JP5662920B2 - High strength steel plate with excellent delayed fracture resistance and method for producing the same - Google Patents

High strength steel plate with excellent delayed fracture resistance and method for producing the same Download PDF

Info

Publication number
JP5662920B2
JP5662920B2 JP2011247713A JP2011247713A JP5662920B2 JP 5662920 B2 JP5662920 B2 JP 5662920B2 JP 2011247713 A JP2011247713 A JP 2011247713A JP 2011247713 A JP2011247713 A JP 2011247713A JP 5662920 B2 JP5662920 B2 JP 5662920B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
delayed fracture
formula
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011247713A
Other languages
Japanese (ja)
Other versions
JP2013104081A (en
Inventor
亮介 大友
亮介 大友
長尾 護
護 長尾
琢哉 高知
琢哉 高知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011247713A priority Critical patent/JP5662920B2/en
Publication of JP2013104081A publication Critical patent/JP2013104081A/en
Application granted granted Critical
Publication of JP5662920B2 publication Critical patent/JP5662920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、耐遅れ破壊性に優れた高強度鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength steel plate excellent in delayed fracture resistance and a method for producing the same.

近年、自動車の軽量化・衝突安全性の両立のため、自動車構造材・補強材用の鋼板は高強度化され、実用化が進んでいる。しかし鋼板の高強度化に伴い、水素の侵入等を起因とする遅れ破壊発生の懸念が高まるといった問題がある。この遅れ破壊に影響を与える鋼材因子として、組織、材料硬さ、結晶粒度、各種合金元素の影響等が認められているものの、その発生防止手段が確立されているわけではなく、種々の観点から、耐遅れ破壊性の向上が試みられている。例えば特許文献1には、種々の元素の酸化物、硫化物、窒化物、複合晶出物および複合析出物が、水素のトラップサイトになり得るよう形態制御することが提案されている。しかし、より優れた耐遅れ破壊性を達成させるには、上記水素のトラップサイトとなりうる析出物以外も考慮して、更に検討を行うことが必要であると考える。   In recent years, steel sheets for automobile structural materials and reinforcing materials have been strengthened and put into practical use in order to achieve both weight reduction and collision safety of automobiles. However, as the strength of steel sheets increases, there is a problem that concerns about the occurrence of delayed fracture due to hydrogen intrusion and the like increase. Although the effects of the structure, material hardness, crystal grain size, various alloy elements, etc. are recognized as steel factors affecting this delayed fracture, its occurrence prevention means are not established, from various viewpoints Attempts have been made to improve delayed fracture resistance. For example, Patent Document 1 proposes to control the form so that oxides, sulfides, nitrides, composite crystallized substances, and composite precipitates of various elements can serve as hydrogen trap sites. However, in order to achieve better delayed fracture resistance, it is considered that further investigation is necessary in consideration of the precipitate other than the hydrogen trap site.

特許第4167587号公報Japanese Patent No. 4167587

本発明は上記の様な事情に着目してなされたものであって、その目的は、従来の鋼板よりも耐遅れ破壊性に優れた高強度鋼板を実現することにある。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to realize a high-strength steel sheet that is more excellent in delayed fracture resistance than conventional steel sheets.

上記課題を解決し得た本発明の耐遅れ破壊性に優れた高強度鋼板は、化学成分組成が、
C:0.10〜0.40%(質量%の意味。化学成分組成について以下同じ)、
Si:0.6〜3.0%、
Mn:1.0〜3.5%、
Al:3%以下(0%を含まない)、
P:0.15%以下(0%を含まない)、および
S:0.02%以下(0%を含まない)
を満たし、残部が鉄及び不可避不純物からなり、
全組織に占めるマルテンサイトが95面積%以上であり、かつ、
鋼板表面から板厚方向に深さ10μmの位置から板厚の1/4深さの位置までの組織が下記式(1)を満たし、かつ引張強度が1180MPa以上であるところに特徴を有する。
6.7×10−3×Dγ+7.4×10−9×ρ1/2 −0.073×Nc+0.092×p ≦ 0.570…(1)
[式(1)において、
Dγ:旧γ粒径(μm)
ρ:転位密度(m−2
Nc:マルテンサイト中の固溶C濃度(質量%)
p:旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合(但し、0≦p≦1)
を示す。]
The high-strength steel sheet excellent in delayed fracture resistance of the present invention that has solved the above problems has a chemical component composition,
C: 0.10 to 0.40% (meaning mass%. The same applies to the chemical composition).
Si: 0.6-3.0%
Mn: 1.0 to 3.5%
Al: 3% or less (excluding 0%),
P: 0.15% or less (not including 0%), and S: 0.02% or less (not including 0%)
The balance consists of iron and inevitable impurities,
95% or more of martensite in the entire organization, and
It is characterized in that the structure from the position of 10 μm depth to the position of ¼ depth of the sheet thickness in the sheet thickness direction from the steel sheet surface satisfies the following formula (1) and the tensile strength is 1180 MPa or more.
6.7 × 10 −3 × Dγ + 7.4 × 10 −9 × ρ 1/2 −0.073 × Nc + 0.092 × p 2 ≦ 0.570 (1)
[In Formula (1),
Dγ: Old γ particle size (μm)
ρ: Dislocation density (m −2 )
Nc: concentration of solid solution C in martensite (mass%)
p: ratio of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary (where 0 ≦ p ≦ 1)
Indicates. ]

前記高強度鋼板として、更に、B:0.0001〜0.02%、Ti:0.005〜0.3%、およびN:0.01%以下(0%を含まない)を満たし、かつ下記式(7)を満たすものが挙げられる。
Ti>3.4×N …(7)
[式(7)において、Tiは鋼中のTi含有量(質量%)を示し、Nは鋼中のN含有量(質量%)を示す]
As the high-strength steel plate, B: 0.0001 to 0.02%, Ti: 0.005 to 0.3%, and N: 0.01% or less (not including 0%) are satisfied, and the following The thing which satisfy | fills Formula (7) is mentioned.
Ti> 3.4 × N (7)
[In formula (7), Ti represents the Ti content (mass%) in the steel, and N represents the N content (mass%) in the steel]

前記高強度鋼板として、更に、Nb:0.005〜0.3%、Cr:0.003〜2%、およびMo:0.01〜1.0%よりなる群から選択される1種以上の元素を含むものが挙げられる。   As the high-strength steel plate, one or more selected from the group consisting of Nb: 0.005 to 0.3%, Cr: 0.003 to 2%, and Mo: 0.01 to 1.0%. The thing containing an element is mentioned.

前記高強度鋼板として、更に、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Co:0.005〜0.2%、およびV:0.003〜1%よりなる群から選択される1種以上の元素を含むものが挙げられる。   As the high-strength steel plate, Cu: 0.01 to 0.3%, Ni: 0.01 to 0.3%, Co: 0.005 to 0.2%, and V: 0.003 to 1% And those containing one or more elements selected from the group consisting of:

前記高強度鋼板として、更に、Ca:0.0005〜0.005%、およびMg:0.0005〜0.01%よりなる群から選択される1種以上の元素を含むものが挙げられる。   Examples of the high-strength steel sheet include those containing one or more elements selected from the group consisting of Ca: 0.0005 to 0.005% and Mg: 0.0005 to 0.01%.

本発明は、上記耐遅れ破壊性に優れた高強度鋼板の製造方法も含むものであって、該方法は、圧下率5%以上で冷間圧延を行い、かつ、得られた冷延鋼板を用いて、下記の条件(A)〜(C)の全てを満たすように熱処理を行うと共に、熱間圧延後の巻き取り工程以降は、鋼板温度が400℃以上である場合、雰囲気の酸素分圧を1200ppm以下とするところに特徴を有する。   The present invention also includes a method for producing a high-strength steel sheet having excellent delayed fracture resistance, which includes performing cold rolling at a reduction rate of 5% or more, and obtaining the obtained cold-rolled steel sheet. And performing heat treatment so as to satisfy all of the following conditions (A) to (C), and after the coiling step after hot rolling, when the steel plate temperature is 400 ° C. or higher, the oxygen partial pressure of the atmosphere Is characterized in that it is 1200 ppm or less.

(A)焼き入れ前の加熱を、加熱温度T1(但し、T1は1225K以下)と加熱時間t1が下記式(4)を満たすように行う。
5.3×10×exp(−1.38×10/(8.31×T1))×t10.2≦16 …(4)
[式(4)において、
T1:加熱温度(K)、
t1:加熱時間(秒)を示す]
(B)上記加熱後、加熱温度T1から300℃以下まで冷却する。このとき、加熱温度T1から300℃までを50℃/sec以上で冷却して焼き入れる。
(C)焼き戻しを、焼戻温度T2(但し、T2は748K以上823K以下)、焼戻時間t2および鋼板炭素濃度Cが下記式(6)を満たすように行う。
T2×(ln(t2/3600)+21.3−5.8×C)≦12500 …(6)
[式(6)において、
T2:焼戻温度(K)、
t2:焼戻時間(秒)(但し、t2は2秒以上400秒以下)、
C:鋼板炭素濃度(母材の炭素濃度)(質量%)を示す。]
(A) Heating before quenching is performed so that the heating temperature T1 (where T1 is 1225K or less) and the heating time t1 satisfy the following formula (4).
5.3 × 10 6 × exp (−1.38 × 10 5 /(8.31×T1))×t1 0.2 ≦ 16 (4)
[In Formula (4),
T1: heating temperature (K),
t1: Indicates heating time (seconds)]
(B) After the said heating, it cools to 300 degrees C or less from heating temperature T1. At this time, the heating temperature T1 to 300 ° C. is cooled at 50 ° C./sec or more and quenched.
(C) Tempering is performed so that the tempering temperature T2 (where T2 is 748K or more and 823K or less), the tempering time t2, and the steel plate carbon concentration C satisfy the following formula (6).
T2 × (ln (t2 / 3600) + 21.3−5.8 × C) ≦ 12500 (6)
[In Formula (6),
T2: Tempering temperature (K),
t2: Tempering time (second) (however, t2 is 2 seconds or more and 400 seconds or less),
C: Steel plate carbon concentration (carbon concentration of base material) (% by mass). ]

また本発明は、上記耐遅れ破壊性に優れた高強度鋼板の別の製造方法も含むものであって、該方法は、圧下率5%以上で冷間圧延を行い、かつ、得られた冷延鋼板を用いて、下記条件(A)〜(C)の全てを満たすように熱処理を行うと共に、下記焼き戻し後に、鋼板表層部に形成されたSi欠乏層を、酸溶解により除去するかまたは研削除去するところに特徴を有する。   The present invention also includes another method for producing the high-strength steel sheet having excellent delayed fracture resistance, and the method performs cold rolling at a rolling reduction of 5% or more, and obtains the obtained cold Using a rolled steel sheet, heat treatment is performed so as to satisfy all of the following conditions (A) to (C), and after the following tempering, the Si deficient layer formed in the steel sheet surface layer part is removed by acid dissolution or It is characterized by being removed by grinding.

