WO2018123356A1 - High-strength steel sheet and high-strength electrogalvanized steel sheet - Google Patents

High-strength steel sheet and high-strength electrogalvanized steel sheet Download PDF

Info

Publication number
WO2018123356A1
WO2018123356A1 PCT/JP2017/041809 JP2017041809W WO2018123356A1 WO 2018123356 A1 WO2018123356 A1 WO 2018123356A1 JP 2017041809 W JP2017041809 W JP 2017041809W WO 2018123356 A1 WO2018123356 A1 WO 2018123356A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
strength
test
Prior art date
Application number
PCT/JP2017/041809
Other languages
French (fr)
Japanese (ja)
Inventor
潤一郎 衣笠
幸博 内海
航佑 柴田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017183608A external-priority patent/JP2018109222A/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2018123356A1 publication Critical patent/WO2018123356A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • the present invention relates to a high-strength steel plate and a high-strength electrogalvanized steel plate.
  • An automotive steel plate is required to have excellent press formability in order to be processed into a skeletal component having a complicated shape.
  • automotive parts typified by bumpers are mainly formed by bending, so that they are particularly required to have excellent bending workability (hereinafter sometimes referred to as “bendability”) in press formability. It is done.
  • the hydrogen generated due to the corrosion of the steel plate in use is more concerned about the occurrence of delayed fracture due to hydrogen embrittlement caused by intrusion into the steel. is there.
  • automotive steel parts have steel galvanized (hereinafter sometimes referred to as “EG”), hot dip galvanized, and alloyed hot dip galvanized steel sheets (hereinafter referred to as these). Are sometimes collectively referred to as “galvanized steel sheets”). These galvanized steel sheets also have a problem that, as with the high-strength steel sheets, there is an increased concern about the occurrence of delayed fracture due to hydrogen embrittlement due to the increase in strength.
  • Steel material factors affecting delayed fracture include steel structure, strength or hardness, crystal grain size, various alloy elements, etc., but it is difficult to say that measures to suppress delayed fracture are still well established. It is. Therefore, attempts have been made to improve the delayed fracture resistance from various viewpoints.
  • Patent Document 1 describes, “With bainite or martensite as the largest phase, an oxide of Nb, Cr, Ti, Mo in the grains, By controlling the morphology of the average particle size, density, distribution, etc. of any one or more of sulfide, nitride, composite crystallized product and composite precipitate, and exhibiting the function as a hydrogen trap site, A technique of “making a high-strength steel sheet excellent in hydrogen embrittlement resistance” has been proposed. However, the hydrogen trap by the above form control alone is not sufficient for exhibiting excellent delayed fracture resistance.
  • Patent Document 2 is a steel sheet in which martensite occupies 95% by area or more of the entire structure, and defines the prior austenite grain size, the transition density, the solid solution C concentration in martensite, and the prior austenite length.
  • a technique for improving delayed fracture resistance by defining the ratio of the length of carbides precipitated at the prior austenite grain boundaries with respect to the above by a predetermined relational expression has been proposed.
  • delayed fracture resistance is evaluated by an SSRT test which is a low strain rate tensile test.
  • this is a technology for improving delayed fracture resistance at a site where the introduced plastic strain is relatively small, and may not be sufficient to improve delayed fracture resistance of a steel plate into which large plastic strain is introduced. is there.
  • a high-strength steel sheet having a single-phase structure and excellent seam weldability having a tensile strength of 1180 MPa or more has been proposed.
  • this technique has not been studied for improving delayed fracture resistance, and may not be sufficient from the viewpoint of delayed fracture resistance.
  • the high-strength steel sheet according to one aspect of the present invention includes C: 0.10% by mass to 0.35% by mass, Si: 0% by mass to 0.6% by mass, Mn: more than 0% by mass and 1.5% by mass.
  • the present inventors have made eager efforts to improve the bendability and delayed fracture resistance of martensite-based steel sheets that can achieve a high strength of 1270 MPa or higher. Repeated research.
  • it is a single-phase structure mainly composed of martensite such that the area ratio of martensite in the entire structure is 95% or more, and the solid solution C amount in this martensite is 0.05 mass. It was found important to control the number density of carbides having a major axis of 200 nm or more to 50 pieces / ⁇ m 3 or less, and the present invention was completed.
  • the high-strength steel sheet according to one aspect of the present invention includes C: 0.10% by mass to 0.35% by mass, Si: 0% by mass to 0.6% by mass, and Mn: more than 0% by mass. 5 mass% or less, Al: more than 0 mass%, 0.15 mass% or less, N: more than 0 mass%, 0.01 mass% or less, P: more than 0 mass%, 0.02 mass% or less, and S: 0 mass More than 0.01% by mass and the balance is iron and inevitable impurities, the area ratio of martensite in the entire structure is 95% or more, and the amount of dissolved C in the martensite is 0
  • the number density of carbides having a major axis of 200 nm or more is 50 pieces / ⁇ m 3 or less, and the tensile strength is 1270 MPa or more.
  • a high-strength steel sheet and a high-strength electrogalvanized steel sheet exhibiting high strength of 1270 MPa or more and excellent in bendability and delayed fracture resistance can be realized.
  • Such high-strength steel sheets and high-strength electrogalvanized steel sheets are useful as raw materials for parts that require high strength, such as automotive parts such as bumpers, automobile structural materials, and reinforcing materials.
  • the “dislocation density” is not defined, but this is because it is difficult to measure the dislocation density of martensite in which C is present in a solid solution state, and the amount of C is 0.10.
  • the mass range is not less than 0.35% by mass and is a martensite single phase structure, and the dispersion state of carbides is such that the number density of carbides having a major axis of 200 nm or more is 50 / ⁇ m 3 or less. In this case, it is considered that the dislocation density to be controlled is achieved.
  • the steel plate of the present embodiment is a high-strength steel plate having a higher strength, for example, a tensile strength of 1270 MPa or more, preferably 1360 MPa or more. Such high strength is required as a characteristic of parts applied to, for example, automobile steel plates, particularly bumpers and body frame members.
  • the strength of the steel sheet tends to decrease, and it is necessary to add a large amount of alloying elements to ensure the strength. to degrade.
  • a structure containing a large amount of ferrite when subjected to severe processing as performed on automobile steel sheets, processing strain tends to accumulate in the soft phase ferrite, and delayed fracture resistance may deteriorate.
  • the steel sheet of this embodiment has a single-phase structure of martensite and suppresses the amount of alloy elements added.
  • the single-phase structure of martensite means a structure in which the area ratio of martensite in the entire structure is 95% or more.
  • the area ratio of martensite in the entire structure needs to be 95% or more in order to achieve a high strength of 1270 MPa or more.
  • the area ratio of martensite is preferably 97% or more, and may be 100%.
  • the steel plate of the present embodiment may contain a phase inevitably included in the manufacturing process, for example, a ferrite phase, a bainite phase, a retained austenite phase, and the like up to 5 area% or less. However, if the ratio exceeds 5 area%, the area ratio of martensite is relatively less than 95%, and a strength of 1270 MPa or more cannot be achieved.
  • Solid solution C in martensite 0.05% by mass or less
  • the toughness can be improved and the delayed fracture resistance can be improved by reducing the strain of the structure itself.
  • excellent delayed fracture resistance can be achieved by setting the solid solution C amount in martensite to 0.05 mass% or less.
  • the amount of solute C in martensite is preferably 0.04% by mass or less, more preferably 0.03% by mass or less.
  • the lower limit of the amount of solute C in martensite is approximately 0% by mass or more from the viewpoint that all the solute C precipitates as carbide when tempering proceeds.
  • the number density of carbides having a major axis of 200 nm or more is large, the bendability is deteriorated, so that 50 pieces / ⁇ m 3 or less is necessary.
  • the number density is preferably 40 pieces / ⁇ m 3 or less, more preferably 30 pieces / ⁇ m 3 or less, and most preferably 10 pieces / ⁇ m 3 or less.
  • Precipitates having a major composition of 200 ⁇ m or more and an aspect ratio of 2 or more which are precipitated under the component composition and manufacturing conditions in the present embodiment, are substantially carbides mainly composed of Fe and C. Specifically, Fe And a carbide whose total content of C exceeds 90% by mass.
  • Such carbides include not only Fe 3 C but also carbides containing V, Nb, Mo, Ti, etc. in a proportion of less than 10% by mass in the entire carbide.
  • carbides not mainly composed of Fe and C, specifically, V, Nb, Mo, Ti and C may be formed. Compared to carbides mainly composed of, the amount is negligible and does not adversely affect bendability and delayed fracture resistance.
  • C 0.10% by mass to 0.35% by mass
  • C is an element effective for enhancing the hardenability of the steel sheet and ensuring high strength.
  • the C amount needs to be 0.10% by mass or more.
  • it is 0.12 mass% or more, More preferably, it is 0.15 mass% or more.
  • the amount of C needs to be 0.35 mass% or less, preferably 0.34 mass% or less, more preferably 0.33 mass% or less.
  • Si 0% by mass to 0.6% by mass
  • Si is an element effective for improving the temper softening resistance of the steel sheet, and is also an element effective for improving the strength by solid solution strengthening. From the viewpoint of exerting these effects, it is preferable to contain 0.002% or more of Si. More preferably, it is 0.005 mass% or more, More preferably, it is 0.010 mass% or more.
  • Si is a ferrite-forming element, if the amount of Si is excessive, the hardenability is impaired and it is difficult to ensure high strength. Therefore, the amount of Si needs to be 0.6 mass% or less. Preferably it is 0.5 mass% or less, More preferably, it is 0.1 mass% or less, More preferably, it is 0.05 mass% or less.
  • Mn is an effective element for enhancing the hardenability of the steel sheet and ensuring high strength. Although such an effect increases as the content increases, it is preferable to contain 0.1% by mass or more in order to effectively exhibit the above effect. More preferably, it is 0.5 mass% or more, More preferably, it is 0.8 mass% or more. However, when the amount of Mn becomes excessive, delayed fracture resistance and weldability deteriorate. Therefore, the amount of Mn needs to be 1.5 mass% or less. Preferably, it is 1.4 mass% or less, More preferably, it is 1.3 mass% or less.
  • Al more than 0% by mass and 0.15% by mass or less
  • Al is an element added as a deoxidizer and also has an effect of improving the corrosion resistance of steel. Although these effects increase as the content increases, in order to effectively exhibit the above effects, it is preferable to contain 0.04% by mass or more. More preferably, it is 0.06% or more. However, when the amount of Al is excessive, a large amount of inclusions are generated and cause surface defects, so the upper limit is made 0.15% by mass or less. Preferably it is 0.10 mass% or less, More preferably, it is 0.07 mass% or less.
  • N is an impurity that is inevitably mixed in. If the amount of N is excessive, the amount of nitride precipitation increases, which adversely affects the toughness of the steel sheet. Therefore, the N amount needs to be 0.01% by mass or less. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less. Note that the N content is approximately 0.001% by mass or more in consideration of the cost for steelmaking.
  • P more than 0% by mass and 0.02% by mass or less
  • P is an impurity inevitably mixed in.
  • the amount of P becomes excessive, brittleness increases and the ductility of the steel sheet is lowered, so it is necessary to suppress it to 0.02% by mass or less.
  • it is 0.01 mass% or less, More preferably, it is 0.006 mass% or less.
  • S is an impurity inevitably mixed in. S produces sulfide inclusions and degrades the workability and weldability of the steel sheet. Moreover, it combines with Mn to form MnS, which becomes a local corrosion starting point, and promotes hydrogen generation and hydrogen penetration, thereby deteriorating delayed fracture resistance. For this reason, the smaller the amount of S, the better.
  • the content is preferably 0.005% by mass or less, and more preferably 0.003% by mass or less.
  • the chemical component composition defined in the present embodiment is as described above, and the balance is iron and inevitable impurities other than N, P, and S. As this inevitable impurity, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. can be allowed.
  • Cr and B are effective elements for improving the hardenability of the steel sheet and increasing the strength.
  • Cr is an element effective for increasing the temper softening resistance of martensitic steel.
  • Cr is preferably contained in an amount of 0.01% by mass or more, more preferably 0.05% by mass or more.
  • B is preferably contained in an amount of 0.0001% by mass or more, more preferably 0.0005% or more.
  • the upper limit is preferably 1.0% by mass or less, more preferably 0.7% by mass or less.
  • the ductility of a steel plate will fall when B is contained excessively, it is preferable to make an upper limit into 0.01 mass% or less, More preferably, it is 0.008 mass% or less, More preferably, it is 0.0065 mass%. It is as follows.
  • Cu and Ni are effective elements for suppressing the generation of hydrogen involved in hydrogen embrittlement by improving the corrosion resistance of the steel sheet and improving delayed fracture resistance.
  • it is preferable to contain 0.01 mass% or more with Cu, More preferably, 0.05 mass% or more is contained.
  • Ni it is preferable to contain 0.01 mass% or more, More preferably 0.05 mass% or more.
  • the upper limit is preferably 0.5% by mass or less, more preferably 0.4% by mass or less.
  • the upper limit is preferably 0.5% by mass or less, more preferably 0.4% by mass or less.
