JP5669248B2 - 多孔質足場材 - Google Patents
多孔質足場材 Download PDFInfo
- Publication number
- JP5669248B2 JP5669248B2 JP2007271048A JP2007271048A JP5669248B2 JP 5669248 B2 JP5669248 B2 JP 5669248B2 JP 2007271048 A JP2007271048 A JP 2007271048A JP 2007271048 A JP2007271048 A JP 2007271048A JP 5669248 B2 JP5669248 B2 JP 5669248B2
- Authority
- JP
- Japan
- Prior art keywords
- porous
- porous material
- hollow
- hours
- sodium chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Description
この基盤材料には、生体に影響を及ぼさない性質としての生体適合性や、新しい生体組織が形成すると共に分解・吸収される生体吸収性や、適度な機械強度などが要求されている。
従来、この基盤材料として、ポリ乳酸(PLA)や、ポリグリコール酸(PGA)や、乳酸とグリコール酸との共重合体(PLGA)、やコラーゲンなどの生体吸収性高分子の多孔質材料がよく用いられている。PLAやPGA、PLGAなどの生体吸収性合成高分子には、加水分解により吸収されやすい、場合によっては分解物が体内の代謝経路を通して吸収される、構造制御により吸収速度を制御し得る、強度が高く加工性に優れているため任意の形に加工しやすいなど、数々の利点があるが、多孔質材料の気孔率は低かった。一方、コラーゲンなどの生体吸収性天然高分子では、高い気孔率の多孔質材料を作製しやすいが、加工性と強度に劣るため、的確な形態を付与することが難しい。
発明2は、多孔質足場材であって、発明1に記載の多孔質足場材の製造方法によって製造され、欠損した生体部分に適合する形状に、当該箇所の細胞を培養する多孔質足場材であって、多孔質体からなる中空外郭の内部に当該外郭よりも気孔率が大きい多孔質体が充填されてなることを特徴とする。
発明2により、内部に充分な細胞密度を有する大きな気孔率の空間を持ちながら、培養或いは生体埋設時の圧力に耐えうる保形性を外郭に有さしめることが出来るようになった。
本発明の多孔質材料は、生体吸収性合成高分子が中空多孔質構造を有する多孔質材料、或いは中空に生体吸収性天然高分子、細胞成長因子、および細胞分化制御因子、或いはこれらの誘導体からなる群から選ばれる1種または2種以上で構成多孔質体を導入した複合多孔質材料である。中空体は生体吸収性合成高分子により構成され、一定の力学強度を持ち、中空体の形状を保持する。中空体の中にピラー(柱)を設けることも可能である。力学強度が高くて、気孔率が高い多孔質材料を形成する。さらに、その中空の部分に生体吸収性天然高分子、細胞成長因子、および細胞分化制御因子、或いはこれらの誘導体からなる群から選ばれる1種または2種以上で構成多孔質体を導入した複合多孔質材料を形成する。ピラーは多孔質材料の強度を高める効果とこの後導入する生体吸収性天然高分子、細胞成長因子、および細胞分化制御因子、或いはこれらの誘導体からなる群から選ばれる1種または2種以上で構成多孔質体の構造を安定する効果がある。中空部に形成した生体吸収性天然高分子、細胞成長因子、細胞分化制御因子或いはこれらの誘導体の1種類以上の多孔質体は細胞が接着するための足場として、細胞の接着を支持し、細胞の増殖、分化、細胞外マトリックス分泌、組織再生を促進する機能を持つ。
本発明の中空部に形成した多孔質体を構成する細胞成長因子と細胞分化制御因子は細胞の成長、分化を制御できるものであれば、何れも使用できるが、上皮細胞成長因子(EGF)、インシュリン、血小板由来増殖因子(PDGF)、繊維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)、血管内皮増殖因子(VEGF)、β型形質転換増殖因子(TGF−β)、骨形成因子(BMP)、デキサメタゾンなどから選ばれた1種以上のもの或いはこれらの誘導体があるが、本発明においてはこれらの何れも使用できる。
また、本発明においては、多孔質体の形状は生体複合材料の使用形態によって適宜定めればよいが、通常円柱体、三角体、四角柱、五角柱、六角柱、八角柱、12角柱、16角柱、好ましくは円柱体と六角柱である。多孔質材料の厚みは、生体複合材料の使用形態によって適宜定めればよいが、通常0.1〜100mm、好ましくは0.2〜50mmである。直径、或いは横幅、奥行きは、通常0.1〜100mm、好ましくは0.1〜50mmである。その気孔率は30〜99.5%で、最も望ましい空隙率は50〜99%である。
上記工程(1)においては、生体吸収性合成高分子を用いて、粒子溶出法(particulate−leaching)によって作製することができる。生体吸収性合成高分子を有機溶媒に溶かした溶液に多孔質形成材と混合し、上記の中空多孔質構造を有する多孔質材料の鋳型に詰め込み、乾燥させた。多孔質形成材と生体吸収性合成高分子の乾固物を鋳型から取り出し、多孔質化剤を除去することにより、上記工程(1)の中空多孔質構造を有する多孔質材料を作製できる。