(A)焼き入れ前の加熱を、加熱温度T1(但し、T1は1225K以下)と加熱時間t1が下記式(4)を満たすように行う。
5.3×10×exp(−1.38×10/(8.31×T1))×t10.2≦16 …(4)
[式(4)において、
T1:加熱温度(K)、
t1:加熱時間(秒)を示す]
(B)上記加熱後、加熱温度T1から300℃以下まで冷却する。このとき、加熱温度T1から300℃までを50℃/sec以上で冷却して焼き入れる。
(C)焼き戻しを、焼戻温度T2(但し、T2は748K以上823K以下)、焼戻時間t2および鋼板炭素濃度Cが下記式(6)を満たすように行う。
T2×(ln(t2/3600)+21.3−5.8×C)≦12500 …(6)
[式(6)において、
T2:焼戻温度(K)、
t2:焼戻時間(秒)(但し、t2は2秒以上400秒以下)、
C:鋼板炭素濃度(母材の炭素濃度)(質量%)を示す。]
尚、上記Dγ、ρ、Ncおよびpは、実施例に記載の方法で求められるものである。
(A) Heating before quenching is performed so that the heating temperature T1 (where T1 is 1225K or less) and the heating time t1 satisfy the following formula (4).
5.3 × 10 6 × exp (−1.38 × 10 5 /(8.31×T1))×t1 0.2 ≦ 16 (4)
[In Formula (4),
T1: heating temperature (K),
t1: Indicates heating time (seconds)]
(B) After the said heating, it cools to 300 degrees C or less from heating temperature T1. At this time, the heating temperature T1 to 300 ° C. is cooled at 50 ° C./sec or more and quenched.
(C) Tempering is performed so that the tempering temperature T2 (where T2 is 748K or more and 823K or less), the tempering time t2, and the steel plate carbon concentration C satisfy the following formula (6).
T2 × (ln (t2 / 3600) + 21.3−5.8 × C) ≦ 12500 (6)
[In Formula (6),
T2: Tempering temperature (K),
t2: Tempering time (second) (however, t2 is 2 seconds or more and 400 seconds or less),
C: Steel plate carbon concentration (carbon concentration of base material) (% by mass). ]
In addition, said D (gamma), (rho), Nc, and p are calculated | required by the method as described in an Example.

本発明の鋼板は、引張強度が1180MPa以上と高強度であっても、十分に優れた耐遅れ破壊性を発揮する。よって、自動車の構造材や補強材として好適に用いることができる。   The steel sheet of the present invention exhibits sufficiently excellent delayed fracture resistance even when the tensile strength is as high as 1180 MPa or higher. Therefore, it can be suitably used as a structural material or a reinforcing material for automobiles.

本発明者らは、前記課題を解決するため、高強度(引張強度が1180MPa以上)を達成することのできるマルテンサイト主体(面積率で95%以上)の鋼板を対象に、種々の組織形態と耐遅れ破壊性との関係について鋭意研究を行った。その結果、耐遅れ破壊性に影響を及ぼす組織因子として、「旧オーステナイト粒径」(以下「旧γ粒径」または「Dγ」と示すことがある)、「転位密度」、「マルテンサイト中の固溶C濃度」、および「旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合」(以下「p」と示すことがある)」の4つが存在することを把握し、これらの因子と耐遅れ破壊性との関係について、更に研究を行った。   In order to solve the above-mentioned problems, the inventors of the present invention have various structural forms for martensite-based steel sheets (area ratio of 95% or more) that can achieve high strength (tensile strength of 1180 MPa or more). We have conducted intensive research on the relationship with delayed fracture resistance. As a result, as structural factors affecting delayed fracture resistance, “old austenite particle size” (hereinafter sometimes referred to as “old γ particle size” or “Dγ”), “dislocation density”, “martensite” It is understood that there are four types, namely, “Solubility C concentration” and “Ratio of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary” (hereinafter, sometimes referred to as “p”). Further research was conducted on the relationship between these factors and delayed fracture resistance.

その結果、上記4因子と耐遅れ破壊性の関係について、傾向は下記に示す通りであることを把握した。また、それぞれの因子を独立に変動させ制御して耐遅れ破壊性を高めることは困難であったが、これらの4因子を含む、後述の式(1)を満たすようにすれば、耐遅れ破壊性が向上することを見いだした。   As a result, regarding the relationship between the above four factors and delayed fracture resistance, it was understood that the tendency was as shown below. Moreover, although it was difficult to increase the resistance to delayed fracture by independently varying and controlling each factor, if the following formula (1) including these four factors is satisfied, delayed fracture resistance I found that sex improved.

尚、本発明では、後述の式(1)の制御範囲を、鋼板の表層(具体的には、鋼板表面から板厚方向に深さ10μmの位置)から、板厚の1/4までの範囲とする。その理由は次の通りである。即ち、遅れ破壊を招く応力は、特に加工された鋼部材の表面近傍で大きな値となる。本発明では、(加工前の)鋼板の表層から板厚の1/4深さまでの組織を、耐遅れ破壊性に優れたものとすることによって、該鋼板に加工を施した場合であっても、優れた耐遅れ破壊性を維持することができる。   In the present invention, the control range of the following formula (1) is a range from the surface layer of the steel plate (specifically, a position having a depth of 10 μm in the plate thickness direction from the steel plate surface) to ¼ of the plate thickness. And The reason is as follows. That is, the stress that causes delayed fracture takes a large value particularly near the surface of the processed steel member. In the present invention, even when the steel sheet is processed by making the structure from the surface layer of the steel sheet (before processing) to ¼ depth of the plate thickness excellent in delayed fracture resistance. Excellent delayed fracture resistance can be maintained.

言い換えれば、鋼板の、板厚の1/4深さから1/2深さまでの範囲(即ち、鋼板内部)の組織形態は、下記式(1)による制御対象ではない。
以下では、まず、上記各因子と耐遅れ破壊性の関係についてその傾向を説明する。
In other words, the structure form of the steel sheet in the range from ¼ depth to ½ depth of the plate thickness (that is, inside the steel plate) is not controlled by the following formula (1).
Below, the tendency is first demonstrated about the relationship between said each factor and delayed fracture resistance.

〔旧γ粒径(Dγ)の影響について〕
本発明者らが研究したところ、旧γ粒径を小さくすれば耐遅れ破壊性が改善される傾向が見られた。マルテンサイトを母相とする高強度鋼板では、遅れ破壊が発生した場合、旧γ粒界で破断する場合がある。厳しい条件で曲げ加工を施した場合等には、局所的にせん断変形が起こった部位(せん断帯)、特にせん断帯と粒界の交線で亀裂が発生すると考えられる。しかし旧γ粒の微細化により、曲げ加工時にせん断変形が発生する箇所を鋼材中に分散させて、局所的な応力集中部を発生させないようにする(遅れ破壊の起点発生を抑制する)ことで、耐遅れ破壊性の向上に効果があると考えられる。
[Effect of old γ particle size (Dγ)]
As a result of a study by the present inventors, there was a tendency that delayed fracture resistance was improved by reducing the old γ grain size. In a high-strength steel sheet having martensite as a matrix, when delayed fracture occurs, it may break at the old γ grain boundary. When bending is performed under severe conditions, cracks are considered to occur at the site of shear deformation locally (shear band), particularly at the intersection of the shear band and the grain boundary. However, by refining the old γ grains, the locations where shear deformation occurs during bending are dispersed in the steel material, so that local stress concentration parts are not generated (suppressing the occurrence of delayed fracture starting points). It is considered effective for improving delayed fracture resistance.

また、遅れ破壊は、脆化した旧γ粒界の破断によっても生じやすい。旧γ粒界の脆化の原因に、この旧γ粒界に析出した炭化物が挙げられ、旧γ粒界に占める炭化物が多くなるほど、該粒界が脆化しやすいと考えられる。一方、旧γ粒径が小さくなると、単位体積あたりの旧γ粒界の割合が大きくなる。よって、析出する炭化物量が同じである場合、旧γ粒径が小さく旧γ粒界が多いほど、旧γ粒界に占める炭化物の割合は低下するため、粒界の脆化が抑制されると考えられる。このことから旧γ粒径は、後述するp(旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合)にも影響を及ぼすと考えられる。   Delayed fracture is also likely to occur due to fracture of the embrittled old γ grain boundary. The cause of embrittlement of the old γ grain boundary is a carbide precipitated at the old γ grain boundary. It is considered that the more the carbide occupying the old γ grain boundary, the more easily the grain boundary becomes brittle. On the other hand, when the old γ grain size decreases, the ratio of the old γ grain boundary per unit volume increases. Therefore, when the amount of precipitated carbide is the same, the proportion of carbide occupying the old γ grain boundary decreases as the old γ grain size is small and the old γ grain boundary is large. Conceivable. From this, it is considered that the old γ grain size also affects the later-described p (the ratio of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary).

〔転位密度(ρ)の影響について〕
転位密度は、マルテンサイト(特に焼き戻しマルテンサイト)が高強度、高硬度を示す主要因子であるが、一般に、転位密度を高めて強度を高くすると、耐遅れ破壊性が高くなりやすい。
[Influence of dislocation density (ρ)]
The dislocation density is a major factor in which martensite (particularly tempered martensite) exhibits high strength and high hardness. Generally, when the dislocation density is increased to increase the strength, delayed fracture resistance tends to increase.

〔マルテンサイト中の固溶C濃度(Nc)の影響について〕
マルテンサイト中の固溶C濃度も、マルテンサイトの強化因子であるが、転位強化による強化と比較して耐遅れ破壊性の低下度合いが小さい。またマルテンサイト中の固溶C濃度が多くなると、相対的に炭化物の析出量が抑制される。よってこの因子も、後述するp(旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合)に影響を及ぼすと考えられる。
尚、本発明では、マルテンサイト以外の組織が存在する場合であっても、該組織の割合はわずかであるため、このマルテンサイト以外の組織中の固溶C濃度については、考慮しなくてよい。
[Influence of solid solution C concentration (Nc) in martensite]
The solid solution C concentration in martensite is also a strengthening factor of martensite, but the degree of decrease in delayed fracture resistance is small compared to strengthening by dislocation strengthening. Moreover, when the solid solution C density | concentration in a martensite increases, the precipitation amount of a carbide | carbonized_material will be suppressed relatively. Therefore, it is considered that this factor also affects p (the ratio of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary) described later.
In the present invention, even when a structure other than martensite is present, since the ratio of the structure is small, it is not necessary to consider the solid solution C concentration in the structure other than martensite. .

