JP5671213B2 - Method of joining conductors to metallic glass layer - Google Patents

Method of joining conductors to metallic glass layer Download PDF

Info

Publication number
JP5671213B2
JP5671213B2 JP2009044049A JP2009044049A JP5671213B2 JP 5671213 B2 JP5671213 B2 JP 5671213B2 JP 2009044049 A JP2009044049 A JP 2009044049A JP 2009044049 A JP2009044049 A JP 2009044049A JP 5671213 B2 JP5671213 B2 JP 5671213B2
Authority
JP
Japan
Prior art keywords
glass layer
bonding
metallic glass
wire
conductive wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009044049A
Other languages
Japanese (ja)
Other versions
JP2010199387A (en
Inventor
佐名川 佳治
佳治 佐名川
久保 雅男
雅男 久保
酒井 孝昌
孝昌 酒井
竹本 正
正 竹本
西川 宏
宏 西川
幹夫 福原
幹夫 福原
井上 明久
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Tohoku University NUC
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Tohoku University NUC
Priority to JP2009044049A priority Critical patent/JP5671213B2/en
Publication of JP2010199387A publication Critical patent/JP2010199387A/en
Application granted granted Critical
Publication of JP5671213B2 publication Critical patent/JP5671213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/8509Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

本発明は、金属ガラス層への導線の接合方法に関するものである。   The present invention relates to a method for joining a conductive wire to a metallic glass layer.

近年、金属ガラス層(金属ガラス薄膜、金属ガラス基板など)を用いた金属ガラス応用デバイスとして、例えば、圧力センサ、MEMS(micro electro mechanical systems)スイッチ、静電アクチュエータ、水素検知素子、キャパシタなどが各所で研究開発され(例えば、特許文献1〜6)、また、金属ガラス基板同士の接合方法が各所で研究開発されている(例えば、特許文献7)。   In recent years, for example, pressure sensors, MEMS (micro electro mechanical systems) switches, electrostatic actuators, hydrogen detectors, capacitors, etc., have been used as metal glass applied devices using metal glass layers (metal glass thin films, metal glass substrates, etc.). (For example, Patent Documents 1 to 6), and a method for joining metal glass substrates is researched and developed in various places (for example, Patent Document 7).

特開2004−45048号公報Japanese Patent Laid-Open No. 2004-45048 特開2008−155333号公報JP 2008-155333 A 特開2009−10027号公報(段落〔0009〕−〔0025〕)JP 2009-10027 (paragraphs [0009]-[0025]) 特開2005−153110号公報(段落〔0009〕−〔0029〕)JP-A-2005-153110 (paragraphs [0009]-[0029]) 特開2008−8869号公報JP 2008-8869 A 特開2005−123235号公報(段落〔0016〕−〔0025〕)Japanese Patent Laying-Open No. 2005-123235 (paragraphs [0016]-[0025]) 特開2008−214704号公報JP 2008-214704 A

ところで、金属ガラス層は導電性を有しているので、配線用の導線を金属ガラス層に接合して電気的に接続することが考えられるが、金属ガラスに導線を接合する技術については開発されていなかった。ここにおいて、金属ガラスは強力な表面酸化皮膜を有しており、低温での接合が難しい難低温接合性の材料であり、金属ガラスに導線を半田付けする実験を行ったが、金属ガラスは、Zr,Ti,Alなどの、安定な酸化物を形成する元素が添加されており、良好な濡れ性を得ることが不可能であった。   By the way, since the metallic glass layer has conductivity, it is conceivable to electrically connect the conductive wire for wiring to the metallic glass layer. However, a technique for joining the conductive wire to the metallic glass has been developed. It wasn't. Here, the metallic glass has a strong surface oxide film, and is a material having a low-temperature joining property that is difficult to join at low temperature, and an experiment of soldering a conductive wire to the metallic glass was conducted. Elements that form stable oxides such as Zr, Ti, and Al were added, and it was impossible to obtain good wettability.

本発明は上記事由に鑑みて為されたものであり、その目的は、金属ガラス層に導線を安定して接合することができる金属ガラスへの導線の接合方法を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the joining method of the conducting wire to the metal glass which can join a conducting wire to the metallic glass layer stably.

請求項1の発明は、金属ガラス層に導線を接合する金属ガラス層への導線の接合方法であって、金属ガラス層における接合表面に対して導線を押し付け導線に超音波エネルギを与えることにより金属ガラス層と導線とを接合するようにし、導線としてボンディングワイヤを用い、金属ガラス層と導線との接合を超音波ワイヤボンディングにより行うようにし、金属ガラス層がZrまたはTiを成分として含む金属ガラス層であり、ボンディングワイヤとしてAl系ボンディングワイヤを用いることを特徴とする。 The invention of claim 1 is a method of joining a conductive wire to a metallic glass layer for joining a conductive wire to a metallic glass layer, wherein the metallic wire is pressed against the joining surface of the metallic glass layer to give ultrasonic energy to the conductive wire. to so that to bond the glass layer and the conductor, using a bonding wire as a conductor, a metallic glass comprising bonding the metallic glass layer and the conductor to perform the ultrasonic wire bonding, the metal glass layer is a Zr or Ti as a component a layer, and wherein the Mochiiruko the Al-based bonding wire as bonding wire.

この発明によれば、導線に超音波エネルギを与えることによって金属ガラス層における接合表面の酸化物が超音波振動により除去され(導線の材料によっては導線における接合表面の酸化物も超音波振動により除去され)、直接結合や、金属ガラス層の接合表面への導線のアンカー効果(機械的嵌合力の増大により密着度を向上させる働き)が促進されるから、金属ガラス層に導線を安定して接合することができる。   According to the present invention, by applying ultrasonic energy to the conductive wire, the oxide on the bonding surface in the metallic glass layer is removed by ultrasonic vibration (depending on the material of the conductive wire, the oxide on the bonding surface of the conductive wire is also removed by ultrasonic vibration. In addition, direct bonding and the anchor effect of the conductive wire to the bonding surface of the metal glass layer (the function of improving the adhesion by increasing the mechanical fitting force) are promoted, so the conductive wire is stably bonded to the metal glass layer. can do.