上記の生体吸収性合成高分子としては、ポリ乳酸、ポリグリコール酸、乳酸とグリコール酸の共重合体、ポリ−ε−カプロラクトン、これらの共重合体などのポリエステル等を挙げることができる。本発明において好ましく使用される生体吸収性合成高分子はポリ乳酸、ポリグリコール酸、乳酸とグリコール酸の共重合体、ポリ−ε−カプロラクトン、これらの共重合体である。
上記の生体吸収性合成高分子を溶かす溶媒には、クロロホルム、四塩化炭素、ジオキサン、トリクロロ酢酸、ジメチルホルムアミド、塩化メチレン、酢酸エチル、アセトン、ヘキサフルオロイソプロパノール、ジメチルアセトアミド、ヘキサフルオロ−2−プロパノールなどが挙げられる。
上記の多孔質形成材として、ブトウ糖、砂糖などの水溶性の糖質や、塩化ナトリウム、塩化カリウム、酒石酸ナトリウム、クエン酸ナトリウム、炭酸アンモニウム、炭酸ナトリウム、重炭酸ナトリウムなどの塩の粒子、結晶を挙げられる。
上記の多孔質形成材を除去する方法として、純水に浸漬し、純水による洗浄法があげられる。
上記工程(2)においては、前記生体吸収性合成高分子の中空多孔質構造を有する多孔質材料を前記生体吸収性天然高分子、細胞成長因子、細胞分化制御因子またはこれらの誘導体の水溶液で処理する。種々の処理方法があるが、浸漬法が好ましく採用される。
浸漬法は、生体吸収性天然高分子、細胞成長因子、細胞分化制御因子またはこれらの誘導体の水溶液に生体吸収性合成高分子の中空多孔質構造を有する多孔質材料を浸漬することにより行われる。減圧脱気処理することのより、生体吸収性合成高分子の中空多孔質構造を有する多孔質材料の中を生体吸収性天然高分子、細胞成長因子、細胞分化制御因子またはこれらの誘導体の水溶液で満たす。
本発明で用いられる架橋剤としては、従来公知のものが何れも使用できる。好ましく使用される架橋剤は、グルタルアルデヒド、ホルムアルデヒド、パラホルムアルデヒドのようなアルデヒド類、特にグルタルアルデヒドである。
本発明の架橋化は、前記したように、上記の架橋剤をガス状にして用いるのが好ましい。
具体的には、上記生体吸収性天然高分子、細胞成長因子、細胞分化制御因子またはこれらの誘導体を架橋するに際し、一定温度で一定濃度の架橋剤又はその水溶液で飽和した架橋剤蒸気の雰囲気下で一定時間架橋を行う。
架橋温度は、生体吸収性合成高分子の中空多孔質構造を有する多孔質材料が溶解せず、且つ架橋剤の蒸気が形成できる範囲内で選定すればよく、通常、20℃〜50℃に設定される。
架橋時間は、架橋剤の種類や架橋温度にもよるが、上記の中空多孔質構造を有する多孔質材料の親水性や生体吸収性を阻害せず、かつ生体移植時にこのものが溶解しないような架橋固定化が行われる範囲に設定するのが望ましい。好ましい架橋時間は10分から12時間程度である。
破砕した塩化ナトリウムの結晶から、目開き90μm篩と150μmの篩を用いて、直径90μm〜150μmの粒子をふるい分けた。一方、ポリ−ε−カプロラクトン1gを7mLのクロロホルムに溶かし、14.3(w/v)%の溶液を調製した。
図3のように、ポリテトラフルオロエチレン製加工物の円形の溝にポリ過フルオロアルコキシ製のチューブを装着し、鋳型を組み立てた。この鋳型を生体吸収性合成高分子からなる中空多孔質構造体の作製に用いた。まず、PCLのクロロホルム溶液をガラス試験管に入れ、ここに直径が90μm〜150μmの塩化ナトリウムの粒子9g(PCLの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPCLからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径90μm〜150μmを有するPCLの中空多孔質構造材料を得た。得られたPCL多孔質材料の外観写真を図4に示す。
実施例1で作製した孔径90μm〜150μmのPCL多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PCL多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPCL多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PCL多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PCL多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図5に示す。
破砕した塩化ナトリウムの結晶から、目開き150μm篩と250μmの篩を用いて、直径150μm〜250μmの粒子をふるい分けた。一方、ポリ−ε−カプロラクトン1gを7mLのクロロホルムに溶かし、14.3(w/v)%の溶液を調製した。
図3の鋳型を多孔質構造体の作製に用いた。まず、PCLのクロロホルム溶液をガラス試験管に入れ、ここに直径が150μm〜250μmの塩化ナトリウムの粒子9g(PCLの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPCLからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径150μm〜250μmを有するPCLの中空多孔質構造材料を得た。得られたPCL多孔質材料の外観写真を図6に示す。
実施例3で作製した孔径150μm〜250μmのPCL多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PCL多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPCL多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PCL多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PCL多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図7に示す。