〔旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合(p)の影響について〕
焼き入れたマルテンサイトは強度が高すぎて脆いため、焼き戻して機械的特性を調整するが、焼き戻す際に炭化物が析出する。旧γ粒界では炭化物の核生成・成長の駆動力が大きいため、炭化物は旧γ粒界に析出しやすい傾向がある。しかし上述したとおり、旧γ粒界に存在する炭化物が多くなるほど、該粒界が脆化しやすく、遅れ破壊が生じやすいと考えられる。
尚、pは0≦p≦1の範囲であり、p=1は、旧γ粒界の全て(100%)に炭化物が存在していることを意味する。
[Influence of the ratio (p) of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary]
Quenched martensite is too brittle and brittle, so it is tempered to adjust the mechanical properties, but carbides precipitate when tempered. Since the driving force for nucleation / growth of carbide is large at the former γ grain boundary, the carbide tends to precipitate at the old γ grain boundary. However, as described above, it is considered that the more carbides existing in the old γ grain boundary, the more easily the grain boundary becomes brittle and delayed fracture occurs.
Note that p is in the range of 0 ≦ p ≦ 1, and p = 1 means that carbides are present in all (100%) of the old γ grain boundaries.

以上の4因子と耐遅れ破壊性との関係について、次の通り研究を行った。即ち、上記4因子の値が種々の鋼板を用いて、後述する実施例に示すとおり、低歪速度引張試験(SSRT試験)を行い、大気中でこの試験を行った場合の破断伸びELと、水素チャージしながら上記試験を行った場合の破断伸びELを求めた。そして、上記ELとELとの差をELで除した値:(EL−EL)/ELを、遅れ破壊感受性Sとして求め、このSが0.50以下となるよう上記4因子で回帰することによって、下記式(1)を得た。
6.7×10−3×Dγ+7.4×10−9×ρ1/2 −0.073×Nc+0.092×p ≦ 0.570…(1)
[式(1)において、
Dγ:旧γ粒径(μm)
ρ:転位密度(m−2
Nc:マルテンサイト中の固溶C濃度(質量%)
p:旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合(但し、0≦p≦1)
を示す。]
The relationship between the above four factors and delayed fracture resistance was studied as follows. That is, as shown in the examples described later using various steel plates having the above four factors, a low strain rate tensile test (SSRT test) was performed, and the elongation at break EL 0 when this test was performed in the atmosphere The elongation at break EL H when the above test was conducted while charging with hydrogen was determined. Then, a value obtained by dividing the difference between EL 0 and EL H by EL 0 : (EL 0 −EL H ) / EL 0 is obtained as delayed fracture susceptibility S, and the above 4 so that S is 0.50 or less. The following formula (1) was obtained by regression with factors.
6.7 × 10 −3 × Dγ + 7.4 × 10 −9 × ρ 1/2 −0.073 × Nc + 0.092 × p 2 ≦ 0.570 (1)
[In Formula (1),
Dγ: Old γ particle size (μm)
ρ: Dislocation density (m −2 )
Nc: concentration of solid solution C in martensite (mass%)
p: ratio of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary (where 0 ≦ p ≦ 1)
Indicates. ]

上述した通り、上記4因子のそれぞれを個別に変動させて耐遅れ破壊性を向上させることは困難であるが、本発明は、これら4因子を含む上記式(1)を満たすようにすれば、耐遅れ破壊性を確実に向上できることを見出した点に特徴を有している。   As described above, it is difficult to improve the delayed fracture resistance by individually varying each of the above four factors, but the present invention can satisfy the above formula (1) including these four factors. It is characterized in that it has been found that the delayed fracture resistance can be reliably improved.

本発明の鋼板の鋼組織は、マルテンサイトが全組織に対し95面積%以上(好ましくは98面積%以上、特には100面積%)占めるものである。その他の組織として、鋼板表面近傍に生じうる脱炭に伴い、フェライトが形成される場合があるが、このフェライトは、高強度を確保する観点から少ない方が好ましいため、全組織に占める面積率で5%以下とするのがよい。
また、上記マルテンサイトとフェライト以外の組織として、残留オーステナイトが面積率で3%以下程度存在しても良い。
In the steel structure of the steel sheet of the present invention, martensite accounts for 95 area% or more (preferably 98 area% or more, particularly 100 area%) with respect to the entire structure. As other structures, ferrite may be formed along with decarburization that may occur in the vicinity of the steel sheet surface, but this ferrite is preferably less in terms of ensuring high strength, so the area ratio of the entire structure It should be 5% or less.
Further, as a structure other than the martensite and ferrite, residual austenite may be present in an area ratio of about 3% or less.

〈製造方法〉
引張強度が1180MPa以上でかつ上記式(1)を満たす本発明の鋼板を得るには、後述する化学成分組成を満たす鋼材を用い、一般的に行われている条件で加熱、熱間圧延を行った後、特に、圧下率5%以上で冷間圧延を行い、次いで、下記の条件で熱処理を行う必要がある。
本発明において、圧下率5%以上で冷間圧延を行うのは強靭な組織を得るためである。上記圧下率は、好ましくは10%以上であり、圧下率の上限は特に指定しない。
<Production method>
In order to obtain a steel sheet of the present invention having a tensile strength of 1180 MPa or more and satisfying the above formula (1), a steel material satisfying the chemical composition described below is used, and heating and hot rolling are performed under the generally performed conditions. After that, in particular, it is necessary to perform cold rolling at a rolling reduction of 5% or more and then perform heat treatment under the following conditions.
In the present invention, the cold rolling is performed at a rolling reduction of 5% or more in order to obtain a tough structure. The rolling reduction is preferably 10% or more, and the upper limit of the rolling reduction is not particularly specified.

次いで、熱処理を行う。本発明の鋼板は、マルテンサイトを主体とするものであるが、焼き入れたマルテンサイトは強度が高すぎて脆いため、焼き戻して機械的特性を調整する必要がある。この焼き入れ焼き戻しを下記の(A)〜(C)の全ての条件を満たすように
行うことによって、上記式(1)を満たす組織形態とすることができる。
Next, heat treatment is performed. The steel sheet of the present invention is mainly composed of martensite, but the quenched martensite is too strong and brittle, so it is necessary to temper and adjust the mechanical properties. By performing this quenching and tempering so as to satisfy all of the following conditions (A) to (C), it is possible to obtain a structure satisfying the above formula (1).

〔(A)焼き入れに際しての加熱(均熱保持)〕
焼き入れに際しての加熱温度(焼き入れ時の均熱温度)T1(K)と加熱時間(前記加熱温度での保持時間)t1(秒)は、旧γ粒径(Dγ)に影響を及ぼす。具体的に旧γ粒径は、加熱温度T1(K)と加熱時間t1(秒)に対し、下記式(2)の通り成長する。本発明者らが研究した範囲内では、旧γ粒径と、T1およびt1との関係は、下記式(2)におけるaが5.3×10、bが−1.38×10、nが0.2である下記式(3)で表されることが分かった。
[(A) Heating during quenching (keep soaking)]
The heating temperature during quenching (soaking temperature during quenching) T1 (K) and the heating time (holding time at the heating temperature) t1 (seconds) affect the prior γ particle diameter (Dγ). Specifically, the old γ grain size grows according to the following formula (2) with respect to the heating temperature T1 (K) and the heating time t1 (seconds). Within the range studied by the present inventors, the relationship between the prior γ particle diameter and T1 and t1 is as follows: a in the following formula (2) is 5.3 × 10 6 , b is −1.38 × 10 5 , It was found that n is 0.2 and is represented by the following formula (3).

また本発明では、引張強度を1180MPa以上確保しつつ、式(1)を満たす組織とするには、式(3)で表される旧γ粒径(Dγ)が概ね16μm以下であることが必要であるため、下記式(4)の通りとした。
尚、T1が1225Kを超えると、Dγが急速に大きくなる傾向があるため、T1は1225K以下とする。T1は好ましくは1208K以下である。
Dγ=a×exp(b/(8.31×T1))×t1 …(2)
Dγ=5.3×10×exp(−1.38×10/(8.31×T1))×t10.2 …(3)
5.3×10×exp(−1.38×10/(8.31×T1))×t10.2≦16 …(4)
[式(2)〜(4)において、
Dγ:旧γ粒径(μm)、
T1:加熱温度(K)、
t1:加熱時間(秒)
a,b,n:定数を示す。]
In the present invention, in order to obtain a structure satisfying the formula (1) while ensuring a tensile strength of 1180 MPa or more, the old γ grain size (Dγ) represented by the formula (3) needs to be approximately 16 μm or less. Therefore, the following formula (4) was adopted.
If T1 exceeds 1225K, Dγ tends to increase rapidly, so T1 is set to 1225K or less. T1 is preferably 1208K or less.
Dγ = a × exp (b / (8.31 × T1)) × t1 n (2)
Dγ = 5.3 × 10 6 × exp (−1.38 × 10 5 /(8.31×T1))×t1 0.2 (3)
5.3 × 10 6 × exp (−1.38 × 10 5 /(8.31×T1))×t1 0.2 ≦ 16 (4)
[In the formulas (2) to (4),
Dγ: old γ particle size (μm),
T1: heating temperature (K),
t1: Heating time (seconds)
a, b, n: constants. ]

〔(B)焼き入れ時の冷却条件〕
上記加熱後、加熱温度T1から300℃以下まで冷却するが、この冷却で十分に焼きが入るように、加熱温度T1から300℃までの冷却速度(C1)を、50℃/sec以上(例えば水冷)とする。
[(B) Cooling conditions during quenching]
After the heating, cooling is performed from the heating temperature T1 to 300 ° C. or less. The cooling rate (C1) from the heating temperature T1 to 300 ° C. is set to 50 ° C./sec or more (for example, water ).

〔(C)焼き戻し条件〕
焼き戻し温度T2(K)と焼き戻し時間t2(秒)は、転位密度、マルテンサイト中の固溶C濃度、および粒界炭化物形態に影響を及ぼす。一般に、T2とt2を変化させても同レベルの強度の鋼板が得られるように、下記式(5)で表される焼き戻しパラメータM値を一定にすることが知られている。
M=T2×(ln(t2/3600)+21.3−5.8×C) …(5)
[式(5)において、
M:焼き戻しパラメータ
T2:焼戻温度(K)
t2:焼戻時間(秒)
C:鋼板炭素濃度(母材の炭素濃度)(質量%)を示す。]
[(C) Tempering conditions]
The tempering temperature T2 (K) and the tempering time t2 (seconds) affect the dislocation density, the solid solution C concentration in martensite, and the grain boundary carbide form. Generally, it is known that the tempering parameter M value represented by the following formula (5) is made constant so that a steel plate having the same level of strength can be obtained even if T2 and t2 are changed.
M = T2 × (ln (t2 / 3600) + 21.3−5.8 × C) (5)
[In Formula (5),
M: Tempering parameter T2: Tempering temperature (K)
t2: Tempering time (seconds)
C: Steel plate carbon concentration (carbon concentration of base material) (% by mass). ]

しかし本発明者らは、更にこの焼き戻し条件について検討を進めたところ、M値が同じ(即ち、同レベルの強度)でも、より高温かつ短時間で焼き戻すことによって、マルテンサイト中の固溶C濃度が高くなり、かつ粒界炭化物が少なくなる傾向がみられ、耐遅れ破壊性の向上に有効であることが分かった。   However, the present inventors have further studied the tempering conditions. As a result, even when the M value is the same (that is, the same level of strength), the solid solution in martensite is tempered at a higher temperature and in a shorter time. There was a tendency for the C concentration to increase and the amount of grain boundary carbides to decrease, which proved effective in improving delayed fracture resistance.