また、この発明によれば、金属ガラス層において導線との所望の接合強度を確保するために必要な接合面積を小さくすることができる。 Further, according to this invention, it is possible to reduce the bonding area required to ensure the desired bonding strength between the conductor in the metallic glass layer.

また、この発明によれば、常温下での超音波振動により金属ガラス層の接合表面の酸化物が容易に除去され、金属ガラス層と導線とが、より強固に接合される。さらに、Al系ボンディングワイヤおよび金属ガラス層の親和力の高い成分間の直接結合、金属間化合物生成による金属接合や、Al系ボンディングワイヤと金属ガラス層の接合表面における金属ガラスの酸化物との反応により生成される複合酸化物による接合も行われる。 Further, according to this invention, the oxide bonding surface of the metallic glass layer is easily removed by ultrasonic vibration at room temperature, and a metallic glass layer and the conductor are joined more firmly. Furthermore, by direct bonding between the high affinity components of the Al-based bonding wire and the metallic glass layer, metal bonding by the formation of intermetallic compounds, and the reaction between the bonding bonding surface of the Al-based bonding wire and the metallic glass layer with the oxide of the metallic glass. Joining by the produced complex oxide is also performed.

また、この発明によれば、酸化されやすく安定な酸化皮膜を有する金属ガラス層に対して常温で導線を接合することができるので、金属ガラス層を結晶化させることなく接合できる。   Moreover, according to this invention, since a conducting wire can be joined at normal temperature to a metal glass layer having a stable oxide film that is easily oxidized, the metal glass layer can be joined without crystallization.

請求項2の発明は、金属ガラス層に導線を接合する金属ガラス層への導線の接合方法であって、金属ガラス層における接合表面に対して導線を半田により接合するようにし、導線における接合部位を囲んでいる半田に超音波エネルギを与えることにより金属ガラス層と導線とを半田により接合することを特徴とする。 The invention of claim 2 is a method for joining a conductive wire to a metallic glass layer for joining a conductive wire to a metallic glass layer, wherein the conductive wire is joined to a joining surface in the metallic glass layer by soldering, and a joining portion in the conducting wire The metallic glass layer and the conducting wire are joined by solder by applying ultrasonic energy to the solder surrounding the wire.

この発明によれば、半田に超音波エネルギを与えることによって金属ガラス層における接合表面の酸化物が超音波振動により除去され、かつ、金属ガラス層の接合表面への半田のアンカー効果が促進されるから、金属ガラス層に導線を安定して接合することができる。   According to this invention, by applying ultrasonic energy to the solder, the oxide on the bonding surface in the metal glass layer is removed by ultrasonic vibration, and the anchor effect of the solder on the bonding surface of the metal glass layer is promoted. Thus, the conductive wire can be stably bonded to the metal glass layer.

請求項3の発明は、請求項1または請項2の発明において、金属ガラス層と導線とを接合する前に、金属ガラス層における接合表面の酸化物を除去することを特徴とする。 The invention of claim 3 is the invention of claim 1 or billed to claim 2, before bonding the metallic glass layer and the conductor, and removing the oxide bonding surface of the metallic glass layer.

この発明によれば、金属ガラス層と導線との接合前に、金属ガラス層における接合表面の酸化物が除去されるので、金属ガラス層と導線との良好な接合を得ることができるとともに、超音波エネルギを与える時間の短縮を図れる。   According to this invention, since the oxide on the bonding surface in the metal glass layer is removed before the bonding between the metal glass layer and the conductive wire, a good bonding between the metal glass layer and the conductive wire can be obtained, and The time for applying the sonic energy can be shortened.

請求項4の発明は、請求項1または請項2の発明において、金属ガラス層と導線とを接合する前に、金属ガラス層における接合表面にアンカー効果促進用の凹凸形状を形成することを特徴とする。 The invention of claim 4 is the invention of claim 1 or billed to claim 2, before bonding the metallic glass layer and the conductor, forming a concavo-convex shape of the anchor effect promotes the bonding surface of the metallic glass layer Features.

この発明によれば、金属ガラス層と導線との接合前に、金属ガラス層における接合表面にアンカー効果促進用の凹凸形状が形成されるので、接合時のアンカー効果が促進され、金属ガラス層と導線との良好な接合を得ることができるとともに、超音波エネルギを与える時間の短縮や超音波のパワーの低減を図れる。   According to this invention, since the concave and convex shape for promoting the anchor effect is formed on the joining surface of the metallic glass layer before joining the metallic glass layer and the conductive wire, the anchor effect at the time of joining is promoted, and the metallic glass layer and It is possible to obtain a good bond with the conducting wire, shorten the time for applying ultrasonic energy, and reduce the ultrasonic power.

請求項5の発明は、請求項1ないし請求項4の発明において、金属ガラス層と導線との接合を還元雰囲気で行うことを特徴とする。 According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, the metallic glass layer and the conductive wire are joined in a reducing atmosphere.

この発明によれば、接合時の表面酸化物の形成が抑制され、金属ガラス層と導線との良好な接合を得ることができる。   According to this invention, formation of the surface oxide at the time of joining is suppressed, and favorable joining of the metallic glass layer and the conducting wire can be obtained.

請求項6の発明は、金属ガラス層に導線を接合する金属ガラス層への導線の接合方法であって、金属ガラス層における接合表面に対してアルミニウム膜を形成してから、当該アルミニウム膜の表面にアルミニウム系ボンディングワイヤもしくは金ボンディングワイヤもしくは銅ボンディングワイヤからなる導線を押し付け導線に超音波エネルギを与えることにより金属ガラス層と導線とを接合することを特徴とする。 The invention of claim 6 is a method of joining a conductive wire to a metallic glass layer for joining a conductive wire to a metallic glass layer, wherein an aluminum film is formed on a joining surface in the metallic glass layer, and then the surface of the aluminum film The metallic glass layer and the conductive wire are bonded by pressing a conductive wire made of an aluminum-based bonding wire, a gold bonding wire or a copper bonding wire to give ultrasonic energy to the conductive wire.

この発明によれば、金属ガラス層との親和性が高い材料(金属間化合物を形成しやすい材料、もしくは、金属ガラスの酸化物と反応しやすい材料)により形成され、且つ、導線と接合可能なアルミニウム膜を金属ガラス層の接合表面に形成してから、当該アルミニウム膜の表面にアルミニウム系ボンディングワイヤもしくは金ボンディングワイヤもしくは銅ボンディングワイヤからなる導線を押し付け導線に超音波エネルギを与えることにより金属ガラス層と導線とを接合するので、金属ガラス層に導線を安定して接合することができる。   According to the present invention, it is formed of a material having a high affinity with the metal glass layer (a material that easily forms an intermetallic compound or a material that easily reacts with an oxide of the metal glass) and can be joined to a conductive wire. After the aluminum film is formed on the bonding surface of the metal glass layer, a metal glass layer is formed by pressing a lead made of an aluminum-based bonding wire, a gold bonding wire or a copper bonding wire against the surface of the aluminum film and applying ultrasonic energy to the lead. Since the lead wire and the lead wire are joined, the lead wire can be stably joined to the metal glass layer.

請求項1,2,6の発明では、金属ガラス層に導線を安定して接合することができるという効果がある。 In invention of Claim 1, 2, 6, there exists an effect that a conducting wire can be stably joined to a metallic glass layer.

実施形態の金属ガラス層への導線の接合方法の説明図である。It is explanatory drawing of the joining method of the conducting wire to the metallic glass layer of embodiment. 同上における金属ガラス応用デバイスの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the metallic glass application device in the same as the above. 同上の金属ガラス層への導線の接合方法の他の例の説明図である。It is explanatory drawing of the other example of the joining method of the conducting wire to the metallic glass layer same as the above. 同上の金属ガラス層への導線の接合方法の別の例の説明図である。It is explanatory drawing of another example of the joining method of the conducting wire to the metallic glass layer same as the above.

本実施形態では、金属ガラス層を備えた金属ガラス応用デバイスの一例として、図2に示す構成の静電容量型トランスデューサについて説明してから、金属ガラス層への接合方法について説明する。   In this embodiment, as an example of a metallic glass application device having a metallic glass layer, a capacitive transducer having the configuration shown in FIG. 2 will be described, and then a bonding method to the metallic glass layer will be described.

図2に示す構成の静電容量型トランスデューサは、静電容量型のマイクロホンであって、金属ガラス基板1を用いて形成され当該金属ガラス基板1の一表面側(図2における上面側)に可動電極14を兼ねるダイヤフラム部11が形成されたトランスデューサ用基板Aと、トランスデューサ用基板Aに矩形枠状の絶縁層からなるスペーサ30を介して対向配置されたシリコン窒化膜からなる固定板部20と、固定板部20における可動電極14側に形成された固定電極24とを備え、固定板部20と固定電極24との積層体からなる固定電極部には当該固定電極部と可動電極14との間の空間と当該固定電極部における当該空間側とは反対側の外部空間とを連通させる複数のアコースティックホール(図示せず)が貫設されている。なお、本実施形態では、金属ガラス基板1が金属ガラス層を構成している。   The capacitive transducer having the configuration shown in FIG. 2 is a capacitive microphone that is formed using the metallic glass substrate 1 and is movable to one surface side (upper surface side in FIG. 2) of the metallic glass substrate 1. A transducer substrate A on which a diaphragm portion 11 also serving as an electrode 14 is formed; a fixed plate portion 20 made of a silicon nitride film disposed opposite to the transducer substrate A via a spacer 30 made of a rectangular frame-like insulating layer; A fixed electrode 24 formed on the movable plate 14 side of the fixed plate portion 20, and a fixed electrode portion formed of a laminate of the fixed plate portion 20 and the fixed electrode 24 is provided between the fixed electrode portion and the movable electrode 14. A plurality of acoustic holes (not shown) are provided through which the space and the external space on the opposite side of the fixed electrode portion communicate with each other. In the present embodiment, the metal glass substrate 1 constitutes a metal glass layer.

上述のトランスデューサ用基板Aは、ダイヤフラム部11の平面形状が矩形状(本実施形態では、正方形状)であり、全周が矩形枠状のフレーム部13に連続一体に連結されている。なお、トランスデューサ用基板Aのダイヤフラム部11は、金属ガラス基板1の他表面に凹所5を設けることにより形成されている。   In the above-described transducer substrate A, the planar shape of the diaphragm portion 11 is a rectangular shape (in this embodiment, a square shape), and the entire periphery is continuously and integrally connected to the frame portion 13 having a rectangular frame shape. The diaphragm portion 11 of the transducer substrate A is formed by providing a recess 5 on the other surface of the metal glass substrate 1.

上述の静電容量型トランスデューサでは、可動電極14と固定板部20に設けられた固定電極24とでコンデンサが形成されるから、ダイヤフラム部11が音波の圧力を受けることにより可動電極14と固定電極24との間の距離が変化し、コンデンサの静電容量が変化する。したがって、可動電極14を兼ねるダイヤフラム部11に連続一体のフレーム部13の一部をパッド部として、当該パッド部と固定電極24に配線25を介して電気的に接続されたパッド26との間に直流バイアス電圧を印加しておけば、上記パッド部とパッド26との間には音波の圧力に応じて微小な電圧変化が生じるから、音波を電気信号に変換することができる。また、上述の静電容量型トランスデューサは、上記固定電極部に上記アコースティックホールが形成されているので、例えばダイヤフラム部11が音波の圧力を受けて振動する際に上記空間の媒質である空気により過度に制動を受けないようにすることができ、広い周波数帯域にわたる平坦な周波数特性と広いダイナミックレンジとを得ることが可能となる。   In the above-described capacitance type transducer, since the capacitor is formed by the movable electrode 14 and the fixed electrode 24 provided on the fixed plate portion 20, the movable electrode 14 and the fixed electrode are received by the diaphragm portion 11 receiving the sound pressure. The distance to 24 changes, and the capacitance of the capacitor changes. Therefore, a part of the frame portion 13 continuously integrated with the diaphragm portion 11 also serving as the movable electrode 14 is used as a pad portion, and between the pad portion and the pad 26 electrically connected to the fixed electrode 24 via the wiring 25. If a DC bias voltage is applied, a minute voltage change occurs between the pad portion and the pad 26 according to the pressure of the sound wave, so that the sound wave can be converted into an electric signal. Further, since the acoustic transducer is formed in the fixed electrode portion in the above-described capacitance type transducer, for example, when the diaphragm portion 11 is vibrated by the pressure of a sound wave, it is excessively caused by air as a medium of the space. Therefore, it is possible to obtain a flat frequency characteristic and a wide dynamic range over a wide frequency band.

また、上述の静電容量型のマイクロホンでは、ダイヤフラム部11が金属ガラス基板1の一部により構成されている。
こにおいて、金属ガラス層たる金属ガラス基板1の材料である金属ガラスとしては、Cuを主成分とする金属ガラス(Cu60Zr30Ti10またはCu45Zr35Al15Ag5)やNiを主成分とする金属ガラス(Ni60Nb20Ti10Zr10)を採用しているが、これに限らず、金属ガラス層の所望の特性に応じて、例えば、Zr、Ti、Fe、Ni、Pdなどのいずれかを主成分とする金属ガラスを採用してもよい。
Further, in the electrostatic capacitance type microphone described above, that has a diaphragm portion 11 is constituted by a portion of the metallic glass substrate 1.
In here, as a metallic glass which is the material of the metallic glass layer serving as a metal glass substrate 1, the metallic glass mainly composed of Cu (Cu 60 Zr 30 Ti 10 or Cu 45 Zr 35 Al 15 Ag 5 ) a and Ni mainly Although metal glass (Ni 60 Nb 20 Ti 10 Zr 10 ) as a component is adopted, the present invention is not limited to this, and depending on the desired characteristics of the metal glass layer, for example, Zr, Ti, Fe, Ni, Pd, etc. You may employ | adopt the metal glass which has either of these as a main component.

ところで、上述の静電容量型トランスデューサは、例えば、図1に示すように、ガラスエポキシ樹脂などからなる絶縁性基材41の一表面側に静電容量型トランスデューサに電気的に接続される導体パターン42,43が形成された実装基板40に実装して用いる。   By the way, the above-mentioned capacitance type transducer is a conductor pattern electrically connected to the capacitance type transducer on one surface side of an insulating substrate 41 made of glass epoxy resin or the like, for example, as shown in FIG. It is mounted on the mounting substrate 40 on which 42 and 43 are formed.

ここにおいて、実装基板40は、静電容量型トランスデューサの金属ガラス基板1の凹所5に対応する部位に音波導入用の開口部45が形成されており、静電容量型トランスデューサは、金属ガラス基板1の上記他表面がダイボンド材(例えば、エポキシ樹脂、シリコーン樹脂など)からなる接合部70を介して絶縁性基材41と接合され、フレーム部13の上記一部からなる上記パッド部がボンディングワイヤからなる導線(第1の導線)2を介して実装基板40の一方の導体パターン42と電気的に接続され、パッド26が図示しないボンディングワイヤからなる第2の導線を介して実装基板40の他方の導体パターン43と電気的に接続される。   Here, the mounting substrate 40 has a sound wave introducing opening 45 formed in a portion corresponding to the recess 5 of the metallic glass substrate 1 of the capacitive transducer, and the capacitive transducer is a metallic glass substrate. 1 is bonded to the insulating substrate 41 via a bonding portion 70 made of a die bond material (for example, epoxy resin, silicone resin, etc.), and the pad portion made of the part of the frame portion 13 is bonded to a bonding wire. The other side of the mounting substrate 40 is connected to one conductor pattern 42 of the mounting substrate 40 through a conductive wire (first conductive wire) 2, and the pad 26 is connected to a second conductive wire made of a bonding wire (not shown). The conductor pattern 43 is electrically connected.

以下、金属ガラス層たる金属ガラス基板1に導線2を接合する金属ガラス基板1への導線2の接合方法について図1を参照しながら説明する。   Hereinafter, the joining method of the conducting wire 2 to the metallic glass substrate 1 for joining the conducting wire 2 to the metallic glass substrate 1 as the metallic glass layer will be described with reference to FIG.

本実施形態では、図1に示すように、金属ガラス基板1における接合表面(上記パッド部の表面)に対して導線2を押し付け導線2に超音波ツール3から超音波エネルギを与えることにより金属ガラス基板1と導線2とを接合するようにしている。   In the present embodiment, as shown in FIG. 1, the metallic glass substrate 1 is pressed against the bonding surface (the surface of the pad portion), and the ultrasonic energy is applied to the conductive wire 2 from the ultrasonic tool 3 to apply the metallic glass. The substrate 1 and the conductive wire 2 are joined.

ここにおいて、本実施形態では、導線2としてボンディングワイヤを用い、金属ガラス基板1と導線2との接合を超音波ワイヤボンディングにより行うようにしているので、金属ガラス基板1において導線2との所望の接合強度を得るために必要な接合面積(上記パッド部とみなす部分の表面積)を小さくすることができる。また、導線2たるボンディングワイヤとしては、Al系ボンディングワイヤを用いており、常温下での超音波振動により金属ガラス基板1の接合表面1aの酸化物(酸化皮膜)が容易に除去され、金属ガラス基板1と導線2とが、より強固に接合される。また、本実施形態では、Al系ボンディングワイヤからなる導線2および金属ガラス基板1の親和力の高い成分同士の直接結合、金属間化合物生成による金属接合や、Al系ボンディングワイヤからなる導線2と金属ガラス基板1の接合表面における金属ガラスの酸化物との反応により生成される複合酸化物による接合も行われる。また、酸化されやすく安定な酸化皮膜を有する金属ガラス基板1に対して常温で導線2を接合することができるので、金属ガラス基板1を結晶化させることなく接合できる。ここで、Al系ボンディングワイヤとしては、例えば、1%Si−Al線や、1%Mg−Al線などで、線径が100μm〜300μmのものを用いればよい。このようにAl系ボンディングワイヤを用いる場合には、上述の超音波ツール3として、周知のウェッジツールを用いればよく、超音波ツール3に超音波を水平方向に印加して超音波振動を付加することにより、導線2に超音波エネルギを与えればよい。この場合の接合条件は、例えば、超音波のパワーを2〜4W、超音波の周波数を20〜100kHz、荷重を1.96〜3.92N、超音波の印加時間を100〜500ms、それぞれの範囲で適宜設定し、接合温度を常温とすればよい。ここで、接合強度は、ワイヤプル試験により評価し、2.5〜5.0N程度で導線2は破断するが、導線2と金属ガラス基板1との接合界面での破断は起こらず、強固な接合が得られていることが確認された。なお、Al系ボンディングワイヤは、Alの純度が高くなるほど硬度が小さくなるので、Alの純度が高いAlボンディングワイヤを用いる場合には、アンカー効果が期待され、また、1%Si−Alボンディングワイヤや、1%Mg−Alボンディングワイヤなどの硬度が大きなAl系ボンディングワイヤを用いる場合には、複合酸化物あるいは金属ガラス基板1の接合表面1aの酸化皮膜の除去効果が期待される。 Here, in this embodiment, since a bonding wire is used as the conducting wire 2 and the metallic glass substrate 1 and the conducting wire 2 are joined by ultrasonic wire bonding, the metallic glass substrate 1 can be connected to the conducting wire 2 in a desired manner. It is possible to reduce the bonding area (surface area of the portion regarded as the pad portion ) necessary for obtaining the bonding strength. In addition, an Al-based bonding wire is used as the bonding wire as the conducting wire 2, and the oxide (oxide film) on the bonding surface 1a of the metallic glass substrate 1 can be easily removed by ultrasonic vibration at room temperature, and the metallic glass. The board | substrate 1 and the conducting wire 2 are joined more firmly. In the present embodiment, the conductive wire 2 made of an Al-based bonding wire and the metallic glass substrate 1 are directly bonded to each other with high affinity components, metal bonding by generation of an intermetallic compound, or the conductive wire 2 made of an Al-based bonding wire and the metallic glass. Bonding with a complex oxide generated by reaction with an oxide of metal glass on the bonding surface of the substrate 1 is also performed. Moreover, since the conducting wire 2 can be joined to the metallic glass substrate 1 having a stable oxide film that is easily oxidized at room temperature, the metallic glass substrate 1 can be joined without being crystallized. Here, as the Al-based bonding wire, for example, a 1% Si—Al wire, a 1% Mg—Al wire, or the like having a wire diameter of 100 μm to 300 μm may be used. When an Al-based bonding wire is used in this way, a known wedge tool may be used as the ultrasonic tool 3 described above, and an ultrasonic vibration is applied to the ultrasonic tool 3 in the horizontal direction. Thus, ultrasonic energy may be given to the conductive wire 2. The bonding conditions in this case include, for example, an ultrasonic power of 2 to 4 W, an ultrasonic frequency of 20 to 100 kHz, a load of 1.96 to 3.92 N, and an ultrasonic application time of 100 to 500 ms. And the bonding temperature may be set to room temperature. Here, the bonding strength is evaluated by a wire pull test, and the conducting wire 2 breaks at about 2.5 to 5.0 N, but the joining interface between the conducting wire 2 and the metal glass substrate 1 does not break, and the bonding strength is strong. It was confirmed that In addition, since the Al-based bonding wire has a lower hardness as the purity of Al increases, an anchor effect is expected when using an Al bonding wire with a higher Al purity, and a 1% Si-Al bonding wire or When an Al-based bonding wire having a high hardness such as a 1% Mg—Al bonding wire is used, an effect of removing the oxide film on the bonding surface 1a of the composite oxide or metal glass substrate 1 is expected.

以上説明した本実施形態の金属ガラス基板1への導線2の接合方法では、導線2に超音波エネルギを与えることによって金属ガラス基板1における接合表面1aの酸化物が超音波振動により除去(破壊)され(導線2の材料によっては導線2における接合表面の酸化物が超音波振動により除去され)、直接結合や、金属ガラス基板1の接合表面1aへの導線2のアンカー効果が促進されるから、金属ガラス基板1に導線2を安定して接合することができる(強固に接合することができる)。また、導線2としてAl系ボンディングワイヤを用いることにより、難低温接合性の金属ガラス基板1のガラス転移温度未満で当該金属ガラス基板1の特性を損なうことなく、100〜500ms程度の極短時間の接合時間(ここでは、超音波の印加時間と同じ)で強度の高い接合を実現できる。   In the bonding method of the conducting wire 2 to the metallic glass substrate 1 of the present embodiment described above, the oxide on the joining surface 1a in the metallic glass substrate 1 is removed (destructed) by ultrasonic vibration by applying ultrasonic energy to the conducting wire 2. (Depending on the material of the conductive wire 2, the oxide on the bonding surface of the conductive wire 2 is removed by ultrasonic vibration), and the direct bonding and the anchor effect of the conductive wire 2 to the bonding surface 1a of the metal glass substrate 1 are promoted. The conductive wire 2 can be stably bonded to the metal glass substrate 1 (can be firmly bonded). In addition, by using an Al-based bonding wire as the conducting wire 2, it is possible to achieve an extremely short time of about 100 to 500 ms without impairing the characteristics of the metallic glass substrate 1 below the glass transition temperature of the low-temperature bonding metallic glass substrate 1. High-strength bonding can be realized with the bonding time (here, the same as the ultrasonic wave application time).

ところで、金属ガラス層たる金属ガラス基板1への導線2の接合方法としては、図3に示すように、金属ガラス基板1における接合表面1aに対して導線2を半田80により接合するようにし、導線2における金属ガラス基板1との接合部位(導線2における実装基板40側の端部とは反対側の端部であって金属ガラス基板1の厚み方向で金属ガラス基板1の接合表面1aに重なっている部位)を囲んでいる半田80に超音波ツール3から超音波エネルギを与えることにより金属ガラス基板1と導線2とを半田80により接合する方法もある。ここにおいて、接合条件としては、半田80として例えばSn−Zn−Sb系半田を用い、超音波の周波数を20〜100kHz、接合温度を200〜300℃の範囲でそれぞれ適宜設定すればよい。   By the way, as a method for joining the conducting wire 2 to the metallic glass substrate 1 as the metallic glass layer, as shown in FIG. 3, the conducting wire 2 is joined to the joining surface 1a of the metallic glass substrate 1 by solder 80, 2 in the joining portion with the metallic glass substrate 1 (the end of the conducting wire 2 opposite to the end on the mounting substrate 40 side and overlapping the joining surface 1a of the metallic glass substrate 1 in the thickness direction of the metallic glass substrate 1). There is also a method in which the metallic glass substrate 1 and the conductive wire 2 are joined by the solder 80 by applying ultrasonic energy from the ultrasonic tool 3 to the solder 80 surrounding the portion 80). Here, as bonding conditions, for example, Sn—Zn—Sb solder is used as the solder 80, and the ultrasonic frequency may be set appropriately within a range of 20 to 100 kHz and a bonding temperature within a range of 200 to 300 ° C.

金属ガラス基板1における接合表面1aに対して導線2を半田80により接合する接合方法によれば、半田80に超音波エネルギを与えることによって金属ガラス基板1における接合表面1aの酸化物が超音波振動により除去され、かつ、金属ガラス基板1の接合表面1aへの半田80のアンカー効果が促進されるから、金属ガラス基板1に導線2を安定して接合することができる(この場合、導線2は半田80と接合され、半田80が金属ガラス基板1の接合表面1aと接合されるので、導線2は半田80を介して金属ガラス基板1に接合される)。   According to the joining method in which the conductive wire 2 is joined to the joining surface 1a of the metallic glass substrate 1 by the solder 80, the ultrasonic energy is applied to the solder 80 so that the oxide on the joining surface 1a of the metallic glass substrate 1 is subjected to ultrasonic vibration. And the anchor effect of the solder 80 to the bonding surface 1a of the metal glass substrate 1 is promoted, so that the conductor 2 can be stably bonded to the metal glass substrate 1 (in this case, the conductor 2 is Since the solder 80 is bonded to the bonding surface 1a of the metallic glass substrate 1, the conductive wire 2 is bonded to the metallic glass substrate 1 through the solder 80).

ところで、上述の接合方法において、金属ガラス層たる金属ガラス基板1と導線2とを接合する前に、金属ガラス基板1における接合表面1aの酸化物(酸化皮膜)を物理的処理(例えば、Arなどのプラズマ照射)や化学的処理(酸洗浄など)により除去するようにすれば、金属ガラス基板1と導線2との接合前に、金属ガラス基板1における接合表面1aの酸化物が除去されるので、金属ガラス基板1と導線2との良好な接合を得ることができるとともに、超音波エネルギを与える時間の短縮や超音波のパワーの低減を図れ、接合工程での静電容量型トランスデューサの破損をより確実に防止することが可能となる。なお、接合表面1aの酸化物を除去する物理的処理は、Arなどのプラズマ照射に限らず、金属ガラス応用デバイスの構造などに応じて適宜方法を採用すればよく、例えば、研削や研磨でもよい。   By the way, in the above-mentioned joining method, before joining the metallic glass substrate 1 which is a metallic glass layer and the conducting wire 2, the oxide (oxide film) on the joining surface 1a in the metallic glass substrate 1 is physically treated (for example, Ar or the like). If the metal glass substrate 1 and the conductive wire 2 are bonded together, the oxide on the bonding surface 1a in the metal glass substrate 1 is removed. In addition to being able to obtain good bonding between the metallic glass substrate 1 and the conductive wire 2, it is possible to shorten the time for applying ultrasonic energy and reduce the power of ultrasonic waves, and damage the capacitive transducer in the bonding process. It becomes possible to prevent more reliably. The physical treatment for removing the oxide on the bonding surface 1a is not limited to the plasma irradiation of Ar or the like, and any appropriate method may be adopted depending on the structure of the metallic glass application device, for example, grinding or polishing may be used. .

また、上述の接合方法において、金属ガラス基板1と導線2とを接合する前に、金属ガラス基板1における接合表面1aにアンカー効果促進用の凹凸形状をスパッタ法などにより形成するようにすれば、金属ガラス基板1と導線2との接合前に、金属ガラス基板1における接合表面1aにアンカー効果促進用の凹凸形状が形成されるので、接合時のアンカー効果が促進され、金属ガラス基板1と導線2との良好な接合を得ることができるとともに、超音波エネルギを与える時間の短縮を図れ、接合工程での静電容量型トランスデューサの破損をより確実に防止することが可能となる。なお、アンカー効果促進用の凹凸形状を形成する方法はスパッタ法に限らず、金属ガラス応用デバイスの構造などに応じて適宜方法を採用すればよく、例えば、サンドブラストや研磨でもよい。   Further, in the above-described joining method, before joining the metallic glass substrate 1 and the conductor 2, an uneven shape for promoting the anchor effect is formed on the joining surface 1 a of the metallic glass substrate 1 by a sputtering method or the like. Before the metal glass substrate 1 and the conductive wire 2 are joined, an uneven shape for promoting the anchor effect is formed on the joining surface 1a of the metal glass substrate 1, so that the anchor effect at the time of joining is promoted, and the metal glass substrate 1 and the conductive wire. 2 can be obtained, and it is possible to shorten the time for applying the ultrasonic energy, and to more reliably prevent the capacitive transducer from being damaged in the bonding process. In addition, the method of forming the uneven | corrugated shape for anchor effect promotion is not restricted to a sputtering method, What is necessary is just to employ | adopt suitably according to the structure of a metallic glass application device, etc. For example, sandblasting and grinding | polishing may be sufficient.

また、以上説明した接合方法において、金属ガラス基板1と導線2との接合を還元雰囲気(例えば、水素雰囲気、窒素雰囲気、真空雰囲気、窒素ブロー状態)で行うようによれば、接合時の表面酸化物(例えば、金属ガラス基板1、導線2、半田80それぞれの表面酸化物)の形成が抑制され、金属ガラス基板1と導線2との良好な接合を得ることができる。   Further, in the bonding method described above, when the metal glass substrate 1 and the conductor 2 are bonded in a reducing atmosphere (for example, a hydrogen atmosphere, a nitrogen atmosphere, a vacuum atmosphere, or a nitrogen blow state), surface oxidation during bonding is performed. The formation of objects (for example, the surface oxides of the metal glass substrate 1, the conductive wire 2, and the solder 80) is suppressed, and good bonding between the metal glass substrate 1 and the conductive wire 2 can be obtained.

ところで、金属ガラス層たる金属ガラス基板1への導線2の接合方法としては、図4に示すように、金属ガラス基板1における接合表面1aに対してアルミニウム膜90を例えばスパッタ法により形成してから、当該アルミニウム膜90の表面にアルミニウム系ボンディングワイヤもしくは金ボンディングワイヤもしくは銅ボンディングワイヤからなる導線2を押し付け導線2に超音波エネルギを与えることにより金属ガラス基板1と導線2とを接合するようにしてもよい。この場合の接合条件は、上述の図1の例と同様に、例えば、超音波のパワーを2〜4W、超音波の周波数を20〜100kHz、荷重を1.96〜3.92N、超音波の印加時間を100〜500ms、それぞれの範囲で適宜設定し、接合温度を常温とすればよい。   By the way, as a method for bonding the conducting wire 2 to the metal glass substrate 1 as the metal glass layer, as shown in FIG. 4, after forming an aluminum film 90 on the bonding surface 1a of the metal glass substrate 1 by, for example, sputtering. The metallic glass substrate 1 and the conducting wire 2 are joined by pressing the conducting wire 2 made of an aluminum-based bonding wire, gold bonding wire or copper bonding wire against the surface of the aluminum film 90 and applying ultrasonic energy to the conducting wire 2. Also good. The joining conditions in this case are the same as in the example of FIG. 1 described above. For example, the ultrasonic power is 2 to 4 W, the ultrasonic frequency is 20 to 100 kHz, the load is 1.96 to 3.92 N, and the ultrasonic wave The application time may be set as appropriate within a range of 100 to 500 ms, and the bonding temperature may be set to room temperature.

この接合方法によれば、金属ガラス基板1との親和性が高い材料(金属間化合物を形成しやすい材料、もしくは、金属ガラスの酸化物と反応しやすい材料)により形成され、且つ、導線2と接合可能なアルミニウム膜(望ましくは、Siを添加したアルミニウム膜であるAl−Si膜や、Cuを添加したアルミニウム膜であるAl−Cu膜)90を金属ガラス基板1の接合表面1aに形成してから、当該アルミニウム膜90の表面にアルミニウム系ボンディングワイヤもしくは金ボンディングワイヤもしくは銅ボンディングワイヤからなる導線2を押し付け導線2に超音波エネルギを与えることにより金属ガラス基板1と導線2とを接合するので、金属ガラス基板1に導線2を常温で安定して接合することができる。ここで、金属ガラス基板1の接合表面1aにアルミニウム膜を形成する前に、金属ガラス基板1における接合表面1aにアンカー効果促進用の凹凸形状をスパッタ法などにより形成するようにしてもよい。   According to this bonding method, a material having high affinity with the metal glass substrate 1 (a material that easily forms an intermetallic compound or a material that easily reacts with an oxide of metal glass) and the conductor 2 A bondable aluminum film (desirably, an Al—Si film which is an aluminum film to which Si is added or an Al—Cu film which is an aluminum film to which Cu is added) 90 is formed on the bonding surface 1 a of the metallic glass substrate 1. Then, the metallic glass substrate 1 and the conducting wire 2 are joined by pressing the conducting wire 2 made of an aluminum-based bonding wire, a gold bonding wire or a copper bonding wire against the surface of the aluminum film 90 and applying ultrasonic energy to the conducting wire 2. The conducting wire 2 can be stably bonded to the metallic glass substrate 1 at room temperature. Here, before forming the aluminum film on the bonding surface 1a of the metal glass substrate 1, an uneven shape for promoting the anchor effect may be formed on the bonding surface 1a of the metal glass substrate 1 by sputtering or the like.

なお、上述の実施形態では、金属ガラス基板1が金属ガラス層を構成しているが、金属ガラス層は、金属ガラス応用デバイスの構造に応じて適宜構成されるものであり、例えば、金属ガラス薄膜により構成されてもよい。また、金属ガラス応用デバイスは、静電容量型トランスデューサに限定するものではなく、例えば、圧力センサ、MEMSスイッチ、静電アクチュエータ、水素検知素子、キャパシタ、温度ヒューズ用抵抗(一定温度以上で結晶化してぼろぼろになる)などでもよい。   In the above-described embodiment, the metal glass substrate 1 constitutes the metal glass layer. However, the metal glass layer is appropriately constituted according to the structure of the metal glass application device, for example, a metal glass thin film. It may be constituted by. In addition, metallic glass application devices are not limited to capacitive transducers. For example, pressure sensors, MEMS switches, electrostatic actuators, hydrogen sensing elements, capacitors, resistors for thermal fuses (crystallized at a certain temperature or higher) It may be shabby).

1 金属ガラス基板(金属ガラス層)
1a 接合表面
2 導線
3 超音波ツール
80 半田
90 アルミニウム膜
1 Metal glass substrate (metal glass layer)
1a Bonding surface 2 Conductor 3 Ultrasonic tool 80 Solder 90 Aluminum film

Claims (6)

金属ガラス層に導線を接合する金属ガラス層への導線の接合方法であって、金属ガラス層における接合表面に対して導線を押し付け導線に超音波エネルギを与えることにより金属ガラス層と導線とを接合するようにし、導線としてボンディングワイヤを用い、金属ガラス層と導線との接合を超音波ワイヤボンディングにより行うようにし、金属ガラス層がZrまたはTiを成分として含む金属ガラス層であり、ボンディングワイヤとしてAl系ボンディングワイヤを用いることを特徴とする金属ガラス層への導線の接合方法。 A method of bonding a conductive wire to a metallic glass layer, wherein the conductive glass is bonded to the metallic glass layer, and the metallic glass layer and the conductive wire are bonded by pressing the conductive wire against the bonding surface of the metallic glass layer and applying ultrasonic energy to the conductive wire. to be so that, using a bonding wire as a conductor, the junction between the metallic glass layer and the conductor to perform the ultrasonic wire bonding, a metal glass layer containing as a component a is Zr or Ti metallic glass layer, a bonding wire method of bonding wires of the Al-based bonding wire to the metallic glass layer characterized by the Mochiiruko. 金属ガラス層に導線を接合する金属ガラス層への導線の接合方法であって、金属ガラス層における接合表面に対して導線を半田により接合するようにし、導線における接合部位を囲んでいる半田に超音波エネルギを与えることにより金属ガラス層と導線とを半田により接合することを特徴とする金属ガラス層への導線の接合方法。 A method of bonding a conductive wire to a metallic glass layer, wherein the conductive wire is bonded to the bonding surface of the metallic glass layer by solder, and the solder surrounding the bonding portion of the conductive wire is super method for joining conductors and bonding child the metallic glass layer and the conductor by soldering to the feature and be Rukin genus glass layer by applying a wave energy. 金属ガラス層と導線とを接合する前に、金属ガラス層における接合表面の酸化物を除去することを特徴とする請求項1または請求項2記載の金属ガラス層への導線の接合方法。 3. The method for bonding a conductive wire to a metal glass layer according to claim 1 or 2 , wherein the oxide on the bonding surface of the metal glass layer is removed before bonding the metal glass layer and the conductive wire. 金属ガラス層と導線とを接合する前に、金属ガラス層における接合表面にアンカー効果促進用の凹凸形状を形成することを特徴とする請求項1または請求項2記載の金属ガラス層への導線の接合方法。 Before bonding the metallic glass layer and the conductor, to claim 1 or claim 2 wherein the metallic glass layer you characterized that you form a concavo-convex shape of the anchor effect promotes the bonding surface of the metallic glass layer Wire joining method. 金属ガラス層と導線との接合を還元雰囲気で行うことを特徴とする請求項1ないし請求項4のいずれか1項に記載の金属ガラス層への導線の接合方法。 Method of joining lead to the metallic glass layer according to any one of claims 1 to 4, characterized that you perform bonding between the metal glass layer and conductor in a reducing atmosphere. 金属ガラス層に導線を接合する金属ガラス層への導線の接合方法であって、金属ガラス層における接合表面に対してアルミニウム膜を形成してから、当該アルミニウム膜の表面にアルミニウム系ボンディングワイヤもしくは金ボンディングワイヤもしくは銅ボンディングワイヤからなる導線を押し付け導線に超音波エネルギを与えることにより金属ガラス層と導線とを接合することを特徴とする金属ガラス層への導線の接合方法 A method of bonding a conductive wire to a metallic glass layer, wherein the conductive wire is bonded to the metallic glass layer, wherein an aluminum film is formed on the bonding surface of the metallic glass layer, and then an aluminum-based bonding wire or gold method for joining conductors that you join the metallic glass layer and the conductor to the feature and be Rukin genus glass layer by applying ultrasonic energy to the wire pressing a wire made of the bonding wire or copper bonding wire.
JP2009044049A 2009-02-26 2009-02-26 Method of joining conductors to metallic glass layer Active JP5671213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044049A JP5671213B2 (en) 2009-02-26 2009-02-26 Method of joining conductors to metallic glass layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044049A JP5671213B2 (en) 2009-02-26 2009-02-26 Method of joining conductors to metallic glass layer

Publications (2)

Publication Number Publication Date
JP2010199387A JP2010199387A (en) 2010-09-09
JP5671213B2 true JP5671213B2 (en) 2015-02-18

Family

ID=42823795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044049A Active JP5671213B2 (en) 2009-02-26 2009-02-26 Method of joining conductors to metallic glass layer

Country Status (1)

Country Link
JP (1) JP5671213B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203379A (en) * 1984-03-27 1985-10-14 Res Dev Corp Of Japan Joining method of amorphous alloy
JP2001330627A (en) * 2000-05-19 2001-11-30 Advantest Corp Probe needle structure and probe card using the same
JP2003202350A (en) * 2001-12-28 2003-07-18 Tokyo Cathode Laboratory Co Ltd Probe and probe unit for probe card, probe card and method of manufacturing the same
JP4133094B2 (en) * 2002-08-06 2008-08-13 Ykk株式会社 Joining method of metal materials using high-density energy beam heat source
JP2008214704A (en) * 2007-03-06 2008-09-18 Tohoku Univ Amorphous metal or metal glass joined body

Also Published As

Publication number Publication date
JP2010199387A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
CN102969306B (en) Power module and manufacture method thereof
CN102318365B (en) Microphone unit
TWI333933B (en) Microelectromechanical-system package and method for manufacturing the same
CN101053279B (en) Directional silicon condenser microphone
TW200934722A (en) Composite comprising at least two semiconductor substrates and production method
JP6033011B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
JPWO2006025210A1 (en) Micromachine device
TW200827288A (en) MEMS microphone module and method thereof
KR950701454A (en) BMPLESS BONDING PROCESS HAVING MULTILAYER METALLIZATION
JP5671213B2 (en) Method of joining conductors to metallic glass layer
TWI361170B (en) Cover component of micro-mechanical device and fabrication method thereof
JPH11234082A (en) Surface acoustic wave device
WO2013058020A1 (en) Semiconductor device and semiconductor device manufacturing method
WO2013005555A1 (en) Metal-bonded structure and method for manufacturing same
JP5627669B2 (en) MEMS sensor
CN110491794A (en) Method for conducting element to be bonded to bond partner
JP5223383B2 (en) Quartz crystal unit, crystal unit package, electronic component, electronic device, mounting method for electronic component
CN106783763B (en) Identification device and manufacturing method
JP2009055490A (en) Microphone apparatus
JP2002204000A (en) Method of manufacturing piezoelectric-substance device and ultrasonic motor using the device
JP5282380B2 (en) Semiconductor device and manufacturing method thereof
JP2010219874A (en) Acoustic electronic component and method of manufacturing the same
JP2009267157A (en) Printed circuit board, semiconductor device, method of manufacturing the semiconductor device, and acoustic conversion device
JP2011119563A (en) Wire bonding method and semiconductor device
JPH1084064A (en) Semiconductor device and manufacture therof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141219

R150 Certificate of patent or registration of utility model

Ref document number: 5671213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250