破砕した塩化ナトリウムの結晶から、目開き250μm篩と355μmの篩を用いて、直径250μm〜355μmの粒子をふるい分けた。一方、ポリ−ε−カプロラクトン1gを7mLのクロロホルムに溶かし、14.3(w/v)%の溶液を調製した。
図3の鋳型を多孔質構造体の作製に用いた。まず、PCLのクロロホルム溶液をガラス試験管に入れ、ここに直径が250μm〜355μmの塩化ナトリウムの粒子9g(PCLの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPCLからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径250μm〜355μmを有するPCLの中空多孔質構造材料を得た。得られたPCL多孔質材料の外観写真を図8に示す。
実施例5で作製した孔径250μm〜355μmのPCL多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PCL多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPCL多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PCL多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PCL多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図9に示す。
破砕した塩化ナトリウムの結晶から、目開き90μm篩と150μmの篩を用いて、直径90μm〜150μmの粒子をふるい分けた。一方、乳酸とグリコール酸の共重合体1gを4mLのクロロホルムに溶かし、25.0(w/v)%の溶液を調製した。
図3のように、ポリテトラフルオロエチレン製加工物の円形の溝にポリ過フルオロアルコキシ製のチューブを装着し、鋳型を組み立てた。この鋳型を生体吸収性合成高分子からなる中空多孔質構造体の作製に用いた。まず、PLGAのクロロホルム溶液をガラス試験管に入れ、ここに直径が90μm〜150μmの塩化ナトリウムの粒子9g(PLGAの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPLGAからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径90μm〜150μmを有するPLGAの中空多孔質構造材料を得た。得られたPLGA多孔質材料の外観写真を図10に示す。
実施例7で作製した孔径90μm〜150μmのPLGA多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PLGA多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPLGA多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PLGA多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PLGA多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図11に示す。
破砕した塩化ナトリウムの結晶から、目開き150μm篩と250μmの篩を用いて、直径150μm〜250μmの粒子をふるい分けた。一方、乳酸とグリコール酸の共重合体1gを4mLのクロロホルムに溶かし、25.0(w/v)%の溶液を調製した。
図3の鋳型を多孔質構造体の作製に用いた。まず、PLGAのクロロホルム溶液をガラス試験管に入れ、ここに直径が150μm〜250μmの塩化ナトリウムの粒子9g(PLGAの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPLGAからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径150μm〜250μmを有するPLGAの中空多孔質構造材料を得た。得られたPLGA多孔質材料の外観写真を図12に示す。
実施例9で作製した孔径150μm〜250μmのPLGA多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PLGA多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPLGA多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PLGA多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PLGA多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図13に示す。
破砕した塩化ナトリウムの結晶から、目開き250μm篩と355μmの篩を用いて、直径250μm〜355μmの粒子をふるい分けた。一方、乳酸とグリコール酸の共重合体1gを4mLのクロロホルムに溶かし、25.0(w/v)%の溶液を調製した。
図3の鋳型を多孔質構造体の作製に用いた。まず、PLGAのクロロホルム溶液をガラス試験管に入れ、ここに直径が250μm〜355μmの塩化ナトリウムの粒子9g(PLGAの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPLGAからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径250μm〜355μmを有するPLGAの中空多孔質構造材料を得た。得られたPLGA多孔質材料の外観写真を図14に示す。
実施例11で作製した孔径250μm〜355μmのPLGA多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PLGA多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPLGA多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PLGA多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PLGA多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図15に示す。
破砕した塩化ナトリウムの結晶から、目開き90μm篩と150μmの篩を用いて、直径90μm〜150μmの粒子をふるい分けた。一方、ポリL−乳酸1gを5mLのクロロホルムに溶かし、20.0(w/v)%の溶液を調製した。
図3のように、ポリテトラフルオロエチレン製加工物の円形の溝にポリ過フルオロアルコキシ製のチューブを装着し、鋳型を組み立てた。この鋳型を生体吸収性合成高分子からなる中空多孔質構造体の作製に用いた。まず、PLLAのクロロホルム溶液をガラス試験管に入れ、ここに直径が90μm〜150μmの塩化ナトリウムの粒子9g(PLLAの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPLLAからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径90μm〜150μmを有するPLLAの中空多孔質構造材料を得た。得られたPLLA多孔質材料の外観写真を図16に示す。
実施例13で作製した孔径90μm〜150μmのPLLA多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PLLA多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPLLA多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PLLA多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PLLA多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図17に示す。
破砕した塩化ナトリウムの結晶から、目開き150μm篩と250μmの篩を用いて、直径150μm〜250μmの粒子をふるい分けた。一方、ポリL−乳酸1gを5mLのクロロホルムに溶かし、20.0(w/v)%の溶液を調製した。
図3の鋳型を多孔質構造体の作製に用いた。まず、PLLAのクロロホルム溶液をガラス試験管に入れ、ここに直径が150μm〜250μmの塩化ナトリウムの粒子9g(PLLAの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPLLAからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径150μm〜250μmを有するPLLAの中空多孔質構造材料を得た。得られたPLLA多孔質材料の外観写真を図18に示す。
実施例15で作製した孔径150μm〜250μmのPLLA多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PLLA多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPLLA多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PLLA多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PLLA多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図19に示す。
破砕した塩化ナトリウムの結晶から、目開き250μm篩と355μmの篩を用いて、直径250μm〜355μmの粒子をふるい分けた。一方、ポリL−乳酸1gを5mLのクロロホルムに溶かし、20.0(w/v)%の溶液を調製した。
図3の鋳型を多孔質構造体の作製に用いた。まず、PLLAのクロロホルム溶液をガラス試験管に入れ、ここに直径が250μm〜355μmの塩化ナトリウムの粒子9g(PLLAの量の9倍)を加えてよく混合した。この混合物を図3の鋳型の隙間に充填し、充填面を平らにした。これを大気中で4日間乾燥させ、さらに室温で1日間真空乾燥した。乾燥後、塩化ナトリウムとPLLAからなる乾固物を鋳型から外し、蒸留水に浸漬することによって、塩化ナトリウムを溶出洗浄した。蒸留水を2時間ごとに交換し、この操作を4日間行った。このようにして、孔径250μm〜355μmを有するPLLAの中空多孔質構造材料を得た。得られたPLLA多孔質材料の外観写真を図20に示す。
実施例17で作製した孔径250μm〜355μmのPLLA多孔質材料を0.3wt%のウシI型アテロコラーゲン酸性水溶液(pH=3.0)に浸漬し、減圧することにより、PLLA多孔質材料の中空部及びその細孔内をI型アテロコラーゲン水溶液で満たした。次に、このPLLA多孔質材料を−30℃で4時間凍結した。凍結後、減圧下(0.2 Torr)で48時間凍結乾燥し、PLLA多孔質材料の中空部および細孔内にコラーゲンスポンジを形成した。
作製した材料を25wt%のグルタルアルデヒド水溶液で飽和したグルタルアルデヒド蒸気下で、37℃、4時間架橋処理した後、蒸留水で5回洗浄した。さらに、0.1Mのグリシン水溶液で未反応アルデヒド基のブロッキング処理を24時間行った後、蒸留水で20回洗浄した。これを−30℃で4時間凍結し、48時間凍結乾燥することにより、PLLA多孔質材料の中空部にウシI型コラーゲンスポンジを形成させた複合多孔質材料1を調製した。得られた複合多孔質材料の外観写真を図21に示す。
以下、前記実施例の要部を表1にまとめて示す
Claims (2)
- 生体吸収性合成高分子に多孔質形成材が混練されたペースト状材を中空の所望形状に形成し、次に、前記多孔質形成材を除去して、多孔質の中空外郭を形成する工程と、この外郭に、多孔質材料を分散させた水溶液を充填し、これを凍結乾燥・固化して多孔質化する工程と、を有し、前記生体吸収性合成高分子がポリ−ε−カプロラクトン、乳酸とグリコール酸の共重合体又はポリL−乳酸のいずれかであり、前記多孔質形成材が塩化ナトリウムであり、前記多孔質材料がコラーゲンであり、前記生体吸収性合成高分子/前記多孔質形成材の重量比を1/9とし、前記多孔質材料/前記水溶液の重量比を0.3/100とすることを特徴とする、多孔質体からなる中空外郭の内部に当該外郭よりも気孔率が大きい多孔質体が充填されてなる多孔質足場材の製造方法。
- 請求項1に記載の多孔質足場材の製造方法によって製造され、欠損した生体部分に適合する形状に、当該箇所の細胞を培養する多孔質足場材であって、多孔質体からなる中空外郭の内部に当該外郭よりも気孔率が大きい多孔質体が充填されてなることを特徴とする多孔質足場材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271048A JP5669248B2 (ja) | 2007-10-18 | 2007-10-18 | 多孔質足場材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271048A JP5669248B2 (ja) | 2007-10-18 | 2007-10-18 | 多孔質足場材 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009095522A JP2009095522A (ja) | 2009-05-07 |
JP5669248B2 true JP5669248B2 (ja) | 2015-02-12 |
Family
ID=40699091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007271048A Active JP5669248B2 (ja) | 2007-10-18 | 2007-10-18 | 多孔質足場材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5669248B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5911006B2 (ja) * | 2011-03-09 | 2016-04-27 | セーレン株式会社 | 再生医療用基材シート |
JP7132619B2 (ja) * | 2016-05-02 | 2022-09-07 | マーケット ユニバーシティー | 強化骨足場材料 |
JPWO2021210639A1 (ja) * | 2020-04-17 | 2021-10-21 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8673640B2 (en) * | 2005-09-20 | 2014-03-18 | National Institute For Materials Science | Porous scaffold, method of producing the same and method of using the porous scaffold |
JP2007236802A (ja) * | 2006-03-10 | 2007-09-20 | Takiron Co Ltd | インプラント傾斜材料 |
GB2440721A (en) * | 2006-08-11 | 2008-02-13 | Univ Cambridge Tech | Composite biomaterial formed by cooling a fluid composition on a porous solid and removing solidified crystals of the liquid carrier |
JP2008272453A (ja) * | 2007-03-30 | 2008-11-13 | Jms Co Ltd | 多孔質体の製造方法およびその用途 |
KR100932688B1 (ko) * | 2007-07-06 | 2009-12-21 | 한국과학기술연구원 | 인공혈관용 이중막 구조의 튜브형 다공성 스캐폴드 및 그의제조방법 |
-
2007
- 2007-10-18 JP JP2007271048A patent/JP5669248B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009095522A (ja) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qutachi et al. | Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature | |
JP5881669B2 (ja) | コラーゲン/ヒドロキシアパタイト複合骨格及びその生成方法 | |
Hu et al. | Preparation and cell affinity of microtubular orientation-structured PLGA (70/30) blood vessel scaffold | |
EP1273312B1 (en) | Implant for cartilage tissue regeneration | |
Eisenbarth | Biomaterials for tissue engineering | |
Sadiasa et al. | In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications | |
JP5406915B2 (ja) | 生体適合性インプラント | |
Zhan et al. | The review on electrospun gelatin fiber scaffold | |
DK2793962T3 (en) | PROCEDURE FOR MODIFYING THE SURFACE MORPHOLOGY OF A MEDICAL DEVICE | |
KR101617434B1 (ko) | 생분해성 생체고분자를 이용한 다층구조의 연골지지체 제조방법 | |
Park et al. | Development and characterization of reinforced poly (L-lactide) scaffolds for bone tissue engineering | |
JP6118905B2 (ja) | 心臓修復パッチの新しいスキャフォールド | |
JP5769159B2 (ja) | 複合多孔質足場材 | |
Bölgen et al. | Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects | |
US20060147486A1 (en) | Biodegradable dual porous scaffold wrapped with semi-permeable membrane and tissue cell culture using thereof | |
US20120301514A1 (en) | Development of bioactive electrospun coatings for biomedical applications | |
Limongi et al. | Laboratory injection molder for the fabrication of polymeric porous poly-epsilon-caprolactone scaffolds for preliminary mesenchymal stem cells tissue engineering applications | |
JP5669248B2 (ja) | 多孔質足場材 | |
Rigogliusoa et al. | Use of modified 3D scaffolds to improve cell adhesion and drive desired cell responses | |
Wang et al. | Polylactic acid scaffold with directional porous structure for large-segment bone repair | |
Gravel et al. | Use of natural coralline biomaterials as reinforcing and gas-forming agent for developing novel hybrid biomatrices: microarchitectural and mechanical studies | |
JP5205673B2 (ja) | コラーゲンスポンジ及び製造方法 | |
JP6918326B2 (ja) | デキサメタゾンを含有する複合多孔質足場材料およびその製造方法 | |
JP5339323B2 (ja) | 多孔質体とその製造方法 | |
JP2005213449A (ja) | ゼラチンスポンジ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130509 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130603 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20130628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5669248 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |