JP2013144830A - Hot-dip galvanized steel sheet and method for producing the same - Google Patents

Hot-dip galvanized steel sheet and method for producing the same Download PDF

Info

Publication number
JP2013144830A
JP2013144830A JP2012005361A JP2012005361A JP2013144830A JP 2013144830 A JP2013144830 A JP 2013144830A JP 2012005361 A JP2012005361 A JP 2012005361A JP 2012005361 A JP2012005361 A JP 2012005361A JP 2013144830 A JP2013144830 A JP 2013144830A
Authority
JP
Japan
Prior art keywords
steel sheet
less
dip galvanized
hot
alloyed hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012005361A
Other languages
Japanese (ja)
Other versions
JP5741456B2 (en
Inventor
Shigeki Nomura
茂樹 野村
Takuji Yokoyama
卓史 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012005361A priority Critical patent/JP5741456B2/en
Publication of JP2013144830A publication Critical patent/JP2013144830A/en
Application granted granted Critical
Publication of JP5741456B2 publication Critical patent/JP5741456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot-dip galvanized steel sheet having yield strength of at least 420 MPa and tensile strength of at least 780 MPa, and also excellent in elongation and hole expandability.SOLUTION: The steel sheet has: chemical composition containing, in mass%, 0.03-0.30% of C, 0.005-2.5% of Si, 1.9-3.5% of Mn, 0.1% or less of P, 0.01% or less of S, 0.001-1.5% of sol.Al, and 0.02% or less of N; and steel structure containing, in vol%, at least 3% of tempered martensite and at least 1% of retained austenite. The steel sheet is heated to at least 720°C, cooled to 450-600°C at a rate of 2-200°C/s, cooled to 200°C or less from the temperature of alloying treatment after hot dip galvanizing at a rate of 5°C/s or more, and further subjected to tempering treatment in a temperature range of 200-600°C for 1 s-10 min.

Description

本発明は、合金化溶融亜鉛めっき鋼板およびその製造方法に関する。本発明は、特に、自動車の車体のようにプレス成形に供される用途に好適な、伸び性と穴拡げ性とが両立した高強度合金化溶融亜鉛めっき鋼板とその製造方法とに関する。本発明の合金化溶融亜鉛めっき鋼板は、熱延鋼板を昇温して溶融亜鉛めっきを施した合金化溶融亜鉛めっき熱延鋼板と、熱延鋼板を冷間圧延して得た冷延鋼板を焼鈍後に溶融亜鉛めっきを施す合金化溶融亜鉛めっき冷延鋼板の両方を含む。   The present invention relates to an galvannealed steel sheet and a method for producing the same. The present invention particularly relates to a high-strength galvannealed steel sheet having both elongation and hole expansibility, which is suitable for use in press forming such as a car body of an automobile, and a method for producing the same. The alloyed hot-dip galvanized steel sheet of the present invention comprises an alloyed hot-dip galvanized hot-rolled steel sheet that has been hot-dip galvanized by heating the hot-rolled steel sheet, and a cold-rolled steel sheet obtained by cold rolling the hot-rolled steel sheet. Includes both alloyed hot-dip galvanized cold-rolled steel sheets that are hot-dip galvanized after annealing.

近年、地球環境保護のために自動車の燃費向上が求められており、車体の軽量化および乗員の安全性確保のため、高強度鋼板のニーズが高まっている。自動車用部材に供される鋼板は、高強度であるだけでは不十分であり、高い耐食性と良好なプレス成形性が要求される。   In recent years, there has been a demand for improving the fuel efficiency of automobiles in order to protect the global environment, and there is an increasing need for high-strength steel sheets to reduce the weight of the vehicle body and ensure the safety of passengers. A steel plate used for a member for automobiles is not sufficient if it has only high strength, and high corrosion resistance and good press formability are required.

ここで、伸びが良好な溶融亜鉛めっき鋼板として、残留オーステナイトのTRIP効果を利用する鋼板が知られている。
例えば、特開平11−279691号公報には強度−延性バランスに優れた高張力溶融亜鉛めっき鋼板が開示されている。しかしながら、高強度化のために硬質なマルテンサイトを含有させると、穴拡げ性が劣化するという問題がある。
Here, a steel sheet using the TRIP effect of retained austenite is known as a hot-dip galvanized steel sheet having good elongation.
For example, JP-A-11-279691 discloses a high-tensile hot-dip galvanized steel sheet having an excellent strength-ductility balance. However, when hard martensite is contained for increasing the strength, there is a problem that the hole expandability deteriorates.

穴拡げ性を改善する技術として、焼き戻しマルテンサイトを活用する方法が特開平6−93340号公報、特開平6−108152号公報、特開2005−256089号公報、特開2009−19258号公報に開示されている。   As a technique for improving hole expansibility, methods utilizing tempered martensite are disclosed in JP-A-6-93340, JP-A-6-108152, JP-A-2005-256089, and JP-A-2009-19258. It is disclosed.

特開平6−93340号公報に記載の方法では、溶融めっき前に急冷してマルテンサイトを生成させ、その後溶融めっき等を施す。そのため、めっき後の冷却で新たに生成する、穴拡げ性に悪影響を及ぼす焼き戻しされていない硬質なマルテンサイトを多く含んだり、合金化処理時に伸びに寄与する残留オーステナイトが分解したりして、高強度で伸びと穴拡げを安定して両立させるのは困難であった。   In the method described in JP-A-6-93340, martensite is generated by rapid cooling before hot dipping, and then hot dipping is performed. Therefore, it contains a lot of hard martensite that has not been tempered, which is newly generated by cooling after plating, and has an adverse effect on hole expansibility, and residual austenite that contributes to elongation during alloying treatment decomposes. It has been difficult to achieve both high strength and stable expansion and hole expansion.

特開平6−108152号公報、特開2005−256089号公報、および特開2009−19258号公報には、めっき後に焼き戻す方法が開示されている。しかし、これらは焼き戻し前の冷却終点温度が十分低くないため、焼き戻し後の冷却過程で新たに硬質なマルテンサイトが生成し、穴拡げ性が劣化する問題があった。また、残留オーステナイトが十分に残留していないため、安定して十分な伸びを確保することが困難であった。   JP-A-6-108152, JP-A-2005-256089, and JP-A-2009-19258 disclose methods of tempering after plating. However, since the end point temperature of cooling before tempering is not sufficiently low, hard martensite is newly generated in the cooling process after tempering, and the hole expandability is deteriorated. Moreover, since the retained austenite does not remain sufficiently, it is difficult to ensure sufficient elongation stably.

溶接学会誌50(1981),No.1,p37−46Journal of the Japan Welding Society 50 (1981), No. 1, p37-46

特開平11−279691号公報Japanese Patent Application Laid-Open No. 11-296991 特開平6−93340号公報Japanese Patent Laid-Open No. 6-93340 特開平6−108152号公報JP-A-6-108152 特開2005−256089号公報JP 2005-256089 A 特開2009−19258号公報JP 2009-19258 A

本発明は、伸びと穴拡げ性を安定して両立させることができる合金化溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。   An object of this invention is to provide the galvannealed steel plate which can make elongation and hole expansibility both compatible stably, and its manufacturing method.

本発明者らは、十分な伸びを有する合金化溶融亜鉛めっき鋼板について鋭意実験した結果、マルテンサイトと残留オーステナイトの形態をM―A(Martensite-Austenite constituent、別名:島状マルテンサイト)とすることで、高い伸び特性が得られることを見いだした。ここで、M−Aとは、非特許文献1に記載があるように、鋼をフェライト変態やベイナイト変態させた際に未変態オーステナイトへのCの濃縮が起こり、その後の冷却時にマルテンサイト変態することで生じた、マルテンサイトと残留オーステナイトの複合体の領域のことであり、マトリックス中に島状に点在する。   As a result of diligent experiments on alloyed hot-dip galvanized steel sheets having sufficient elongation, the present inventors have determined that the form of martensite and retained austenite is MA (Martensite-Austenite constituent, also known as island martensite). It was found that high elongation characteristics can be obtained. Here, as described in Non-Patent Document 1, M-A is a concentration of C to untransformed austenite when steel is transformed into ferrite or bainite, and martensite is transformed during subsequent cooling. This is a region of a composite of martensite and retained austenite, and is scattered in islands in the matrix.