本発明では、引張強度を1180MPa以上とするため、上記M値を下記式(6)に示す通り12500以下とする。   In the present invention, in order to set the tensile strength to 1180 MPa or more, the M value is set to 12,500 or less as shown in the following formula (6).

また、上述の通り、本発明では高温かつ短時間で焼き戻す。焼き戻し温度T2が低すぎると、同一強度を得るためには焼き戻し時間を長時間とる必要があり、結果として転位密度が高く、かつマルテンサイト中の固溶C濃度が少ない組織になるので、式(1)を満たすことが困難となる。よってT2は748K以上とした。好ましくは773K以上である。一方、焼き戻し温度が高すぎると、マルテンサイト中の固溶C濃度がほぼ0となり、引張強度が低下するため、T2は823K以下とする。好ましくは803K以下である。   Moreover, as above-mentioned, in this invention, it tempers in high temperature and a short time. If the tempering temperature T2 is too low, it is necessary to take a long tempering time in order to obtain the same strength. As a result, the dislocation density is high and the solid solution C concentration in the martensite is small. It becomes difficult to satisfy Expression (1). Therefore, T2 was set to 748K or more. Preferably it is 773K or more. On the other hand, if the tempering temperature is too high, the solid solution C concentration in the martensite becomes almost 0 and the tensile strength decreases, so T2 is set to 823K or less. Preferably it is 803K or less.

更に、焼き戻し時間t2が長すぎる場合も、マルテンサイト中の固溶C濃度がほぼ0となり、引張強度が低下するため、t2は400秒以下とする。好ましくは300秒以下である。尚、機械的特性を調整する観点からt2は2秒以上とする。
T2×(ln(t2/3600)+21.3−5.8×C)≦12500 …(6)
[式(6)において、
T2:焼戻温度(K)(但し、T2は748K以上823K以下)、
t2:焼戻時間(秒)(但し、t2は2秒以上400秒以下)、
C:鋼板炭素濃度(母材の炭素濃度)(質量%)を示す。]
上記条件を満たすよう焼き戻した後は、室温まで空冷等により冷却すればよい。
Furthermore, when the tempering time t2 is too long, the solid solution C concentration in the martensite becomes almost 0 and the tensile strength is lowered. Therefore, t2 is set to 400 seconds or less. Preferably it is 300 seconds or less. From the viewpoint of adjusting the mechanical characteristics, t2 is set to 2 seconds or more.
T2 × (ln (t2 / 3600) + 21.3−5.8 × C) ≦ 12500 (6)
[In Formula (6),
T2: Tempering temperature (K) (however, T2 is 748K or more and 823K or less),
t2: Tempering time (second) (however, t2 is 2 seconds or more and 400 seconds or less),
C: Steel plate carbon concentration (carbon concentration of base material) (% by mass). ]
After tempering so as to satisfy the above conditions, it may be cooled to room temperature by air cooling or the like.

〔Si欠乏層の抑制または除去〕
本発明では、Siを0.6%以上含有させることにより、焼き戻し後のマルテンサイト中の固溶C濃度の増加や、焼き戻し時に粒界に析出する炭化物量を抑制する効果を発揮させて、耐遅れ破壊性の向上を図る。しかし、上記量のSiを含む高Si系鋼板を製造する工程では、特に熱延デスケーリング後の鋼板温度が400℃を超える状況(例えば、焼き入れ焼き戻しの工程)で、雰囲気の酸素ポテンシャルによってSiが鉄よりも優先的に酸化され、鋼板表面に移動することで、素地鋼板表層付近にSi濃度が低下したSi欠乏層が形成しやすい。表層付近のSi濃度が低下すると、焼き戻し時の炭化物抑制効果が低下するため、式(1)を満足する適切な鋼板組織が得られない。また、このSi欠乏層が存在する箇所では、耐遅れ破壊性が低下しやすい。
[Suppression or removal of Si-deficient layer]
In the present invention, by containing Si in an amount of 0.6% or more, an effect of suppressing an increase in the solid solution C concentration in the martensite after tempering and the amount of carbides precipitated at the grain boundary during tempering is exhibited. To improve delayed fracture resistance. However, in the process of manufacturing a high Si steel sheet containing the above amount of Si, particularly in a situation where the steel sheet temperature after hot rolling descaling exceeds 400 ° C. (for example, quenching and tempering process), the oxygen potential of the atmosphere Si is preferentially oxidized over iron and moves to the surface of the steel sheet, so that an Si-deficient layer having a reduced Si concentration is easily formed near the surface of the base steel sheet. When the Si concentration in the vicinity of the surface layer is reduced, the carbide suppressing effect at the time of tempering is reduced, so that an appropriate steel sheet structure satisfying the formula (1) cannot be obtained. In addition, the delayed fracture resistance is likely to be lowered at the location where this Si-deficient layer exists.

本発明ではこのSi欠乏層による耐遅れ破壊性の低下を防ぐため、下記の(i)または(ii)を実施する。
(i)熱間圧延後の巻き取り工程以降は、鋼板温度が400℃以上である場合(例えば、焼き入れ焼き戻しの工程)、雰囲気の酸素分圧を1200ppm以下(より好ましくは1000ppm以下、更に好ましくは800ppm以下)とする。雰囲気の酸素分圧を抑えることによって、鋼中のSiと雰囲気中の酸素との反応を抑制し、Si欠乏層の形成を抑制する。
(ii)鋼板表層部に形成されたSi欠乏層を、酸溶解により除去するかまたは研削除去する。
次に、本発明で化学成分組成を規定した理由について説明する。
In the present invention, the following (i) or (ii) is performed in order to prevent the delayed fracture resistance from being deteriorated by the Si-deficient layer.
(I) After the winding step after hot rolling, when the steel sheet temperature is 400 ° C. or higher (for example, quenching and tempering step), the oxygen partial pressure of the atmosphere is 1200 ppm or less (more preferably 1000 ppm or less, further Preferably, it is 800 ppm or less. By suppressing the oxygen partial pressure in the atmosphere, the reaction between Si in the steel and oxygen in the atmosphere is suppressed, and formation of a Si-deficient layer is suppressed.
(Ii) The Si-deficient layer formed on the steel plate surface layer is removed by acid dissolution or ground away.
Next, the reason for defining the chemical component composition in the present invention will be described.

〔C:0.10〜0.40%〕
Cは、鋼板の強度確保に必要な元素であるため、0.10%以上含有させる。好ましくは0.12%以上であり、より好ましくは0.15%以上である。しかしC含有量が過剰になると溶接性が劣化するため、0.40%以下とする。好ましくは0.30%以下であり、より好ましくは0.25%以下である。
[C: 0.10 to 0.40%]
C is an element necessary for ensuring the strength of the steel sheet, so it is contained by 0.10% or more. Preferably it is 0.12% or more, more preferably 0.15% or more. However, if the C content is excessive, weldability deteriorates, so the content is made 0.40% or less. Preferably it is 0.30% or less, More preferably, it is 0.25% or less.

〔Si:0.6〜3.0%〕
Siは、鋼板の硬質化に寄与する置換型固溶体強化元素である。またSiは、焼き戻し時の炭化物析出を抑制することによって、上記式(1)を満たし、耐遅れ破壊性を確保するのに有効な元素でもある。この様な観点から本発明では、Si量を0.6%以上とした。好ましくは1.0%以上、より好ましくは1.4%以上である。しかしSiが過剰の場合、SiCが形成され、焼き戻し時にSiCからCが放出されてFeC(炭化物)の形成が促されるため、式(1)を達成することが難しく、結果として、耐遅れ破壊性の確保が難しくなる。また、Siが過剰であると靭性が劣化する。よって、Si量の上限は3.0%とする。好ましくは2.5%以下、より好ましくは2.0%以下である。
[Si: 0.6-3.0%]
Si is a substitutional solid solution strengthening element that contributes to hardening of the steel sheet. Si is also an element effective for satisfying the above formula (1) and ensuring delayed fracture resistance by suppressing carbide precipitation during tempering. From such a viewpoint, in the present invention, the Si amount is set to 0.6% or more. Preferably it is 1.0% or more, More preferably, it is 1.4% or more. However, when Si is excessive, SiC is formed, and C is released from SiC during tempering to promote the formation of Fe 3 C (carbide). Therefore, it is difficult to achieve the formula (1). Ensuring delayed fracture is difficult. Moreover, when Si is excessive, toughness will deteriorate. Therefore, the upper limit of the Si amount is set to 3.0%. Preferably it is 2.5% or less, More preferably, it is 2.0% or less.

〔Mn:1.0〜3.5%〕
Mnは、鋼板の強度確保に有効な元素であり、1.0%以上含有させる。好ましくは1.5%以上、より好ましくは2.0%以上である。一方、Mnを多量に含有させると、[Fe(Mn)]C(FeCのFeの一部がMnで置換された炭化物)が形成されやすく、式(1)を達成することが難しくなるため、耐遅れ破壊性を確保することが難しい。また、偏析が顕著になり加工性が低下し、更には、溶接性も劣化し易くなる。よってMn量の上限を3.5%とする。好ましくは3.0%以下であり、より好ましくは2.5%以下である。
[Mn: 1.0 to 3.5%]
Mn is an element effective for securing the strength of the steel sheet, and is contained at 1.0% or more. Preferably it is 1.5% or more, More preferably, it is 2.0% or more. On the other hand, when Mn is contained in a large amount, [Fe (Mn)] 3 C (a carbide in which part of Fe 3 C is substituted with Mn) is easily formed, and it is difficult to achieve the formula (1). Therefore, it is difficult to ensure delayed fracture resistance. In addition, segregation becomes prominent, workability is reduced, and weldability is easily deteriorated. Therefore, the upper limit of the Mn amount is 3.5%. Preferably it is 3.0% or less, More preferably, it is 2.5% or less.

〔Al:3%以下(0%を含まない)〕
Alは脱酸のために必要な元素である。そのため0.01%以上含有させることが好ましい。しかし、過剰に添加すると延性の低下や鋼の脆化を招くため、その上限を3%とする。好ましくは2.5%以下であり、より好ましくは1.0%以下である。
[Al: 3% or less (excluding 0%)]
Al is an element necessary for deoxidation. Therefore, it is preferable to contain 0.01% or more. However, if added excessively, ductility is lowered and steel becomes brittle, so the upper limit is made 3%. Preferably it is 2.5% or less, More preferably, it is 1.0% or less.