  • V more than 0% by mass and 0.1% by mass or less
  • Nb more than 0% by mass and 0.1% by mass or less
  • Mo more than 0% by mass and 0.5% by mass or less
  • Ti more than 0% by mass and 0.2% by mass %
  • At least one selected from the group consisting of% or less] V, Nb, Mo and Ti are all effective elements for improving the strength of the steel sheet and for improving toughness after quenching by refining austenite grains. In order to exhibit such an effect effectively, it is preferable to contain these elements 0.003% by mass or more. More preferably, it is 0.010 mass% or more, More preferably, it is 0.02 mass% or more.
  • V or Nb when the above elements are excessively contained, precipitation of carbonitrides and the like increases and the workability of the steel sheet decreases. Therefore, when V or Nb is contained, it is preferable that both be 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • Mo it is preferable to set it as 0.5 mass% or less, More preferably, it is 0.4 mass%.
  • Ti it is preferable to set it as 0.2 mass% or less, More preferably, it is 0.1 mass% or less.
  • Ca at least one selected from the group consisting of more than 0% by mass and 0.005% by mass and Mg: more than 0% by mass and 0.005% by mass or less
  • Ca combines with S instead of Mn, and controls the form of MnS extending in the rolling direction.
  • MnS is divided at the end face of the steel sheet, localization of the local corrosion starting point can be suppressed, and by suppressing the hydrogen generation and hydrogen intrusion by suppressing the pH drop at the local corrosion starting point, the delay resistance of the steel sheet is suppressed. It is an element that can improve destructive properties.
  • Ca is preferably contained in an amount of 0.001% by mass or more. More preferably, it is 0.0015 mass% or more.
  • the amount is preferably 0.005% by mass or less, and more preferably 0.003% by mass or less.
  • Mg combines with O to form MgO, thereby suppressing pH drop at the corrosion front and suppressing hydrogen generation and hydrogen intrusion by suppressing pH drop at the local corrosion starting point, similar to Ca. It is an element that can improve the delayed fracture resistance of the steel sheet. In order to exhibit such an effect effectively, it is preferable to contain Mg 0.001 mass% or more. More preferably, it is 0.0015 mass% or more. However, if the amount of Mg becomes excessive, the workability of the steel sheet deteriorates, so the content is preferably 0.005% by mass or less, more preferably 0.003% by mass or less.
  • the steel plate of the present embodiment is intended for a thin steel plate having a thickness of about 1 to 3 mm, but the product form is not particularly limited.
  • various plating treatments such as chemical conversion treatment, electrogalvanizing, vapor deposition, etc. It is intended to include a surface-treated steel sheet that has been subjected to painting treatment, painting ground treatment, organic coating treatment, and the like.
  • the following procedure may be followed. Specifically, general conditions can be adopted except for the annealing treatment described later.
  • an annealing treatment under the following conditions using a cold-rolled steel sheet, it is melted in accordance with a conventional method, and after obtaining a steel piece such as a slab by continuous casting, it is heated to about 1100 ° C. to 1250 ° C., and then It is hot-rolled, pickled and then cold-rolled to obtain a cold-rolled steel sheet. And it is recommended to perform the annealing process performed next on the following conditions.
  • the upper limit of the heating temperature is more preferably 930 ° C. or less.
  • the residence time at the heating temperature may be appropriately determined according to the heating temperature. However, in order to complete the austenite transformation of the steel sheet, it is preferable to hold by heating for 30 seconds or more. More preferably, it is 100 seconds or more. However, if the residence time becomes too long, the crystal grain size becomes coarse, which is disadvantageous in terms of strength and toughness. More preferably, it is 900 seconds or less, More preferably, it is 800 seconds or less. Moreover, high temperature and long time holding are economically disadvantageous.
  • a martensite single phase structure is obtained by quenching with water cooling from a temperature range of 600 ° C. or higher.
  • the average cooling rate during the water cooling is approximately 50 ° C./second or more. If the cooling rate is slower than this, ferrite precipitates during cooling, a martensite single phase structure cannot be obtained, and a tensile strength of 1270 MPa or more cannot be secured.
  • the lower limit of the average cooling rate during water cooling is more preferably 100 ° C./second or more.
  • the average cooling rate at the time of water cooling is excessively high, there is no problem on the material, but excessive capital investment is required, so the average cooling rate is preferably about 1000 ° C./second or less. More preferably, it is 500 ° C./second or less.
  • the cooling end temperature is approximately 100 ° C. or less because the cooling method is water cooling.
  • the lower limit of the cooling end temperature is not limited at all, but it is substantially lower than room temperature because it is economically expensive to set it to room temperature or lower.
  • Tempering is performed after the quenching.
  • This tempering treatment is preferably performed in two stages.
  • the precipitation and growth of carbides can be controlled.
  • the first tempering temperature T1 is higher than the second tempering temperature T2, that is, T1. It is preferable to control so as to satisfy the relationship of> T2.
  • the tempering treatment first, in order to actively produce carbide precipitation nuclei, it is preferable to perform a heat treatment in which the tempering temperature T1 is set to a temperature range of 200 to 240 ° C. and is maintained for 50 seconds or more.
  • the tempering temperature T1 is more preferably 210 ° C. or higher and 230 ° C. or lower.
  • the holding time t1 at the tempering temperature T1 is less than 50 seconds, the formation of carbide precipitation nuclei becomes insufficient, and the discharge of the solid solution C of the martensite structure becomes insufficient. descend.
  • the holding time t1 is more preferably 70 seconds or more, and further preferably 100 seconds or more.
  • the holding time t1 at the tempering temperature T1 is too long, the carbide growth becomes excessive, and the toughness of the steel sheet and the bendability are lowered. Moreover, since the carbide
  • the holding time t1 is more preferably 180 seconds or less, and even more preferably 160 seconds or less.
  • the second tempering treatment in a temperature range where the tempering temperature T2 is 100 ° C. or higher and 210 ° C. or lower and the holding time t2 is 300 seconds or longer.
  • the tempering temperature T2 lower than the tempering temperature T1
  • the growth rate of the carbide nucleated at the tempering temperature T1 can be reduced as compared with the case where the tempering temperature T2 is held at the tempering temperature T1.
  • the tempering temperature T2 exceeds 210 ° C., the growth rate of the carbide becomes too large, so that coarse carbide is generated and the bendability of the steel sheet is lowered. More preferably, it is 190 degrees C or less.
  • the lower limit of the tempering temperature T2 is preferably set to 100 ° C. or higher in order to sufficiently discharge the solute C. More preferably, it is 150 degreeC or more.
  • the holding time t2 at the heating temperature T2 is less than 300 seconds, the toughness of the steel sheet may be reduced because the discharge of the solid solution C does not occur sufficiently.
  • the holding time t2 is more preferably 320 seconds or more, and further preferably 350 seconds or more.
  • the holding time t2 at the tempering temperature T2 becomes too long, the precipitation and growth of carbides become excessive, and the bendability of the steel sheet decreases.
  • it is preferably set to 1000 seconds or less. More preferably, it is 800 seconds or less, More preferably, it is 600 seconds or less.
  • the cooling rate from the tempering temperature T1 to the tempering temperature T2 is preferably 0.1 ° C./second or more. More preferably, it is 0.12 degreeC / second or more, More preferably, it is 0.15 degreeC / second or more.
  • the upper limit of the cooling rate from the tempering temperature T1 to the tempering temperature T2 is preferable because it is preferable. However, in consideration of the temperature range to be cooled, the industrial upper limit is about 100 ° C./second.
  • the high-strength steel plate according to this embodiment has been described above.
  • the high-strength steel plate of this embodiment may have an electrogalvanized layer on the surface thereof. That is, the present invention also includes an electrogalvanized steel sheet (hereinafter sometimes referred to as “EG steel sheet”) having an electrogalvanized layer on the surface of the high-strength steel sheet.
  • EG steel sheet electrogalvanized steel sheet
  • the EG steel sheet as described above is obtained by subjecting the high-strength steel sheet according to the present embodiment obtained after cooling to room temperature after tempering to electrogalvanization according to a conventional method.
  • the electrogalvanization is formed, for example, by conducting an electrogalvanization process by energizing the high-strength steel sheet while being immersed in a zinc solution at 50 to 60 ° C.
  • the amount of plating adhesion at this time is not particularly limited, and may be, for example, about 10 to 100 g / m 2 per side.
  • the high-strength steel sheet according to one aspect of the present invention includes C: 0.10% by mass to 0.35% by mass, Si: 0% by mass to 0.6% by mass, Mn: more than 0% by mass and 1.5% by mass.
  • a high-strength steel sheet and a high-strength electrogalvanized steel sheet exhibiting high strength of 1270 MPa or more and excellent in bendability and delayed fracture resistance can be realized.
  • Such high-strength steel sheets and high-strength electrogalvanized steel sheets are useful as raw materials for parts that require high strength, such as automotive parts such as bumpers, automobile structural materials, and reinforcing materials.
  • the high-strength steel sheet of the present invention further contains at least one selected from the group consisting of Cr: more than 0% by mass and 1.0% by mass and B: more than 0% by mass and less than 0.01% by mass as necessary. It may be. Thereby, the characteristic of a high-strength steel plate is further improved according to the kind of element to contain.
  • the high-strength steel sheet may further contain at least one selected from the group consisting of Cu: more than 0% by mass and 0.5% by mass or less and Ni: more than 0% by mass and less than 0.5% by mass. Good. Thereby, the characteristic of a high-strength steel plate is further improved according to the kind of element to contain.
  • V more than 0% by mass and 0.1% by mass or less
  • Nb more than 0% by mass and 0.1% by mass or less
  • Mo more than 0% by mass and 0.5% by mass or less
  • Ti At least one selected from the group consisting of more than 0% by mass and 0.2% by mass or less may be contained.
  • the high-strength steel sheet may contain at least one selected from the group consisting of Ca: more than 0 mass% and 0.005 mass% or less and Mg: more than 0 mass% and 0.005 mass% or less. .
  • the characteristic of a high-strength steel plate is further improved according to the kind of element to contain.
  • the present invention includes a high-strength electrogalvanized steel sheet having an electrogalvanized layer on the surface of the high-strength steel sheet.
  • Test No. in Table 2 below After annealing at the annealing temperature and annealing time shown in 1 to 49, it was cooled to the quenching start temperature shown in Table 2 at a cooling rate of 10 ° C./second. Next, quenching was performed by quenching from the quenching start temperature to room temperature at the cooling rate shown in Table 2 below, and further the treatment was performed under the tempering conditions shown in Table 2.
  • the cooling rate from the first tempering temperature T1 to the second tempering temperature T2 was set to about 0.2 to 0.5 ° C./second.
  • the conditions for the hot rolling are as follows.
  • the size of one field of view is 90 ⁇ m ⁇ 120 ⁇ m, and in 10 arbitrary fields of view, 10 lines are drawn at equal intervals in the vertical and horizontal directions, and the intersection points are the number of intersection points that are martensite structures, ferrite structures, etc.
  • Each of the number of intersections that is a structure other than martensite was divided by the total number of intersections to obtain the area ratio of the martensite structure and the area ratio of the structure other than martensite. The results are shown in Table 3 below.
  • the tensile strength (TS) was measured in accordance with the method specified in JIS Z 2241: 2011 by taking a JIS No. 5 tensile test piece from the steel plate so that the direction perpendicular to the rolling direction of the steel plate was the longitudinal direction. And the thing whose tensile strength is 1270 Mpa or more was evaluated as high intensity
  • the yield strength (YS) of the steel sheet (corresponding to 0.2% proof stress: However, if the structure contains ferrite and indicates the yield point, the yield point (YP) is measured), and the total elongation ( The mechanical properties such as EL) are also shown in Table 3 below.
  • the bendability of the steel sheet was evaluated by the following procedure.
  • a test piece having a width of 30 mm ⁇ a length of 35 mm with a major axis in the direction perpendicular to the rolling direction was prepared, and a bending test was performed by a V block method in accordance with JIS Z 2248: 2014.
  • the bending radius at that time is variously changed from 0 to 7 mm, the minimum bending radius that can be bent without breaking the material is obtained, and this is defined as the limiting bending radius R (mm) / the limiting bending radius R (mm) /
  • the plate thickness (mm) was calculated.
  • test piece having a limit bending radius R (mm) / plate thickness (mm) of 4.0 or less was evaluated as being excellent in bendability, and a test piece exceeding 4.0 was evaluated as being inferior in bendability.
  • R (mm) / plate thickness (mm) 4.0 or less
  • test examples with excellent bendability are indicated by “ ⁇ ”
  • test examples with inferior bendability are indicated by “x”.
  • Disc-shaped flakes having a diameter of 3 mm ⁇ thickness: 0.1 mm were collected from a quarter of the plate thickness of each steel plate obtained above by cutting, polishing (thinning), and punching. Then, the thickness of the sample is polished to 0.1 ⁇ m or less by an electrolytic thin film method, and observed with a transmission electron microscope (TEM: Transmission Electron Microscope, trade name “H-800”, manufactured by Hitachi, Ltd.). The number density of carbides was measured. The TEM observation was performed with 5 visual fields of 60000 times (volume per visual field: about 0.33 ⁇ m 3 ).
  • the observed second phase (precipitate) having an aspect ratio of 2 or more is a carbide, and the number of carbides having a major axis of 200 nm or more is analyzed using image analysis software (ImageJ). The number density of the carbide was calculated by converting per ⁇ m 3 .
  • This U-bending test piece was immersed in a 0.1N-HCl solution for 200 hours, and a test piece in which no crack was generated in each of the three tests was evaluated as having excellent delayed fracture resistance. However, the specimens with cracks were evaluated as having poor delayed fracture resistance.