しかし、過度に硬質なマルテンサイトは穴拡げ性を劣化させる。そこで、本発明者等は穴拡げ性改善のためさらに実験を進め、M−Aを残留オーステナイトが残るような比較的低温で焼き戻すことで、良好な伸びを維持しながら、穴拡げ性の改善も実現できることを見いだした。   However, excessively hard martensite degrades hole expansibility. Accordingly, the present inventors have further experimented to improve the hole expandability, and tempering MA at a relatively low temperature so that residual austenite remains, thereby improving the hole expandability while maintaining good elongation. I also found that it can be realized.

本発明は、上記知見を基に完成されたものであり、加工性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法を提供するものである。なお、本発明において「鋼板」とは「鋼帯」をも含む意味である。   The present invention has been completed based on the above knowledge, and provides an alloyed hot-dip galvanized steel sheet excellent in workability and a method for producing the same. In the present invention, “steel plate” means “steel strip”.

ここに、本発明は、次の通りである。
鋼板の表面に合金化溶融亜鉛めっき層を有する合金化溶融亜鉛めっき鋼板であって、
前記鋼板は、
質量%で、C:0.03%以上0.30%以下、Si:0.005%以上2.5%以下、Mn:1.9%以上3.5%以下、P:0.1%以下、S:0.01%以下、sol.Al:0.001%以上1.5%以下およびN:0.02%以下を含有する化学組成と、
体積%で、焼戻しマルテンサイトを3%以上および残留オーステナイトを1%以上含有する鋼組織と、を有し、
前記合金化溶融亜鉛めっき鋼板は、圧延直角方向の引張試験において降伏強度が420MPa以上、引張強度が780MPa以上である機械特性を有する、
ことを特徴とする合金化溶融亜鉛めっき鋼板。
Here, the present invention is as follows.
An alloyed hot-dip galvanized steel sheet having an alloyed hot-dip galvanized layer on the surface of the steel sheet,
The steel plate
In mass%, C: 0.03% to 0.30%, Si: 0.005% to 2.5%, Mn: 1.9% to 3.5%, P: 0.1% or less Chemical composition containing: S: 0.01% or less, sol.Al: 0.001% or more and 1.5% or less, and N: 0.02% or less,
A steel structure containing, by volume, 3% or more of tempered martensite and 1% or more of retained austenite,
The alloyed hot-dip galvanized steel sheet has a mechanical property that yield strength is 420 MPa or more and tensile strength is 780 MPa or more in a tensile test in a direction perpendicular to rolling.
An alloyed hot-dip galvanized steel sheet.

前記化学組成は、下記から選ばれた少なくとも1種の元素(%はいずれも質量%)をさらに含有していてもよい:
(A)Ti:0.001%以上0.30%以下、Nb:0.001%以上0.30%以下およびV:0.001%以上0.30%以下からなる群から選択される1種または2種以上;
(B)Cr:0.001%以上2.0%以下およびMo:0.001%以上2.0%以下からなる群から選択される1種または2種;
(C)Cu:0.001%以上2.0%以下およびNi:0.001%以上2.0%以下からなる群から選択される1種または2種;
(D)B:0.0001%以上0.02%以下;
(E)Ca:0.0001%以上0.01%以下およびREM:0.0001%以上0.1%以下からなる群から選択される1種または2種;ならびに
(G)Bi:0.0001%以上0.05%以下。
The chemical composition may further contain at least one element selected from the following (all are% by mass):
(A) One selected from the group consisting of Ti: 0.001% to 0.30%, Nb: 0.001% to 0.30% and V: 0.001% to 0.30% Or two or more;
(B) One or two selected from the group consisting of Cr: 0.001% to 2.0% and Mo: 0.001% to 2.0%;
(C) Cu: 0.001% or more and 2.0% or less and Ni: 0.001% or more and 2.0% or less selected from the group consisting of 2.0% or less;
(D) B: 0.0001% to 0.02%;
(E) Ca: 0.0001% or more and 0.01% or less and REM: 0.0001% or more and 0.1% or less selected from the group consisting of 0.1% or less; and (G) Bi: 0.0001 % To 0.05%.

別の側面から、本発明は、上記記載の化学組成を有する熱間圧延鋼板または冷間圧延鋼板を720℃以上に加熱し、2〜200℃/秒の速度で450〜600℃の温度域まで冷却し、溶融亜鉛めっきを施し、その後に合金化処理を行い、合金化処理温度から平均冷却速度5℃/秒以上で200℃以下まで冷却して、さらに200〜600℃の温度域で1秒以上10分間以下の焼き戻し処理を行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法である。   From another aspect, the present invention heats a hot-rolled steel plate or a cold-rolled steel plate having the chemical composition described above to 720 ° C. or higher, and reaches a temperature range of 450-600 ° C. at a rate of 2 to 200 ° C./second. Cool, apply hot dip galvanizing, then perform alloying treatment, cool from the alloying treatment temperature to 200 ° C. or less at an average cooling rate of 5 ° C./second or more, and further in a temperature range of 200 to 600 ° C. for 1 second. It is a manufacturing method of the galvannealed steel sheet characterized by performing the tempering process for 10 minutes or less above.

本発明に係る合金化溶融亜鉛めっき鋼板は、伸び性と穴拡げ性がともに良好であって、成形性に優れているので、ピラ−などの自動車の構造部品用途に最適である。   The alloyed hot-dip galvanized steel sheet according to the present invention has both excellent extensibility and hole expansibility, and is excellent in formability, and is therefore optimal for structural parts of automobiles such as pillars.

以下に、本発明に係る合金化溶融亜鉛めっき鋼板とその製造方法について、母材鋼板の化学組成、金属組織、合金化溶融亜鉛めっき層の合金組成、合金化溶融亜鉛めっき鋼板の機械特性および製造方法について、順に具体的に説明する。以下の説明において、鋼板の化学組成に関する%はいずれも質量%である。   The alloyed hot-dip galvanized steel sheet and the manufacturing method thereof according to the present invention are as follows: chemical composition of base steel sheet, metal structure, alloy composition of alloyed hot-dip galvanized layer, mechanical characteristics of alloyed hot-dip galvanized steel sheet and production The method will be specifically described in order. In the following description, all the percentages relating to the chemical composition of the steel sheet are mass%.

(A)鋼板の化学組成
[C:0.03%以上0.30%以下]
Cは高張力を得るのに有効な成分である。Cの含有量が0.03%未満では必要な高張力が得られない。一方、0.30%を超えてCを含有させると、鋼板の靱性や溶接性が低下する。従って、C含有量を上記のように定めた。好ましいC含有量は0.05%以上0.22%以下である。
(A) Chemical composition of steel sheet [C: 0.03% to 0.30%]
C is an effective component for obtaining a high tension. If the C content is less than 0.03%, the required high tension cannot be obtained. On the other hand, when C is contained exceeding 0.30%, the toughness and weldability of the steel sheet are lowered. Therefore, the C content was determined as described above. A preferable C content is 0.05% or more and 0.22% or less.

[Si:Si:0.005%以上2.5%以下]
Siは鋼板を高強度化する元素で、フェライトを強化し、組織を均一化し、加工性を改善するのに有効な成分である。また、セメンタイトの析出を抑制し、オーステナイトの残留を促進する作用も有する。そのような効果を得るためには、0.005%以上のSiの含有が必要である、一方、2.5%を超えてSiを含有させると、溶融めっきでの不めっきの発生が問題になるとともに、鋼板の靱性や溶接性が低下する。したがってSiの含有量を上記のように定めた。好ましいSi含有量は0.05%以上で、2.0%以下、より好ましくは1.5%以下である。
[Si: Si: 0.005% to 2.5%]
Si is an element that increases the strength of a steel sheet, and is an effective component for strengthening ferrite, homogenizing the structure, and improving workability. Moreover, it has the effect | action which suppresses precipitation of cementite and promotes the austenite residue. In order to obtain such an effect, it is necessary to contain 0.005% or more of Si. On the other hand, if more than 2.5% of Si is contained, the occurrence of non-plating in hot dipping becomes a problem. At the same time, the toughness and weldability of the steel sheet decrease. Therefore, the Si content was determined as described above. The Si content is preferably 0.05% or more and 2.0% or less, more preferably 1.5% or less.

[Mn:1.9%以上3.5%以下]
Mnは、M−Aを生成させ、強度と伸びを得るのに必須の元素である。所望の効果を得るには、1.9%以上のMnの含有が必要である。一方、3.5%を超えてMnを含有させると、鋼板の靱性や溶接性が低下する。したがってMnの含有量は上記のように定めた。2.2〜3.5%が好ましい範囲である。より好ましいMn含有量は2.2%以上3.1%以下である。
[Mn: 1.9% to 3.5%]
Mn is an element essential for generating MA and obtaining strength and elongation. In order to obtain a desired effect, it is necessary to contain 1.9% or more of Mn. On the other hand, when Mn is contained exceeding 3.5%, the toughness and weldability of the steel sheet are lowered. Therefore, the Mn content is determined as described above. 2.2 to 3.5% is a preferable range. A more preferable Mn content is 2.2% or more and 3.1% or less.

[P:0.1%以下]
Pは、不純物として含有され、靱性を劣化させる好ましくない元素である。従って、P含有量を0.1%以下と定めた。P:0.02%以下が好ましい範囲である。
[P: 0.1% or less]
P is an undesirable element that is contained as an impurity and deteriorates toughness. Therefore, the P content is set to 0.1% or less. P: 0.02% or less is a preferable range.

[S:S:0.01%以下]
Sは、不純物として含有され、鋼中にMnSを形成し、穴拡げ性を劣化させる。したがって、Sの含有量を0.01%以下と定めた。S含有量は0.005%以下が好ましく、0.0012%以下がさらに好ましい。
[S: S: 0.01% or less]
S is contained as an impurity, forms MnS in the steel, and deteriorates the hole expandability. Therefore, the S content is determined to be 0.01% or less. The S content is preferably 0.005% or less, more preferably 0.0012% or less.

[sol.Al:0.001%以上1.5%以下]
Alは脱酸のために添加される。また、Siと同様に、セメンタイトの析出を抑えて残留オーステナイト量を増加させるのにも有効である。したがって、Alの下限を0.001%と定めた。一方、1.5%を超えてAlを含有させると、介在物が増加して、加工性が劣化する。したがってsol.Al含有量を上記のように定めた。好ましい範囲は、0.005%以上、1.0%以下である。
[Sol.Al: 0.001% to 1.5%]
Al is added for deoxidation. Further, like Si, it is also effective for suppressing the precipitation of cementite and increasing the amount of retained austenite. Therefore, the lower limit of Al is set to 0.001%. On the other hand, when Al is contained exceeding 1.5%, inclusions increase and workability deteriorates. Therefore, the sol.Al content was determined as described above. A preferable range is 0.005% or more and 1.0% or less.

[N:0.02%以下]
Nは、不純物として含有され、連続鋳造中に窒化物を形成してスラブのひび割れの原因となるので、その含有量は低い方が好ましい。したがって、N含有量は0.02%以下と定めた。好ましくは0.01%以下である。
[N: 0.02% or less]
N is contained as an impurity, and nitrides are formed during continuous casting to cause cracks in the slab. Therefore, the content is preferably low. Therefore, the N content is determined to be 0.02% or less. Preferably it is 0.01% or less.

以下の元素は、場合により含有させてもよい任意元素である。
[Ti:0.001%以上0.30%以下、Nb:0.001%以上0.30%以下およびV:0.001%以上0.30%以下から選択される1種または2種以上]
Ti,Nb,Vは析出物となって結晶粒を微細化させる効果を有しているので、母材鋼板に強度、靱性の向上の目的で含有させてもよい。しかし、各々が0.001%未満の含有ではその効果は十分ではなく、また各々0.30%を超えて含有させても効果は飽和してしまい、コスト的に不利となる。そのため、いずれの元素も、上記のように、0.001%以上0.30%以下の含有量とする。TiとNbはオーステナイト細粒化効果が顕著で、その後フェライト生成によるオーステナイトへのC濃化を促進し、M−Aを生成しやすくする。したがって、TiとNbの少なくともどちらか一方を0.01%以上含有させるのが好ましく、0.03%以上含有させるのがさらに好ましい。
The following elements are optional elements that may optionally be included.
[Ti: 0.001% or more and 0.30% or less, Nb: 0.001% or more and 0.30% or less, and V: one or more selected from 0.001% or more and 0.30% or less]
Since Ti, Nb, and V have the effect of becoming precipitates and refining crystal grains, they may be contained in the base material steel sheet for the purpose of improving strength and toughness. However, if each content is less than 0.001%, the effect is not sufficient, and if each content exceeds 0.30%, the effect is saturated, which is disadvantageous in terms of cost. Therefore, each element has a content of 0.001% or more and 0.30% or less as described above. Ti and Nb have a remarkable austenite refining effect, and then promote C concentration to austenite due to the formation of ferrite, making it easier to produce MA. Accordingly, at least one of Ti and Nb is preferably contained in an amount of 0.01% or more, and more preferably 0.03% or more.

[Cr:0.001%以上2.0%以下およびMo:0.001%以上2.0%以下から選択される1種または2種]
CrおよびMoは、Mnと同様に、オ−ステナイトを安定化することで変態強化を促進する働きがあり、鋼板の高強度化に有効であるので、含有させてもよい。しかしながら、各々0.001%未満の含有ではその効果は十分ではなく、また各々2.0%を超えて含有すると特性変動が大きくなる。したがって、Cr含有量とMo含有量はいずれも0.001%以上2.0%以下とする。好ましいCr含有量は0.1%以上1.0%以下であり、好ましいMo含有量は0.05%以上0.5%以下である。
[Cr: One or two selected from 0.001% to 2.0% and Mo: 0.001% to 2.0%]
Cr and Mo, like Mn, have the function of promoting transformation strengthening by stabilizing austenite and are effective in increasing the strength of the steel sheet, so may be contained. However, when the content is less than 0.001%, the effect is not sufficient, and when the content exceeds 2.0%, the characteristic variation increases. Therefore, the Cr content and the Mo content are both 0.001% to 2.0%. A preferable Cr content is 0.1% or more and 1.0% or less, and a preferable Mo content is 0.05% or more and 0.5% or less.

[Cu:0.001%以上2.0%以下およびNi:0.001%以上2.0%以下から選択される1種または2種]
CuおよびNiには腐食抑制効果があり、表面に濃化して水素の侵入を抑え、遅れ破壊を抑制する働きがあるので、含有させてもよい。しかしながら、各々0.001%未満ではその効果は十分ではなく、また各々2.0%を超えて含有させても効果は飽和し、コスト的に不利となる。したがって、Cu含有量とNi含有量は、いずれも0.001%以上2.0%以下とする。好ましくは、いずれも0.01%以上0.8%以下である。
[Cu: 0.001% or more and 2.0% or less and Ni: 0.001% or more and 2.0% or less selected from one or two]
Cu and Ni have a corrosion-inhibiting effect and have a function of concentrating on the surface to suppress the entry of hydrogen and to suppress delayed fracture. Therefore, Cu and Ni may be contained. However, if the content is less than 0.001%, the effect is not sufficient, and if the content exceeds 2.0%, the effect is saturated and disadvantageous in terms of cost. Therefore, the Cu content and the Ni content are both 0.001% or more and 2.0% or less. Preferably, both are 0.01% or more and 0.8% or less.

[B:0.0001%以上0.02%以下]
Bは粒界からの核生成を抑え、焼き入れ性を高めて高強度化に寄与する元素である。また、M−Aを効果的に生成させ、伸びの向上に寄与する。したがって、含有させてもよい。しかし、0.0001%未満のBの含有ではその効果は十分ではなく、また0.02%を超えて含有させても効果は飽和し、コスト的に不利となる。したがって、Bの含有量は0.0001〜0.02%と定めた。
[B: 0.0001% to 0.02%]
B is an element that suppresses the nucleation from the grain boundary, enhances the hardenability, and contributes to high strength. Moreover, it can produce | generate M-A effectively and contributes to the improvement of elongation. Therefore, you may make it contain. However, if the content of B is less than 0.0001%, the effect is not sufficient, and even if the content exceeds 0.02%, the effect is saturated and disadvantageous in terms of cost. Therefore, the B content is determined to be 0.0001 to 0.02%.

[Ca:0.0001%以上0.01%以下およびREM:0.0001%以上0.1%以下から選択される1種または2種]
CaおよびREMは、硫化物を球状化させることにより局部延性を向上させる効果があるので、含有させてもよい。しかしながら、Caは、0.0001%未満の含有ではその効果は十分ではなく、また0.01%を超えて含有させても効果は飽和し、コスト的に不利となる。したがってCa含有量は上記の通りとする。また、REMは、0.0001%未満の含有ではその効果は十分ではなく、また0.1%を超えて含有させても効果は飽和し、コスト的に不利となる。したがってREM含有量は上記の通りとする。
[Ca: One or two selected from 0.0001% to 0.01% and REM: 0.0001% to 0.1%]
Ca and REM may be contained because they have the effect of improving the local ductility by spheroidizing the sulfide. However, when Ca is contained in an amount of less than 0.0001%, the effect is not sufficient, and even if Ca is contained in an amount exceeding 0.01%, the effect is saturated, which is disadvantageous in terms of cost. Therefore, the Ca content is as described above. Moreover, the effect of REM is not sufficient if the content is less than 0.0001%, and if the content exceeds 0.1%, the effect is saturated and disadvantageous in terms of cost. Therefore, the REM content is as described above.

ここで、REMとは、Sc、Y及びランタノイドの合計17元素を指し、ランタノイドの場合、工業的にはミッシュメタルの形で添加される。なお、本発明では、REMの含有量はこれらの元素の合計含有量を指す。   Here, REM refers to a total of 17 elements of Sc, Y, and lanthanoid. In the case of lanthanoid, it is added industrially in the form of misch metal. In the present invention, the content of REM refers to the total content of these elements.

[Bi:0.0001%以上0.05%以下]
Mnなどがミクロ偏析すると、硬さの不均一なバンド組織が発達して、加工性を低下させる。Biは凝固界面に濃化してデンドライト間隔を狭くし、凝固偏析を小さくする働きがあるので、含有させてもよい。しかし、0.0001%未満の含有では、その効果が不十分で、また0.05%を超えてBiを含有させると、表面品質の劣化を生じさせるので、その含有量を上記のように定めた。Bi含有量の好ましい範囲は0.0003〜0.01%であり、さらに好ましい範囲は0.0003〜0.0050%である。
[Bi: 0.0001% to 0.05%]
When Mn and the like are segregated microscopically, a band structure with non-uniform hardness develops and the workability decreases. Bi has the function of concentrating on the solidification interface to narrow the dendrite interval and reduce the solidification segregation, so it may be contained. However, if the content is less than 0.0001%, the effect is insufficient, and if more than 0.05% is contained, surface quality is deteriorated. Therefore, the content is determined as described above. It was. A preferable range of Bi content is 0.0003 to 0.01%, and a more preferable range is 0.0003 to 0.0050%.

(B)鋼板の金属組織
上述したように、加工性が良好で、強度が780MPa以上の合金化溶融亜鉛めっき鋼板を得るためには、M−Aを残留オーステナイトが残るような比較的低温で焼き戻した組織とすることが有効である。それにより、M−Aによりもたらされる良好な伸びを維持しながら、穴拡げ性に良好となる。
(B) Metal structure of steel sheet As described above, in order to obtain an alloyed hot-dip galvanized steel sheet having good workability and strength of 780 MPa or more, MA is baked at a relatively low temperature so that residual austenite remains. It is effective to use the returned organization. Thereby, the hole expandability is improved while maintaining the good elongation provided by MA.

そのため、本発明に係る合金化溶融亜鉛めっき鋼板の金属組織は、体積率で焼戻しマルテンサイトを3%以上、残留オーステナイトを1%以上含有することが必要である。さらに高強度を得るためには焼戻しマルテンサイトは5%以上が好ましい。残留オーステナイトは2%以上が好ましい。金属組織に関する各相の体積率は、板厚1/4位置で測定した各相の面積率とする。   Therefore, the metal structure of the galvannealed steel sheet according to the present invention needs to contain 3% or more of tempered martensite and 1% or more of retained austenite by volume ratio. In order to obtain higher strength, the tempered martensite is preferably 5% or more. The retained austenite is preferably 2% or more. The volume ratio of each phase related to the metal structure is the area ratio of each phase measured at the position of the plate thickness ¼.

金属組織の残部はフェライトまたはベイナイトまたはその両方であることが好ましい。また、5μm以上のセメンタイトを粒内部に含まないことがM−A生成促進のため好ましい。上述したように、M−Aを残留オーステナイトが残るような比較的低温で焼き戻すことで、伸びと穴拡げ性の両立が図られる。穴拡げ性の観点からは、含有しているマルテンサイトは全て焼戻されたものであることが好ましい。   The balance of the metal structure is preferably ferrite and / or bainite. Moreover, it is preferable not to contain 5 [mu] m or more of cementite inside the grains for the purpose of promoting the formation of MA. As described above, both elongation and hole expansibility can be achieved by tempering MA at a relatively low temperature so that residual austenite remains. From the viewpoint of hole expandability, it is preferable that all martensite contained is tempered.

(C)合金化溶融亜鉛めっき層
合金化溶融亜鉛めっき層のFe濃度が7質量%未満では、溶接性や摺動性が不十分となりやすい。したがって、合金化溶融亜鉛めっき層のFe濃度は7質量%以上とすることが好ましい。合金化溶融亜鉛めっき層のFe濃度の上限は、耐パウダリング性の観点からは20%以下とすることが好ましく、15%以下とすることがさらに好ましい。めっき層のFe含有量は、溶融めっき後の熱処理(合金化処理)の条件により調整される。
(C) Alloyed hot-dip galvanized layer When the Fe concentration of the alloyed hot-dip galvanized layer is less than 7% by mass, weldability and slidability tend to be insufficient. Therefore, the Fe concentration of the alloyed hot-dip galvanized layer is preferably 7% by mass or more. The upper limit of the Fe concentration of the alloyed hot-dip galvanized layer is preferably 20% or less, more preferably 15% or less from the viewpoint of powdering resistance. The Fe content of the plating layer is adjusted by the conditions of heat treatment (alloying treatment) after hot dipping.

(D)機械特性
本発明に係る合金化溶融亜鉛めっき鋼板は、圧延延直角方向の引張試験において降伏強度(YS)が420MPa以上、引張強度(TS)が780MPa以上の機械特性を有する。この引張試験において降伏強度が420MPa未満であるか、および/または引張強度が780MPa未満であると、自動車部品とした場合において十分な衝撃吸収性を確保することが困難である。降伏強度は好ましくは500MPa以上、より好ましくは600MPa以上であり、引張強度は好ましくは800MPa以上、より好ましくは900MPa以上である。なお、成形性が要求される自動車部品への適用を考慮すると、全伸びは12%以上、穴拡げ率は35%以上であることが好ましい。
(D) Mechanical properties The alloyed hot-dip galvanized steel sheet according to the present invention has mechanical properties such that the yield strength (YS) is 420 MPa or more and the tensile strength (TS) is 780 MPa or more in a tensile test in the direction perpendicular to the rolling direction. In this tensile test, if the yield strength is less than 420 MPa and / or the tensile strength is less than 780 MPa, it is difficult to ensure sufficient impact absorption in the case of an automobile part. The yield strength is preferably 500 MPa or more, more preferably 600 MPa or more, and the tensile strength is preferably 800 MPa or more, more preferably 900 MPa or more. In consideration of application to automobile parts that require formability, the total elongation is preferably 12% or more and the hole expansion ratio is preferably 35% or more.

(C)製造方法
M−Aを生成させるためには、製造過程において、残留オーステナイトにCの濃度勾配を存在させることが必要である。C濃度が高い部分は残留オーステナイトとして残留し、C濃度の低い部分はマルテンサイトへ変態し、その結果M−Aが得られる。M−Aは残留オーステナイトを含むとともにマルテンサイトが硬質なため相対的に軟質な母相に歪みが集中し、高強度と良好な伸びが得られる。しかしながら、過度に硬質なマルテンサイトは穴拡げ性に不利なため、残留オーステナイトが残るように適度に焼き戻すことによって、伸びと穴拡げ性に優れた合金化溶融亜鉛めっきが製造可能となる。しかも、焼き戻しをめっき後に行うことで、表面の酸化の問題や焼き戻しされていないマルテンサイトが残存する問題を抑制できる。
(C) Production method In order to produce MA, it is necessary that a C concentration gradient exists in the retained austenite during the production process. A portion with a high C concentration remains as retained austenite, and a portion with a low C concentration is transformed into martensite, resulting in M-A. Since M-A contains retained austenite and martensite is hard, strain concentrates on a relatively soft matrix, and high strength and good elongation can be obtained. However, since excessively hard martensite is disadvantageous for hole expansibility, alloyed hot dip galvanizing excellent in elongation and hole expansibility can be produced by appropriately tempering so that residual austenite remains. In addition, by performing tempering after plating, it is possible to suppress problems of surface oxidation and remaining untempered martensite.

具体的には、1.9%以上のMnを含有する熱間圧延鋼板または冷間圧延鋼板をめっき母材として使用し、この鋼板を720℃以上の温度に加熱後、2〜200℃/秒の速度で450〜600℃の温度域まで冷却して、溶融亜鉛めっきを施し、その後、合金化処理を行い、合金化処理温度から平均冷却速度5℃/秒以上で200℃以下まで冷却し、こうして製造されたM−Aを含む合金化溶融亜鉛めっき鋼板に対して、さらに200〜600℃の温度域で1秒から10分間の焼き戻しを行う。   Specifically, a hot-rolled steel plate or a cold-rolled steel plate containing 1.9% or more of Mn is used as a plating base material, and after heating the steel plate to a temperature of 720 ° C. or higher, 2 to 200 ° C./second. Is cooled to a temperature range of 450 to 600 ° C. at a rate of, subjected to hot dip galvanization, and then subjected to alloying treatment, and is cooled from the alloying treatment temperature to 200 ° C. or less at an average cooling rate of 5 ° C./second or more The alloyed hot-dip galvanized steel sheet containing MA thus manufactured is further tempered at a temperature range of 200 to 600 ° C. for 1 second to 10 minutes.

1.9%以上のMnはセメンタイトの析出を抑え、M−Aを得るのに必要である。前述したように、母材鋼板は熱延鋼板と冷延鋼板のいずれでもよく、熱間圧延や冷間圧延の条件については特に制限されないが、好ましい熱延条件は、圧延仕上温度が800℃以上1100℃以下の範囲内、巻取温度が350℃以上750℃以下の範囲内である。   1.9% or more of Mn is necessary for suppressing precipitation of cementite and obtaining MA. As described above, the base steel plate may be either a hot-rolled steel plate or a cold-rolled steel plate, and there are no particular restrictions on the conditions for hot rolling or cold rolling, but preferred hot rolling conditions include a rolling finish temperature of 800 ° C. or higher. The winding temperature is in the range of 350 ° C. or higher and 750 ° C. or lower in the range of 1100 ° C. or lower.

溶融めっきに際しての焼鈍温度は、加熱時にオーステナイトを生成させるために720℃以上とする。穴拡げ性に有利な均一な組織を得るには、オーステナイト単相域まで加熱することが好ましい。加熱温度の上限は特に規定しないが粒径の粗大化を抑制して良好な靭性を確保する観点からは1000℃以下とすることが好ましい。   The annealing temperature at the time of hot dipping is 720 ° C. or higher in order to generate austenite during heating. In order to obtain a uniform structure advantageous for hole expansibility, it is preferable to heat to an austenite single phase region. The upper limit of the heating temperature is not particularly specified, but is preferably set to 1000 ° C. or less from the viewpoint of suppressing the coarsening of the particle size and ensuring good toughness.

加熱後の冷却速度が2℃/秒未満ではセメンタイトの析出が生じてしまい、また200℃/秒を超える冷却では、オーステナイトへのCの濃度勾配が不十分で、M−Aが生じない。この冷却速度は好ましくは5〜50℃/秒であり、より好ましくは8〜30℃/秒である。   When the cooling rate after heating is less than 2 ° C./second, precipitation of cementite occurs, and when the cooling rate exceeds 200 ° C./second, the concentration gradient of C to austenite is insufficient and MA does not occur. This cooling rate is preferably 5 to 50 ° C./second, more preferably 8 to 30 ° C./second.

上記冷却の冷却停止温度を450〜600℃の温度域とするのは、オーステナイト中のC濃度をM−Aが生成するように勾配を付けるのに必要であるからである。この冷却停止温度は好ましくは480〜570℃である。   The reason why the cooling stop temperature of the cooling is set to a temperature range of 450 to 600 ° C. is that it is necessary to provide a gradient so that MA generates the C concentration in austenite. This cooling stop temperature is preferably 480 to 570 ° C.

その後、必要に応じて等温保持や冷却が行われて、溶融亜鉛めっきが施され、さらにめっきを合金化するのに必要な温度に加熱することにより合金化処理が施された後、得られた合金化溶融亜鉛めっき鋼板を冷却する。   Thereafter, isothermal holding and cooling were performed as necessary, hot dip galvanizing was performed, and further, alloying treatment was performed by heating to a temperature necessary for alloying the plating. Cool the galvannealed steel sheet.

溶融めっきの浴温度や浴組成は、一般的なものでよく、特に制限はない。めっき付着量も特に制限されず、通常の範囲内でよい。例えば、片面あたりの付着量で20〜80g/m2の範囲内である。合金化処理は、めっき層中のFe濃度が7質量%以上となるような条件で行うことが好ましい。必要な条件は、めっき付着量によっても異なるが、例えば、温度490〜560℃で5〜60秒間の加熱により行われる。 The bath temperature and bath composition of hot dip plating may be general, and there is no particular limitation. The plating adhesion amount is not particularly limited, and may be within a normal range. For example, the amount of adhesion per side is in the range of 20 to 80 g / m2. The alloying treatment is preferably performed under conditions such that the Fe concentration in the plating layer is 7% by mass or more. Necessary conditions vary depending on the plating adhesion amount, but are performed, for example, by heating at a temperature of 490 to 560 ° C. for 5 to 60 seconds.

合金化処理後の合金化処理温度からの冷却では、5℃/秒以上で200℃以下まで冷却することが重要である。この冷却でM−Aの生成を促進させ、引き続き行われる焼き戻しの後にマルテンサイトが生成するのを抑える。好ましい冷却終了温度は100℃以下である。好ましい冷却速度は10℃/秒以上である。冷却速度の上限は特に規定しないが、経済性の観点からは500℃/秒以下とすることが好ましい。   In cooling from the alloying treatment temperature after the alloying treatment, it is important to cool to 200 ° C. or less at 5 ° C./second or more. This cooling promotes the production of MA and suppresses the formation of martensite after subsequent tempering. A preferable cooling end temperature is 100 ° C. or lower. A preferable cooling rate is 10 ° C./second or more. The upper limit of the cooling rate is not particularly defined, but is preferably 500 ° C./second or less from the viewpoint of economy.

焼き戻しは、M−Aのマルテンサイトを適正に焼き戻すために200〜600℃の温度域で1秒〜10分で行う。温度が低かったり、時間が短かったりすると、マルテンサイトが硬質で穴拡げ性に劣るようになる。一方、温度が高かったり、時間が長かったりすると、残留オーステナイトが分解したりマルテンサイトが軟質になりすぎたりして、伸びが劣化する。焼き戻しでは、最高到達温度が200〜600℃の範囲内で、この温度範囲に1秒〜5分間保持する必要がある。ただし、最高到達温度にて等温保持するほうが特性の安定化の点より好ましい。好ましい最高到達板温は250〜500℃の範囲内である。なおM−Aのマルテンサイトは全て焼戻されていることが好ましい。   Tempering is performed in a temperature range of 200 to 600 ° C. for 1 second to 10 minutes in order to properly temper the MA martensite. If the temperature is low or the time is short, the martensite is hard and inferior in hole expansibility. On the other hand, when the temperature is high or the time is long, the retained austenite decomposes or the martensite becomes too soft, and the elongation deteriorates. In the tempering, it is necessary to keep the maximum temperature within a range of 200 to 600 ° C. for 1 second to 5 minutes. However, it is preferable to keep the temperature isothermal at the highest temperature from the viewpoint of stabilizing the characteristics. A preferred maximum plate temperature is in the range of 250 to 500 ° C. The MA martensite is preferably tempered.

この焼き戻しの後に、平坦矯正のためスキンパスやレベラーで処理しても何ら問題がなく、塗油や潤滑作用のある皮膜を施しても構わない。   After this tempering, there is no problem even if it is processed with a skin pass or leveler for flatness correction, and a film having oiling or lubricating action may be applied.

表1に示す化学組成を有する鋼を実験炉で溶製し、厚みが40mmのスラブを作製した。このスラブを、表2に示す仕上温度で表示の厚さになるように熱間圧延した。熱間圧延後、約30℃/秒の水スプレー冷却を施し、表示の巻取温度で、熱延鋼板を製造した。巻取は、巻取温度まで水スプレー冷却後に炉に装入し、巻取温度で60分保持した後、20℃/時の冷却速度で100℃以下まで炉冷することによってシミュレートした。得られた熱延鋼板を酸洗によりスケール除去し、一部には、表2に示すように冷間圧延を施した。   Steel having the chemical composition shown in Table 1 was melted in an experimental furnace to produce a slab having a thickness of 40 mm. The slab was hot-rolled to the indicated thickness at the finishing temperature shown in Table 2. After hot rolling, water spray cooling of about 30 ° C./second was performed, and a hot-rolled steel sheet was manufactured at the indicated winding temperature. Winding was simulated by charging in a furnace after water spray cooling to the winding temperature, holding at the winding temperature for 60 minutes, and then cooling the furnace to 100 ° C. or less at a cooling rate of 20 ° C./hour. The obtained hot-rolled steel sheet was scale-removed by pickling and partly cold-rolled as shown in Table 2.

こうして得られた熱延鋼板または冷延鋼板から、熱処理用試験材を採取し、表3に示す合金化溶融亜鉛めっき処理における熱処理条件により、溶融亜鉛めっきと合金化処理とを行った。すなわち、まず、試験材を表示の焼鈍温度に加熱して45秒間保持して焼鈍を行い、次に表示の一次冷却速度で一次冷却停止温まで冷却を行った。その後、一部の材料においては、表示の条件で等温保持を行ってから、引き続き5℃/sで溶融めっき浴温である460℃まで冷却してから溶融亜鉛めっきを施し、その後、510℃で20秒間の合金化熱処理を施し、15℃/秒の冷却速度で、合金化処理後の冷却を開始した。このようにして得られた合金化溶融亜鉛めっき層中のFe濃度は8〜12質量%であった。この冷却は、試験No.23〜25は表示の温度まで、それ以外は室温まで実施した。また、表3と同じ熱処理パターンで熱膨張曲線を採取し、変態挙動を調査した結果、試験No.23〜25については、マルテントサイト生成温度は170〜270℃であり、それ以外は室温においてマルテンサイト変態が完了していた。   From the hot-rolled steel sheet or the cold-rolled steel sheet thus obtained, a heat treatment test material was collected and subjected to hot-dip galvanization and alloying treatment according to the heat treatment conditions in the alloyed hot-dip galvanizing treatment shown in Table 3. That is, first, the test material was heated to the indicated annealing temperature and held for 45 seconds for annealing, and then cooled to the primary cooling stop temperature at the indicated primary cooling rate. Thereafter, for some materials, isothermal holding is performed under the indicated conditions, followed by cooling to 460 ° C., which is a hot dipping bath temperature, at 5 ° C./s, followed by hot dip galvanizing, and then at 510 ° C. The alloying heat treatment was performed for 20 seconds, and cooling after the alloying treatment was started at a cooling rate of 15 ° C./second. The Fe concentration in the galvannealed layer thus obtained was 8 to 12% by mass. This cooling was performed up to the indicated temperature in Test Nos. 23 to 25, and to room temperature otherwise. Moreover, as a result of collecting thermal expansion curves with the same heat treatment pattern as in Table 3 and investigating the transformation behavior, the martensite formation temperature was 170 to 270 ° C. for Test Nos. 23 to 25, and the others were martensite at room temperature. The site transformation was complete.

こうして冷却された合金化溶融亜鉛めっき鋼板に対して、試験No.28を除き、冷却のあと直ちに表3に示す焼き戻し条件(温度は最高到達温度)で温度保持する焼き戻しを行った。この焼き戻し温度への昇温速度は20℃/秒とした。この焼き戻しによって、焼き戻し前までに生成したマルテンサイトは全て焼き戻しを受ける。マルテンサイトが焼戻されたことは、ナイタール腐食後のSEM観察において、マルテンサイト中の炭化物の存在を確認することにより行った。   The alloyed hot-dip galvanized steel sheet thus cooled was subjected to tempering that maintained the temperature under the tempering conditions shown in Table 3 (temperature is the highest temperature) immediately after cooling, except for test No. 28. The rate of temperature increase to the tempering temperature was 20 ° C./second. By this tempering, all martensite generated before tempering is tempered. Martensite was tempered by confirming the presence of carbides in martensite in SEM observation after nital corrosion.

Figure 2013144830
Figure 2013144830

Figure 2013144830
Figure 2013144830

Figure 2013144830
Figure 2013144830

得られた焼き戻しされた合金化溶融亜鉛めっき鋼板に対して下記の測定を実施した。これらの測定結果を表4にまとめて示す。
金属組織:F. S. Lepera: Journal of Metals 32, No. 3,(1980) 38-39に開示されている方法で、圧延方向の断面を腐食することにより、マルテンサイトおよびオーステナイトを現出させ、板厚1/4位置で倍率1000倍の光学顕微鏡にて観察し、その組織写真から画像処理にてマルテンサイトおよびオーステナイトの面積率の合計を測定した。その値から、板厚1/4位置でX線により測定した残留オーステナイト面積率を差し引いた値を、マルテンサイト体積率とした。
The following measurements were performed on the tempered galvannealed steel sheet obtained. These measurement results are summarized in Table 4.
Metal structure: FS Lepera: Journal of Metals 32, No. 3, (1980) 38-39, corrodes the cross section in the rolling direction to reveal martensite and austenite and It observed with the optical microscope of 1000 times magnification in the 1/4 position, and the total of the area ratio of a martensite and an austenite was measured by image processing from the structure | tissue photograph. The value obtained by subtracting the residual austenite area ratio measured by X-ray at the 1/4 position of the plate thickness was taken as the martensite volume ratio.

引張試験:各種熱処理材から、圧延方向に対して直角方向が引張方向となるようにJIS5号引張試験片を採取し、降伏強さ(YS)、引張強度(TS)と全伸び(El)を測定した。   Tensile test: JIS No. 5 tensile test specimens were taken from various heat-treated materials so that the direction perpendicular to the rolling direction was the tensile direction, and yield strength (YS), tensile strength (TS) and total elongation (El) were measured. It was measured.

穴拡げ試験:日本鉄鋼連盟規格JFST1001に従って実施した穴拡げ試験において、穴の周囲に板厚を貫通する割れが生じるまでの穴直径の増加量と初期穴径との比である穴拡げ率(%)を求めた。   Hole expansion test: In the hole expansion test conducted in accordance with Japan Iron and Steel Federation Standard JFST1001, the hole expansion ratio (%) is the ratio of the amount of increase in the hole diameter until the crack that penetrates the plate thickness occurs around the hole and the initial hole diameter. )

Figure 2013144830
Figure 2013144830

本発明に従って発明例である試験No.1〜16、18〜24及び30〜33の合金化溶融亜鉛めっき鋼板は、引張強度で780MPa以上の高強度と良好な伸び、さらに穴拡げ率が40%以上という良好な穴拡げ性を示した。   The alloyed hot-dip galvanized steel sheets of Test Nos. 1 to 16, 18 to 24, and 30 to 33, which are invention examples according to the present invention, have a high strength of 780 MPa or more in tensile strength, good elongation, and a hole expansion rate of 40%. The above good hole expansibility was shown.

これに対し、Mn含有量が低かった試験No.17は強度が低く、伸びと穴拡げ性がともに低かった。焼き戻し前の温度が300℃と高かった試験No.25は、焼き戻し後にさらに硬質なマルテンサイトが生成するため、穴拡げ性が低くなった。焼鈍温度が低かった試験No.26は、未再結晶組織が残り、かつマルテンサイトの生成もなく、伸びと穴拡げ性が低かった。一次冷却速度が遅かった試験No.27は、マルテンサイトが十分に生成しないため、伸びが低かった。焼き戻し温度が低かった試験No.28は,マルテンサイトの軟質化が不十分で穴拡げ性が低く、焼き戻し温度が高かった試験No.29と34はマルテンサイトが軟質化しすぎて、強度が低く、伸びも低く、穴拡げ性も不十分であった。   On the other hand, Test No. 17 having a low Mn content had low strength, and both elongation and hole expansibility were low. In Test No. 25, in which the temperature before tempering was as high as 300 ° C., harder martensite was generated after tempering, so the hole expandability was low. In test No. 26 where the annealing temperature was low, an unrecrystallized structure remained, no martensite was formed, and elongation and hole expansibility were low. Test No. 27, which had a slow primary cooling rate, had low elongation because martensite was not sufficiently generated. Test No. 28, which had a low tempering temperature, had insufficient martensite softening and low hole expansibility, and Test Nos. 29 and 34, which had a high tempering temperature, had too much martensite to become soft. Low, low elongation, and insufficient hole expansibility.

Claims (8)

鋼板の表面に合金化溶融亜鉛めっき層を有する合金化溶融亜鉛めっき鋼板であって、
前記鋼板は、
質量%で、C:0.03%以上0.30%以下、Si:0.005%以上2.5%以下、Mn:1.9%以上3.5%以下、P:0.1%以下、S:0.01%以下、sol.Al:0.001%以上1.5%以下、およびN:0.02%以下を含有する化学組成と、
体積%で、焼戻しマルテンサイトを3%以上および残留オーステナイトを1%以上含有し、
前記合金化溶融亜鉛めっき鋼板は、圧延直角方向の引張試験において降伏強度が420MPa以上、引張強度が780MPa以上である機械特性を有する、
ことを特徴とする合金化溶融亜鉛めっき鋼板。
An alloyed hot-dip galvanized steel sheet having an alloyed hot-dip galvanized layer on the surface of the steel sheet,
The steel plate
In mass%, C: 0.03% to 0.30%, Si: 0.005% to 2.5%, Mn: 1.9% to 3.5%, P: 0.1% or less Chemical composition containing: S: 0.01% or less, sol.Al: 0.001% or more and 1.5% or less, and N: 0.02% or less;
Containing 3% or more of tempered martensite and 1% or more of retained austenite in volume%,
The alloyed hot-dip galvanized steel sheet has a mechanical property that yield strength is 420 MPa or more and tensile strength is 780 MPa or more in a tensile test in a direction perpendicular to rolling.
An alloyed hot-dip galvanized steel sheet.
前記化学組成が、質量%で、Ti:0.001%以上0.30%以下、Nb:0.001%以上0.30%以下およびV:0.001%以上0.30%以下からなる群から選択される1種または2種以上をさらに含有する請求項1に記載の合金化溶融亜鉛めっき鋼板。   The chemical composition is a group consisting of Ti: 0.001% to 0.30%, Nb: 0.001% to 0.30% and V: 0.001% to 0.30% by mass%. The alloyed hot-dip galvanized steel sheet according to claim 1, further comprising one or more selected from the group consisting of: 前記化学組成が、質量%で、Cr:0.001%以上2.0%以下およびMo:0.001%以上2.0%以下からなる群から選択される1種または2種をさらに含有する請求項1または請求項2に記載の合金化溶融亜鉛めっき鋼板。   The chemical composition further contains, in mass%, one or two selected from the group consisting of Cr: 0.001% to 2.0% and Mo: 0.001% to 2.0%. The alloyed hot-dip galvanized steel sheet according to claim 1 or 2. 前記化学組成が、質量%で、Cu:0.001%以上2.0%以下およびNi:0.001%以上2.0%以下からなる群から選択される1種または2種を含有する請求項1〜請求項3のいずれかに記載の合金化溶融亜鉛めっき鋼板。   The chemical composition contains one or two selected from the group consisting of Cu: 0.001% to 2.0% and Ni: 0.001% to 2.0% by mass%. The alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 3. 前記化学組成が、質量%で、B:0.0001%以上0.02%以下をさらに含有する請求項1〜請求項4のいずれかに記載の合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 4, wherein the chemical composition further contains B: 0.0001% to 0.02% by mass. 前記化学組成が、質量%で、Ca:0.0001%以上0.01%以下およびREM:0.0001%以上0.1%以下からなる群から選択される1種または2種をさらに含有する請求項1〜請求項5のいずれかに記載の合金化溶融亜鉛めっき鋼板。   The chemical composition further contains one or two selected from the group consisting of Ca: 0.0001% to 0.01% and REM: 0.0001% to 0.1% by mass%. The alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 5. 前記化学組成が、質量%で、Bi:0.0001%以上0.05%以下をさらに含有する請求項1〜請求項6のいずれかに記載の合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 6, wherein the chemical composition further contains, by mass%, Bi: 0.0001% to 0.05%. 請求項1〜7のいずれかに記載の化学組成を有する熱間圧延鋼板または冷間圧延鋼板を720℃以上に加熱し、2〜200℃/秒の速度で450〜600℃の温度域まで冷却し、溶融亜鉛めっきを施し、その後に合金化処理を行い、合金化処理温度から平均冷却速度5℃/秒以上で200℃以下まで冷却して、さらに200〜600℃の温度域で1秒以上10分間以下の焼き戻し処理を行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。   A hot-rolled steel plate or a cold-rolled steel plate having the chemical composition according to any one of claims 1 to 7 is heated to 720 ° C or higher and cooled to a temperature range of 450 to 600 ° C at a rate of 2 to 200 ° C / second. Then, hot dip galvanizing is performed, followed by alloying treatment, cooling from the alloying treatment temperature to 200 ° C. or less at an average cooling rate of 5 ° C./second or more, and further for 1 second or more in a temperature range of 200 to 600 ° C. A method for producing an galvannealed steel sheet, characterized by performing a tempering treatment for 10 minutes or less.
JP2012005361A 2012-01-13 2012-01-13 Alloyed hot-dip galvanized steel sheet and method for producing the same Active JP5741456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012005361A JP5741456B2 (en) 2012-01-13 2012-01-13 Alloyed hot-dip galvanized steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005361A JP5741456B2 (en) 2012-01-13 2012-01-13 Alloyed hot-dip galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013144830A true JP2013144830A (en) 2013-07-25
JP5741456B2 JP5741456B2 (en) 2015-07-01

Family

ID=49040777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005361A Active JP5741456B2 (en) 2012-01-13 2012-01-13 Alloyed hot-dip galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5741456B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171237A1 (en) * 2015-04-22 2016-10-27 新日鐵住金株式会社 Plated steel plate
JP2017048412A (en) * 2015-08-31 2017-03-09 新日鐵住金株式会社 Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
WO2018011978A1 (en) 2016-07-15 2018-01-18 新日鐵住金株式会社 Hot-dip galvanized steel sheet
WO2020026594A1 (en) 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled plated steel sheet
WO2020071523A1 (en) 2018-10-04 2020-04-09 日本製鉄株式会社 Alloyed hot-dipped galvanized steel sheet
WO2020162561A1 (en) 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip zinc-coated steel sheet and method for manufacturing same
WO2020162560A1 (en) 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip galvanized steel sheet and manufacturing method therefor
WO2020162556A1 (en) 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip galvanized steel sheet and manufacturing method therefor
KR20210092796A (en) 2019-02-06 2021-07-26 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020110319A1 (en) * 2020-04-15 2021-10-21 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with a multiphase structure and steel strip added

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256089A (en) * 2004-03-11 2005-09-22 Nippon Steel Corp Hot dip galvanized compound high-strength steel sheet having excellent formability and bore expandability and method for manufacturing the same
JP2007302918A (en) * 2006-05-09 2007-11-22 Nippon Steel Corp High strength steel sheet with excellent bore expandability and formability, and its manufacturing method
JP2010070843A (en) * 2008-08-19 2010-04-02 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent workability and method for producing the same
JP2011157583A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd High-strength cold-rolled steel sheet excellent in workability and method for manufacturing the same
JP2011168861A (en) * 2010-02-22 2011-09-01 Jfe Steel Corp High-strength hot rolled steel sheet and method of manufacturing the same
JP2011241474A (en) * 2010-04-20 2011-12-01 Kobe Steel Ltd Method of producing high strength cold rolled steel sheet excellent in ductility
JP2011256404A (en) * 2010-05-10 2011-12-22 Sumitomo Metal Ind Ltd Hot dip metal coated steel sheet and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256089A (en) * 2004-03-11 2005-09-22 Nippon Steel Corp Hot dip galvanized compound high-strength steel sheet having excellent formability and bore expandability and method for manufacturing the same
JP2007302918A (en) * 2006-05-09 2007-11-22 Nippon Steel Corp High strength steel sheet with excellent bore expandability and formability, and its manufacturing method
JP2010070843A (en) * 2008-08-19 2010-04-02 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent workability and method for producing the same
JP2011157583A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd High-strength cold-rolled steel sheet excellent in workability and method for manufacturing the same
JP2011168861A (en) * 2010-02-22 2011-09-01 Jfe Steel Corp High-strength hot rolled steel sheet and method of manufacturing the same
JP2011241474A (en) * 2010-04-20 2011-12-01 Kobe Steel Ltd Method of producing high strength cold rolled steel sheet excellent in ductility
JP2011256404A (en) * 2010-05-10 2011-12-22 Sumitomo Metal Ind Ltd Hot dip metal coated steel sheet and method for producing the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501832B2 (en) 2015-04-22 2019-12-10 Nippon Steel Corporation Plated steel sheet
KR20170130508A (en) * 2015-04-22 2017-11-28 신닛테츠스미킨 카부시키카이샤 Coated steel plate
JPWO2016171237A1 (en) * 2015-04-22 2017-12-07 新日鐵住金株式会社 Plated steel sheet
KR101962564B1 (en) 2015-04-22 2019-03-26 신닛테츠스미킨 카부시키카이샤 Coated steel plate
CN107532266A (en) * 2015-04-22 2018-01-02 新日铁住金株式会社 plated steel sheet
WO2016171237A1 (en) * 2015-04-22 2016-10-27 新日鐵住金株式会社 Plated steel plate
JP2017048412A (en) * 2015-08-31 2017-03-09 新日鐵住金株式会社 Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
WO2018011978A1 (en) 2016-07-15 2018-01-18 新日鐵住金株式会社 Hot-dip galvanized steel sheet
KR20180126564A (en) 2016-07-15 2018-11-27 신닛테츠스미킨 카부시키카이샤 Hot-dip galvanized steel sheet
US10718044B2 (en) 2016-07-15 2020-07-21 Nippon Steel Corporation Hot-dip galvanized steel sheet
US11732340B2 (en) 2018-07-31 2023-08-22 Jfe Steel Corporation High-strength hot-rolled coated steel sheet
WO2020026594A1 (en) 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled plated steel sheet
KR20210025086A (en) 2018-07-31 2021-03-08 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled plated steel
KR20210047915A (en) 2018-10-04 2021-04-30 닛폰세이테츠 가부시키가이샤 Alloyed hot dip galvanized steel sheet
US12031203B2 (en) 2018-10-04 2024-07-09 Nippon Steel Corporation Galvannealed steel sheet
WO2020071523A1 (en) 2018-10-04 2020-04-09 日本製鉄株式会社 Alloyed hot-dipped galvanized steel sheet
WO2020162561A1 (en) 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip zinc-coated steel sheet and method for manufacturing same
KR20210086686A (en) 2019-02-06 2021-07-08 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet and manufacturing method thereof
KR20210092796A (en) 2019-02-06 2021-07-26 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet and its manufacturing method
KR20210108461A (en) 2019-02-06 2021-09-02 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet and its manufacturing method
KR20210110357A (en) 2019-02-06 2021-09-07 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet and its manufacturing method
WO2020162556A1 (en) 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip galvanized steel sheet and manufacturing method therefor
US11905570B2 (en) 2019-02-06 2024-02-20 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same
US12006562B2 (en) 2019-02-06 2024-06-11 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same
WO2020162560A1 (en) 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip galvanized steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP5741456B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6620474B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
JP6566026B2 (en) Plated steel sheet
JP5857909B2 (en) Steel sheet and manufacturing method thereof
JP5741456B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP5369663B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
TWI464296B (en) High strength galvanized steel sheet with excellent formability and method for manufacturing the same
JP6540162B2 (en) High strength cold rolled steel sheet excellent in ductility and stretch flangeability, high strength alloyed galvanized steel sheet, and method for producing them
JP6237962B1 (en) High strength steel plate and manufacturing method thereof
JP5339005B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
WO2016199922A1 (en) Galvannealed steel sheet and method for manufacturing same
JP5742697B2 (en) Hot stamping molded body excellent in balance between strength and toughness, manufacturing method thereof, and manufacturing method of steel sheet for hot stamping molded body
WO2009054539A1 (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
US20140234655A1 (en) Hot-dip galvanized steel sheet and method for producing same
JP2007070659A (en) Hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet having excellent corrosion resistance, elongation and hole expandability, and method for producing them
JP5958667B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5907287B2 (en) Hot rolled steel sheet and manufacturing method thereof
KR20140145107A (en) High-yield-ratio and high-strength steel sheet excellent in workability
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP5790443B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR20210105419A (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2010001531A (en) Method for manufacturing low-yield-ratio type high-strength galvannealed steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350