〔P:0.15%以下(0%を含まない)〕
Pは、粒界偏析による粒界破壊を助長する元素であるため、その上限を0.15%とする。好ましくは0.10%以下、より好ましくは0.05%以下である。
[P: 0.15% or less (excluding 0%)]
Since P is an element that promotes grain boundary fracture due to grain boundary segregation, its upper limit is made 0.15%. Preferably it is 0.10% or less, More preferably, it is 0.05% or less.

〔S:0.02%以下(0%を含まない)〕
Sは、過剰に含まれると、硫化物系介在物が増大して鋼板の強度が劣化するため、上限を0.02%とする。好ましくは0.010%以下であり、より好ましくは0.005%以下、更に好ましくは0.0025%以下である。
[S: 0.02% or less (excluding 0%)]
If S is excessively contained, sulfide inclusions increase and the strength of the steel sheet deteriorates, so the upper limit is made 0.02%. Preferably it is 0.010% or less, More preferably, it is 0.005% or less, More preferably, it is 0.0025% or less.

本発明鋼材の成分は上記の通りであり、残部は鉄及び不可避不純物からなるものである。また、上記元素に加えて更に、下記に示す元素を適量含有させることにより、更なる高強度化や、耐食性等の向上を図ることができる。以下、これらの元素について詳述する。   The components of the steel of the present invention are as described above, and the balance consists of iron and inevitable impurities. Further, in addition to the above elements, by further containing the following elements in an appropriate amount, it is possible to further increase the strength and improve the corrosion resistance. Hereinafter, these elements will be described in detail.

〔B:0.0001〜0.02%〕
〔Ti:0.005〜0.3%〕
〔N:0.01%以下(0%を含まない)〕
〔Ti>3.4×N …(7)
[式(7)において、Tiは鋼中のTi含有量(質量%)を示し、Nは鋼中のN含有量(質量%)を示す]〕
[B: 0.0001 to 0.02%]
[Ti: 0.005 to 0.3%]
[N: 0.01% or less (excluding 0%)]
[Ti> 3.4 × N (7)
[In formula (7), Ti represents the Ti content (mass%) in the steel, and N represents the N content (mass%) in the steel]

Bは、鋼板の焼き入れ性を高めるために有効な元素である。またBは、粒界を強化して耐遅れ破壊性を向上させる効果を有する。これらの効果を十分に発揮させるため、Bを0.0001%以上含有させることが好ましい。より好ましくは0.00015%以上であり、更に好ましくは0.001%以上である。しかし過剰に含有させると熱間加工性が劣化するため、その上限を0.02%とするのが好ましい。より好ましくは0.005%以下である。   B is an effective element for enhancing the hardenability of the steel sheet. Further, B has an effect of strengthening the grain boundary and improving delayed fracture resistance. In order to fully exhibit these effects, it is preferable to contain 0.0001% or more of B. More preferably, it is 0.00015% or more, More preferably, it is 0.001% or more. However, since hot workability will deteriorate when it contains excessively, it is preferable to make the upper limit into 0.02%. More preferably, it is 0.005% or less.

ところで、Bが鋼中に存在する固溶Nと結合してBNを形成すると、上記効果が発揮されない。よって、上記Bによる効果を発揮させるには、Tiを含有させて、鋼中の固溶NをTiNとして無害化を図ることが好ましい。具体的には、化学量論的観点から、上記式(7)を満たすようにTiを含有させることが好ましい。
Tiはまた、結晶粒を微細化する元素であり、靱性を損なうことなく鋼板の強度を向上させるのに有効な元素である。
更に、引張強度が980MPaを超えると特に水素脆化が懸念されるが、Tiは、鋼中のCやNと結合して微細な炭窒化物を形成し、この水素脆化の原因となる水素のトラップサイトとして有効に機能する。
By the way, if B is combined with solute N existing in steel to form BN, the above effect is not exhibited. Therefore, in order to exert the effect by B, it is preferable to contain Ti and make the solute N in the steel TiN to make it harmless. Specifically, from the stoichiometric viewpoint, it is preferable to contain Ti so as to satisfy the above formula (7).
Ti is also an element that refines crystal grains, and is an effective element for improving the strength of a steel sheet without impairing toughness.
Furthermore, when the tensile strength exceeds 980 MPa, hydrogen embrittlement is particularly a concern. However, Ti combines with C and N in the steel to form fine carbonitrides, which causes hydrogen embrittlement. It functions effectively as a trap site.

これらの効果を発揮させるには、Ti量を0.005%以上とすることが好ましい。より好ましくは0.01%以上、更に好ましくは0.03%以上である。しかし過剰に含有させても、その効果が飽和するだけでなくコスト的に不利になるため、上限を0.3%とするのが好ましい。より好ましくは0.1%以下である。   In order to exert these effects, the Ti content is preferably 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.03% or more. However, even if contained excessively, the effect is not only saturated but also disadvantageous in terms of cost, so the upper limit is preferably made 0.3%. More preferably, it is 0.1% or less.

N(窒素)は、製造工程で侵入する不可避不純物元素である。焼き入れ性向上元素Bの効果を低下させるなどの影響があるため、0.01%以下に抑えることが望ましい。より好ましくは0.007%以下、更に好ましくは0.005%以下である。   N (nitrogen) is an inevitable impurity element that enters during the manufacturing process. Since there is an influence such as reducing the effect of the hardenability improving element B, it is desirable to suppress it to 0.01% or less. More preferably, it is 0.007% or less, More preferably, it is 0.005% or less.

〔Nb:0.005〜0.3%、Cr:0.003〜2%、およびMo:0.01〜1.0%よりなる群から選択される1種以上の元素〕
これらの元素は、鋼板の強度を向上させるのに有効な元素である。
このうちNbは、結晶粒を微細化する元素であり、靱性を損なうことなく鋼板の強度を向上させるのに有効な元素である。この様な効果を発揮させるには、Nb量を0.005%以上とすることが好ましく、より好ましくは0.03%以上である。しかし過剰に含有させてもその効果が飽和するだけでなくコスト的にも不利になるため、上限を0.3%とするのが好ましい。より好ましくは0.1%以下である。
[One or more elements selected from the group consisting of Nb: 0.005 to 0.3%, Cr: 0.003 to 2%, and Mo: 0.01 to 1.0%]
These elements are effective elements for improving the strength of the steel sheet.
Among these elements, Nb is an element that refines crystal grains and is an effective element for improving the strength of a steel sheet without impairing toughness. In order to exhibit such an effect, the Nb content is preferably 0.005% or more, more preferably 0.03% or more. However, even if contained excessively, the effect is not only saturated but also disadvantageous in terms of cost, so the upper limit is preferably made 0.3%. More preferably, it is 0.1% or less.

Crは、焼き入れ性を向上させる元素であり、フェライトの過剰な生成を抑制して鋼板の強度を確保するのに有効な元素である。更にCrを含有させると、鋼材自体の耐食性が向上するため、使用環境中に生じ得る腐食による水素発生を十分に抑えることができる。該効果は、Crを後述するCu、Niと共存させることによって、さらに有効に作用する。これらの効果を発揮させるには、Cr量を0.003%以上とすることが好ましい。より好ましくは0.1%以上である。しかしCr量が過剰になると、その効果が飽和するだけでなく加工性が劣化するため、Cr量の上限値は2%とすることが好ましい。より好ましくは1%以下である。   Cr is an element that improves hardenability, and is an element that is effective in suppressing the excessive formation of ferrite and ensuring the strength of the steel sheet. Further, when Cr is contained, the corrosion resistance of the steel material itself is improved, so that hydrogen generation due to corrosion that may occur in the use environment can be sufficiently suppressed. This effect works more effectively by making Cr coexist with Cu and Ni described later. In order to exert these effects, the Cr content is preferably 0.003% or more. More preferably, it is 0.1% or more. However, if the Cr amount is excessive, not only the effect is saturated but also the workability deteriorates, so the upper limit of the Cr amount is preferably 2%. More preferably, it is 1% or less.

Moは、鋼板の焼き入れ性を高めるのに有効な元素である。また、水素侵入を抑制し、耐遅れ破壊性を向上させる効果も有する。更には、粒界を強化して水素脆性の発生を抑制する効果がある。これらの効果を有効に発揮させるには、Moを0.01%以上含有させることが好ましい。より好ましくは0.1%以上である。しかし過剰に含有させると、効果が飽和するだけでなく高価な合金元素であるためコストアップを招く。加えて、熱延板の強度が非常に高まるため、冷間圧延しにくいことなどの問題が生じる。よってMo量の上限は1.0%とすることが好ましい。より好ましくは0.5%以下である。   Mo is an element effective for increasing the hardenability of the steel sheet. It also has the effect of suppressing hydrogen penetration and improving delayed fracture resistance. Furthermore, it has the effect of strengthening the grain boundaries and suppressing the occurrence of hydrogen embrittlement. In order to exhibit these effects effectively, it is preferable to contain Mo 0.01% or more. More preferably, it is 0.1% or more. However, if it is contained excessively, the effect is not only saturated, but also an expensive alloy element, resulting in an increase in cost. In addition, since the strength of the hot rolled sheet is greatly increased, problems such as difficulty in cold rolling occur. Therefore, the upper limit of the Mo amount is preferably 1.0%. More preferably, it is 0.5% or less.

〔Cu:0.01〜0.3%、Ni:0.01〜0.3%、Co:0.005〜0.2%、およびV:0.003〜1%よりなる群から選択される1種以上の元素〕
Cuは、鋼板の耐食性向上に寄与する元素である。また固溶強化元素でもあり、鋼板の強度向上にも寄与する元素である。これらの効果を発揮させるには、Cu量を0.01%以上とすることが好ましい。より好ましくは0.1%以上である。
しかしCu量が0.3%を超えると、熱間圧延時の疵や割れが発生する場合(赤熱脆性)がある。よってCu量の上限は0.3%とすることが好ましい。より好ましくは0.2%以下である。
[Selected from the group consisting of Cu: 0.01-0.3%, Ni: 0.01-0.3%, Co: 0.005-0.2%, and V: 0.003-1%. One or more elements]
Cu is an element that contributes to improving the corrosion resistance of the steel sheet. It is also a solid solution strengthening element and an element that contributes to improving the strength of steel sheets. In order to exhibit these effects, it is preferable to make Cu amount 0.01% or more. More preferably, it is 0.1% or more.
However, if the amount of Cu exceeds 0.3%, flaws and cracks during hot rolling may occur (red hot brittleness). Therefore, the upper limit of the Cu content is preferably 0.3%. More preferably, it is 0.2% or less.

NiもCuと同様に、鋼板自体の耐食性向上に寄与する元素である。また、Cuと同様に固溶強化元素でもあり、鋼板の強度向上にも寄与する。更にNiは、Cuに固溶して融点を高め、赤熱脆性を抑制する効果も有する。これらの効果を発揮させるには、Ni量を0.01%以上とすることが好ましい。より好ましくは0.05%以上である。しかしNiは高価な元素であり、多量に添加するとコストアップを招くため、その上限を0.3%とすることが好ましい。より好ましくは0.2%以下であり、更に好ましくは0.15%以下である。   Ni, like Cu, is an element that contributes to improving the corrosion resistance of the steel sheet itself. Moreover, it is a solid solution strengthening element like Cu, and contributes also to the strength improvement of a steel plate. Furthermore, Ni has the effect of suppressing red heat embrittlement by dissolving in Cu and increasing the melting point. In order to exert these effects, the Ni content is preferably 0.01% or more. More preferably, it is 0.05% or more. However, Ni is an expensive element, and adding a large amount causes an increase in cost, so the upper limit is preferably made 0.3%. More preferably, it is 0.2% or less, More preferably, it is 0.15% or less.

Coも、Niと同様の効果を発揮する。即ち、Cuと同様に、鋼板自体の耐食性向上に寄与する。またCoは、Cuと同様に固溶強化元素でもあり、鋼板の強度向上にも寄与する。これらの効果を発揮させるには、Co量を0.005%以上とすることが好ましい。より好ましくは0.01%以上である。しかしCo量が過剰になると、加工性が劣化することに加え、高価な元素であるためコストアップを招く。よってCo量の上限は0.2%とすることが好ましい。より好ましくは0.15%以下である。   Co exhibits the same effect as Ni. That is, like Cu, it contributes to improving the corrosion resistance of the steel sheet itself. Co, like Cu, is also a solid solution strengthening element and contributes to improving the strength of the steel sheet. In order to exert these effects, the Co content is preferably set to 0.005% or more. More preferably, it is 0.01% or more. However, if the amount of Co is excessive, the workability is deteriorated and the cost is increased due to the expensive element. Therefore, the upper limit of the amount of Co is preferably 0.2%. More preferably, it is 0.15% or less.

Vは、保護性さびの形成に寄与し、特にTiとVを複合添加することで保護性さびの形成が促進される。またVは、鋼板の強度上昇、細粒化にも有効な元素である。更には、Tiと同様に鋼中のCやNと結合して微細な炭窒化物を形成し、前述した水素脆化の原因となる水素のトラップサイトとして有効に機能する。これらの効果を発揮させるには、Vを0.003%以上含有させることが好ましく、より好ましくは0.01%以上である。しかしVが過剰に含まれると、析出物が多くなり加工性の低下を招く。よって、V量の上限は1%とすることが好ましく、より好ましくは0.5%以下である。   V contributes to the formation of protective rust, and the formation of protective rust is particularly promoted by the combined addition of Ti and V. V is an element effective for increasing the strength of the steel sheet and making it finer. Further, similarly to Ti, it combines with C and N in steel to form fine carbonitrides, and functions effectively as a hydrogen trap site that causes hydrogen embrittlement as described above. In order to exhibit these effects, it is preferable to contain 0.003% or more of V, and more preferably 0.01% or more. However, when V is excessively contained, precipitates increase and workability is reduced. Therefore, the upper limit of the V amount is preferably 1%, more preferably 0.5% or less.

〔Ca:0.0005〜0.005%、およびMg:0.0005〜0.01%よりなる群から選択される1種以上の元素〕
Ca、Mgは、鋼中硫化物の形態を制御し、加工性向上に有効な元素である。また鋼板表面の腐食に伴う界面雰囲気の水素イオン濃度の上昇を抑制する。これらの効果を十分に発揮するためには、それぞれ0.0005%以上含有することが好ましい。より好ましくはそれぞれ0.0007%以上である。一方、過剰に含まれると加工性が劣化するため、それぞれの含有量の上限を、Ca:0.005%(より好ましくは0.001%)、Mg:0.01%(より好ましくは0.005%)とするのが好ましい。
[One or more elements selected from the group consisting of Ca: 0.0005 to 0.005% and Mg: 0.0005 to 0.01%]
Ca and Mg are elements that control the form of sulfide in steel and are effective for improving workability. Moreover, the rise of the hydrogen ion concentration of the interface atmosphere accompanying corrosion on the steel sheet surface is suppressed. In order to fully exhibit these effects, it is preferable to contain 0.0005% or more of each. More preferably, each is 0.0007% or more. On the other hand, since the workability deteriorates if contained excessively, the upper limit of each content is set to Ca: 0.005% (more preferably 0.001%), Mg: 0.01% (more preferably 0.00). 005%).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1および表2に示す化学成分組成(残部は鉄および不可避不純物)を満たす鋼塊を真空溶製にて作成し、次いで、1250℃に加熱してから板厚2.4mmまで熱間圧延し、熱間圧延終了から室温までをN雰囲気下で空冷して、熱延鋼板を得た。この熱延鋼板を塩酸で酸洗した後、冷間圧延(圧下率67%)を行って板厚1.6mmの冷延鋼板を得た。次いで、この冷延鋼板に対し、バッチ式の雰囲気制御加熱冷却炉を用いて、表3および表4に記載の条件で熱処理(焼き入れ焼き戻し)を行った。尚、表3および表4に記載の冷却速度(C1)は、加熱温度T1から300℃までの冷却速度である。
そして得られた鋼板について、下記に示す通り、引張強度を測定すると共に、組織形態の測定、および耐遅れ破壊性の評価を行った。これらの結果を表5および表6に示す。
A steel ingot that satisfies the chemical composition shown in Tables 1 and 2 (the balance is iron and inevitable impurities) is prepared by vacuum melting, and then heated to 1250 ° C. and hot-rolled to a thickness of 2.4 mm. From the end of hot rolling to room temperature, air-cooling was performed in an N 2 atmosphere to obtain a hot-rolled steel sheet. The hot-rolled steel sheet was pickled with hydrochloric acid and then cold-rolled (rolling rate 67%) to obtain a cold-rolled steel sheet having a thickness of 1.6 mm. Next, this cold-rolled steel sheet was subjected to heat treatment (quenching and tempering) under the conditions described in Tables 3 and 4 using a batch-type atmosphere-controlled heating and cooling furnace. In addition, the cooling rate (C1) described in Tables 3 and 4 is a cooling rate from the heating temperature T1 to 300 ° C.
And as shown below, about the obtained steel plate, while measuring the tensile strength, the measurement of the structure | tissue form and evaluation of delayed fracture resistance were performed. These results are shown in Tables 5 and 6.

〈引張強度の測定〉
JIS5号試験片を用いて引張試験を行い、引張強度(TS)を測定した。尚、引張試験の歪速度は10mm/minとした。本発明では、上記方法によって測定される引張強度が1180MPa以上の鋼板を高強度鋼板と評価した。
<Measurement of tensile strength>
A tensile test was performed using a JIS No. 5 test piece, and the tensile strength (TS) was measured. The strain rate in the tensile test was 10 mm / min. In this invention, the steel plate whose tensile strength measured by the said method is 1180 Mpa or more was evaluated as a high strength steel plate.

〈組織形態の測定〉
(マルテンサイト分率の測定)
板幅方向に平行な板厚断面において、板厚の1/4の位置から試料を採取し、ナイタールエッチングを施し、光学顕微鏡観察(1視野のサイズは160μm×200μm)を行った。
そして、得られた顕微鏡写真をマルテンサイトとマルテンサイト以外の相に手動で2値化し、画像解析によってマルテンサイト分率(面積%)を測定した。各鋼板につき、合計3視野について、上記マルテンサイト分率を測定し、平均値を求めた。
<Measurement of tissue morphology>
(Measurement of martensite fraction)
In a plate thickness section parallel to the plate width direction, a sample was taken from a position ¼ of the plate thickness, subjected to nital etching, and observed with an optical microscope (size of one visual field is 160 μm × 200 μm).
And the obtained micrograph was manually binarized into phases other than martensite and martensite, and the martensite fraction (area%) was measured by image analysis. For each steel sheet, the martensite fraction was measured for a total of 3 fields of view, and the average value was determined.

〈Dγ(旧γ粒径)およびp(旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合)の測定〉
鋼板から、板幅方向に平行な板厚断面が観察できるように試験片を採取し、ピクリン酸エッチングを施した。そして、鋼板表面から板厚方向に10μmの位置、および板厚の1/4の位置の2箇所について、光学顕微鏡で観察(1視野のサイズは80μm×80μm)を行い、1視野内の旧γ粒の平均粒径(Dγ)を求めた。また、1視野内の旧γ粒界の全長さ(x)および、該旧γ粒界のうち、炭化物によって遮られている部分の全長さ(y)を測定し、y/x(旧γ粒界の長さ(全長さ)xに対する、旧γ粒界に析出した炭化物の旧γ粒界に占める全長さyの割合、p)を求めた。
各鋼板につき、合計5視野について上記Dγ、pを測定し、それぞれ平均値を求めた。
<Measurement of Dγ (old γ grain size) and p (ratio of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary)>
A test piece was taken from the steel plate so that a cross-section of the plate thickness parallel to the plate width direction could be observed, and was subjected to picric acid etching. Then, two places at a position of 10 μm in the thickness direction from the surface of the steel plate and a position at a quarter of the thickness are observed with an optical microscope (the size of one field is 80 μm × 80 μm). The average particle diameter (Dγ) of the grains was determined. Further, the total length (x) of the old γ grain boundary in one field of view and the total length (y) of the part of the old γ grain boundary that is blocked by carbides are measured, and y / x (old γ grain) The ratio of the total length y occupying the old γ grain boundary of carbides precipitated at the old γ grain boundary to the length (full length) x of the boundary, p) was determined.
For each steel plate, the above-mentioned Dγ and p were measured for a total of 5 fields of view, and the average value was obtained.

〈ρ(転位密度)およびNc(マルテンサイト中の固溶C濃度)の測定〉
・鋼板表面から板厚方向に10μmの位置において、鋼板表面に平行な断面
・板厚の1/4の位置において、鋼板表面に平行な断面
のそれぞれを観察できるように、機械研磨および電解研磨を行った面に対して、X線回折を行い、転位密度、およびマルテンサイト中の固溶C濃度を測定した。より具体的にはCAMP−ISIJ vol.17(2004)p.396−399に記載される方法に従って、(200)面の半価幅から転位密度を測定した。尚、X線回折の測定は、1鋼板につき1回行った。
そして上記測定したDγ、p、ρ、およびNcの値を用いて、式(1)の左辺値[6.7×10−3×Dγ+7.4×10−9×ρ1/2 − 0.073×Nc+0.092×p]を求めた。
尚、本実施例では、鋼板表面から板厚方向に深さ10μmの位置と、板厚の1/4深さの位置について測定したが、上記深さ10μmの位置から板厚の1/4深さの位置の間について、この2点の測定値の間の値が得られることも確認した。
<Measurement of ρ (dislocation density) and Nc (solid solution C concentration in martensite)>
・ Mechanical polishing and electrolytic polishing are performed so that each of the cross section parallel to the steel plate surface and the cross section parallel to the steel plate surface can be observed at the position of 1/4 of the plate thickness at the position of 10 μm from the steel plate surface in the plate thickness direction. X-ray diffraction was performed on the surface, and the dislocation density and the solid solution C concentration in martensite were measured. More specifically, CAMP-ISIJ vol. 17 (2004) p. According to the method described in 396-399, the dislocation density was measured from the half width of the (200) plane. The X-ray diffraction measurement was performed once per steel plate.
Then, using the measured values of Dγ, p, ρ, and Nc, the left-hand side value of Formula (1) [6.7 × 10 −3 × Dγ + 7.4 × 10 −9 × ρ 1/2 −0.073 × Nc + 0.092 × p 2 ] was determined.
In this example, measurement was performed on the position of 10 μm depth from the steel sheet surface in the sheet thickness direction and the position of ¼ depth of the sheet thickness. However, from the position of 10 μm depth, ¼ depth of the sheet thickness was measured. It was also confirmed that a value between these two measured values was obtained between the positions.