  • Table 3 a test example excellent in delayed fracture resistance is indicated by “ ⁇ ”, and a test example inferior in delayed fracture resistance is indicated by “x”.
  • test no. 1 to 5, 17 to 21, and 33 to 44 are test examples that use steel sheets that satisfy the chemical component composition defined in the present invention, are manufactured under appropriate manufacturing conditions, and satisfy the requirements defined in the present invention. It can be seen that the tensile strength is a high strength of 1270 MPa or more, and the bendability and delayed fracture resistance are excellent.
  • test no. 6-17, and test no. Nos. 22 to 32 satisfy the chemical component composition specified in the present invention, but were not manufactured under preferable manufacturing conditions. Therefore, any of the structure, the amount of solute C, and the number density of carbides is within the range specified in the present invention. And at least one of tensile strength, bendability and delayed fracture resistance is deteriorated.
  • test no. 5 and test no. No. 22 had a low quenching start temperature, and excessive ferrite was formed on the martensite substrate, so that the delayed fracture resistance deteriorated.
  • Test No. 6 and test no. No. 23 has a low annealing temperature and is annealed in a two-phase region, and has a two-phase structure of ferrite-martensite structure. Therefore, the tensile strength and delayed fracture resistance decreased.
  • Test No. 8 and test no. No. 24 is an example in which the holding time at the annealing temperature is shortened, and since the structure is not austenite single phase and has a two-phase structure of ferrite-martensite structure, the tensile strength of the steel sheet decreases. Delayed fracture resistance has deteriorated.
  • Test No. 9 and test no. 25 is an example in which the first-stage tempering temperature T1 is low. Since the amount of dissolved C in the martensite becomes excessive, the toughness is lowered and the delayed fracture resistance is deteriorated.
  • Test No. 10 and test no. No. 26 is a test example in which the first-stage tempering temperature T1 is high. Since a large amount of coarse carbides is generated, the tensile strength of the steel sheet decreases and the delayed fracture resistance deteriorates.
  • Test No. 11 and test no. No. 27 is a test example in which the holding time t1 in the first tempering is shortened, and since the amount of dissolved C in the martensite becomes excessive, the toughness of the steel sheet is lowered and the delayed fracture resistance is deteriorated.
  • Test No. 12 and test no. No. 28 is a test example in which the holding time t1 in the first tempering is long, and a large amount of coarse carbides is generated, so that the bendability of the steel sheet is deteriorated.
  • Test No. 13 and test no. 29 is a test example in which the second-stage tempering was not performed. Since the amount of dissolved C in the martensite was excessive, the toughness of the steel sheet was lowered and the delayed fracture resistance was deteriorated.
  • Test No. 14 and test no. 30 is a test example in which the second-stage tempering temperature T2 is low. Since the amount of dissolved C in the martensite is excessive, the toughness of the steel sheet is lowered and the delayed fracture resistance is deteriorated.
  • Test No. 15 and test no. 31 is an example in which the holding time t2 in the second stage of tempering is shortened, and since the amount of dissolved C in the martensite becomes excessive, the toughness of the steel sheet is lowered and the delayed fracture resistance is deteriorated.
  • Test No. 16 and test no. No. 32 is a test example in which the second stage tempering temperature T2 is high, and a large amount of coarse carbides is generated, so that the bendability of the steel sheet is deteriorated.
  • test no. 45 to 49 are test examples using steel types U to Y that are manufactured under preferable manufacturing conditions but do not satisfy the chemical composition defined in the present invention, and at least one of tensile strength and delayed fracture resistance is selected. It has deteriorated.
  • test no. No. 45 is a test example using a steel type U with insufficient C amount, because the hardenability is insufficient and the ferrite-martensite structure has a two-phase structure, so that the tensile strength is insufficient. Furthermore, since the processing strain concentrates on a large amount of ferrite, the delayed fracture resistance of the steel sheet is deteriorated.
  • Test No. No. 46 is a test example using a steel type V having an excessive amount of C. Since the amount of dissolved C in the martensite is excessive, the delayed fracture resistance is deteriorated.
  • Test No. No. 47 is a test example using a steel type W with an excessive amount of Si, and the hardenability of the steel sheet is insufficient, and since it has a two-phase structure of ferrite-martensite structure, the tensile strength of the steel sheet is high. The resistance to delayed fracture is deteriorated.
  • Test No. 48 is a test example using the steel type X having an excessive amount of Mn, and it is expected that a large amount of MnS is generated in the center segregation part, and the delayed fracture resistance of the steel sheet is deteriorated.
  • Test No. No. 49 is a test example using steel type Y with an excessive amount of S. MnS is expected to be produced in a large amount, and the delayed fracture resistance of the steel sheet is deteriorated.
  • Test Example 2 Test No. shown in Table 2 above. 4, 5, 18, 41, and no. 48 high-strength steel sheets (cold-rolled steel sheets) were electrogalvanized under the following conditions, and various EG steel sheets No. 50-54 were obtained.
  • Electrogalvanizing treatment conditions The cold-rolled steel sheet was immersed in a galvanizing bath at 55 ° C., subjected to an electrogalvanizing treatment, then washed with water and dried to obtain an electrogalvanized steel sheet. The electrogalvanization process at this time was performed with a current density of 40 A / dm 2 . The amount of galvanized coating was 40 g / m 2 per side.
  • an EG steel plate No. 1 having an electrogalvanized layer on the surface of the cold-rolled steel plate is appropriately subjected to washing treatment such as immersion in alkaline aqueous solution, degreasing, water washing and pickling. 50-54 were produced.
  • a test piece having a width of 70 mm and a length of 150 mm was cut out, a combined cycle corrosion test described later was performed for one week, and the corrosion weight loss of the steel sheet (mass loss per unit area of the steel sheet due to corrosion) was measured to evaluate the corrosion resistance.
  • corrosion loss 500 g / m 2 or less is indicated by “ ⁇ ” as a test example that is particularly excellent in corrosion resistance
  • corrosion weight loss a test sample that is more than 500 g / m 2 and is 1000 g / m 2 or less is indicated as “ ⁇
  • Corrosion weight loss: those exceeding 1000 g / m 2 are indicated by “x” as test examples inferior in corrosion resistance.
  • a test piece having a width of 150 mm and a length of 30 mm was cut out and the cut end face was milled, and then a hole for passing a bolt for applying stress was formed in the end of the test piece. Further, U-bending is performed with a punch / die at a bending radius of 10 mm, a strain gauge is attached to the top of the bending head, and the bending test piece is tightened with bolts and nuts to apply a stress corresponding to the yield strength YS of the steel sheet. Granted. Furthermore, in order to prevent contact corrosion between different base metal plates and bolts, the bolts and holes were masked with a silicon sealant (Shin-Etsu Silicone KE-45 manufactured by Shin-Etsu Chemical Co., Ltd.).
  • test no. 50, 51, 52, and 53 are test examples of high-strength electrogalvanized steel sheets obtained by electrogalvanizing high-strength steel sheets manufactured under appropriate manufacturing conditions using steel sheets that satisfy the chemical composition. , And delayed fracture resistance was found to be excellent.
  • test No. It was found that the cold-rolled steel sheets (test Nos. 4, 5, 18, 41, and 48) that were the base steel sheets in 50 to 53 were also excellent in corrosion resistance.
  • test no. 48 is an example using steel type X with an excessive amount of Mn, and the delayed fracture resistance of the cold-rolled steel sheet was originally deteriorated (Table 3), but electrogalvanizing was applied to such cold-rolled steel sheet. It was found that even if it was applied, sufficient delayed fracture resistance was not exhibited (Test No. 54).
  • the present invention has wide industrial applicability in the technical field of steel sheets and plated steel sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to a high-strength steel sheet that contains C: 0.10-0.35 mass%, Si: 0-0.6 mass%, Mn: greater than 0 mass% and not more than 1.5 mass%, Al: greater than 0 mass% and not more than 0.15 mass%, N: greater than 0 mass% and not more than 0.01 mass%, P: greater than 0 mass% and not more than 0.02%, and S: greater than 0 mass% and not more than 0.01 mass%, wherein the remainder is iron and unavoidable impurities; the area percentage of martensite in the overall structure is at least 95%; the amount of solid-solution C in the martensite is not more than 0.05 mass%; the numerical density of carbide having a major diameter of at least 200 nm is not more than 50 per μm3; and the tensile strength is at least 1270 MPa.

Description

高強度鋼板および高強度電気亜鉛めっき鋼板High strength steel plate and high strength electrogalvanized steel plate
 本発明は、高強度鋼板および高強度電気亜鉛めっき鋼板に関する。 The present invention relates to a high-strength steel plate and a high-strength electrogalvanized steel plate.
 近年、自動車の軽量化と衝突安全性を両立させるため、自動車用鋼板の高強度化が進んでいる。自動車用鋼板は、形状の複雑な骨格部品に加工するために、優れたプレス成形性が要求される。例えばバンパーに代表される自動車用部品は、主に曲げ加工によって成形されるため、プレス成形性の中でも特に曲げ加工性(以下、「曲げ性」と呼ぶことがある)に優れていることが求められる。また高強度化による課題の一つとして、使用中の鋼板の腐食に起因して発生する水素が、鋼中に侵入することで生じる水素脆化に基づく遅れ破壊の発生の懸念が高まるという問題がある。 In recent years, steel sheets for automobiles have been increased in strength in order to achieve both weight reduction and collision safety. An automotive steel plate is required to have excellent press formability in order to be processed into a skeletal component having a complicated shape. For example, automotive parts typified by bumpers are mainly formed by bending, so that they are particularly required to have excellent bending workability (hereinafter sometimes referred to as “bendability”) in press formability. It is done. Also, as one of the issues due to the increase in strength, there is a problem that the hydrogen generated due to the corrosion of the steel plate in use is more concerned about the occurrence of delayed fracture due to hydrogen embrittlement caused by intrusion into the steel. is there.
 また、自動車用鋼部品には、耐食性の観点から、表面に電気亜鉛めっき(以下、「EG」と表記することがある)、溶融亜鉛めっき、合金化溶融亜鉛めっきを施した鋼板(以下、これらの鋼板を「亜鉛めっき鋼板」と総称することがある)が用いられることがある。これら亜鉛めっき鋼板においても、上記高強度鋼板と同様、高強度化により水素脆化に基づく遅れ破壊の発生の懸念が高まるという問題がある。 In addition, from the viewpoint of corrosion resistance, automotive steel parts have steel galvanized (hereinafter sometimes referred to as “EG”), hot dip galvanized, and alloyed hot dip galvanized steel sheets (hereinafter referred to as these). Are sometimes collectively referred to as “galvanized steel sheets”). These galvanized steel sheets also have a problem that, as with the high-strength steel sheets, there is an increased concern about the occurrence of delayed fracture due to hydrogen embrittlement due to the increase in strength.
 この遅れ破壊は、ボルトでの発生事例が報告されており、耐遅れ破壊性を改善する技術が様々検討されているものの、薄鋼板はプレス成形によって大きな塑性歪みが導入されるという点でボルトとは異なっている。一般に、塑性歪みは遅れ破壊を助長すると言われており、塑性歪みの影響を考慮した耐遅れ破壊性改善技術が必要とされている。 Although this delayed fracture has been reported in bolts and various techniques for improving delayed fracture resistance have been studied, thin steel sheets are considered to be bolts in that large plastic strain is introduced by press forming. Is different. In general, it is said that plastic strain promotes delayed fracture, and there is a need for delayed fracture resistance improvement technology that takes into account the effect of plastic strain.
 遅れ破壊に影響を与える鋼材因子として、鋼材組織、強度もしくは硬さ、結晶粒径、各種合金元素等が挙げられるが、遅れ破壊の抑制策はいまだ十分に確立されているとは言いがたい状況である。よって、様々な観点から耐遅れ破壊性を向上させる技術の試みがなされている。 Steel material factors affecting delayed fracture include steel structure, strength or hardness, crystal grain size, various alloy elements, etc., but it is difficult to say that measures to suppress delayed fracture are still well established. It is. Therefore, attempts have been made to improve the delayed fracture resistance from various viewpoints.
 耐水素脆化を改善して耐遅れ破壊性を向上させる技術として、例えば特許文献1には、「ベイナイト又はマルテンサイトを最大の相として、粒内のNb,Cr,Ti,Moの酸化物、硫化物、窒化物、複合晶出物および複合析出物のいずれか1種以上を、平均粒子径、密度、分布等の形態制御を行い、これらを水素トラップサイトとしての機能を発揮させることによって、耐水素脆化に優れた高強度鋼板とする」技術が提案されている。しかしながら、上記の形態制御による水素トラップだけでは、優れた耐遅れ破壊性を発揮させる上で不十分である。 As a technique for improving resistance to hydrogen embrittlement and improving delayed fracture resistance, for example, Patent Document 1 describes, “With bainite or martensite as the largest phase, an oxide of Nb, Cr, Ti, Mo in the grains, By controlling the morphology of the average particle size, density, distribution, etc. of any one or more of sulfide, nitride, composite crystallized product and composite precipitate, and exhibiting the function as a hydrogen trap site, A technique of “making a high-strength steel sheet excellent in hydrogen embrittlement resistance” has been proposed. However, the hydrogen trap by the above form control alone is not sufficient for exhibiting excellent delayed fracture resistance.
 また特許文献2には、全組織に占めるマルテンサイトが95面積%以上である鋼板であって、旧オーステナイト粒径、転移密度、マルテンサイト中の固溶C濃度を規定するとともに、旧オーステナイト長さに対する旧オーステナイト粒界に析出した炭化物の長さの割合を所定の関係式で規定することによって、耐遅れ破壊性を優れたものとする技術が提案されている。 Further, Patent Document 2 is a steel sheet in which martensite occupies 95% by area or more of the entire structure, and defines the prior austenite grain size, the transition density, the solid solution C concentration in martensite, and the prior austenite length. A technique for improving delayed fracture resistance by defining the ratio of the length of carbides precipitated at the prior austenite grain boundaries with respect to the above by a predetermined relational expression has been proposed.
 特許文献2の技術においては、耐遅れ破壊性の評価が、低歪み速度引張試験であるSSRT試験で行われている。すなわち、これは導入される塑性歪みが比較的小さい部位での耐遅れ破壊性を向上させる技術であり、大きな塑性歪みが導入された鋼板の耐遅れ破壊を向上させるには不十分である場合もある。 In the technique of Patent Document 2, delayed fracture resistance is evaluated by an SSRT test which is a low strain rate tensile test. In other words, this is a technology for improving delayed fracture resistance at a site where the introduced plastic strain is relatively small, and may not be sufficient to improve delayed fracture resistance of a steel plate into which large plastic strain is introduced. is there.
 一方、特許文献3には、高強度鋼板の一例として、「化学成分組成を調整するとともに、Ceq1=C+Mn/5+Si/13で規定されるCeq1が0.5%以下であり、鋼組織がマルテンサイト単相組織であり、且つ引張強度が1180MPa以上であるシーム溶接性に優れた高強度鋼板」が提案されている。しかしながら、この技術では、耐遅れ破壊性向上に関する検討はされていないため、耐遅れ破壊性の観点からは十分でない可能性がある。 On the other hand, in Patent Document 3, as an example of a high-strength steel plate, “Ceq1 defined by Ceq1 = C + Mn / 5 + Si / 13 while adjusting the chemical component composition is 0.5% or less, and the steel structure is martensite. A high-strength steel sheet having a single-phase structure and excellent seam weldability having a tensile strength of 1180 MPa or more has been proposed. However, this technique has not been studied for improving delayed fracture resistance, and may not be sufficient from the viewpoint of delayed fracture resistance.
 本発明は上記のような事情に鑑みてなされたものであって、その目的は、曲げ性に優れるとともに、耐遅れ破壊性にも優れた高強度鋼板を提供することにある。また、本発明の他の目的は、上記高強度鋼板の表面に電気亜鉛めっき層を有する高強度電気亜鉛めっき鋼板を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-strength steel sheet having excellent bendability and excellent delayed fracture resistance. Another object of the present invention is to provide a high-strength electrogalvanized steel sheet having an electrogalvanized layer on the surface of the high-strength steel sheet.
特許第4167587号公報Japanese Patent No. 4167587 特許第5662920号公報Japanese Patent No. 5662920 特開2013-36112号公報JP 2013-36112 A
 本発明の一局面に係る高強度鋼板は、C:0.10質量%以上0.35質量%以下、Si:0質量%以上0.6質量%以下、Mn:0質量%超1.5質量%以下、Al:0質量%超0.15質量%以下、N:0質量%超0.01質量%以下、P:0質量%超0.02質量%以下、および、S:0質量%超0.01質量%以下、を含有し、残部が鉄および不可避不純物であり、全組織中に占めるマルテンサイトの面積率が95%以上であること、前記マルテンサイトの固溶Cが0.05質量%以下であること、長径が200nm以上の炭化物の密度が50個/μm以下であること、並びに、引張強度が1270MPa以上であること特徴とする。 The high-strength steel sheet according to one aspect of the present invention includes C: 0.10% by mass to 0.35% by mass, Si: 0% by mass to 0.6% by mass, Mn: more than 0% by mass and 1.5% by mass. %: Al: more than 0% by weight, 0.15% by weight or less, N: more than 0% by weight, 0.01% by weight or less, P: more than 0% by weight, 0.02% by weight or less, and S: more than 0% by weight 0.01% by mass or less, the balance being iron and inevitable impurities, the area ratio of martensite in the whole structure being 95% or more, the solid solution C of the martensite being 0.05% by mass % Or less, the density of carbides having a major axis of 200 nm or more is 50 pieces / μm 3 or less, and the tensile strength is 1270 MPa or more.
 本発明者らは、前記課題を解決するために、引張強度が1270MPa以上の高強度を達成することのできるマルテンサイト主体の鋼板を対象に、曲げ性と耐遅れ破壊性を改善するために鋭意研究を重ねた。 In order to solve the above-mentioned problems, the present inventors have made eager efforts to improve the bendability and delayed fracture resistance of martensite-based steel sheets that can achieve a high strength of 1270 MPa or higher. Repeated research.
 その結果、鋼板中の炭化物のサイズが大きく且つアスペクト比が大きい場合には、曲げ成形時に炭化物周囲にボイドが形成され、破壊の起点となって曲げ性が劣化するという知見が得られた。また鋼板の強化機構として知られている、結晶粒微細化強化、粒子分散強化、転位強化および固溶強化のうち、Cによる固溶強化を活用して引張強度を高めた場合には、鋼板素地であるマルテンサイト中に存在する固溶Cが靱性を低下させ、耐遅れ破壊性を著しく劣化させることを突き止めた。 As a result, it was found that when the carbide size in the steel sheet is large and the aspect ratio is large, voids are formed around the carbide during bending, and the bendability deteriorates as a starting point of fracture. In addition, among the strengthening mechanisms of grain refinement, grain dispersion strengthening, dislocation strengthening and solid solution strengthening, which is known as the strengthening mechanism of steel sheets, It has been found that the solid solution C present in martensite, which lowers the toughness and remarkably deteriorates the delayed fracture resistance.
 一方、粒子分散強化のうち、炭化物による析出強化は、炭化物サイズが微細であれば、曲げ性や耐遅れ破壊性を劣化させることなく、高強度化と曲げ性や耐遅れ破壊性とのバランス向上に寄与することを明らかにした。また転位強化については、耐遅れ破壊性への悪影響は小さいことが判明した。 On the other hand, precipitation strengthening by carbides among particle dispersion strengthening, if the carbide size is fine, improves the balance between high strength and bendability and delayed fracture resistance without degrading bendability and delayed fracture resistance. It was clarified that it contributes to. In addition, dislocation strengthening was found to have little adverse effect on delayed fracture resistance.
 Cによる固溶強化に比べ相対的に転位強化による影響が小さいのは、曲げ加工を施した鋼板表面での転位密度と、初期転位密度の相関が小さいためであると考えられる。これは曲げ加工部では転位の増殖が顕著であるが、転位密度が飽和状態まで増大できるためであると考えられる。 The reason why the effect of dislocation strengthening is relatively small compared to the solid solution strengthening by C is considered to be because the correlation between the dislocation density on the surface of the steel sheet subjected to bending and the initial dislocation density is small. This is thought to be because dislocation growth is remarkable in the bent portion, but the dislocation density can be increased to a saturated state.
 すなわち、耐遅れ破壊性を向上させるためには、マルテンサイト中の炭化物の分散状態、固溶C量、転位密度を適正な範囲に制御することが重要であり、鋼板の化学成分組成を適切に調整することに加え、焼入れ-焼戻し処理を適切に制御することが必要であることを本発明者らは見出した。 In other words, in order to improve delayed fracture resistance, it is important to control the dispersion state of carbides in martensite, the amount of dissolved C, and the dislocation density within an appropriate range, and the chemical composition of the steel sheet is appropriately controlled. In addition to adjusting, the inventors have found that it is necessary to properly control the quench-temper process.
 具体的には、全組織中に占めるマルテンサイトの面積率が95%以上であるような、マルテンサイトを主体とする単相組織であり、このマルテンサイト中の固溶C量を0.05質量%以下とし、更に長径が200nm以上の炭化物の個数密度を50個/μm以下に制御することが重要であることを見出し、本発明を完成した。 Specifically, it is a single-phase structure mainly composed of martensite such that the area ratio of martensite in the entire structure is 95% or more, and the solid solution C amount in this martensite is 0.05 mass. It was found important to control the number density of carbides having a major axis of 200 nm or more to 50 pieces / μm 3 or less, and the present invention was completed.
 すなわち、本発明の一つの局面に関する高強度鋼板は、C:0.10質量%以上0.35質量%以下、Si:0質量%以上0.6質量%以下、Mn:0質量%超1.5質量%以下、Al:0質量%超0.15質量%以下、N:0質量%超0.01質量%以下、P:0質量%超0.02質量%以下、および、S:0質量%超0.01質量%以下を含有し、残部が鉄および不可避不純物であり、全組織中に占めるマルテンサイトの面積率が95%以上であり、且つ前記マルテンサイト中の固溶C量が0.05質量%以下であるとともに、長径が200nm以上の炭化物の個数密度が50個/μm以下であり、引張強度が1270MPa以上であることを特徴とする。 That is, the high-strength steel sheet according to one aspect of the present invention includes C: 0.10% by mass to 0.35% by mass, Si: 0% by mass to 0.6% by mass, and Mn: more than 0% by mass. 5 mass% or less, Al: more than 0 mass%, 0.15 mass% or less, N: more than 0 mass%, 0.01 mass% or less, P: more than 0 mass%, 0.02 mass% or less, and S: 0 mass More than 0.01% by mass and the balance is iron and inevitable impurities, the area ratio of martensite in the entire structure is 95% or more, and the amount of dissolved C in the martensite is 0 The number density of carbides having a major axis of 200 nm or more is 50 pieces / μm 3 or less, and the tensile strength is 1270 MPa or more.
 このような構成によれば、1270MPa以上の高強度を示し、且つ曲げ性および耐遅れ破壊性に優れた高強度鋼板および高強度電気亜鉛めっき鋼板が実現できる。こうした高強度鋼板および高強度電気亜鉛めっき鋼板は、例えばバンパー等の自動車用部品、自動車の構造材や補強材等のように高強度が要求される部品の素材として有用である。 According to such a configuration, a high-strength steel sheet and a high-strength electrogalvanized steel sheet exhibiting high strength of 1270 MPa or more and excellent in bendability and delayed fracture resistance can be realized. Such high-strength steel sheets and high-strength electrogalvanized steel sheets are useful as raw materials for parts that require high strength, such as automotive parts such as bumpers, automobile structural materials, and reinforcing materials.
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
 本実施形態の高強度鋼板において、上記各要件を規定した理由は、下記の通りである。なお、本実施形態では「転位密度」は規定していないが、これはCが固溶状態で存在するマルテンサイトの転位密度を測定することが困難であることに加え、C量が0.10質量%以上0.35質量%以下の範囲であり、且つマルテンサイト単相組織であるとともに、炭化物の分散状態が、長径が200nm以上の炭化物の個数密度が50個/μm以下であるような場合には、制御すべき転位密度が達成できていると考えられるためである。 The reason why the above requirements are specified in the high strength steel sheet of the present embodiment is as follows. In this embodiment, the “dislocation density” is not defined, but this is because it is difficult to measure the dislocation density of martensite in which C is present in a solid solution state, and the amount of C is 0.10. The mass range is not less than 0.35% by mass and is a martensite single phase structure, and the dispersion state of carbides is such that the number density of carbides having a major axis of 200 nm or more is 50 / μm 3 or less. In this case, it is considered that the dislocation density to be controlled is achieved.
 [全組織中に占めるマルテンサイトの面積率が95%以上]
 本実施形態の鋼板は、より高い強度、例えば引張強度で1270MPa以上、好ましくは1360MPa以上を示す高強度鋼板である。この様な高強度は、例えば自動車用鋼板、特にバンパーやボディ骨格部材等に適用される部品の特性として要求される。
[Martensite area ratio in all organizations is 95% or more]
The steel plate of the present embodiment is a high-strength steel plate having a higher strength, for example, a tensile strength of 1270 MPa or more, preferably 1360 MPa or more. Such high strength is required as a characteristic of parts applied to, for example, automobile steel plates, particularly bumpers and body frame members.
 上記のような高強度を達成するにあたり、フェライトが多い鋼組織になると、鋼板強度が低下する傾向にあり、強度確保のために合金元素を多量に添加する必要があるため、結果として溶接性が劣化する。またフェライトが多い組織では、自動車用鋼板に対して行われるような厳しい加工を受けたときに、軟質相のフェライトに加工歪みが集積しやすく、耐遅れ破壊性が劣化することがある。こうしたことから本実施形態の鋼板では、マルテンサイトの単相組織とし、合金元素の添加量を抑えている。 In achieving a high strength as described above, when the steel structure is rich in ferrite, the strength of the steel sheet tends to decrease, and it is necessary to add a large amount of alloying elements to ensure the strength. to degrade. In a structure containing a large amount of ferrite, when subjected to severe processing as performed on automobile steel sheets, processing strain tends to accumulate in the soft phase ferrite, and delayed fracture resistance may deteriorate. For these reasons, the steel sheet of this embodiment has a single-phase structure of martensite and suppresses the amount of alloy elements added.
