JP5671057B2 - マイクロピット密度(mpd)が低いゲルマニウムのインゴットを製造する方法、およびゲルマニウム結晶を成長させる装置 - Google Patents

マイクロピット密度(mpd)が低いゲルマニウムのインゴットを製造する方法、およびゲルマニウム結晶を成長させる装置 Download PDF

Info

Publication number
JP5671057B2
JP5671057B2 JP2012544663A JP2012544663A JP5671057B2 JP 5671057 B2 JP5671057 B2 JP 5671057B2 JP 2012544663 A JP2012544663 A JP 2012544663A JP 2012544663 A JP2012544663 A JP 2012544663A JP 5671057 B2 JP5671057 B2 JP 5671057B2
Authority
JP
Japan
Prior art keywords
crucible
crystal
germanium
crystal growth
temperature gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012544663A
Other languages
English (en)
Other versions
JP2013513545A (ja
Inventor
リュー、ウェイグオ
リ、シャオ
Original Assignee
エーエックスティー,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーエックスティー,インコーポレーテッド filed Critical エーエックスティー,インコーポレーテッド
Publication of JP2013513545A publication Critical patent/JP2013513545A/ja
Application granted granted Critical
Publication of JP5671057B2 publication Critical patent/JP5671057B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1064Seed pulling including a fully-sealed or vacuum-maintained crystallization chamber [e.g., ampoule]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本明細書で説明するシステムおよび方法は、概して単結晶ゲルマニウムのインゴット/ウェハに関し、具体的にはマイクロピット密度(MPD)を低く抑えつつ当該インゴット/ウェハを成長させることに関する。
[関連出願]
本願は、米国特許出願第12/636,778号(出願日:2009年12月13日、公開番号:US2011/___A1)に基づく恩恵/優先権を主張する。当該出願の内容は全て、参照により本願に組み込まれる。
電子デバイスおよび光電子デバイスの製造では、商業的に成長させた、大型且つ均一な半導体単結晶が常に必要である。当該結晶をスライスして研磨することによって、マイクロ電子デバイスを製造するために用いられる基板が得られる。半導体結晶の成長では、原材料を融点まで加熱して結晶質原材料融液を作成し、当該融液を高品質のシード結晶に接触させ、シード結晶に接触させつつ融液を結晶化させる。この半導体結晶成長プロセスを実施するプロセスとして、数多くのさまざまなプロセスが公知である。そのようなプロセスとして、チョクラルスキー(Cz)プロセスおよびその変形版である液封止チョクラルスキー(LEC)プロセス、水平ブリッジマン(HB)法およびブリッジマン−ストックバーガー法および垂直ブリッジマン(VB)法、ならびに、温度勾配冷却(GF)法およびその変形版である垂直温度勾配冷却(VGF)法が挙げられる。例えば、こういった方法および当該方法をさまざまな材料を成長させるために利用する場合の概要については、「電子材料、光学材料および光電子材料のバルク結晶成長(Bulk Crystal Growth of Electronic、Optical and Optoelectronic Materials)」、ピー・クラッパー(P.Clapper)著、ジョン・ワイリー・アンド・サンズ・リミテッド(John Wiley and Sons Ltd)、チチェスター、イングランド、2005年」を参照されたい。
融液を結晶化させると、結晶質原材料の下方に配置されているシード結晶で垂直軸に沿って略円筒形状の結晶(インゴット)が形成される。半導体結晶を形成するために必要な設備としては、結晶成長炉、アンプル、るつぼ、および、場合によっては、るつぼ支持部がある。るつぼは、シードウェルと呼ぶ幅狭部分を下方に持つとしてよい。
従来の結晶成長プロセスおよび結晶成長設備には問題点がある。例えば、公知の結晶成長プロセスで形成される結晶は、マイクロピットまたは微小孔が非常に多く発生することが多い。マイクロピットまたは微小孔は、不良品、欠陥デバイスの原因となり、および/または、当該プロセスを用いて成長させる結晶のうち利用可能な量が全体的に減らしてしまう。この問題が発生したり、成長させた結晶のうち利用可能な量が減ってしまうと、収率が下がることになる。したがって、高品質のインゴット/ウェハを繰り返し提供でき、既存のシステムの欠点を克服する結晶成長システムおよび結晶成長方法が求められている。
本発明に係るシステムおよび方法は、単結晶ゲルマニウムの成長に関する。
一実施例によると、原材料を含むアンプルを、加熱源を持つ炉に挿入する方法を提供する。当該方法は、例えば、原材料を融解させて単結晶質に形成し直すように原材料/るつぼに対する結晶化温度勾配を移動させる垂直成長プロセスを用いて結晶を成長させる段階と、結晶成長の長さが所定の値に到達すると、材料を融解させ単結晶化合物に形成し直す垂直成長プロセスを用いて結晶を成長させる段階とを備え、マイクロピット密度が低くなった単結晶インゴットを繰り返し提供する。
上記の一般的な説明および以下の詳細な説明は共に、例を挙げ説明を目的としたものに過ぎず、本発明を制限するものではないと理解されたい。本明細書に記載したもの以外にも特徴および/または変形例が存在するとしてよい。例えば、本発明は、上述した特徴のさまざまな組み合わせおよびその一部の特徴の組み合わせ、および/または、以下の詳細な説明に記載するその他の特徴の組み合わせおよびその一部の特徴の組み合わせに関するとしてもよい。
添付図面は、本明細書の一部を成すものであり、本発明のさまざまな実施例および側面を図示しており、説明を参照することで本発明の原理を説明するためのものである。図面は以下の通りである。
本明細書に記載したイノベーションに関連する所与の側面に応じた、結晶成長装置およびるつぼの例を示す断面図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、結晶成長装置およびるつぼの例を示す断面図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、マイクロピットの例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、結晶成長方法の一例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、結晶成長方法の一例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、ゲルマニウムが投入されているるつぼを結晶成長炉に入れる方法の一例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、ゲルマニウム結晶成長の別の実施例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、ゲルマニウム結晶成長の別の実施例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、ゲルマニウム結晶成長の別の実施例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、ゲルマニウム結晶成長の別の実施例を示す図である。 本明細書に記載したイノベーションに関連する所与の側面に応じた、結晶成長の別のプロセスの例を示すフローチャートである。
以下では本発明を詳細に説明する。本発明の例は添付図面に図示する。以下に記載されている実施例は、請求の対象である発明に応じた実施例を全て説明するものではない。以下に記載されている実施例は、本発明に関連する所与の側面に応じた一部の例に過ぎない。可能であれば、同一または同様の構成要素を指定するべく複数の図面にわたって同一の参照番号を用いる。
本発明に係る装置および方法は特に、ゲルマニウム(Ge)結晶成長を行うための装置および方法に適用可能である。この前提で、本発明に係る装置および方法を説明する。しかし、本発明に係る装置および方法は、マイクロピット密度が低くなった他の単結晶インゴットおよび/または多結晶インゴットを製造するために利用可能であるので、他にも用途があると考えられたい。
図1Aは、結晶成長装置20の一例を示す断面図である。一例として示す同装置は、炉24の内部にるつぼ支持部22を備えるとしてよい。炉24は、例えば、垂直温度勾配冷却(VGF)法および/または垂直ブリッジマン(VB)結晶成長法および/または、炉24が移動可能である場合には、垂直ブリッジマン−ストックバーガー法等の適切な垂直成長法で用いられる結晶化温度勾配を構築する炉である。るつぼ支持部を備える実施例では、るつぼ支持部22は、るつぼ27を含むアンプル26(一実施例によると、石英製であるとしてよい)に対して物理的に支持するとともに、アンプル26への熱勾配制御を可能とする。一部の実施例によると、炉の動作時には、結晶成長中、るつぼ支持部22を移動させるとしてよい。別の実施例によると、るつぼ支持部は固定されているとしてよく、炉は、動作時には、結晶成長中に移動させることができる。るつぼ27は、シード結晶28、シード結晶の上方に成長させて形成された単結晶質の結晶/化合物30、および、融解した原材料32を含むとしてよい。一実施例によると、るつぼ27は、円筒状結晶成長部分34、小径シードウェル円筒状部分36、および、テーパー状中間部分44を持つ熱分解窒化ホウ素(pBN)材料で形成されているとしてよい。結晶成長部分34は、直径が結晶製品の所望の直径と等しい。現在の業界水準に応じた結晶の直径は、2インチ、3インチ、4インチ、5インチ、6インチ、および、8インチのインゴットであり、当該インゴットを切断することでウェハが得られる。2インチ、3インチ、4インチ、5インチ、6インチ、および、8インチの直径はそれぞれ、50.80mm、76.20mm、100.00mm、125.00mm、150.00mmおよび200.00mmに対応する。るつぼ27の底部において、シードウェル円筒状部分36は、一実施例によると、底部が閉じており、直径は高品質シード結晶28よりもわずかに大きいとしてよい。一実施例によると、例えば、この直径は、約6mm−25mmの範囲内であるとしてよく、長さは約30mm−50mmのオーダであるとしてよい。円筒状結晶成長部分34およびシードウェル円筒状部分36は、直線状の壁部を持つとしてもよいし、または、1度から数度のオーダで外向きにテーパー形状を持ちるつぼ27から結晶を取り出し易くするとしてもよい。結晶成長部分34とシードウェル円筒状部分36との間のテーパー状中間部分38は、例えば、約45度から60度の勾配の傾斜側壁を持ち、大きい方の直径は成長ゾーンの壁部に等しく成長ゾーンの壁部に続いており、小さい方の直径はシードウェルの壁部と等しくシードウェルの壁部に続いている。傾斜側壁はさらに、約45度から60度よりも大きい勾配、または、小さい勾配で傾斜しているとしてもよい。上述した角度は、傾斜した側壁と水平線との間の角度と定義される。
るつぼ27は、結晶成長炉24に挿入される前、原材料が投入され、アンプル26に挿入する。アンプル26は、石英材料で形成されているとしてよい。アンプル26は通常、るつぼ27と同様の形状を持つ。るつぼは、結晶成長領域40において円筒状であるとしてよく、シードウェル領域42では直径が小さくなった円筒状であり、この2つの領域の間にはテーパー状の中間領域44がある。さらに、るつぼ27は、アンプル26の内側に嵌合するとしてよく、両者間にはわずかなすきまがある。アンプル26は、シードウェル領域42の底部で閉じており、るつぼと同様に、るつぼおよび原材料が投入された後に上部が封止される。アンプル26の底部は、るつぼ27と同一の漏斗形状を持つとしてよい。ヒ素(As)、ガリウム(Ga)および/またはアンチモン(Sb)をドーパントとしてアンプル26に追加するとしてよい。
本明細書において本発明を限定するものではなく例として図示されている任意の特定の構造に限定されることなく、本明細書に記載したイノベーションに応じたゲルマニウム結晶成長装置は、加熱源(例えば、加熱部60)および複数の加熱ゾーンを有する結晶成長炉と、結晶成長炉に挿入されるように構成され、投入容器部、および、シードウェルを含むるつぼ、さらに任意で、アンプル支持部を有するアンプルと、結晶成長炉およびアンプル支持部に結合されており、加熱源の1以上の加熱ゾーンおよび移動可能なアンプル支持部を制御して、結晶成長炉の内部にるつぼがある場合にるつぼに対して垂直温度勾配冷却法を実行するコントローラと、備えるとしてよい。さらに、結晶化温度勾配および/またはるつぼはこの後、互いに相対的に移動させられて、原材料を融解させて原材料を単結晶ゲルマニウムインゴットとして形成し直す。垂直成長法を装置内で実行した結果、装置は繰り返し、マイクロピット密度が低くなったゲルマニウムインゴットを提供する。例えば、マイクロピット密度が、約0.025/cmよりも大きく約0.51/cmよりも小さい範囲、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲、約0.025/cmよりも大きく約0.13/cmよりも小さい範囲、約0.13/cmよりも小さい範囲、および、約0.025/cmよりも大きく、約0.26/cmよりも小さい範囲であるゲルマニウムインゴットが繰り返し提供されるとしてよい。さらに、マイクロピット密度はさらに、冷却速度およびその他の条件を制御することによって制御(低減)されるとしてよい。
一実施例によると、結晶成長炉およびアンプル支持部に結合されているコントローラは、垂直温度勾配冷却(VGF)法による結晶成長において、成長した単結晶質の結晶/化合物30と融解した原材料32との間の界面を、冷却速度を約摂氏0.1度/時から約摂氏10度/時の間とし、温度勾配を約摂氏0.5度/cmと約摂氏10度/cmとの間として、冷却するとしてよい。別の実施例によると、コントローラは、垂直ブリッジマン(VB)法による結晶成長において、成長した単結晶質の結晶/化合物30と融解した原材料32との間の界面を、冷却速度を約摂氏0.1度/時から約摂氏10度/時の間とし、温度勾配を約摂氏0.5度/cmと約摂氏10度/cmとの間として、冷却するとしてよい。さらに別の実施例によると、コントローラは、垂直温度勾配冷却(VGF)法および/または垂直ブリッジマン(VB)法を含む結晶成長/冷却処理において、成長した単結晶質の結晶/化合物30と融解した原材料32との間の界面を、最初の約5時間は冷却速度を約摂氏3度/時とし、冷却処理の残りの期間については約摂氏30度/時から約摂氏45度/時として、冷却するとしてよい。
上述した図1Aに示したシステムの例に戻ると、アンプルおよびるつぼは、テーパー状(漏斗形状)の領域を持つとしてよい。アンプル−るつぼの組み合わせが漏斗形状を持つ実施例では、るつぼ支持部22は、この漏斗形状を収容し、炉24の内部でアンプル26を安定して直立した状態で保持する。他の実施例では、アンプル−るつぼの組み合わせは、さまざまな形状を持つとしてよく、るつぼ支持部22の基本構造は、それに応じて特定の形状に合うように変更するとしてよい。別の実施例によると、アンプルおよびその内容物の安定性および強度は、るつぼ支持部22のうち固体で薄い壁部を有する円筒状部分50によって得られる。固体で薄い壁部を有する円筒状部分50は、アンプル構造26の漏斗形状端部を収容する。一実施例によると、るつぼ支持部の円筒状部分50は、熱伝導性の材料、好ましくは石英で形成されている。他の実施例によると、炭化シリコンおよびセラミックを用いて、るつぼ支持部の円筒状部分50を形成するとしてよい。円筒状部分50は、アンプル26との間で円状の接触部分を持ち、円筒状部分50の上側端部は、アンプルのテーパー状領域38の肩部分に当接している。このような構成によると、固体同士の接触が最小限に抑えられ、制御が非常に難しく発生は望ましくない熱伝導が略または全く発生しない。このため、より制御し易い他のプロセスで加熱を行うことが可能となる。
他の実施例によると、セラミックファイバー等の低密度絶縁材料でるつぼ支持部円筒状部分50の内部の大半を充填して、絶縁材料の略中心に、アンプル26のシードウェル42を挿入する中空の軸状コア52を残すのみとする。他の実施例によると、低密度絶縁材料はさらに、アルミナファイバ(摂氏1800度)、アルミナシリカファイバ(摂氏1426度)、および/または、ジルコニアファイバ(摂氏2200度)を含むとしてよい。絶縁材料は、るつぼ支持部22内に慎重に投入される。アンプル26が円筒状部分50の上部に置かれているので、アンプル26の重量によって絶縁材料が下方に押圧され、絶縁材料傾斜端部54が形成される。円筒状部分の内部の大半は低密度絶縁材料で充填されているので、空気の流れが抑制され、制御が比較的難しく発生は望ましくない対流が略または全く発生しない。対流は、伝導と同様に、VGF/VB等の本明細書で説明する結晶成長法に悪影響を及ぼす制御不可能な熱伝達方法である。
図1Aのシステムの例で図示しているように、中空コア52は、直径がアンプルのシードウェル42と略等しく、アンプルのシードウェル42の底部より下方にわずかに下向きに延在している。別の実施例によると、中空コア52は、シードウェルの底部から炉装置24の底部までるつぼ支持部を貫通して延在しているとしてよい。中空コア52は、結晶の中心からの冷却経路として機能する。これによって、シードウェル内および成長中の結晶の中心の冷却を行い易くなる。この構成によると、熱エネルギーは、固体の結晶およびシードの中心を貫通して下方に抜けていき、結晶支持部22内の絶縁材料中に設けられたこの中空コア52を通って下方に抜けていく。中空コア52を設けない場合、冷却中のインゴットでは、中心の温度が当然、外側表面に近い結晶材料よりも高くなる。この場合、インゴットの中心は、どの水平方向の断面でも、外周部が固化した後で結晶化することになる。このような条件では電気的特性が均一な結晶は得ることができない。結晶支持部に中空コア52を形成する方法の実施例では、熱エネルギーがアンプル26の底部および中空コア52を通って下方に伝導され、放射状チャネル56から放出される。成長中の結晶の中心から熱エネルギーを低減して、等温層を結晶の直径方向に平坦になるように維持することが重要である。結晶−融液間の界面を平坦に維持することで、電気的特性および物理的特性が均一な結晶を製造することが可能となる。
一部の実施例によると、円筒状部分50内の低密度絶縁材料は、シードウェル領域42における一連の炉内加熱部60からアンプル26への放熱流を抑制するので、この方法では絶縁材料を貫通するように複数の水平放射チャネル/開口/トンネル部56を形成する必要がある。放射チャネル56は、絶縁材料を貫通して放熱口として機能し、炉内加熱部60からアンプルのシードウェル42までの熱伝達を制御可能とする。放射チャネル56の数、形状および直径は、具体的な条件に応じて決まる。放射チャネルはさらに、傾斜したり、屈曲していたり、または、波状であってよい。放射チャネルはさらに、絶縁材料の一部分のみを貫通するように延在しているとしてもよいので、一続きである必要は必ずしもない。これによって、対流が最小限に抑え易くなる。一実施例によると、放射チャネルの直径は、小さく鉛筆の幅と略同じであるので、対流はわずかである。本発明の他の実施例では、これより大きな孔、例えば、断面積が1インチ四方以上のオーダのものを用いるとしてもよい。絶縁材料を貫通するように設けられている放射チャネル56はさらに、絶縁材料の中心に位置している中空コア52と組み合わせることで、結晶の中心からの熱エネルギーを放出して、結晶を冷却し、等温層を平坦なものとする。放射チャネル56は、温度の制御を可能とし、結晶成長の収率に直接関係する。
図1Aに示すような炉24は、垂直温度勾配冷却(VGF)法および垂直ブリッジマン(VB)法の両方または垂直ブリッジマン−ストックバーガー(VBS)結晶成長法に利用され得る炉の一例である。他の炉を用いるとしてもよい。VGF結晶成長法では、熱源内での結晶化温度勾配は、それ自体静止しているが、結晶が静止状態で保持されている間移動させられる。VB結晶成長法では、熱源およびその固定結晶化温度勾配は、結晶が移動させられている間、静止状態のままである。VBS結晶成長法では、熱源およびその固定結晶化温度勾配は、結晶が静止状態のままである間、移動させられている。
図1Bは、本明細書に記載するイノベーションに関連する所定の側面に応じた、るつぼ99の一例を示す断面図である。図1Bを参照しつつ説明すると、本明細書で説明する結晶成長炉の例の一部で用いられるるつぼは、例えば、長さが約25mmから約50mmのテーパー状結晶成長領域を持つとしてよい。さらに、一部の実施例によると、るつぼ99およびインゴットは、テーパー状部分の後、長さが約110mmから約200mmまで成長する(成長した結晶が所定の長さに到達する)としてよい。
図2は、本明細書に記載するイノベーションに関連する側面に応じた、結晶インゴットまたはウェハのうちマイクロピット200を含む領域を示す図である。図2から分かるように、このようなマイクロピット200が存在すると、成長させたゲルマニウム材料では暗い箇所が目立ち、それに関連する問題が発生する。マイクロピット数が多過ぎる場合、インゴットまたはウェハは利用できなくなり、再利用の必要が出てくるとしてよい。このため、マイクロピットまたは微小孔は、結晶成長プロセスの収率を下げてしまうので、この欠陥を少なくすることが望ましい。このようなマイクロピットの問題を解決するシステム、炉および結晶成長プロセスによれば、収率が改善される。
図3Aは、本明細書に記載するイノベーションに関連する特定の側面に応じた、結晶成長の実施例の概要を説明する図である。このような実施例に係る方法は、例えば、Ge原材料をるつぼに投入する段階280と、るつぼおよび/またはるつぼを保持している容器または筐体を封止する段階282と、るつぼを結晶成長炉の内部に配置する段階と、Ge原材料をるつぼ内で融解させて融液を形成する段階と、垂直成長法を実行して単結晶ゲルマニウムインゴットを形成する段階284とを備えるとしてよい。さらに、当該方法は、1以上のその他の段階を備えるとしてよい。そのような段階としては、融液とシード結晶とを接触させている間に、融液の結晶化温度勾配を制御する段階と、結晶化温度勾配および/またはるつぼを互いに相対的に移動させることによって単結晶ゲルマニウムインゴットを形成する段階と、単結晶ゲルマニウムインゴットを冷却する段階とが挙げられる。さらに、本明細書で説明する垂直成長プロセスを実行すると、マイクロピット密度が低くなったゲルマニウムインゴットが繰り返し得られる。例えば、マイクロピット密度が、約0.025/cmよりも大きく約0.51/cmよりも小さい範囲、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲、約0.025/cmよりも大きく約0.13/cmよりも小さい範囲、約0.13/cmよりも小さい範囲、および、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲であるゲルマニウムインゴットが繰り返し提供されるとしてよい。一部の実施例によると、マイクロピット密度は、冷却速度およびその他の条件を制御することによって制御されるとしてよい。さらに、本明細書に記載するイノベーションに応じて生成される単結晶基板は、成長開始部分から成長終了部分までの間において、キャリア濃度が約9×1017から約4×1018または約5×1018/cmであり、抵抗率が約7×10−3から2×10−3または3×10−3Ω.cmであり、移動度が約950cm/Vsから約450cm/Vsであるとしてよい。さらに、転位密度は約500/cm未満であるとしてよく、約200/cm未満であるとしてもよい。キャリア濃度、移動度および転位密度はさらに、冷却速度およびその他の条件を制御することによって制御されるとしてよい。
図3Bは、本明細書に記載するイノベーションに関連する側面に応じた、マイクロピット密度を低減し、収率を改善する、垂直温度勾配冷却(VGF)法および垂直ブリッジマン(VB)法を用いて結晶成長を実行する方法80の別の例を示す図である。このような結晶成長プロセスの一例によると、結晶成長を行うべく上述した通りに炉を準備する(82)。シードからの最初の結晶成長については、VGFプロセス(84)を利用する。結晶成長プロセスの特定のタイミングにおいて、VBプロセス(86)またはVBSプロセスを利用して結晶成長を完了させるとしてよい。VBプロセスまたはVBSプロセスを利用する場合、融液/固体ラインは、同一レベルに保持され、当該プロセスは、条件を変えることなく継続して行われる。これは、通常であれば体積の低減に応じてVGFプロセスで処理の変更が必要となるが、当該方法では必要ないためである。一実施例に係るプロセスでは、例えば、VBプロセスを、図1Aに示すようにテーパー状領域38の上方で、約12−15mm(1/2インチ)、または、約12−45mm、またはそれ以上で、利用するとしてよい。本明細書に記載する実施例および実験結果に応じて、VGFプロセスおよびVBプロセスを組み合わせることで、結晶のマイクロピットが減少し、結晶の品質が改善されるとしてよい。上述した方法の一例は、図1Aに図示した炉と共に利用されるとしてよいが、任意のその他の結晶成長炉と共に利用されるとしてもよい。当該方法は、直径が2インチから6インチ、または、それ以上の結晶を成長させるために用いられるとしてよい。
本明細書に記載するイノベーションの一例に応じた別の垂直成長方法の実施例によると、加熱源と、複数の加熱ゾーンと、アンプルと、るつぼとを備える結晶成長炉において単結晶ゲルマニウム(Ge)結晶を成長させる方法が提供される。これらの実施例に係る方法の一例は、Ge原材料をるつぼに投入する段階と、るつぼおよび容器を封止する段階と、るつぼを結晶成長炉の内部に配置する段階と、Ge原材料をるつぼにおいて融解させ融液を生成する段階と、融液をシード結晶と接触させつつ融液の結晶化温度勾配を制御する段階と、結晶化温度勾配および/またはるつぼを互いに相対的に移動させることによって単結晶ゲルマニウムインゴットを形成する段階と、単結晶ゲルマニウムインゴットを冷却する段階とを備えるとしてよい。さらに、垂直成長プロセスを実行することによって、マイクロピット密度が低くなったゲルマニウムインゴットが繰り返し得られる。例えば、マイクロピット密度が、約0.025/cmよりも大きく約0.51/cmよりも小さい範囲、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲、約0.025/cmよりも大きく約0.13/cmよりも小さい範囲、約0.13/cmよりも小さい範囲、および、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲であるゲルマニウムインゴットが繰り返し提供されるとしてよい。本明細書で記載しているように、このようなマイクロピット密度は、冷却速度およびその他の条件を制御することによって、制御するとしてよい。さらに、当該方法はさらに、ヒ素(As)、ガリウム(Ga)、および/または、アンチモン(Sb)をドーパントとして追加する段階を備えるとしてよい。
一実施例に係る方法は、垂直温度勾配冷却(VGF)法を用いて成長を実行する段階と、冷却速度を約摂氏0.1度/時から約摂氏10度/時の間とし、温度勾配を約摂氏0.5度/cmと約摂氏10度/cmとの間として、冷却プロセスを実行する段階とを備えるとしてよい。別の実施例に係る方法は、冷却速度を約摂氏0.1度/時から約摂氏10度/時の間とし、温度勾配を約摂氏0.5度/cmから約摂氏10度/cmとして、垂直ブリッジマン(VB)法を含む結晶成長を実行する段階を備えるとしてよい。さらに別の実施例に係る結晶成長方法は、冷却処理の最初の約5時間は冷却速度を約摂氏3度/時とし、冷却処理の残りの期間については約摂氏30度/時から約摂氏45度/時として、垂直温度勾配冷却(VGF)法および/または垂直ブリッジマン(VB)法を含む結晶成長/冷却を実行する段階を備えるとしてよい。
図4に示すように、投入用るつぼ90はるつぼ27の上方に配置されるとしてよく、るつぼ27に投入する原材料を増やすことができる。具体的には、ゲルマニウム原材料92は固体であるので、融解させるべくるつぼ27に密に詰め込むことができない。このため、投入用るつぼは、融解可能な原材料の追加分を保持してるつぼに投入するために用いられる。この結果、るつぼ27に投入されるゲルマニウムの量が多くなり、ゲルマニウム結晶の長さが増加する。例えば、原材料のうち約35%から約65%を最初に投入用るつぼ90に投入するとしてよく、原材料のうち約65%から約35%を直接るつぼ27に投入する。例えば、本明細書に記載する結晶成長方法の一部に応じて、約10kgを炉に投入することで、マイクロピット密度が低い200mm、4インチのインゴットを得るとしてよい。
上述した結晶成長炉および結晶成長方法(VGFおよびVBの組み合わせ)を用いて4´´(100mm)の直径のゲルマニウム結晶を成長させる例を詳細に説明する。一例となる結晶を成長させる場合、るつぼの寸法は、結晶成長領域40において、直径が100mmで長さが200mmであった。るつぼの直径は、シードウェル領域42において、7mmであった。一実施例によると、インゴットを成長させるために10kgのゲルマニウム前駆体材料を投入するとしてよい。動作について説明すると、最初に、ゲルマニウムシード結晶をpBN製のるつぼ27の底部に挿入する。続いて、約10kgのゲルマニウム材料、および、液体封止剤として、約36gの酸化ホウ素を追加するとしてよい。この後、内容物が投入されたpBN製のるつぼを石英製のアンプルに挿入した。石英製のアンプルは、低圧で石英製のキャップによって封止された。この後、石英製のアンプルは炉の内部に導入されて、るつぼ支持部上に載置された。
アンプルが炉の内部に導入されると、石英製のアンプルを約摂氏150度−200度/時の速度で加熱するとしてよい。一例に係るプロセスによると、温度がシード部分において融点に到達し、結晶成長領域においてゲルマニウムの融解範囲(摂氏約940度−955度)よりも約摂氏3度−摂氏18度高い温度に到達すると、単結晶ゲルマニウム材料がすべて融解するまで(例えば、一部の実施例によると、約2−4時間)この温度を保持するとしてよい。単結晶ゲルマニウム材料が融解すると、最初にVGF法を用いて結晶成長を行った。この後、温度を下側加熱ゾーンにおいてゆっくりと降温させ、結晶成長領域が冷却されるまで、シード部分で始まった結晶成長を中間領域で開始させて継続させるとしてよく、VGF法および/またはVB法の場合、結晶成長プロセスが完了した後、冷却プロセスの最初の約5時間については約摂氏3度/時の冷却速度で行い、冷却プロセスの残りの期間については約摂氏30度/時から約摂氏45度/時で冷却する。別の実施例によると、結晶成長冷却は、冷却速度を約摂氏0.1度から約摂氏10度/時とし、温度勾配は約摂氏0.5度/cmから約摂氏10度/cm(例えば、VGF法の場合)で行われるとしてよい。さらに、VB法の例では、結晶成長冷却の速度は、摂氏0.3度/時から摂氏0.47度/時としてよく、温度勾配は摂氏1.2度/cmから摂氏1.8度/cmを維持する。
本明細書の一部の実施例においてVGF法およびVB法を組み合わせる場合、結晶成長領域において結晶の高さが約1インチから約3インチの間まで成長すると、VB法を開始するとしてよい。VB法では、るつぼ下降速度を正確な冷却/成長パラメータに合わせて制御して、例えば、結晶成長ゾーンにおいて、冷却速度を約摂氏0.2度/時から約摂氏0.5度/時とし、および/または、温度勾配を約摂氏0.3度/cmから約摂氏2.5度/cmする。結果として、長さが約190mmで高品質(つまり、マイクロピット密度が低い(低MPD)結晶)の結晶が、このようなプロセスを用いることによって、200mmの長さのインゴットから得られるとしてよく、結晶の収率は約95%となる。このようなプロセスを用いることによって、マイクロピット密度が、約0.025/cmよりも大きく約0.51/cmよりも小さい範囲、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲、約0.025/cmよりも大きく約0.13/cmよりも小さい範囲、約0.13/cmよりも小さい範囲、および、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲であるゲルマニウムインゴットが繰り返し提供されるとしてよい。
さらに、本明細書に記載したイノベーションに応じて製造した単結晶基板は、成長開始部分から成長終了部分まで、キャリア濃度が約9×1017/cmから約4×1018/cmまたは約5×1018/cmであり(約9×1017/cmから約4.86×1018/cmの範囲を測定)、抵抗率が約7×10−3Ω.cmから2×10−3または3×10−3Ω.cmであり(約7.29×10−3Ω.cmから約2.78×10−3Ω.cmの範囲を測定)、移動度が約950cm/Vsから約450cm/Vs(955cm/Vsおよび467cm/Vsの値を測定)であるとしてよい。さらに、転位密度は約500/cm未満であるとしてよく、約200/cm未満であるとしてもよい。
図4および図5Aから図5Dに応じて、単結晶ゲルマニウム(Ge)結晶を成長させるシステムおよび方法が提供される。最初に投入した原材料が融解してしまうと、結晶成長が始まっていないタイミングで、(例えば、VGF法および/またはVB法等において)追加の原材料の融液をるつぼに追加して、成長させる単結晶インゴットの長さを大きくするとしてよい。さらに、当該方法は、シード結晶を保持するシードウェルを有するるつぼに第1のGe原材料を投入する段階と、融解したGe材料を補充するための容器に第2のGe原材料を投入する段階と、るつぼおよび容器をアンプル内に封止する段階と、るつぼを有するアンプルを、当該アンプルを支持する移動可能なアンプル支持部を有する結晶成長炉の内部に導入する段階とを備えるとしてよい。さらに、実施例では、るつぼにおいて第1のGe原材料を融解させて融液を生成する段階と、第2のGe原材料を容器内で融解させる段階と、融解させた第2のGe原材料を融液に追加する段階とを備えるとしてよい。他の実施例では、融液の結晶化温度勾配を制御して、融液がシード結晶と接触している場合に結晶化して単結晶ゲルマニウムインゴットを形成する段階と、任意で、単結晶ゲルマニウムインゴットを冷却する段階とを備えるとしてよい。
一実施例によると、単結晶ゲルマニウムインゴットを形成する段階は、結晶成長ゾーンにおいて温度勾配を約摂氏0.3度/cmから約摂氏2.5度/cmとする段階を有するとしてよい。また、単結晶ゲルマニウムインゴットを、約摂氏0.2度/時から約摂氏0.5度/時の速度で冷却するとしてよい。また、るつぼは、結晶化温度勾配を移動させている間、静止状態のままとしてよい。
特定の実施例によると、単結晶ゲルマニウムインゴットは、直径が約50mmから約200mm(約2インチから約8インチ)であるとしてよい。一実施例によると、例えば、単結晶ゲルマニウムインゴットは、直径が152.4mm(6インチ)であるとしてよい。さらに、本明細書に記載したイノベーションを利用して製造された直径が約50mmから約200mm(約2インチから約8インチ)である単結晶ゲルマニウムのインゴットおよびウェハはいずれも、マイクロピット密度が、約0.025/cmよりも大きく約0.51/cmよりも小さい範囲、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲、約0.025/cmよりも大きく約0.13/cmよりも小さい範囲、約0.13/cmよりも小さい範囲、および、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲であるであるとしてよい。
さらに、本明細書に記載したイノベーションを利用して製造された直径が約50mmから約200mm(約2インチから約8インチ)である単結晶基板は、成長開始部分から成長終了部分まで、キャリア濃度が約9×1017/cmから約4×1018/cmまたは約5×1018/cmであり(約9×1017/cmから約4.86×1018/cmの範囲を測定)、抵抗率が約7×10−3Ω.cmから2×10−3Ω.cmまたは3×10−3Ω.cmであり(約7.29×10−3Ω.cmから約2.78×10−3Ω.cmの範囲を測定)、移動度が約950cm/Vsから約450cm/Vs(955cm/Vsおよび467cm/Vsの値を測定)であるとしてよい。さらに、転位密度は約500/cm未満であるとしてよく、約200/cm未満であるとしてもよい。
本明細書に記載したイノベーションに応じたシステムに関して、大径の単結晶ゲルマニウム結晶を成長させる装置の例は、加熱源および複数の加熱ゾーンを有する結晶成長炉と、結晶成長炉の内部に導入されるように構成されており、投入容器、および、シードウェルを持つるつぼを有するアンプルと、移動可能なアンプル支持部と、結晶成長炉および移動可能なアンプル支持部に結合されているコントローラとを備えるとしてよい。さらに、コントローラは、加熱源の1以上の加熱ゾーンおよび移動可能なアンプル支持部を制御して、るつぼが炉の内部にある場合にるつぼにおいて垂直温度勾配冷却法を実行するとしてよい。
特定の実施例によると、結晶成長炉は、複数の加熱ゾーンを有するとしてよく、例えば、4個から8個の加熱ゾーン、5個から7個の加熱ゾーン、または、6個の加熱ゾーンを有するとしてよい。所望のインゴット/ウェハの直径に応じて、るつぼの一例は、内径が約50mmから約200mm(約2インチから約8インチ)であるとしてよく、一部の実施例によると、約150mm(約6インチ)であるとしてよい。
図5Aから図5Dは、本明細書に記載したイノベーションに関連する特定の側面に応じた、ゲルマニウム結晶成長の別の実施例を説明するための図である。図5Aから図5Dは、本発明に係る特定の側面に応じた結晶成長プロセスの例を説明するべく、単結晶ゲルマニウム結晶を成長させる装置を示す縦断面図である図5Aは、結晶成長装置の一例を示す断面図である。当該装置は、垂直温度勾配冷却(VGF)成長法および/または垂直ブリッジマン(VB)成長法で利用される炉を備え、炉1の内部にアンプル支持部11を有し、加熱部2は複数のゾーンから構成されており、各ゾーンはコンピュータ制御される制御システムによって別箇に制御されるとしてよい。各ゾーンの温度は、全体の温度プロフィールを所望の温度プロフィールとし、融液の固化を制御するような温度勾配を実現するように調整されるとしてよい。温度プロフィールおよび温度勾配は、結晶化界面が一貫して/予測通りに上方向に融液内を移動するように調整される。例えば、温度勾配を、インゴット結晶成長ゾーンにおいて約摂氏0.3度/cmから約摂氏2.5度/cmとする。アンプル支持部11は、アンプル3(一実施例では、石英製)を物理的に支持し、アンプル3に対して熱勾配制御を行うために用いられるとしてよい。アンプル3は、るつぼ12を有しており、るつぼ12は、シードウェル18にシードを保持可能である。アンプル支持部11は、炉の動作中は、結晶成長時に軸方向に移動可能である。るつぼ12は、シード結晶17を含むとしてよい。シード結晶17から、単結晶を成長させてシード結晶の上方に形成する。一実施例によると、るつぼ12は、円筒状結晶成長部分13、小径シードウェル円筒状部分18およびテーパー状中間部分7を含む熱分解窒化ホウ素(pBN)構造であるとしてよい。結晶成長部分13は、るつぼ12の上部で開口しており、直径は結晶製品の所望の直径と等しい。現在の業界水準に応じた結晶の直径は、50.8mm、76.2mm、100.0mmおよび150.0mm(2、3、4および6インチ)の直径のインゴットである。当該インゴットを切断することでウェハが得られる。ある実施例によると、るつぼ12の底部において、シードウェル円筒状部分18は、一実施例によると、底部が閉じており、直径は高品質シード結晶17よりもわずかに大きく、例えば、約6−25mmであり、長さは30−100mmのオーダであるとしてよい。円筒状結晶成長部分13およびシードウェル円筒状部分18は、直線状の壁部を持つとしてもよいし、または、るつぼ12から結晶を取り出し易いように1度から数度のオーダで外向きにテーパー状となっているとしてもよい。成長部分13とシードウェル円筒状部分18との間のテーパー状中間部分7は、例えば、約45度から60度の勾配の傾斜側壁を持ち、大きい方の直径は成長ゾーンの壁部に等しく成長ゾーンの壁部に続いており、小さい方の直径はシードウェルの壁部と等しくシードウェルの壁部に続いている。傾斜側壁はさらに、約45度から60度よりも大きい勾配、または、小さい勾配で傾斜しているとしてもよい。
特定の実施例によると、アンプル3は石英製であるとしてよい。アンプル3は、形状がるつぼ12と同様であるとしてよい。アンプル3は、シード成長領域19において円筒状であり、シードウェル領域19において直径が小さくなった円筒状であり、これら2つの領域の間にはテーパー状の中間領域8がある。るつぼ12は、アンプル3の内側に嵌合するとしてよく、両者間にはわずかなすきまがある。上方にある第2の容器4は、原材料容器として、石英製の支持部6に載置されている。石英製の支持部6は、アンプル3の中央部分に封止される。本発明の一実施例によると、この第2の容器4は、pBN製である。この第2の容器4に原材料5の大半を充填させる。加熱中、原材料を融解させて、第2の容器4の底部にある孔から主要るつぼ12に滴下させる。アンプル3は、シードウェル領域19の底部で閉じており、るつぼおよび原材料を投入した後に上部で封止される。ヒ素(As)、ガリウム(Ga)および/またはアンチモン(Sb)をドーパントとしてるつぼ12および/または第2の容器4に追加するとしてよい。
一部の実施例によると、円筒状部分16は、アンプル3との間で円状の接触部分を持つような形状であるとしてよく、円筒状部分16の上側端部は、アンプルのテーパー状領域8の肩部分に当接している。このような構成によると、固体同士の接触が最小限に抑えられ、制御が非常に難しく発生は望ましくない熱伝導が略または全く発生しない。このため、より制御し易い他のプロセスで加熱を行うことが可能となる。
本明細書に記載したイノベーションの一実施例によると、単結晶ゲルマニウムインゴットを成長させる段階において、炉の温度は約摂氏0.2度/時から約摂氏0.5度/時の速度で降温させて、単結晶ゲルマニウムインゴットを成長させるとしてよい。
図5Aから図5Dの一例の図面では、ゲルマニウムを融解させて供給するという特徴を持つ別のゲルマニウム成長プロセスの例を説明している。図面を参照しつつ説明すると、図5Aは、プロセスの一例における最初の状態を図示している。上側容器4およびるつぼ12の両方には固体のゲルマニウムがある。新しい加熱部および加熱プロセスとして、ゲルマニウム融液の中間状態を次に図5Bに示す。図5Bでは、固体ゲルマニウムがるつぼ12において融解して液状になっている様子を示している。
炉の加熱ゾーンの加熱部は、対応する電源に対応して調整され、上側容器には必要な熱エネルギーを供給するとしてよい。具体的には、上側容器は、上側容器3にあるゲルマニウムが融解し始めて、融解したゲルマニウムが容器3の底部にある孔を通ってるつぼ12に流入するように、加熱されるとしてよい。一実施例によると、炉のうち上側容器が設けられている領域は、約摂氏940度から約摂氏955度の範囲まで加熱されるか、または、約摂氏945度から約摂氏950度の範囲まで加熱される。このプロセスは、上側容器3に含まれるゲルマニウムが全て融解してるつぼ12に流入するまで継続して行われる。
図5Aから図5Dに示す炉1は、垂直温度勾配冷却(VGF)法による結晶成長に利用される炉の一例である。他の炉および構成、例えば、垂直ブリッジマン法等を利用するとしてもよい。VGF結晶成長法では、結晶を静止させたまま、固定された加熱源における結晶化温度勾配を電気的に移動させる。
垂直温度勾配冷却(VGF)法によって結晶成長を実行する場合、炉において適切な温度勾配プロフィールを構築する必要がある。炉の複数の加熱ゾーンは、対応する電力供給について別箇且つ独立して、炉の結晶化温度要件および温度勾配要件を満足させるように加熱および冷却を行うようプログラミングされているコンピュータによって制御される。ゲルマニウムインゴットの成長に関しては、例えば、炉の温度の変動は約±摂氏0.1度未満にする必要があるとしてよい。炉の準備中、多結晶質ゲルマニウム原材料をアンプル3に投入する。これについては本明細書の別の箇所でより詳細に説明する。
図中に示すように、テーパー状部分に穴を持つpBN製の投入容器4は、アンプル3ないのるつぼ12の上方に配置されている石英製の支持部6上に載置されている。第2の容器4は、るつぼ12の上方であってアンプル3の内部に載置されているとしてよい。第2の容器4の孔は、アンプル3に向かって延伸しているテーパー形状を持つ底面の中心に設けられているとしてよい。るつぼ3は、第2の容器4の底面の中心にある孔から滴下される融解した結晶を受け取る開口を持つとしてよい。投入容器4によって、るつぼ12に投入できる原材料を多くすることができる。具体的には、ゲルマニウム原材料5は、通常は固体状の塊または物体であるので、融解させるべくるつぼ12に密に詰め込むことはできない。このため、投入容器を用いて、融解させた後でるつぼ12に投入する追加の原材料を保持しておくことによって、るつぼ12に投入するゲルマニウムの量が増加し、ゲルマニウム結晶の長さおよび直径を大きくすることができる。例えば、原材料のうち約65%を最初に投入容器4に投入して、原材料のうち35%をるつぼ12に直接投入するとしてよい。本発明を限定するものではなく一例として挙げるが、5.115kgの原材料をるつぼ12に投入して、9.885kgを投入容器4に投入すると、15000g(15kg)が投入されることになり、直径が150mm(6インチ)のゲルマニウムインゴットが製造される。
一例を挙げると、ゲルマニウムをヒ素(As)でドープするとしてよい。ここにおいて、例えば、原材料を投入する前に9度のオフオリエンテーションを有する<100>面のシードをるつぼに投入するとしてよい。原材料および適量のドーパントを、石英製のアンプル3に載置されているるつぼおよび投入容器に投入する。アンプルおよび内容物を約2.00×10−4パスカル(約1.5×10−6Torr)の真空まで排気した後、図1Aに示すようにアンプルを封止して炉の内部に導入する。炉を始動させ、アンプルおよび内容物を加熱して、るつぼ12内の原材料を融解させる。成長中、ゲルマニウムの融点が約摂氏940度であるので、炉の温度は約摂氏1000度である。結晶化界面温度勾配は、インゴットの位置に応じて、約摂氏0.5度/cmから約摂氏10度/cmとなるように調整するとしてよい。さらに、全体の温度プロフィールは、結晶化速度が約1mm/時から2mm/時となるように調整するとしてよい。固化が完了した後、炉は約摂氏20度/時から摂氏40度/時で冷却されるとしてよい。本明細書に記載するこのような方法の例で製造されるGeインゴットはいずれも、マイクロピット密度が、約0.025/cmよりも大きく約0.51/cmよりも小さい範囲、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲、約0.025/cmよりも大きく約0.13/cmよりも小さい範囲、約0.13/cmよりも小さい範囲、および、約0.025/cmよりも大きく約0.26/cmよりも小さい範囲になるとしてよい。
別の例を挙げると、本発明に係る装置は、pBN製の投入容器およびるつぼが共に挿入されている石英製のアンプルと、pBN製の投入容器を保持している支持部6とを備える寸法の例を挙げると、るつぼは、結晶成長部分の直径が約150mmであり、結晶成長部分の長さが約160mmであり、シード結晶部分の直径が約7mmであるとしてよい。一実施例を挙げると、<100>配向のGeシード結晶をpBN製のるつぼのシードウェルに挿入して、96gの三酸化ホウ素を液体封止剤としてpBN製のるつぼにおいてシードの上方に投入した。この後、合計で14,974gのGe多結晶材料をpBN製のるつぼおよびpBN製の容器に投入して、pBN製の容器およびるつぼを共に石英製のアンプルに挿入して、約2.00×10−4パスカル(1.5×10−6Torr)の低圧で石英製のアンプルを石英製のキャップで封止した。封止したアンプルをその後、炉の内部に導入して、アンプル支持部上に載置した。
上述した石英製のアンプルは、約摂氏270度/時の速度で加熱した。温度が結晶化材料の融点よりも約摂氏30度高くなると、結晶質材料が全て融解するまで加熱を維持した。
図6に示すように、本明細書に記載するイノベーションに応じた単結晶ゲルマニウム(Ge)結晶を成長させる方法の一例を開示する。一実施例によると、シード結晶を保持するシードウェルを持つるつぼに第1のGe原材料を投入する段階と、第2のGe原材料を、アンプルの内部に配される原材料補完用の容器に投入する段階と、るつぼおよび容器をアンプルの内部に封止する段階と、るつぼおよび容器を含むアンプルを結晶成長炉の内部に導入する段階と、るつぼにおいて第1のGe原材料の融解を制御して融液を生成する段階と、容器において第2のGe原材料の融解を制御する段階とを備える方法が提供される。さらに、当該方法は、融解した第2のGe原材料を融液に追加する動作を制御する段階と、融液がシード結晶と接触しつつ結晶化して単結晶ゲルマニウムインゴットを形成するように、融液の結晶化温度勾配を制御する段階と、単結晶ゲルマニウムインゴットを冷却する段階とのうち1以上の段階を備えるとしてよい。
他の実施例では、容器において第2のGe原材料の融解を制御する段階は、第2のGe原材料に対する加熱を制御し、融解した第2のGe原材料を所与の温度範囲内に維持するように段階を有するとしてよい。さらに、融解した第2のGe原材料を融液に追加する動作を制御する段階は、融液を特定の温度範囲内に維持する段階を有し、当該温度範囲は、約摂氏940度から約摂氏955度、または、約摂氏945度から約摂氏950度であるとしてよい。さらに、融解した第2のGe原材料を融液に追加する動作を制御する段階は、上述したような特定の温度範囲内に融液を維持する段階を有するとしてよい。
さらに別の実施例によると、加熱用電力および/または1以上の冷却速度を、制御することによって、または、制御によって低減することによって、再生産可能な範囲の結晶特性を持つGeインゴットが得られる。さらに、このような処理制御を行った結果、マイクロピット空隙密度が低減した(例えば、本明細書に記載したさまざまな範囲のうち任意の範囲内)単結晶ゲルマニウムインゴットが繰り返し得られるとしてよい。
また、本明細書に記載したプロセスを用いて、マイクロピット密度が上述したさまざまな範囲内にあるゲルマニウム結晶を、外部ガス源供給ドーピング方法を利用することなく、繰り返し得るとしてよい。これらの利点を実現する本発明の特徴は、例えば、封止したアンプル(例えば、真空下、所与の圧力下、または、その他の条件下等で封止)を利用することに関連し、高価なガス供給ハードウェアおよび制御システム/電子機器等が不要になり簡略化に貢献する。幾つかの例を挙げると、本明細書に記載するイノベーションは、非接触型のドーピング方法を利用するシステムおよび方法に関連付けられるという点で有益であるとしてよい。このため、転位密度が上述したさまざまな範囲内であるゲルマニウム結晶を、接触型ドーピング方法および/または外部ガス源供給ドーピング方法を利用することなく、繰り返し提供するとしてよい。
一部の実施例によると、VGF法を用いて結晶成長を実行するとしてよい。さらに、加熱部の電力は、最初に最下部の加熱ゾーンで低減してシードで結晶成長を開始させ、その後で中間領域で加熱部の電力を低減させるとしてよい。冷却速度は、約摂氏0.3度/時から約摂氏0.4度/時であった。この冷却速度を約70時間にわたって維持した。結晶化が主要成長領域に到達すると、適切なゾーン内の加熱部の電力を低減して、冷却速度を約摂氏0.4度/時から約摂氏0.7度/時とし、結晶化界面温度勾配は、約摂氏1.2度/cmから約摂氏3.0度/cmとし、両条件を約120時間にわたって維持した。結晶化が完了した後、室温に達するまで約摂氏20度/時から約摂氏40度/時の速度で炉を冷却した。
一例を挙げると、得られた結晶インゴットは、ボディの長さが125mmであり、完全な単結晶である。成長開始部分から成長終了部分まで、例えば、当該結晶のマイクロピット密度は低く、当該結晶の自由キャリア濃度は、約9×1017/cmから約4×1018/cmまたは約5×1018/cmであり(約9×1017/cmから約4.86×1018/cmの範囲を測定)、抵抗率が約7×10−3Ω.cmから2×10−3または3×10−3Ω.cmであり(約7.29×10−3Ω.cmから約2.78×10−3Ω.cmの範囲を測定)、移動度が約950cm/Vsから約450cm/Vs(955cm/Vsおよび467cm/Vsの値を測定)であるとしてよい。さらに、転位密度は約500/cm未満であるとしてよく、約200/cm未満であるとしてもよい。
上述したように、本開示に係る方法/プロセスによって製造された任意のゲルマニウム結晶基板(例えば、インゴット、ウェハ等)は具体的に本明細書に記載するイノベーションの範囲内であることに留意されたい。さらに、本開示に係る方法/プロセスによって製造された任意のゲルマニウム結晶基板を含む任意の製品(例えば、電子デバイスまたは光電子デバイス等)もまた、本明細書に記載するイノベーションに応じたものである。
本発明の特定の実施例に基づき本発明を上述したが、当業者におかれては、本発明の原理および意図から逸脱することなく当該実施例を変更し得ることに想到されるであろう。本発明の範囲は特許請求の範囲によって定義される。

Claims (67)

  1. 加熱源、複数の加熱ゾーン、アンプル、および、るつぼを備える結晶成長炉で単結晶ゲルマニウム(Ge)結晶を成長させる方法であって、
    Ge原材料を前記るつぼに投入する段階と、
    前記るつぼを前記アンプルに挿入する段階と、
    前記結晶成長炉のるつぼ支持部に絶縁材料を充填する段階と、
    前記アンプルを、前記るつぼ支持部を有する前記結晶成長炉に導入する段階と、
    前記るつぼにおいて前記Ge原材料を融解させて融液を生成する段階と、
    前記融液をシード結晶と接触させつつ前記融液の結晶化温度勾配を制御する段階と、
    前記結晶化温度勾配および/または前記るつぼを互いに相対的に移動させることによって、単結晶ゲルマニウムインゴットを形成する段階と、
    前記単結晶ゲルマニウムインゴットを冷却する段階と
    を備え、
    前記単結晶ゲルマニウムインゴットを形成する段階は、前記るつぼ支持部の前記絶縁材料を貫通して設けられた複数の水平放熱チャネル部によって、前記加熱源から前記アンプルのシードウェルに熱を制御可能に伝達する段階を有し、
    マイクロピット密度(MPD)が0.025/cmより大きく0.51/cmよりも小さい複数の単結晶ゲルマニウムインゴットを繰り返し製造する方法。
  2. マイクロピット密度が0.025/cmより大きく0.26/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項1に記載の方法。
  3. マイクロピット密度が0.025/cmより大きく0.13/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項1に記載の方法。
  4. マイクロピット密度が0.13/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項1に記載の方法。
  5. マイクロピット密度が0.05/cmより大きく0.26/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項1に記載の方法。
  6. 前記ゲルマニウム結晶にドーパントとしてヒ素(As)を追加する段階をさらに備える請求項1から5のいずれか1項に記載の方法。
  7. 前記ゲルマニウム結晶にドーパントとしてガリウム(Ga)を追加する段階をさらに備える請求項1から5のいずれか1項に記載の方法。
  8. 前記ゲルマニウム結晶にドーパントとしてアンチモン(Sb)を追加する段階をさらに備える請求項1から5のいずれか1項に記載の方法。
  9. 冷却速度を摂氏0.1度/時から摂氏10度/時とし、温度勾配を摂氏0.5度/cmから摂氏10度/cmとして、垂直温度勾配冷却(VGF)法を用いて、前記結晶を成長させる請求項1から8のいずれか1項に記載の方法。
  10. 冷却速度を摂氏0.1度/時から摂氏10度/時とし、温度勾配を摂氏0.5度/cmから摂氏10度/cmとして、垂直ブリッジマン(VB)法を用いて、前記結晶を成長させる請求項1から8のいずれか1項に記載の方法。
  11. 成長した前記結晶は、冷却プロセスによって、垂直温度勾配冷却(VGF)法および/または垂直ブリッジマン(VB)法によって、前記冷却プロセスの最初の5時間は冷却速度を摂氏3度/時とし、前記冷却プロセスの残りの期間については摂氏30度/時から摂氏45度/時として、冷却される請求項1から10のいずれか1項に記載の方法。
  12. 前記結晶成長炉は、移動可能な温度勾配を形成する構造を持ち、
    前記結晶成長炉にはコントローラが結合されており、前記コントローラは、前記移動可能な温度勾配を制御して、前記るつぼが前記結晶成長炉の内部にある場合に、前記るつぼにおいて結晶成長プロセスを実行する請求項1から11のいずれか1項に記載の方法。
  13. 前記移動可能な温度勾配は、前記複数の加熱ゾーンを制御することによって実現される請求項12に記載の方法。
  14. 前記移動可能な温度勾配は、複数の加熱源、前記るつぼ、前記アンプル、および/または、前記るつぼ支持部のうちつまたは複数を相対的に移動させることによって実現される請求項12に記載の方法。
  15. 固定加熱源を制御して、前記Ge原材料を融解させて単結晶化合物として形成し直すべく固定されている前記るつぼと相対的に前記結晶化温度勾配を移動させ、結晶成長が所定の長さに到達すると、前記るつぼにおいて、継続して前記Ge原材料を融解させて単結晶化合物として形成し直すべく固定されている前記るつぼと相対的に前記温度勾配を移動させる結晶成長プロセスを実行する請求項12に記載の方法。
  16. 固定加熱源をさらに備える請求項12に記載の方法。
  17. 前記結晶成長炉は、25mmから50mmのテーパー状結晶成長領域を持つるつぼを保持している請求項1から16のいずれか1項に記載の方法。
  18. 前記結晶成長炉は、テーパー状結晶成長領域を持つるつぼを保持し、
    前記結晶成長の所定の長さは、前記テーパー状結晶成長領域より上に110mmから200mmである請求項12または請求項17に記載の方法。
  19. 前記単結晶ゲルマニウムインゴットは、垂直成長プロセスによって成長する請求項1から18のいずれか1項に記載の方法。
  20. 前記垂直成長プロセスは、VGF法および/またはVB法の一方または両方である請求項19に記載の方法。
  21. ゲルマニウム結晶を成長させる方法であって、
    シード材料および原材料を持つるつぼを有するアンプルを、前記るつぼ内のゲルマニウムに対して移動可能な温度勾配を実現する結晶成長炉の内部に挿入する段階と、
    加熱源および前記るつぼによる結晶化温度勾配を互いに相対的に移動させて、前記原材料を融解させて単結晶化合物として形成し直す垂直温度勾配冷却(VGF)法を用いて結晶を成長させる段階と、
    結晶成長が所定の長さに到達すると、前記アンプルを、固定されている前記加熱源に対して相対的に移動させて、継続して前記原材料を融解させ単結晶化合物として形成し直しつつ、前記結晶成長炉の内部の前記アンプル上で垂直ブリッジマン法を用いて前記結晶を成長させる段階と、
    を備え、
    マイクロピット密度が0.025/cmより大きく0.51/cmよりも小さい複数の単結晶ゲルマニウムインゴットを繰り返し製造する方法。
  22. 前記移動可能な温度勾配は、複数の加熱ゾーンを用いて実現される請求項21に記載の方法。
  23. マイクロピット密度が0.025/cmより大きく0.26/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項21に記載の方法。
  24. マイクロピット密度が0.025/cmより大きく0.13/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項21に記載の方法。
  25. マイクロピット密度が0.13/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項21に記載の方法。
  26. マイクロピット密度が0.025/cmより大きく0.26/cmよりも小さい複数の単結晶ゲルマニウムインゴットを製造する請求項21に記載の方法。
  27. 前記ゲルマニウム結晶にドーパントとしてヒ素(As)を追加する段階をさらに備える
    請求項21から26のいずれか1項に記載の方法。
  28. 前記ゲルマニウム結晶にドーパントとしてガリウム(Ga)を追加する段階をさらに備える請求項21から26のいずれか1項に記載の方法。
  29. 前記ゲルマニウム結晶にドーパントとしてアンチモン(Sb)を追加する段階をさらに備える請求項21から26のいずれか1項に記載の方法。
  30. 冷却速度を摂氏0.1度/時から摂氏10度/時とし、温度勾配を摂氏0.5度/cmから摂氏10度/cmとして、前記垂直温度勾配冷却(VGF)法を用いて、前記結晶を成長させる請求項21から29のいずれか1項に記載の方法。
  31. 冷却速度を摂氏0.1度/時から摂氏10度/時とし、温度勾配を摂氏0.5度/cmから摂氏10度/cmとして、前記垂直ブリッジマン(VB)法を用いて、前記結晶を成長させる請求項21から29のいずれか1項に記載の方法。
  32. 前記結晶成長炉は、移動可能な前記温度勾配を形成する構造を持ち、
    前記結晶成長炉にはコントローラが結合されており、前記コントローラは、前記移動可能な温度勾配を制御して、前記るつぼが前記炉の内部にある場合に、前記るつぼにおいて結晶成長プロセスを実行する請求項21から31のいずれか1項に記載の方法。
  33. 前記移動可能な温度勾配は、複数の加熱ゾーンを制御することによって実現される請求項32に記載の方法。
  34. 前記移動可能な温度勾配は、複数の加熱源、前記るつぼ、前記アンプル、および/または、前記結晶成長炉のるつぼ支持部のうちつまたは複数を相対的に移動させることによって実現される請求項32に記載の方法。
  35. 固定加熱源を制御して、前記原材料を融解させて単結晶化合物として形成し直すべく固定されている前記るつぼと相対的に前記結晶化温度勾配を移動させ、結晶成長が所定の長さに到達すると、前記るつぼにおいて、継続して前記原材料を融解させて単結晶化合物として形成し直すべく固定されている前記るつぼと相対的に前記温度勾配を移動させる結晶成長プロセスを実行する請求項32に記載の方法。
  36. 固定加熱源をさらに備える請求項32に記載の方法。
  37. 前記結晶成長炉は、長さが25mmから50mmのテーパー状結晶成長領域を持つるつぼを保持している請求項21から36のいずれか1項に記載の方法。
  38. 前記結晶成長炉は、テーパー状結晶成長領域を持つるつぼを保持し、
    前記結晶成長の前記所定の長さは、前記テーパー状結晶成長領域より上に110mmから200mmである請求項31または請求項37に記載の方法。
  39. ゲルマニウム結晶を成長させる装置であって、
    加熱源および1または複数の加熱ゾーンを有する結晶成長炉と、
    投入容器、および、シードウェルを持つるつぼを有し、前記結晶成長炉に投入されるアンプルと、
    絶縁材料が充填され、当該絶縁材料を貫通して設けられた複数の水平放熱チャネル部を有し、前記アンプルを支持する移動可能なアンプル支持部と、
    前記結晶成長炉および前記アンプル支持部に結合されているコントローラと
    を備え、
    前記コントローラは、前記ゲルマニウム結晶を成長させるべく前記1または複数の加熱ゾーンおよび/または前記移動可能なアンプル支持部を制御し、
    マイクロピット密度(MPD)が0.025/cmより大きく0.51/cmよりも小さい単結晶ゲルマニウムインゴットを製造する、ゲルマニウム結晶を成長させる装置
  40. 前記単結晶ゲルマニウムインゴットは、マイクロピット密度が0.025/cmより大きく0.26/cmよりも小さい請求項39に記載の装置
  41. 前記単結晶ゲルマニウムインゴットは、マイクロピット密度が0.025/cmより大きく0.13/cmよりも小さい請求項39に記載の装置
  42. 前記単結晶ゲルマニウムインゴットは、マイクロピット密度が0.13/cmよりも小さい請求項39に記載の装置
  43. 前記単結晶ゲルマニウムインゴットは、マイクロピット密度が0.025/cmより大きく0.26/cmよりも小さい請求項39に記載の装置
  44. 前記ゲルマニウム結晶にドーパントとしてヒ素(As)を利用することによって前記単結晶ゲルマニウムインゴットが形成される請求項39から43のいずれか1項に記載の装置
  45. 前記ゲルマニウム結晶にドーパントとしてガリウム(Ga)を利用することによって前記単結晶ゲルマニウムインゴットが形成される請求項39から43のいずれか1項に記載の装置
  46. 前記ゲルマニウム結晶にドーパントとしてアンチモン(Sb)を利用することによって前記単結晶ゲルマニウムインゴットが形成される請求項39から43のいずれか1項に記載の装置
  47. 前記コントローラにより、冷却速度を摂氏0.1度/時から摂氏10度/時とし、温度勾配を摂氏0.5度/cmから摂氏10度/cmとして、垂直温度勾配冷却(VGF)法を用いて、前記ゲルマニウム結晶を成長させる請求項39から46のいずれか1項に記載の装置
  48. 前記コントローラにより、冷却速度を摂氏0.1度/時から摂氏10度/時とし、温度勾配を摂氏0.5度/cmから摂氏10度/cmとして、垂直ブリッジマン(VB)法を用いて、前記ゲルマニウム結晶を成長させる請求項39から46のいずれか1項に記載の装置
  49. 前記結晶成長炉は、移動可能な温度勾配を形成する構造を持ち、
    記コントローラは、前記移動可能な温度勾配を制御して、前記るつぼが前記結晶成長炉の内部にある場合に、前記るつぼにおいて結晶成長プロセスを実行する請求項39から48のいずれか1項に記載の装置
  50. 前記移動可能な温度勾配は、複数の加熱ゾーンを制御することによって実現される請求項49に記載の装置
  51. 前記移動可能な温度勾配は、複数の加熱源、前記るつぼ、アンプル、および/または、前記結晶成長炉のるつぼ支持部のうちつまたは複数を相対的に移動させることによって実現される請求項49に記載の装置
  52. 前記コントローラにより固定加熱源を制御して、ゲルマニウム原材料を融解させて単結晶化合物として形成し直すべく固定されている前記るつぼと相対的に晶化温度勾配を移動させ、結晶成長が所定の長さに到達すると、前記るつぼにおいて、継続して前記ゲルマニウム原材料を融解させて単結晶化合物として形成し直すべく固定されている前記るつぼと相対的に前記温度勾配を移動させる結晶成長プロセスを実行する請求項49に記載の装置。
  53. 固定加熱源をさらに備える請求項49に記載の装置
  54. 前記るつぼがテーパー状結晶成長領域を有し、
    前記結晶成長の所定の長さは、前記テーパー状結晶成長領域より上に25mmから50mmである請求項39から53のいずれか1項に記載の装置
  55. 前記るつぼが、テーパー状結晶成長領域を有し
    前記結晶成長の所定の長さは、前記テーパー状結晶成長領域より上に150mmから200mmである請求項39から53のいずれか1項に記載の装置
  56. 前記単結晶ゲルマニウムインゴットは、垂直成長プロセスによって成長する請求項39から55のいずれか1項に記載の装置
  57. 前記垂直成長プロセスは、VGF法および/またはVB法の一方または両方である請求項56に記載の装置
  58. ゲルマニウム結晶を成長させる装置であって、
    加熱源および1または複数の加熱ゾーンを有する結晶成長炉と、
    投入容器、および、シードウェルを持つるつぼを有し、前記結晶成長炉に投入されるアンプルと、
    アンプル支持部と、
    前記結晶成長炉および前記アンプル支持部に結合されているコントローラと
    を備え、
    前記コントローラは、前記加熱源の前記1または複数の加熱ゾーンおよび移動可能な前記アンプル支持部を制御して、前記るつぼが前記結晶成長炉の内部にある場合に前記るつぼにおいて垂直温度勾配冷却法を実行し、
    晶化温度勾配および/または前記るつぼを互いに相対的に移動させて、原材料を融解させた後、単結晶ゲルマニウムインゴットとして前記原材料を形成し直し、
    垂直成長プロセスを前記装置で実行した結果、前記装置は、マイクロピット密度が0.025/cmより大きく0.51/cmよりも小さい複数のゲルマニウムインゴットを繰り返し製造する装置。
  59. 前記装置は、少なくとも1つの加熱源を備えており、
    前記加熱源を制御して、前記原材料を融解させて単結晶化合物として形成し直すべく固定状態の前記るつぼと相対的に前記結晶化温度勾配を移動させ、結晶成長が所定の長さに到達すると、継続して前記原材料を融解させて単結晶化合物として形成し直すべく固定状態の前記るつぼと相対的に前記結晶化温度勾配を移動させる結晶成長プロセスを前記るつぼで実行する請求項58に記載の装置。
  60. 前記装置は、インゴット成長温度勾配が、インゴットの1センチメートルの成長に付き摂氏0.5度から摂氏10度となる複数のゲルマニウムインゴットを繰り返し製造する請求項58または59に記載の装置。
  61. 摂氏0.1度/時から摂氏10度/時の速度で、前記ゲルマニウムインゴットを冷却する請求項58から60のいずれか1項に記載の装置。
  62. 前記結晶成長炉は、5個から7個の加熱ゾーンを有する請求項58から61のいずれか1項に記載の装置。
  63. 前記結晶成長炉は、6個の加熱ゾーンを有する請求項62に記載の装置。
  64. 前記るつぼに供給するゲルマニウム原材料の量を増加させるべく、前記るつぼに融解させる投入用のゲルマニウム原材料を含む投入容器をさらに備える請求項58から63のいずれか1項に記載の装置。
  65. 前記るつぼは、前記結晶化温度勾配を移動させている間、固定されたままである請求項58から64のいずれか1項に記載の装置。
  66. 前記ゲルマニウムインゴットは、直径が50mmから150mmである請求項58から65のいずれか1項に記載の装置。
  67. 前記ゲルマニウムインゴットは、直径が150mmである請求項66に記載の装置。
JP2012544663A 2009-12-13 2010-12-13 マイクロピット密度(mpd)が低いゲルマニウムのインゴットを製造する方法、およびゲルマニウム結晶を成長させる装置 Active JP5671057B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/636,778 2009-12-13
US12/636,778 US8647433B2 (en) 2009-12-13 2009-12-13 Germanium ingots/wafers having low micro-pit density (MPD) as well as systems and methods for manufacturing same
PCT/US2010/059990 WO2011072278A2 (en) 2009-12-13 2010-12-13 Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same

Publications (2)

Publication Number Publication Date
JP2013513545A JP2013513545A (ja) 2013-04-22
JP5671057B2 true JP5671057B2 (ja) 2015-02-18

Family

ID=44143263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012544663A Active JP5671057B2 (ja) 2009-12-13 2010-12-13 マイクロピット密度(mpd)が低いゲルマニウムのインゴットを製造する方法、およびゲルマニウム結晶を成長させる装置

Country Status (5)

Country Link
US (1) US8647433B2 (ja)
EP (1) EP2510138B1 (ja)
JP (1) JP5671057B2 (ja)
CN (1) CN102356186B (ja)
WO (1) WO2011072278A2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9206525B2 (en) 2011-11-30 2015-12-08 General Electric Company Method for configuring a system to grow a crystal by coupling a heat transfer device comprising at least one elongate member beneath a crucible
CN104328483A (zh) * 2014-11-13 2015-02-04 吴晟 一种单晶生长方法及装置
RU2565701C1 (ru) * 2014-12-03 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Способ выращивания монокристаллов германия
US11393703B2 (en) * 2018-06-18 2022-07-19 Applied Materials, Inc. Apparatus and method for controlling a flow process material to a deposition chamber
CN113862772A (zh) * 2021-09-27 2021-12-31 云南北方光学科技有限公司 大尺寸红外光学用锗窗口材料的制备装置及用其制备大尺寸红外光学用锗窗口材料的方法
CN114481051A (zh) * 2022-01-11 2022-05-13 先导薄膜材料(广东)有限公司 一种锗靶材及其制备装置、制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898051A (en) * 1973-12-28 1975-08-05 Crystal Syst Crystal growing
JPH0489385A (ja) * 1990-07-30 1992-03-23 Agency Of Ind Science & Technol 化合物単結晶の育成方法
JPH06305877A (ja) * 1993-04-20 1994-11-01 Furukawa Electric Co Ltd:The 単結晶成長方法および単結晶成長装置
JP3523986B2 (ja) 1997-07-02 2004-04-26 シャープ株式会社 多結晶半導体の製造方法および製造装置
JP4135239B2 (ja) 1997-12-26 2008-08-20 住友電気工業株式会社 半導体結晶およびその製造方法ならびに製造装置
JP2004277266A (ja) * 2003-03-19 2004-10-07 Hitachi Cable Ltd 化合物半導体単結晶の製造方法
JP4830312B2 (ja) * 2005-02-22 2011-12-07 住友電気工業株式会社 化合物半導体単結晶とその製造方法
US7344596B2 (en) * 2005-08-25 2008-03-18 Crystal Systems, Inc. System and method for crystal growing
DE102006017621B4 (de) * 2006-04-12 2008-12-24 Schott Ag Vorrichtung und Verfahren zur Herstellung von multikristallinem Silizium
CN100513652C (zh) * 2007-05-24 2009-07-15 北京有色金属研究总院 降埚直拉法生长低位错锗单晶工艺及装置
DE102007026298A1 (de) * 2007-06-06 2008-12-11 Freiberger Compound Materials Gmbh Anordnung und Verfahren zur Herstellung eines Kristalls aus der Schmelze eines Rohmaterials sowie Einkristall
DE102007038851A1 (de) 2007-08-16 2009-02-19 Schott Ag Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern
CN101555620A (zh) * 2008-04-07 2009-10-14 Axt公司 晶体生长装置及方法
CN101736401B (zh) * 2008-11-10 2013-07-24 Axt公司 锗晶体生长的方法和装置

Also Published As

Publication number Publication date
JP2013513545A (ja) 2013-04-22
EP2510138A2 (en) 2012-10-17
CN102356186A (zh) 2012-02-15
US20110143091A1 (en) 2011-06-16
EP2510138B1 (en) 2019-09-04
WO2011072278A2 (en) 2011-06-16
WO2011072278A3 (en) 2011-11-03
EP2510138A4 (en) 2014-09-03
CN102356186B (zh) 2014-06-04
US8647433B2 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
US8231727B2 (en) Crystal growth apparatus and method
JP5497053B2 (ja) 単結晶ゲルマニウムの結晶成長システム、方法および基板
JP5671057B2 (ja) マイクロピット密度(mpd)が低いゲルマニウムのインゴットを製造する方法、およびゲルマニウム結晶を成長させる装置
KR101997565B1 (ko) 실리콘 단결정의 제조방법
JP4830312B2 (ja) 化合物半導体単結晶とその製造方法
JP2004534710A (ja) 炭素ドーピング、抵抗率制御、温度勾配制御を伴う、剛性サポートを備える半導体結晶を成長させるための方法および装置
CN107429421B (zh) 用于将挥发性掺杂剂引入熔体内的设备和方法
CN102272361A (zh) 单晶锗晶体生长的系统、方法和衬底
JP2003277197A (ja) CdTe単結晶およびCdTe多結晶並びにその製造方法
KR100942185B1 (ko) 실리콘 잉곳 성장방법
JP2015101498A (ja) シリコン単結晶の製造方法
JP5370394B2 (ja) 化合物半導体単結晶基板
JP2013507313A (ja) 結晶成長装置および結晶成長方法
JP4899608B2 (ja) 半導体単結晶の製造装置及び製造方法
JP2007284324A (ja) 半導体単結晶の製造装置及び製造方法
KR20130007354A (ko) 실리콘 결정 성장장치 및 그를 이용한 실리콘 결정 성장방법
JP2009190914A (ja) 半導体結晶製造方法
WO2010053586A2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
JP5029184B2 (ja) 半導体結晶の製造方法及びその製造装置
JP2010030847A (ja) 半導体単結晶の製造方法
TWI513865B (zh) 微坑密度(mpd)低之鍺鑄錠/晶圓及用於其製造之系統和方法
JP2010030868A (ja) 半導体単結晶の製造方法
CN118773718A (zh) 一种磷化铟单晶的制备方法和磷化铟单晶生长用阶梯式坩埚
JP2013193942A (ja) 単結晶製造装置およびそれを用いた単結晶製造方法
JP2004018319A (ja) 化合物半導体結晶成長装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140610

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140617

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140711

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5671057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250