〈耐遅れ破壊性の評価〉
各鋼板の耐遅れ破壊性は、以下のようにして評価した。各鋼板から採取した、平行部の長さが20mmで幅が9mmの試験片を用い、低歪速度引張試験(SSRT試験)を、歪速度が2×10−6sec−1の条件で行って、大気中での試験片の破断伸び(EL)を測定した。
また、上記同サイズの試験片を用い、水素チャージしながら上記試験を行って、水素チャージした状態での破断伸び(EL)を求めた。詳細には、無負荷の試験片を5質量%NaCl+0.04M−KSCN水溶液に浸漬した状態でチャージ電流密度1μA/mmにて24時間水素チャージした後、チャージ電流密度を保持したままSSRT試験を上記歪速度で行ってELを求めた。
そして、上記大気中での破断伸び(EL)と水素チャージした状態での破断伸び(EL)の差を、破断伸び(EL)で除した値:(EL−EL)/ELを遅れ破壊感受性Sとして求めた。そして、引張強度が1180MPa以上であって、Sが0.50以下の場合を耐遅れ破壊性に優れる(判定:〇)と評価し、引張強度が1180MPa以上であるが、Sが0.50超の場合を耐遅れ破壊性に劣る(判定:×)と評価した。尚、遅れ破壊感受性の判定欄の「−」は、引張強度が1180MPa未満である場合を意味する。
<Evaluation of delayed fracture resistance>
The delayed fracture resistance of each steel plate was evaluated as follows. A low strain rate tensile test (SSRT test) was performed under the conditions of a strain rate of 2 × 10 −6 sec −1 using a test piece taken from each steel plate and having a parallel part length of 20 mm and a width of 9 mm. The elongation at break (EL 0 ) of the test piece in the atmosphere was measured.
Further, using a test piece of the same size, by performing the test with hydrogen charging was determined breaking elongation while hydrogen-charged (EL H). Specifically, the SSRT test was carried out while maintaining the charge current density after hydrogen charging for 24 hours at a charge current density of 1 μA / mm 2 in a state in which an unloaded specimen was immersed in a 5 mass% NaCl + 0.04M-KSCN aqueous solution. The EL H was determined by performing the strain rate.
Then, the value obtained by dividing the difference between the elongation at break (EL 0 ) in the atmosphere and the elongation at break (EL H ) in a hydrogen-charged state by the elongation at break (EL 0 ): (EL 0 −EL H ) / EL 0 was determined as delayed fracture susceptibility S. And when the tensile strength is 1180 MPa or more and S is 0.50 or less, it is evaluated that the delayed fracture resistance is excellent (determination: ◯), and the tensile strength is 1180 MPa or more, but S is more than 0.50. Was evaluated as inferior in delayed fracture resistance (determination: x). Note that “−” in the delayed fracture susceptibility determination column means that the tensile strength is less than 1180 MPa.

Figure 0005662920
Figure 0005662920

Figure 0005662920
Figure 0005662920

Figure 0005662920
Figure 0005662920

Figure 0005662920
Figure 0005662920

Figure 0005662920
Figure 0005662920

Figure 0005662920
Figure 0005662920

表1〜6から次のように考察できる。即ち、No.1〜30の通り、本発明で規定する成分・組織形態を満たすものは、引張強度が1180MPa以上の高強度を示し、かつ耐遅れ破壊性に優れている。   It can consider as follows from Tables 1-6. That is, no. As shown in 1 to 30, those satisfying the components / structures defined in the present invention exhibit high strength with a tensile strength of 1180 MPa or more and are excellent in delayed fracture resistance.

これに対し、本発明で規定する要件を満たさないものは、引張強度が1180MPaに及ばなかったり、また引張強度が1180MPa以上であっても、本発明で規定する成分・組織形態の少なくともいずれかを満たさないものは、耐後れ破壊性に劣っている。詳細には以下の通りである。   On the other hand, those that do not satisfy the requirements defined in the present invention, at least one of the component / structure forms defined in the present invention, even if the tensile strength does not reach 1180 MPa or the tensile strength is 1180 MPa or more. What is not satisfied is inferior in the resistance to breakage after break. Details are as follows.

即ち、No.31は、Cが不足しているため、マルテンサイト分率が小さく、高強度を確保できなかった。
No.32は、Siが不足しているため、また、No.33はSiが過剰であるため、いずれも式(1)を満足せず、耐遅れ破壊性に劣るものとなった。
No.34は、Mnが過剰であるため、式(1)を満足せず、耐遅れ破壊性に劣るものとなった。
That is, no. No. 31 was insufficient in C, so the martensite fraction was small and high strength could not be secured.
No. No. 32 has a lack of Si. Since No. 33 was excessive in Si, none of the formulas (1) was satisfied and the delayed fracture resistance was poor.
No. Since Mn was excessive, No. 34 did not satisfy the formula (1) and was inferior in delayed fracture resistance.

No.36は、焼入れに際しての加熱温度(T1)が高すぎると共に、式(4)を満たさず、その結果、Dγが急速に大きくなって式(1)を満足せず、耐遅れ破壊性に劣るものとなった。
No.37は、焼入れに際して、式(4)を満たすように加熱を行わなかったためDγが大きくなったものと考えられる。その結果、式(1)を満たさず、耐遅れ破壊性に劣るものとなった。
No.38は、加熱温度T1から300℃までの冷却速度(C1)が遅いため、十分に焼き入れされず、マルテンサイト分率が小さく、高強度を確保できなかった。
No.39および40は、焼き戻し温度(T2)が低いため、式(1)を満たさず、耐遅れ破壊性に劣るものとなった。
No.41は、焼き戻し温度が高すぎ、かつ式(6)を満たすように焼き戻しを行わなかったため、引張強度が不足する結果となった。
No.42は、焼き戻し温度が低いため、式(1)を満たさず、耐遅れ破壊性に劣るものとなった。
No.43は、式(6)を満たすように焼き戻しを行わなかったため、高強度を確保できなかった。
No.44、45は、焼き入れ・焼き戻し中の雰囲気における酸素濃度が高いため、式(1)を満足せず、耐遅れ破壊性に劣るものとなった。
尚、No.9および10と、No.35との結果の対比から、B、Tiを添加し、このB、Tiによる効果を十分に発揮させるには、推奨される範囲とすることが好ましいことがわかる。
No. In No. 36, the heating temperature (T1) at the time of quenching is too high, and the formula (4) is not satisfied. As a result, Dγ rapidly increases and does not satisfy the formula (1), and the delayed fracture resistance is poor. It became.
No. No. 37 is considered to have increased Dγ because no heating was performed so as to satisfy Equation (4) during quenching. As a result, the formula (1) was not satisfied and the delayed fracture resistance was poor.
No. No. 38 had a slow cooling rate (C1) from the heating temperature T1 to 300 ° C., and thus was not sufficiently quenched, the martensite fraction was small, and high strength could not be secured.
No. Since 39 and 40 had low tempering temperature (T2), they did not satisfy | fill Formula (1) and became inferior to delayed fracture resistance.
No. No. 41 had a result that the tempering temperature was too high and the tempering was not performed so as to satisfy the formula (6), so that the tensile strength was insufficient.
No. No. 42 did not satisfy the formula (1) because of its low tempering temperature, and was inferior in delayed fracture resistance.
No. Since No. 43 was not tempered to satisfy the formula (6), high strength could not be secured.
No. Nos. 44 and 45 did not satisfy the formula (1) because the oxygen concentration in the atmosphere during quenching / tempering was high, and the resistance to delayed fracture was poor.
No. 9 and 10; From the comparison with the result of 35, it can be seen that it is preferable to set the recommended range in order to add B and Ti and to fully exhibit the effect of B and Ti.

Claims (6)

化学成分組成が、
C:0.10〜0.40%(質量%の意味。化学成分組成について以下同じ)、
Si:0.6〜3.0%、
Mn:1.0〜3.5%、
Al:3%以下(0%を含まない)、
P:0.15%以下(0%を含まない)、および
S:0.02%以下(0%を含まない)
を満たし、残部が鉄及び不可避不純物からなり、
全組織に占めるマルテンサイトが95面積%以上であり、かつ、
鋼板表面から板厚方向に深さ10μmの位置から板厚の1/4深さの位置までの組織が下記式(1)を満たし、かつ引張強度が1180MPa以上であることを特徴とする耐遅れ破壊性に優れた高強度鋼板。
6.7×10−3×Dγ+7.4×10−9×ρ1/2 −0.073×Nc+0.092×p≦ 0.570…(1)
[式(1)において、
Dγ:旧γ粒径(μm)
ρ:転位密度(m−2
Nc:マルテンサイト中の固溶C濃度(質量%)
p:旧γ粒界の長さに対する旧γ粒界に析出した炭化物の長さの割合(但し、0≦p≦1)
を示す。]
The chemical composition is
C: 0.10 to 0.40% (meaning mass%. The same applies to the chemical composition).
Si: 0.6-3.0%
Mn: 1.0 to 3.5%
Al: 3% or less (excluding 0%),
P: 0.15% or less (not including 0%), and S: 0.02% or less (not including 0%)
The balance consists of iron and inevitable impurities,
95% or more of martensite in the entire organization, and
Delay resistance, characterized in that the structure from the position of 10 μm depth to the position of ¼ depth of the sheet thickness in the sheet thickness direction from the surface of the steel sheet satisfies the following formula (1) and the tensile strength is 1180 MPa or more. High strength steel plate with excellent destructibility.
6.7 × 10 −3 × Dγ + 7.4 × 10 −9 × ρ 1/2 −0.073 × Nc + 0.092 × p 2 ≦ 0.570 (1)
[In Formula (1),
Dγ: Old γ particle size (μm)
ρ: Dislocation density (m −2 )
Nc: concentration of solid solution C in martensite (mass%)
p: ratio of the length of carbide precipitated at the old γ grain boundary to the length of the old γ grain boundary (where 0 ≦ p ≦ 1)
Indicates. ]
更に、
B:0.0001〜0.02%、
Ti:0.005〜0.3%、および
N:0.01%以下(0%を含まない)
を満たし、かつ下記式(7)を満たす請求項1に記載の高強度鋼板。
Ti>3.4×N …(7)
[式(7)において、Tiは鋼中のTi含有量(質量%)を示し、Nは鋼中のN含有量(質量%)を示す]
Furthermore,
B: 0.0001 to 0.02%,
Ti: 0.005 to 0.3%, and N: 0.01% or less (excluding 0%)
The high-strength steel sheet according to claim 1, which satisfies the following equation (7).
Ti> 3.4 × N (7)
[In formula (7), Ti represents the Ti content (mass%) in the steel, and N represents the N content (mass%) in the steel]
更に、
Nb:0.005〜0.3%、
Cr:0.003〜2%、および
Mo:0.01〜1.0%
よりなる群から選択される1種以上の元素を含む請求項1または2に記載の高強度鋼板。
Furthermore,
Nb: 0.005-0.3%
Cr: 0.003 to 2% and Mo: 0.01 to 1.0%
The high-strength steel sheet according to claim 1 or 2, comprising one or more elements selected from the group consisting of:
更に、
Cu:0.01〜0.3%、
Ni:0.01〜0.3%、
Co:0.005〜0.2%、および
V:0.003〜1%
よりなる群から選択される1種以上の元素を含む請求項1〜3のいずれかに記載の高強度鋼板。
Furthermore,
Cu: 0.01 to 0.3%,
Ni: 0.01 to 0.3%,
Co: 0.005 to 0.2%, and V: 0.003 to 1%
The high-strength steel sheet according to any one of claims 1 to 3, comprising one or more elements selected from the group consisting of:
更に、
Ca:0.0005〜0.005%、および
Mg:0.0005〜0.01%
よりなる群から選択される1種以上の元素を含む請求項1〜4のいずれかに記載の高強度鋼板。
Furthermore,
Ca: 0.0005 to 0.005%, and Mg: 0.0005 to 0.01%
The high-strength steel plate according to any one of claims 1 to 4, comprising one or more elements selected from the group consisting of:
請求項1〜5のいずれかに記載の耐遅れ破壊性に優れた高強度鋼板の製造方法であって、圧下率5%以上で冷間圧延を行い、かつ、
得られた冷延鋼板を用いて、下記の条件(A)〜(C)の全てを満たすように熱処理を行うと共に、熱間圧延後の巻き取り工程以降は、鋼板温度が400℃以上である場合、雰囲気の酸素分圧を1200ppm以下とすることを特徴とする耐遅れ破壊性に優れた高強度鋼板の製造方法。
(A)焼き入れ前の加熱を、加熱温度T1と加熱時間t1が下記式(4)を満たすように行う。
5.3×10×exp(−1.38×10/(8.31×T1))×t10.2≦16 …(4)
[式(4)において、
T1:加熱温度(K)(但し、T1は1225K以下)、
t1:加熱時間(秒)を示す]
(B)上記加熱後、加熱温度T1から300℃以下まで冷却する。このとき、加熱温度T1から300℃までを50℃/sec以上で冷却して焼き入れる。
(C)焼き戻しを、焼戻温度T2、焼戻時間t2および鋼板炭素濃度Cが下記式(6)を満たすように行う。
T2×(ln(t2/3600)+21.3−5.8×C)≦12500 …(6)
[式(6)において、
T2:焼戻温度(K)(但し、T2は748K以上823K以下)、
t2:焼戻時間(秒)(但し、t2は2秒以上400秒以下)、
C:鋼板炭素濃度(母材の炭素濃度)(質量%)を示す。]
A method for producing a high-strength steel sheet having excellent delayed fracture resistance according to any one of claims 1 to 5, wherein cold rolling is performed at a rolling reduction of 5% or more, and
Using the obtained cold-rolled steel sheet, heat treatment is performed so as to satisfy all of the following conditions (A) to (C), and the temperature of the steel sheet is 400 ° C. or higher after the winding step after hot rolling. A method for producing a high-strength steel sheet having excellent delayed fracture resistance, wherein the oxygen partial pressure in the atmosphere is 1200 ppm or less.
(A) Heating before quenching is performed so that the heating temperature T1 and the heating time t1 satisfy the following formula (4).
5.3 × 10 6 × exp (−1.38 × 10 5 /(8.31×T1))×t1 0.2 ≦ 16 (4)
[In Formula (4),
T1: heating temperature (K) (however, T1 is 1225K or less),
t1: Indicates heating time (seconds)]
(B) After the said heating, it cools to 300 degrees C or less from heating temperature T1. At this time, the heating temperature T1 to 300 ° C. is cooled at 50 ° C./sec or more and quenched.
(C) Tempering is performed so that the tempering temperature T2, the tempering time t2, and the steel plate carbon concentration C satisfy the following formula (6).
T2 × (ln (t2 / 3600) + 21.3−5.8 × C) ≦ 12500 (6)
[In Formula (6),
T2: Tempering temperature (K) (however, T2 is 748K or more and 823K or less),
t2: Tempering time (second) (however, t2 is 2 seconds or more and 400 seconds or less),
C: Steel plate carbon concentration (carbon concentration of base material) (% by mass). ]
JP2011247713A 2011-11-11 2011-11-11 High strength steel plate with excellent delayed fracture resistance and method for producing the same Expired - Fee Related JP5662920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247713A JP5662920B2 (en) 2011-11-11 2011-11-11 High strength steel plate with excellent delayed fracture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247713A JP5662920B2 (en) 2011-11-11 2011-11-11 High strength steel plate with excellent delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013104081A JP2013104081A (en) 2013-05-30
JP5662920B2 true JP5662920B2 (en) 2015-02-04

Family

ID=48623866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247713A Expired - Fee Related JP5662920B2 (en) 2011-11-11 2011-11-11 High strength steel plate with excellent delayed fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5662920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123356A1 (en) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 High-strength steel sheet and high-strength electrogalvanized steel sheet

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017341B2 (en) 2013-02-19 2016-10-26 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bendability
JP5836317B2 (en) 2013-05-16 2015-12-24 株式会社豊田自動織機 Variable nozzle turbocharger
WO2015088514A1 (en) 2013-12-11 2015-06-18 Arcelormittal Investigacion Y Desarrollo Sl Martensitic steel with delayed fracture resistance and manufacturing method
US20160369367A1 (en) 2014-01-14 2016-12-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet and process for producing same
WO2015182591A1 (en) 2014-05-29 2015-12-03 新日鐵住金株式会社 Heat-treated steel material and method for producing same
MX2016015580A (en) 2014-05-29 2017-03-23 Nippon Steel & Sumitomo Metal Corp Heat-treated steel material and method for producing same.
JP6295893B2 (en) * 2014-08-29 2018-03-20 新日鐵住金株式会社 Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same
JP6749818B2 (en) * 2016-02-29 2020-09-02 株式会社神戸製鋼所 High-strength steel sheet and method for manufacturing the same
JP6605118B2 (en) * 2016-03-08 2019-11-13 アイシン・エィ・ダブリュ株式会社 Steel parts, gear parts, and manufacturing method of steel parts
JP6947012B2 (en) * 2017-12-25 2021-10-13 日本製鉄株式会社 Steel materials, steel pipes for oil wells, and manufacturing methods for steel materials
JP7235102B2 (en) * 2019-04-11 2023-03-08 日本製鉄株式会社 Steel plate and its manufacturing method
WO2021085336A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member
KR20240010000A (en) * 2021-06-24 2024-01-23 제이에프이 스틸 가부시키가이샤 High-strength steel plate and its manufacturing method, and members
JPWO2023002910A1 (en) 2021-07-21 2023-01-26
JP7260073B1 (en) * 2021-08-30 2023-04-18 Jfeスチール株式会社 High-strength steel sheets, high-strength galvanized steel sheets, their manufacturing methods, and members
KR20240035536A (en) * 2021-08-30 2024-03-15 제이에프이 스틸 가부시키가이샤 High-strength steel sheet, high-strength plated steel sheet and their manufacturing method, and members
WO2023063288A1 (en) 2021-10-13 2023-04-20 日本製鉄株式会社 Cold-rolled steel sheet, method for manufacturing same, and welded joint
WO2023181640A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 High strength steel sheet and manufacturing method therefor
JP7323093B1 (en) * 2022-03-25 2023-08-08 Jfeスチール株式会社 High-strength steel plate and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288216B2 (en) * 2004-09-06 2009-07-01 新日本製鐵株式会社 Hot-press steel sheet having excellent hydrogen embrittlement resistance, automotive member and method for producing the same
JP4894288B2 (en) * 2005-12-28 2012-03-14 Jfeスチール株式会社 Wear-resistant steel plate
JP4324226B1 (en) * 2008-03-07 2009-09-02 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP4712838B2 (en) * 2008-07-11 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP4712882B2 (en) * 2008-07-11 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5728836B2 (en) * 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
JP5644095B2 (en) * 2009-11-30 2014-12-24 新日鐵住金株式会社 High strength steel sheet having good tensile maximum strength of 900 MPa or more with good ductility and delayed fracture resistance, manufacturing method of high strength cold rolled steel sheet, manufacturing method of high strength galvanized steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123356A1 (en) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 High-strength steel sheet and high-strength electrogalvanized steel sheet

Also Published As

Publication number Publication date
JP2013104081A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5662920B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
KR102451862B1 (en) Cold rolled steel sheet and manufacturing method thereof
TWI412609B (en) High strength steel sheet and method for manufacturing the same
TWI412605B (en) High strength steel sheet and method for manufacturing the same
JP6620474B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
US11572599B2 (en) Cold rolled heat treated steel sheet and a method of manufacturing thereof
JP6852736B2 (en) Hot-dip galvanized cold-rolled steel sheet
US9863028B2 (en) High-strength hot-dip galvanized steel sheet having excellent yield strength and formability
JP5412182B2 (en) High strength steel plate with excellent hydrogen embrittlement resistance
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP6354268B2 (en) High-strength hot-rolled steel sheet having a maximum tensile strength of 980 MPa or more excellent in punching hole expandability and low-temperature toughness, and a method for producing the same
WO2014188966A1 (en) Hot-rolled steel sheet and method for manufacturing same
TW201437388A (en) High-strength hot-rolled steel sheet having maximum tensile strength of 980 mpa or above, and having excellent and baking hardenability and low-temperature toughness
TW201446973A (en) Hot-rolled steel sheet and production method therefor
JP2021502484A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
KR20090098909A (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP5906154B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JPWO2020203158A1 (en) Steel plate
JP2013144830A (en) Hot-dip galvanized steel sheet and method for producing the same
JP2017218672A (en) High strength cold rolled steel sheet excellent in formability and production method thereof
EP3853387B1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
US20200392596A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
EP4265771A1 (en) High strength steel sheet having excellent workability and method for manufacturing same
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5662920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees