2020-03-23 2023-05-08 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and manufacturing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237256A (en) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd Method of mounting work and mounted body of work
JP3498693B2 (en) * 2000-09-08 2004-02-16 松下電器産業株式会社 Chip mounting method and chip mounting body
JP4731397B2 (en) * 2006-05-12 2011-07-20 パナソニック株式会社 Semiconductor integrated circuit device
JP4732252B2 (en) * 2006-06-21 2011-07-27 富士通株式会社 Semiconductor device comprising semiconductor element and circuit board
JP2009272404A (en) * 2008-05-02 2009-11-19 Alps Electric Co Ltd Mounting method for semiconductor chip, mounting structure of the semiconductor chip, and semiconductor chip

Also Published As

Publication number Publication date
JP2012074450A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
US7816780B2 (en) Semiconductor apparatus and manufacturing method of semiconductor apparatus
US7880276B2 (en) Wiring board and semiconductor device
US9698118B2 (en) Method and apparatus for connecting packages onto printed circuit boards
US8896111B2 (en) Semiconductor device and method for manufacturing the same
US7633169B2 (en) Chip package structure
US9949372B2 (en) Printed wiring board and method for manufacturing the same
TWI532133B (en) Lead-free structures in a semiconductor device
US8378482B2 (en) Wiring board
US20110233786A1 (en) Semiconductor device and method for manufacturing the same
US7365434B2 (en) Semiconductor device and manufacturing method for the same
US8345444B2 (en) Structure with electronic component mounted therein and method for manufacturing such structure
US20130277828A1 (en) Methods and Apparatus for bump-on-trace Chip Packaging
US7241640B1 (en) Solder ball assembly for a semiconductor device and method of fabricating same
JP5671912B2 (en) Manufacturing method of semiconductor package
JP2007103733A (en) Substrate and semiconductor device using the same
JP2007189005A (en) Mounting structure of semiconductor device
WO2016098296A1 (en) Semiconductor device and method for manufacturing same
US8952531B2 (en) Packaging method using solder coating ball and package having solder pattern including metal pattern
KR20110013902A (en) Package and manufacturing method thereof
JP4605176B2 (en) Semiconductor mounting substrate, semiconductor package manufacturing method, and semiconductor package
JP4103482B2 (en) Semiconductor mounting substrate, semiconductor package using the same, and manufacturing method thereof
JP4605177B2 (en) Semiconductor mounting substrate
JP3645391B2 (en) Manufacturing method of semiconductor integrated circuit device
KR100979237B1 (en) Substrate used ball grid array package and method of fabricating the same
KR20090026615A (en) Substrate used ball grid array package and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5671912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250