 本実施形態において、上記マルテンサイトの単相組織とは、全組織中の占めるマルテンサイトの面積率が95%以上である組織という意味である。全組織中に占めるマルテンサイトの面積率は、1270MPa以上の高強度を達成する上からも、95%以上とする必要がある。マルテンサイトの面積率は、好ましくは97%以上であり、100%であってもよい。 In this embodiment, the single-phase structure of martensite means a structure in which the area ratio of martensite in the entire structure is 95% or more. The area ratio of martensite in the entire structure needs to be 95% or more in order to achieve a high strength of 1270 MPa or more. The area ratio of martensite is preferably 97% or more, and may be 100%.
 本実施形態の鋼板には、上記マルテンサイト以外に、製造工程で不可避的に含まれる相、例えば、フェライト相、ベイナイト相、残留オーステナイト相等が、5面積%以下まで含まれていてもよい。しかしながら、その割合が5面積%を超えると、マルテンサイトの面積率が相対的に95%未満となり、1270MPa以上の強度が達成されなくなる。 In addition to the martensite, the steel plate of the present embodiment may contain a phase inevitably included in the manufacturing process, for example, a ferrite phase, a bainite phase, a retained austenite phase, and the like up to 5 area% or less. However, if the ratio exceeds 5 area%, the area ratio of martensite is relatively less than 95%, and a strength of 1270 MPa or more cannot be achieved.
 [マルテンサイト中の固溶C量:0.05質量%以下]
 マルテンサイト中の固溶Cを低減することで、組織自体の歪み低減により靱性を改善し、耐遅れ破壊性を改善することができる。特に、マルテンサイト中の固溶C量を0.05質量%以下とすることで、優れた耐遅れ破壊性を達成することができると考えられる。マルテンサイト中の固溶C量は、好ましくは0.04質量%以下であり、より好ましくは0.03質量%以下である。ただし、マルテンサイト中の固溶C量の下限は、焼戻しが進めば固溶Cは全て炭化物として析出するという観点から、概ね0質量%以上である。
[Solution amount of C in martensite: 0.05% by mass or less]
By reducing the solid solution C in martensite, the toughness can be improved and the delayed fracture resistance can be improved by reducing the strain of the structure itself. In particular, it is considered that excellent delayed fracture resistance can be achieved by setting the solid solution C amount in martensite to 0.05 mass% or less. The amount of solute C in martensite is preferably 0.04% by mass or less, more preferably 0.03% by mass or less. However, the lower limit of the amount of solute C in martensite is approximately 0% by mass or more from the viewpoint that all the solute C precipitates as carbide when tempering proceeds.
 [長径が200nm以上の炭化物の個数密度:50個/μm以下]
 炭化物の長径が大きくなると、曲げ成形時に炭化物周囲にボイドが形成され、破壊の起点となって曲げ性を劣化させる。したがって、炭化物は、その大きさと個数が非常に重要となる。具体的には、本実施形態では、曲げ性を劣化させる長径200nm以上の粗大な炭化物の個数密度を規定する。長径が200nm未満であるような微細な炭化物では、曲げ性にほとんど影響を与えない。
[Number density of carbides whose major axis is 200 nm or more: 50 / μm 3 or less]
When the major axis of the carbide is increased, voids are formed around the carbide during bending, which becomes a starting point of fracture and deteriorates bendability. Therefore, the size and number of carbides are very important. Specifically, in this embodiment, the number density of coarse carbides having a major axis of 200 nm or more that deteriorates bendability is defined. A fine carbide having a major axis of less than 200 nm hardly affects the bendability.
 長径が200nm以上の炭化物の個数密度が多いと、曲げ性を劣化させるため、50個/μm以下とする必要がある。この個数密度は、好ましくは40個/μm以下であり、より好ましくは30個/μm以下であり、さらに好ましくは10個/μm以下であることが最も好ましい。 If the number density of carbides having a major axis of 200 nm or more is large, the bendability is deteriorated, so that 50 pieces / μm 3 or less is necessary. The number density is preferably 40 pieces / μm 3 or less, more preferably 30 pieces / μm 3 or less, and most preferably 10 pieces / μm 3 or less.
 本実施形態における成分組成、および製造条件で析出し、更に長径が200μm以上、アスペクト比が2以上の析出物は、実質的にFeおよびCを主成分とする炭化物であり、具体的にはFeおよびCの合計含有量が90質量%を超えるような炭化物を意味する。このような炭化物は、FeCは勿論のこと、これにV、Nb、Mo、Ti等を、炭化物全体に占める割合として10質量%未満で含有している炭化物をも含む趣旨である。なお本実施形態における成分組成および製造条件によっては、FeおよびCを主体としない、具体的にはV、Nb、Mo、TiとCを主体とする炭化物が生成することもあるが、FeおよびCを主体とした炭化物と比べて極わずかな量であるため、曲げ性や耐遅れ破壊性に悪影響を及ぼさない。 Precipitates having a major composition of 200 μm or more and an aspect ratio of 2 or more, which are precipitated under the component composition and manufacturing conditions in the present embodiment, are substantially carbides mainly composed of Fe and C. Specifically, Fe And a carbide whose total content of C exceeds 90% by mass. Such carbides include not only Fe 3 C but also carbides containing V, Nb, Mo, Ti, etc. in a proportion of less than 10% by mass in the entire carbide. Depending on the component composition and manufacturing conditions in the present embodiment, carbides not mainly composed of Fe and C, specifically, V, Nb, Mo, Ti and C may be formed. Compared to carbides mainly composed of, the amount is negligible and does not adversely affect bendability and delayed fracture resistance.
 本実施形態の鋼板では、上記組織によって高強度性を、上記固溶C量の制御によって優れた耐遅れ破壊性を示し、また上記炭化物の調整によって優れた曲げ性を示すが、鋼板として要求される溶接性、靱性および延性等の基本的な特性を確保するためには、鋼板における各元素の含有量も、下記の通り制御する必要がある。 In the steel sheet of this embodiment, high strength is shown by the structure, excellent delayed fracture resistance is shown by controlling the amount of dissolved C, and excellent bendability is shown by adjusting the carbides. In order to ensure basic characteristics such as weldability, toughness, and ductility, the content of each element in the steel sheet must also be controlled as follows.
 [C:0.10質量%以上0.35質量%以下]
 Cは、鋼板の焼入れ性を高めて高強度を確保するのに有効な元素である。こうした効果を発揮させるためには、C量は0.10質量%以上とする必要がある。好ましくは0.12質量%以上であり、より好ましくは0.15質量%以上である。しかしながら、C量が過剰になると、鋼板の溶接性が劣化する。よってC量は0.35質量%以下とする必要があり、好ましくは0.34質量%以下、より好ましくは0.33質量%以下である。
[C: 0.10% by mass to 0.35% by mass]
C is an element effective for enhancing the hardenability of the steel sheet and ensuring high strength. In order to exert such effects, the C amount needs to be 0.10% by mass or more. Preferably it is 0.12 mass% or more, More preferably, it is 0.15 mass% or more. However, when the amount of C becomes excessive, the weldability of the steel sheet deteriorates. Therefore, the amount of C needs to be 0.35 mass% or less, preferably 0.34 mass% or less, more preferably 0.33 mass% or less.
 [Si:0質量%以上0.6質量%以下]
 Siは、鋼板の焼戻し軟化抵抗を向上させるのに有効な元素であり、また固溶強化による強度向上にも有効な元素であるため、必要により含有させる。これらの効果を発揮させる観点からは、Siを0.002%以上含有させることが好ましい。より好ましくは0.005質量%以上であり、更に好ましくは0.010質量%以上である。しかしながら、Siはフェライト生成元素であるため、Si量が過剰になると焼入れ性が損なわれて高強度を確保することが難しくなる。よってSi量は0.6質量%以下とする必要がある。好ましくは0.5質量%以下、より好ましくは0.1質量%以下、更に好ましくは0.05質量%以下である。
[Si: 0% by mass to 0.6% by mass]
Si is an element effective for improving the temper softening resistance of the steel sheet, and is also an element effective for improving the strength by solid solution strengthening. From the viewpoint of exerting these effects, it is preferable to contain 0.002% or more of Si. More preferably, it is 0.005 mass% or more, More preferably, it is 0.010 mass% or more. However, since Si is a ferrite-forming element, if the amount of Si is excessive, the hardenability is impaired and it is difficult to ensure high strength. Therefore, the amount of Si needs to be 0.6 mass% or less. Preferably it is 0.5 mass% or less, More preferably, it is 0.1 mass% or less, More preferably, it is 0.05 mass% or less.
 [Mn:0質量%超1.5質量%以下]
 Mnは、鋼板の焼入れ性を高めて高強度を確保するのに有効な元素である。こうした効果は、その含有量が増加するにつれて増大するが、上記効果を有効に発揮させるためには、0.1質量%以上含有させることが好ましい。より好ましくは0.5質量%以上、更に好ましくは0.8質量%以上である。しかしながら、Mn量が過剰になると、耐遅れ破壊性および溶接性が劣化する。よってMn量は1.5質量%以下とする必要がある。好ましくは、1.4質量%以下であり、より好ましくは1.3質量%以下である。
[Mn: more than 0% by mass and 1.5% by mass or less]
Mn is an effective element for enhancing the hardenability of the steel sheet and ensuring high strength. Although such an effect increases as the content increases, it is preferable to contain 0.1% by mass or more in order to effectively exhibit the above effect. More preferably, it is 0.5 mass% or more, More preferably, it is 0.8 mass% or more. However, when the amount of Mn becomes excessive, delayed fracture resistance and weldability deteriorate. Therefore, the amount of Mn needs to be 1.5 mass% or less. Preferably, it is 1.4 mass% or less, More preferably, it is 1.3 mass% or less.
 [Al:0質量%超0.15質量%以下]
 Alは、脱酸剤として添加される元素であり、また鋼の耐食性を向上させる効果もある。これらの効果は、その含有量が増加するにつれて増大するが、上記効果を有効に発揮させるためには、0.04質量%以上含有させることが好ましい。より好ましくは0.06%以上である。しかしながら、Al量が過剰になると、介在物が多量に生成して表面疵の原因となるので、その上限を0.15質量%以下とする。好ましくは0.10質量%以下であり、より好ましくは0.07質量%以下である。
[Al: more than 0% by mass and 0.15% by mass or less]
Al is an element added as a deoxidizer and also has an effect of improving the corrosion resistance of steel. Although these effects increase as the content increases, in order to effectively exhibit the above effects, it is preferable to contain 0.04% by mass or more. More preferably, it is 0.06% or more. However, when the amount of Al is excessive, a large amount of inclusions are generated and cause surface defects, so the upper limit is made 0.15% by mass or less. Preferably it is 0.10 mass% or less, More preferably, it is 0.07 mass% or less.
 [N:0質量%超0.01%質量以下]
 Nは、不可避的に混入してくる不純物であり、このNの量が過剰になると、窒化物の析出量が増大し、鋼板の靱性に悪影響を与える。よってN量は、0.01質量%以下とする必要がある。好ましくは0.008質量%以下であり、より好ましくは0.006質量%以下である。なお、製鋼上のコスト等を考慮すると、N量は概ね0.001質量%以上となる。
[N: more than 0% by mass and 0.01% by mass or less]
N is an impurity that is inevitably mixed in. If the amount of N is excessive, the amount of nitride precipitation increases, which adversely affects the toughness of the steel sheet. Therefore, the N amount needs to be 0.01% by mass or less. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less. Note that the N content is approximately 0.001% by mass or more in consideration of the cost for steelmaking.
 [P:0質量%超0.02質量%以下]
 Pは、不可避的に混入してくる不純物である。P量が過剰になると、脆性が増大して鋼板の延性を低下させるので、0.02質量%以下に抑える必要がある。好ましくは0.01質量%以下であり、より好ましくは0.006質量%以下である。
[P: more than 0% by mass and 0.02% by mass or less]
P is an impurity inevitably mixed in. When the amount of P becomes excessive, brittleness increases and the ductility of the steel sheet is lowered, so it is necessary to suppress it to 0.02% by mass or less. Preferably it is 0.01 mass% or less, More preferably, it is 0.006 mass% or less.
 [S:0質量%超0.01質量%以下]
 Sは、不可避的に混入してくる不純物である。Sは、硫化物系の介在物を生成し、鋼板の加工性や溶接性を劣化させる。またMnと結合してMnSを形成することで局部腐食起点となり、水素発生および水素侵入を促進するため耐遅れ破壊性を劣化させる。そのためS量は少ないほどよく、本実施形態では0.01質量%以下に抑える。好ましくは0.005質量%以下であり、より好ましくは0.003質量%以下に抑えるのがよい。
[S: more than 0% by mass and 0.01% by mass or less]
S is an impurity inevitably mixed in. S produces sulfide inclusions and degrades the workability and weldability of the steel sheet. Moreover, it combines with Mn to form MnS, which becomes a local corrosion starting point, and promotes hydrogen generation and hydrogen penetration, thereby deteriorating delayed fracture resistance. For this reason, the smaller the amount of S, the better. The content is preferably 0.005% by mass or less, and more preferably 0.003% by mass or less.
 本実施形態で規定する化学成分組成は上記の通りであり、残部は鉄、および上記N、P、S以外の不可避不純物である。この不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。 The chemical component composition defined in the present embodiment is as described above, and the balance is iron and inevitable impurities other than N, P, and S. As this inevitable impurity, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. can be allowed.
 上記元素に加えて、必要によって更に、(a)Cr:0質量%超1.0質量%以下およびB:0質量%超0.01質量%以下よりなる群から選ばれる少なくとも1種、(b)Cu:0質量%超0.5質量%以下およびNi:0質量%超0.5質量%以下よりなる群から選ばれる少なくとも1種、(c)V:0質量%超0.1質量%以下、Nb:0質量%超0.1質量%以下、Mo:0質量%超0.5質量%以下およびTi:0質量%超0.2質量%以下よりなる群から選択される少なくとも1種、および/又は(d)Ca:0質量%超0.005質量%以下およびMg:0質量%超0.005質量%以下よりなる群から選択される少なくとも1種等を含有することも有効であり、含有させる元素の種類に応じて高強度鋼板の特性が改善される。 In addition to the above elements, if necessary, (a) at least one selected from the group consisting of Cr: more than 0% by mass and 1.0% by mass and B: more than 0% by mass and less than 0.01% by mass, (b ) Cu: more than 0% by mass and 0.5% by mass or less; Ni: at least one selected from the group consisting of more than 0% by mass and 0.5% by mass or less; (c) V: more than 0% by mass and 0.1% by mass Hereinafter, at least one selected from the group consisting of Nb: more than 0% by mass and 0.1% by mass or less, Mo: more than 0% by mass and 0.5% by mass or less, and Ti: more than 0% by mass and 0.2% by mass or less. And / or (d) it is also effective to contain at least one selected from the group consisting of Ca: more than 0% by mass and 0.005% by mass and Mg: more than 0% by mass and 0.005% by mass or less. Yes, the properties of high-strength steel sheets are improved according to the type of elements to be included. .
 [Cr:0質量%超1.0質量%以下およびB:0質量%超0.01質量%以下よりなる群から選ばれる少なくとも1種]
 CrおよびBは、鋼板の焼入れ性を向上させて強度をより高めるのに有効な元素である。またCrは、マルテンサイト組織鋼の焼戻し軟化抵抗を高めるのにも有効な元素である。これらの効果を有効に発揮させるには、Crで0.01質量%以上含有させることが好ましく、より好ましくは0.05質量%以上含有させる。またBは、0.0001質量%以上含有させることが好ましく、より好ましくは0.0005%以上含有させる。
[Cr: at least one selected from the group consisting of more than 0% by mass and 1.0% by mass or less and B: more than 0% by mass and 0.01% by mass or less]
Cr and B are effective elements for improving the hardenability of the steel sheet and increasing the strength. Cr is an element effective for increasing the temper softening resistance of martensitic steel. In order to exhibit these effects effectively, Cr is preferably contained in an amount of 0.01% by mass or more, more preferably 0.05% by mass or more. Further, B is preferably contained in an amount of 0.0001% by mass or more, more preferably 0.0005% or more.
 しかしながら、Crが過剰に含まれると、鋼板の耐遅れ破壊性が劣化するため、上限は1.0質量%以下とすることが好ましく、より好ましくは0.7質量%以下である。またBが過剰に含まれると鋼板の延性が低下するため、上限は0.01質量%以下とすることが好ましく、より好ましくは0.008質量%以下であり、更に好ましくは0.0065質量%以下である。 However, when Cr is excessively contained, the delayed fracture resistance of the steel sheet deteriorates, so the upper limit is preferably 1.0% by mass or less, more preferably 0.7% by mass or less. Moreover, since the ductility of a steel plate will fall when B is contained excessively, it is preferable to make an upper limit into 0.01 mass% or less, More preferably, it is 0.008 mass% or less, More preferably, it is 0.0065 mass%. It is as follows.
 [Cu:0質量%超0.5質量%以下およびNi:0質量%超0.5質量%以下よりなる群から選ばれる少なくとも1種]
 CuおよびNiは、鋼板の耐食性を向上させることで水素脆化に関与する水素の発生を抑制し、耐遅れ破壊性を向上させるのに有効な元素である。このような効果を有効に発揮させるには、Cuで0.01質量%以上含有させることが好ましく、より好ましくは0.05質量%以上含有させる。またNiの場合も、0.01質量%以上含有させることが好ましく、より好ましくは0.05質量%以上含有させる。
[Cu: at least one selected from the group consisting of more than 0 mass% and 0.5 mass% or less and Ni: more than 0 mass% and 0.5 mass% or less]
Cu and Ni are effective elements for suppressing the generation of hydrogen involved in hydrogen embrittlement by improving the corrosion resistance of the steel sheet and improving delayed fracture resistance. In order to exhibit such an effect effectively, it is preferable to contain 0.01 mass% or more with Cu, More preferably, 0.05 mass% or more is contained. Moreover, in the case of Ni, it is preferable to contain 0.01 mass% or more, More preferably 0.05 mass% or more.
 しかしながら、Cu量が過剰になると、鋼板の酸洗性や化成処理性が劣化するため、その上限は0.5質量%以下とすることが好ましく、より好ましくは0.4質量%以下である。また、Ni量が過剰になると、鋼板の延性や加工性が低下するため、その上限は0.5質量%以下とすることが好ましく、より好ましくは0.4質量%以下である。 However, when the amount of Cu is excessive, the pickling property and chemical conversion property of the steel sheet deteriorate, so the upper limit is preferably 0.5% by mass or less, more preferably 0.4% by mass or less. Moreover, when the amount of Ni becomes excessive, the ductility and workability of the steel sheet decrease, so the upper limit is preferably 0.5% by mass or less, more preferably 0.4% by mass or less.
 [V:0質量%超0.1質量%以下、Nb:0質量%超0.1質量%以下、Mo:0質量%超0.5質量%以下およびTi:0質量%超0.2質量%以下よりなる群から選択される少なくとも1種]
 V、Nb、MoおよびTiは、いずれも鋼板の強度の向上、およびオーステナイト粒微細化による焼入れ後の靱性改善に有効な元素である。こうした効果を有効に発揮させるためには、これらの元素を、0.003質量%以上含有させることが好ましい。より好ましくは0.010質量%以上であり、更に好ましくは0.02質量%以上である。
[V: more than 0% by mass and 0.1% by mass or less, Nb: more than 0% by mass and 0.1% by mass or less, Mo: more than 0% by mass and 0.5% by mass or less, and Ti: more than 0% by mass and 0.2% by mass % At least one selected from the group consisting of% or less]
V, Nb, Mo and Ti are all effective elements for improving the strength of the steel sheet and for improving toughness after quenching by refining austenite grains. In order to exhibit such an effect effectively, it is preferable to contain these elements 0.003% by mass or more. More preferably, it is 0.010 mass% or more, More preferably, it is 0.02 mass% or more.
 しかしながら、上記元素が過剰に含有されると、炭窒化物などの析出が増大し、鋼板の加工性が低下する。よってVやNbを含有させるときには、いずれも0.1質量%以下とすることが好ましく、より好ましくは0.05質量%以下である。Moでは0.5質量%以下とすることが好ましく、より好ましくは0.4質量%である。Tiでは0.2質量%以下とすることが好ましく、より好ましくは0.1質量%以下である。 However, when the above elements are excessively contained, precipitation of carbonitrides and the like increases and the workability of the steel sheet decreases. Therefore, when V or Nb is contained, it is preferable that both be 0.1% by mass or less, and more preferably 0.05% by mass or less. In Mo, it is preferable to set it as 0.5 mass% or less, More preferably, it is 0.4 mass%. In Ti, it is preferable to set it as 0.2 mass% or less, More preferably, it is 0.1 mass% or less.
 [Ca:0質量%超0.005質量%以下およびMg:0質量%超0.005質量%以下よりなる群から選択される少なくとも1種]
 CaはMnに代わってSと結合し、圧延方向に延伸するMnSの形態を制御する。また鋼板端面においてはMnSを分断することから、局部腐食起点の局在化を抑制でき、局部腐食起点でのpH低下を抑制することで水素発生および水素侵入を抑制することにより、鋼板の耐遅れ破壊性を向上できる元素である。こうした効果を有効に発揮させるためには、Caは0.001質量%以上含有させることが好ましい。より好ましくは0.0015質量%以上である。しかしながら、Ca量が過剰になると、鋼板の加工性が劣化するため、0.005質量%以下とすることが好ましく、より好ましくは0.003質量%以下である。
[Ca: at least one selected from the group consisting of more than 0% by mass and 0.005% by mass and Mg: more than 0% by mass and 0.005% by mass or less]
Ca combines with S instead of Mn, and controls the form of MnS extending in the rolling direction. Moreover, since MnS is divided at the end face of the steel sheet, localization of the local corrosion starting point can be suppressed, and by suppressing the hydrogen generation and hydrogen intrusion by suppressing the pH drop at the local corrosion starting point, the delay resistance of the steel sheet is suppressed. It is an element that can improve destructive properties. In order to effectively exhibit such effects, Ca is preferably contained in an amount of 0.001% by mass or more. More preferably, it is 0.0015 mass% or more. However, when the amount of Ca becomes excessive, the workability of the steel sheet deteriorates. Therefore, the amount is preferably 0.005% by mass or less, and more preferably 0.003% by mass or less.
 一方、MgはOと結合しMgOを形成することで、腐食先端でのpH低下を抑制し、上記Caと同様に、局部腐食起点でのpH低下を抑制することで水素発生および水素侵入を抑制し、鋼板の耐遅れ破壊性を向上できる元素である。こうした効果を有効に発揮させるためには、Mgは0.001質量%以上含有させることが好ましい。より好ましくは0.0015質量%以上である。しかしながら、Mg量が過剰になると、鋼板の加工性が劣化するため、0.005質量%以下とすることが好ましく、より好ましくは0.003質量%以下である。 On the other hand, Mg combines with O to form MgO, thereby suppressing pH drop at the corrosion front and suppressing hydrogen generation and hydrogen intrusion by suppressing pH drop at the local corrosion starting point, similar to Ca. It is an element that can improve the delayed fracture resistance of the steel sheet. In order to exhibit such an effect effectively, it is preferable to contain Mg 0.001 mass% or more. More preferably, it is 0.0015 mass% or more. However, if the amount of Mg becomes excessive, the workability of the steel sheet deteriorates, so the content is preferably 0.005% by mass or less, more preferably 0.003% by mass or less.
 本実施形態の鋼板は、厚さが1~3mm程度の薄鋼板を対象とするものであるが、製品形態は特に限定されない。例えば、熱間圧延した鋼板や冷間圧延した鋼板、或いは熱間圧延または冷間圧延を施した後に焼鈍を施した鋼板に対して、化成処理、電気亜鉛めっき、蒸着等のめっき処理や、各種塗装処理、塗装下地処理、有機皮膜処理等を施した表面処理鋼板等も含む趣旨である。 The steel plate of the present embodiment is intended for a thin steel plate having a thickness of about 1 to 3 mm, but the product form is not particularly limited. For example, for hot-rolled steel sheets, cold-rolled steel sheets, or steel sheets that have been annealed after being hot-rolled or cold-rolled, various plating treatments such as chemical conversion treatment, electrogalvanizing, vapor deposition, etc. It is intended to include a surface-treated steel sheet that has been subjected to painting treatment, painting ground treatment, organic coating treatment, and the like.
 上記のような本実施形態の高強度鋼板を製造するには、下記の手順に従えばよい。具体的には、後述する焼鈍処理以外は、一般的な条件を採用することができる。例えば、冷延鋼板を用いて下記条件の焼鈍処理を行う場合には、常法に従って溶製し、連続鋳造によりスラブ等の鋼片を得た後、1100℃~1250℃程度に加熱し、次いで熱間圧延を行い、巻取った後に酸洗し、冷間圧延を施して冷延鋼板とする。そして、次いで行う焼鈍処理を下記条件で行うことが推奨される。 In order to manufacture the high-strength steel sheet of the present embodiment as described above, the following procedure may be followed. Specifically, general conditions can be adopted except for the annealing treatment described later. For example, when performing an annealing treatment under the following conditions using a cold-rolled steel sheet, it is melted in accordance with a conventional method, and after obtaining a steel piece such as a slab by continuous casting, it is heated to about 1100 ° C. to 1250 ° C., and then It is hot-rolled, pickled and then cold-rolled to obtain a cold-rolled steel sheet. And it is recommended to perform the annealing process performed next on the following conditions.
 [焼鈍処理条件]
 連続焼鈍ラインにて、Ac変態点以上、950℃以下の温度域で加熱し、この温度域で30秒以上保持することが好ましい。この加熱温度がAc変態点未満となると、熱間圧延鋼板の組織、例えばフェライト-パーライトの二相組織を引き継ぐことになり、その後に焼入れ処理を行ってもマルテンサイト主体の組織にならず、1270MPa以上の強度を達成するのが困難となる。
[Annealing conditions]
In the continuous annealing line, it is preferable to heat in the temperature range of Ac 3 transformation point to 950 ° C. and hold in this temperature range for 30 seconds or more. When this heating temperature is less than the Ac 3 transformation point, the structure of the hot-rolled steel sheet, for example, the two-phase structure of ferrite-pearlite is taken over, and even after the quenching treatment, the structure is not mainly composed of martensite. It becomes difficult to achieve a strength of 1270 MPa or more.
 また加熱温度が950℃を超えるような過剰な高温での保持は、設備負荷や経済的に劣るので好ましくない。加熱温度の上限は、より好ましくは930℃以下である。加熱温度での滞留時間は、加熱温度に応じて適宜決定すれば良いが、鋼板のオーステナイト変態を完了させるためには、30秒以上加熱保持することが好ましい。より好ましくは100秒以上である。ただし、滞留時間があまり長くなると、結晶粒径が粗大になり、強度、靱性面で不利になるので、1000秒以下とすることが好ましい。より好ましくは900秒以下であり、更に好ましくは800秒以下である。また、高温、長時間保持は経済的に不利である。 Also, holding at an excessively high temperature such that the heating temperature exceeds 950 ° C. is not preferable because it is inferior in equipment load and economically. The upper limit of the heating temperature is more preferably 930 ° C. or less. The residence time at the heating temperature may be appropriately determined according to the heating temperature. However, in order to complete the austenite transformation of the steel sheet, it is preferable to hold by heating for 30 seconds or more. More preferably, it is 100 seconds or more. However, if the residence time becomes too long, the crystal grain size becomes coarse, which is disadvantageous in terms of strength and toughness. More preferably, it is 900 seconds or less, More preferably, it is 800 seconds or less. Moreover, high temperature and long time holding are economically disadvantageous.
 [焼入れ処理]
 次いで、600℃以上の温度域から水冷して焼入れを行うことによって、マルテンサイト単相組織を得る。上記水冷時の平均冷却速度は、概ね50℃/秒以上である。これより遅い冷却速度であると、冷却中にフェライトが析出してしまい、マルテンサイト単相組織が得られず、引張強度で1270MPa以上を確保することができなくなる。水冷時の平均冷却速度の下限は、より好ましくは100℃/秒以上である。
[Quenching treatment]
Next, a martensite single phase structure is obtained by quenching with water cooling from a temperature range of 600 ° C. or higher. The average cooling rate during the water cooling is approximately 50 ° C./second or more. If the cooling rate is slower than this, ferrite precipitates during cooling, a martensite single phase structure cannot be obtained, and a tensile strength of 1270 MPa or more cannot be secured. The lower limit of the average cooling rate during water cooling is more preferably 100 ° C./second or more.
 水冷時の平均冷却速度を過度に速くしても、材質上では何ら問題は生じないが、過剰な設備投資が必要になるので、平均冷却速度は概ね1000℃/秒以下であることが好ましい。より好ましくは500℃/秒以下である。 Even if the average cooling rate at the time of water cooling is excessively high, there is no problem on the material, but excessive capital investment is required, so the average cooling rate is preferably about 1000 ° C./second or less. More preferably, it is 500 ° C./second or less.
 冷却終了温度は、冷却方法が水冷のため概ね100℃以下である。冷却終了温度の下限については、何ら限定されないが、室温以下にすることは経済上負荷が大きいため、実質的には室温が下限である。 The cooling end temperature is approximately 100 ° C. or less because the cooling method is water cooling. The lower limit of the cooling end temperature is not limited at all, but it is substantially lower than room temperature because it is economically expensive to set it to room temperature or lower.
 [焼戻し処理]
 上記焼入れの後は焼戻しを行う。この焼戻し処理は2段階で行うことが好ましい。この焼戻し処理の温度域を適切に設定することによって、炭化物の析出や成長を制御することができる。鋼板の素地であるマルテンサイト中に、炭化物を析出させるに際して、炭化物が成長して粗大化しないようにするために、一段目の焼戻し温度T1を二段目の焼戻し温度T2よりも高く、すなわちT1>T2の関係を満足するように制御することが好ましい。焼戻し処理において、まず炭化物の析出核を積極的に作り出すために、焼戻し温度T1は、200~240℃の温度域とし、50秒以上保持する熱処理を行うことが好ましい。
[Tempering treatment]
Tempering is performed after the quenching. This tempering treatment is preferably performed in two stages. By appropriately setting the temperature range of this tempering treatment, the precipitation and growth of carbides can be controlled. In order to prevent carbides from growing and coarsening in the martensite that is the base material of the steel sheet, the first tempering temperature T1 is higher than the second tempering temperature T2, that is, T1. It is preferable to control so as to satisfy the relationship of> T2. In the tempering treatment, first, in order to actively produce carbide precipitation nuclei, it is preferable to perform a heat treatment in which the tempering temperature T1 is set to a temperature range of 200 to 240 ° C. and is maintained for 50 seconds or more.
 一段目の焼戻し温度T1が200℃未満になると、炭化物の析出核の生成が不十分となり、一方240℃を超えると、炭化物の析出が過剰になり、いずれも鋼板の曲げ性が低下する。この焼戻し温度T1は、より好ましくは210℃以上であり、230℃以下である。 When the first-stage tempering temperature T1 is less than 200 ° C., the formation of carbide precipitation nuclei becomes insufficient. On the other hand, when it exceeds 240 ° C., carbide precipitation becomes excessive, and the bendability of the steel sheet decreases. The tempering temperature T1 is more preferably 210 ° C. or higher and 230 ° C. or lower.
 上記焼戻し温度T1での保持時間t1が50秒未満になると、炭化物の析出核の形成が不十分になること、またマルテンサイト組織の固溶Cの吐き出しが不十分になるため、鋼板の靱性が低下する。保持時間t1は、より好ましくは70秒以上であり、更に好ましくは100秒以上である。 When the holding time t1 at the tempering temperature T1 is less than 50 seconds, the formation of carbide precipitation nuclei becomes insufficient, and the discharge of the solid solution C of the martensite structure becomes insufficient. descend. The holding time t1 is more preferably 70 seconds or more, and further preferably 100 seconds or more.
 一方、焼戻し温度T1での保持時間t1が長くなり過ぎると、炭化物の成長が過剰になり、鋼板の靱性の劣化や曲げ性が低下する。また高温での長時間保持は炭化物が過剰に成長することになるため、200秒以下とすることが好ましい。保持時間t1は、より好ましくは180秒以下であり、更に好ましくは160秒以下である。 On the other hand, if the holding time t1 at the tempering temperature T1 is too long, the carbide growth becomes excessive, and the toughness of the steel sheet and the bendability are lowered. Moreover, since the carbide | carbonized_material will grow excessively for long time holding | maintenance at high temperature, it is preferable to set it as 200 seconds or less. The holding time t1 is more preferably 180 seconds or less, and even more preferably 160 seconds or less.
 次いで、二段目の焼戻し処理を、焼戻し温度T2を100℃以上210℃以下の温度域で、保持時間t2を300秒以上で行うことが好ましい。焼戻し温度T2を、前記焼戻し温度T1よりも低くすることで、焼戻し温度T1で核生成した炭化物の成長速度を、焼戻し温度T1で保持したときに比べて低下させることができる。このように制御することで、微細で曲げ性へ悪影響の小さい炭化物を多量に析出させ、粗大な炭化物の個数密度を低下させることができ、且つマルテンサイト中に固溶するCを低減することが促進される。 Next, it is preferable to perform the second tempering treatment in a temperature range where the tempering temperature T2 is 100 ° C. or higher and 210 ° C. or lower and the holding time t2 is 300 seconds or longer. By making the tempering temperature T2 lower than the tempering temperature T1, the growth rate of the carbide nucleated at the tempering temperature T1 can be reduced as compared with the case where the tempering temperature T2 is held at the tempering temperature T1. By controlling in this way, it is possible to precipitate a large amount of fine carbides with a small adverse effect on bendability, to reduce the number density of coarse carbides, and to reduce C dissolved in martensite. Promoted.
 焼戻し温度T2が210℃を超えると、炭化物の成長速度が大きくなり過ぎるため、粗大な炭化物が生成し、鋼板の曲げ性が低下する。より好ましくは190℃以下である。焼き戻し温度T2の下限は、固溶Cの吐き出しを十分に行うために、100℃以上とするのが好ましい。より好ましくは150℃以上である。 When the tempering temperature T2 exceeds 210 ° C., the growth rate of the carbide becomes too large, so that coarse carbide is generated and the bendability of the steel sheet is lowered. More preferably, it is 190 degrees C or less. The lower limit of the tempering temperature T2 is preferably set to 100 ° C. or higher in order to sufficiently discharge the solute C. More preferably, it is 150 degreeC or more.
 加熱温度T2での保持時間t2が300秒未満になると、固溶Cの吐き出しが十分に生じないため鋼板の靱性が低下するおそれがある。保持時間t2は、より好ましくは320秒以上であり、更に好ましくは350秒以上である。 When the holding time t2 at the heating temperature T2 is less than 300 seconds, the toughness of the steel sheet may be reduced because the discharge of the solid solution C does not occur sufficiently. The holding time t2 is more preferably 320 seconds or more, and further preferably 350 seconds or more.
 一方、焼戻し温度T2での保持時間t2が長くなり過ぎると、炭化物の析出と成長が過剰になり、鋼板の曲げ性が低下する。また高温での長時間保持は経済的にも不利になるため、1000秒以下とすることが好ましい。より好ましくは800秒以下であり、更に好ましくは600秒以下である。 On the other hand, if the holding time t2 at the tempering temperature T2 becomes too long, the precipitation and growth of carbides become excessive, and the bendability of the steel sheet decreases. Moreover, since holding for a long time at a high temperature is economically disadvantageous, it is preferably set to 1000 seconds or less. More preferably, it is 800 seconds or less, More preferably, it is 600 seconds or less.
 上記焼戻し温度T1から焼戻し温度T2への冷却速度は、0.1℃/秒以上であることが好ましい。より好ましくは0.12℃/秒以上であり、更に好ましくは0.15℃/秒以上である。焼戻し温度T1から焼戻し温度T2への冷却速度は、速いほうが好ましいためその上限は設けないが、冷却する温度域を考慮すると、工業上での上限は100℃/秒程度となる。 The cooling rate from the tempering temperature T1 to the tempering temperature T2 is preferably 0.1 ° C./second or more. More preferably, it is 0.12 degreeC / second or more, More preferably, it is 0.15 degreeC / second or more. The upper limit of the cooling rate from the tempering temperature T1 to the tempering temperature T2 is preferable because it is preferable. However, in consideration of the temperature range to be cooled, the industrial upper limit is about 100 ° C./second.
 以上、本実施形態に係る高強度鋼板について説明した。 The high-strength steel plate according to this embodiment has been described above.
 上述のように、本実施形態の高強度鋼板は、その表面に、電気亜鉛めっき層を有するものであっても良い。すなわち、本発明には、上記高強度鋼板の表面に電気亜鉛めっき層を有する電気亜鉛めっき鋼板(以下、「EG鋼板」と表記することがある)も包含される。 As described above, the high-strength steel plate of this embodiment may have an electrogalvanized layer on the surface thereof. That is, the present invention also includes an electrogalvanized steel sheet (hereinafter sometimes referred to as “EG steel sheet”) having an electrogalvanized layer on the surface of the high-strength steel sheet.
 上記のようなEG鋼板は、焼戻し後、室温まで冷却して得られた本実施形態に係る高強度鋼板に、常法に従って電気亜鉛めっきを施すことによって得られる。 The EG steel sheet as described above is obtained by subjecting the high-strength steel sheet according to the present embodiment obtained after cooling to room temperature after tempering to electrogalvanization according to a conventional method.
 上記電気亜鉛めっきは、例えば、上記高強度鋼板を、50~60℃の亜鉛溶液に浸漬しつつ通電し、電気亜鉛めっき処理を行うことによって形成される。このときのめっき付着量は、特に限定されず、例えば、片面あたり10~100g/m程度であればよい。 The electrogalvanization is formed, for example, by conducting an electrogalvanization process by energizing the high-strength steel sheet while being immersed in a zinc solution at 50 to 60 ° C. The amount of plating adhesion at this time is not particularly limited, and may be, for example, about 10 to 100 g / m 2 per side.
 本発明の一局面に係る高強度鋼板は、C:0.10質量%以上0.35質量%以下、Si:0質量%以上0.6質量%以下、Mn:0質量%超1.5質量%以下、Al:0質量%超0.15質量%以下、N:0質量%超0.01質量%以下、P:0質量%超0.02質量%以下、および、S:0質量%超0.01質量%以下、を含有し、残部が鉄および不可避不純物であり、全組織中に占めるマルテンサイトの面積率が95%以上であること、前記マルテンサイトの固溶Cが0.05質量%以下であること、長径が200nm以上の炭化物の密度が50個/μm以下であること、並びに、引張強度が1270MPa以上であること特徴とする。 The high-strength steel sheet according to one aspect of the present invention includes C: 0.10% by mass to 0.35% by mass, Si: 0% by mass to 0.6% by mass, Mn: more than 0% by mass and 1.5% by mass. %: Al: more than 0% by weight, 0.15% by weight or less, N: more than 0% by weight, 0.01% by weight or less, P: more than 0% by weight, 0.02% by weight or less, and S: more than 0% by weight 0.01% by mass or less, the balance being iron and inevitable impurities, the area ratio of martensite in the whole structure being 95% or more, the solid solution C of the martensite being 0.05% by mass % Or less, the density of carbides having a major axis of 200 nm or more is 50 pieces / μm 3 or less, and the tensile strength is 1270 MPa or more.
 このような構成によれば、1270MPa以上の高強度を示し、且つ曲げ性および耐遅れ破壊性に優れた高強度鋼板および高強度電気亜鉛めっき鋼板が実現できる。こうした高強度鋼板および高強度電気亜鉛めっき鋼板は、例えばバンパー等の自動車用部品、自動車の構造材や補強材等のように高強度が要求される部品の素材として有用である。 According to such a configuration, a high-strength steel sheet and a high-strength electrogalvanized steel sheet exhibiting high strength of 1270 MPa or more and excellent in bendability and delayed fracture resistance can be realized. Such high-strength steel sheets and high-strength electrogalvanized steel sheets are useful as raw materials for parts that require high strength, such as automotive parts such as bumpers, automobile structural materials, and reinforcing materials.
 本発明の高強度鋼板には、必要によって更に、Cr:0質量%超1.0質量%以下およびB:0質量%超0.01質量%以下よりなる群から選ばれる少なくとも1種が含有されていてもよい。これにより、含有させる元素の種類に応じて高強度鋼板の特性が更に改善される。 The high-strength steel sheet of the present invention further contains at least one selected from the group consisting of Cr: more than 0% by mass and 1.0% by mass and B: more than 0% by mass and less than 0.01% by mass as necessary. It may be. Thereby, the characteristic of a high-strength steel plate is further improved according to the kind of element to contain.
 また、上記高強度鋼板において、さらに、Cu:0質量%超0.5質量%以下およびNi:0質量%超0.5質量%以下よりなる群から選ばれる少なくとも1種が含有されていてもよい。これにより、含有させる元素の種類に応じて高強度鋼板の特性が更に改善される。 The high-strength steel sheet may further contain at least one selected from the group consisting of Cu: more than 0% by mass and 0.5% by mass or less and Ni: more than 0% by mass and less than 0.5% by mass. Good. Thereby, the characteristic of a high-strength steel plate is further improved according to the kind of element to contain.
 さらには、上記高強度鋼板において、V:0質量%超0.1質量%以下、Nb:0質量%超0.1質量%以下、Mo:0質量%超0.5質量%以下およびTi:0質量%超0.2質量%以下よりなる群から選択される少なくとも1種が含有されていてもよい。これにより、含有させる元素の種類に応じて高強度鋼板の特性が更に改善される。 Further, in the high-strength steel sheet, V: more than 0% by mass and 0.1% by mass or less, Nb: more than 0% by mass and 0.1% by mass or less, Mo: more than 0% by mass and 0.5% by mass or less, and Ti: At least one selected from the group consisting of more than 0% by mass and 0.2% by mass or less may be contained. Thereby, the characteristic of a high-strength steel plate is further improved according to the kind of element to contain.
 また、上記高強度鋼板において、Ca:0質量%超0.005質量%以下およびMg:0質量%超0.005質量%以下よりなる群から選択される少なくとも1種が含有されていてもよい。これにより、含有させる元素の種類に応じて高強度鋼板の特性が更に改善される。 Further, the high-strength steel sheet may contain at least one selected from the group consisting of Ca: more than 0 mass% and 0.005 mass% or less and Mg: more than 0 mass% and 0.005 mass% or less. . Thereby, the characteristic of a high-strength steel plate is further improved according to the kind of element to contain.
 本発明には、上記高強度鋼板の表面に電気亜鉛めっき層を有する高強度電気亜鉛めっき鋼板も包含される。 The present invention includes a high-strength electrogalvanized steel sheet having an electrogalvanized layer on the surface of the high-strength steel sheet.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples as a matter of course, and is appropriately modified within a range that can meet the gist of the following. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
 (試験例1)
 下記表1に示す化学成分組成の鋼種A~Yを溶製した。詳細には、転炉で一次精錬後に、取鍋にて脱硫を実施した。また、必要に応じて取鍋精錬後に、RH法による真空脱ガス処理を実施した。なお、表1に示した化学成分組成において、残部は、鉄、およびN、P、S以外の不可避不純物である。また、下記表1に示した各鋼種のAc変態点は、「レスリー鉄鋼材料学:1985年、William C.Leslie」の第273頁に記載されたVII-20式を参照した下記(1)式により計算した値である。
(Test Example 1)
Steel types A to Y having the chemical composition shown in Table 1 were melted. Specifically, desulfurization was performed in a ladle after primary refining in a converter. Moreover, the vacuum degassing process by RH method was implemented after the ladle refining as needed. In the chemical composition shown in Table 1, the balance is iron and inevitable impurities other than N, P, and S. The Ac 3 transformation point of each steel type shown in Table 1 below is the following (1) referring to the formula VII-20 described on page 273 of “Leslie Steel Materialology: 1985, William C. Leslie”. It is the value calculated by the formula.
 Ac変態点(℃)=910-203×[C]1/2-15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]-30×[Mn]-11×[Cr]-20×[Cu]+700×[P]+400×[Al]+120×[As]+400×[Ti]・・・(1)
 ただし、上記[C]、[Ni]、[Si]、[V]、[Mo]、[W]、[Mn]、[Cr]、[Cu]、[P]、[Al]、[As]および[Ti]は、それぞれC、Ni、Si、V、Mo、W、Mn、Cr、Cu、P、Al、AsおよびTiの鋼板中の質量%を意味する。
Ac 3 transformation point (° C.) = 910−203 × [C] 1/2 −15.2 × [Ni] + 44.7 × [Si] + 104 × [V] + 31.5 × [Mo] + 13.1 × [ W] −30 × [Mn] −11 × [Cr] −20 × [Cu] + 700 × [P] + 400 × [Al] + 120 × [As] + 400 × [Ti] (1)
However, the above [C], [Ni], [Si], [V], [Mo], [W], [Mn], [Cr], [Cu], [P], [Al], [As] And [Ti] mean mass% in the steel sheet of C, Ni, Si, V, Mo, W, Mn, Cr, Cu, P, Al, As, and Ti, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その後、常法により連続鋳造を実施してスラブを得た。そして熱間圧延を行った後、常法により酸洗、冷間圧延を順次行って、板厚1.0mmの鋼板を得た。次いで、連続焼鈍を行った。 After that, continuous casting was performed by a conventional method to obtain a slab. Then, after hot rolling, pickling and cold rolling were sequentially performed by a conventional method to obtain a steel plate having a thickness of 1.0 mm. Subsequently, continuous annealing was performed.
 下記表2における試験No.1~49に示す焼鈍温度および焼鈍時間で焼鈍を行った後、表2に示す焼入れ開始温度まで冷却速度10℃/秒で冷却した。次いで、焼入れ開始温度から室温まで下記表2に示す冷却速度で急冷して焼入れを行い、更に表2に示す焼戻し条件で処理を行った。ここで一段目の焼戻し温度T1から二段目の焼戻し温度T2への冷却速度は、0.2~0.5℃/秒程度とした。なお、上記熱間圧延の条件は下記の通りである。 Test No. in Table 2 below. After annealing at the annealing temperature and annealing time shown in 1 to 49, it was cooled to the quenching start temperature shown in Table 2 at a cooling rate of 10 ° C./second. Next, quenching was performed by quenching from the quenching start temperature to room temperature at the cooling rate shown in Table 2 below, and further the treatment was performed under the tempering conditions shown in Table 2. Here, the cooling rate from the first tempering temperature T1 to the second tempering temperature T2 was set to about 0.2 to 0.5 ° C./second. The conditions for the hot rolling are as follows.
 [熱間圧延の条件]
 加熱温度:1250℃
 仕上げ温度:880℃
 巻取り温度:620℃
 仕上げ厚さ:2.6mm
[Hot rolling conditions]
Heating temperature: 1250 ° C
Finishing temperature: 880 ° C
Winding temperature: 620 ° C
Finished thickness: 2.6mm
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記のようにして得られた鋼板を用い、下記に示す条件で各種特性の評価を行った。 Using the steel sheet obtained as described above, various characteristics were evaluated under the following conditions.
 [鋼組織の面積率の測定]
 1.0mm×20mm×20mmの試験片を切り出し、圧延方向と平行な断面を研磨し、ナイタール腐食を行った後に、板厚の1/4部について、走査型電子顕微鏡(SEM:Scanning Electron Microscope)にて1000倍で観察を行った。
[Measurement of area ratio of steel structure]
A test piece of 1.0 mm × 20 mm × 20 mm was cut out, a cross section parallel to the rolling direction was polished, and after nital corrosion was performed, a ¼ part of the plate thickness was subjected to a scanning electron microscope (SEM: Scanning Electron Microscope). The observation was performed at 1000 times.
 このとき、1視野のサイズを90μm×120μmとし、任意の10視野において、縦横のそれぞれに等間隔で10本の線を引き、その交点が、マルテンサイト組織である交点の数と、フェライト組織等のマルテンサイト以外の組織である交点の数のそれぞれを、全交点の数で割り、マルテンサイト組織の面積率、マルテンサイト以外の組織の面積率とした。その結果を下記表3に示す。 At this time, the size of one field of view is 90 μm × 120 μm, and in 10 arbitrary fields of view, 10 lines are drawn at equal intervals in the vertical and horizontal directions, and the intersection points are the number of intersection points that are martensite structures, ferrite structures, etc. Each of the number of intersections that is a structure other than martensite was divided by the total number of intersections to obtain the area ratio of the martensite structure and the area ratio of the structure other than martensite. The results are shown in Table 3 below.
 [引張特性の評価]
 引張強度(TS)は、鋼板の圧延方向に垂直な方向が長手方向となるように、JIS5号引張試験片を鋼板から採取し、JIS Z 2241:2011に規定の方法に従って測定した。そして、引張強度が1270MPa以上のものを高強度であると評価した。その結果を下記表3に示す。このとき参考のために、鋼板の降伏強さ(YS)(0.2%耐力に相当:ただし組織中にフェライトを含み降伏点を示すものは降伏点(YP)を測定)、および全伸び(EL)等の機械的特性についても下記表3に示している。
[Evaluation of tensile properties]
The tensile strength (TS) was measured in accordance with the method specified in JIS Z 2241: 2011 by taking a JIS No. 5 tensile test piece from the steel plate so that the direction perpendicular to the rolling direction of the steel plate was the longitudinal direction. And the thing whose tensile strength is 1270 Mpa or more was evaluated as high intensity | strength. The results are shown in Table 3 below. At this time, for reference, the yield strength (YS) of the steel sheet (corresponding to 0.2% proof stress: However, if the structure contains ferrite and indicates the yield point, the yield point (YP) is measured), and the total elongation ( The mechanical properties such as EL) are also shown in Table 3 below.
 [曲げ性の評価]
 鋼板の曲げ性については、下記の手順によって評価した。圧延方向と直角方向に長軸をとって幅:30mm×長さ:35mmの試験片を作製し、JIS Z 2248:2014に準拠したVブロック法で曲げ試験を行った。そのときの曲げ半径を0~7mmまで種々変化させ、材料が破断せずに曲げ加工ができる最小の曲げ半径を求め、これを限界曲げ半径R(mm)として、限界曲げ半径R(mm)/板厚(mm)を算出した。そして、限界曲げ半径R(mm)/板厚(mm)が4.0以下となる試験片を曲げ性に優れるとして評価し、4.0を超える試験片を曲げ性に劣るとして評価した。下記表3には、曲げ性に優れる試験例を「○」で示し、曲げ性に劣る試験例を「×」で示した。
[Evaluation of bendability]
The bendability of the steel sheet was evaluated by the following procedure. A test piece having a width of 30 mm × a length of 35 mm with a major axis in the direction perpendicular to the rolling direction was prepared, and a bending test was performed by a V block method in accordance with JIS Z 2248: 2014. The bending radius at that time is variously changed from 0 to 7 mm, the minimum bending radius that can be bent without breaking the material is obtained, and this is defined as the limiting bending radius R (mm) / the limiting bending radius R (mm) / The plate thickness (mm) was calculated. Then, a test piece having a limit bending radius R (mm) / plate thickness (mm) of 4.0 or less was evaluated as being excellent in bendability, and a test piece exceeding 4.0 was evaluated as being inferior in bendability. In Table 3 below, test examples with excellent bendability are indicated by “◯”, and test examples with inferior bendability are indicated by “x”.
 [固溶C量の測定]
 上記で得られた各鋼板から、圧延方向が長手となるように直径:0.3mm×長さ:30mmの棒状試験片を採取し、高輝度X線回折法にて固溶C量を測定した。このとき、高輝度X線回折法で得られた波形から、マルテンサイトの格子間距離を解析し、「Acta Mat. Vol.59:2011、5845-」に記載されたB.Hutchinsonらの式を参考にして固溶C量を求めた。
[Measurement of solute C content]
From each steel plate obtained above, a rod-shaped test piece having a diameter of 0.3 mm × length of 30 mm was taken so that the rolling direction was long, and the amount of solid solution C was measured by a high-intensity X-ray diffraction method. . At this time, the inter-lattice distance of martensite was analyzed from the waveform obtained by the high-intensity X-ray diffractometry, and the B.A. described in “Ata Mat. Vol. 59: 2011, 5845-” was analyzed. The amount of solid solution C was determined with reference to the equation of Hutchinson et al.
 [炭化物の大きさ、及び、個数密度の測定]
 上記で得られた各鋼板における板厚の1/4部位から、切断、研磨(減厚)、打ち抜きにより直径:3mm×厚さ:0.1mmの円板状薄片を採取した。そして電解薄膜法にて試料の厚さを0.1μm以下まで研磨し、透過型電子顕微鏡(TEM:Transmission Electron Microscope、商品名「H-800」日立製作所製)にて観察し、長径が200nm以上の炭化物の個数密度を測定した。TEM観察は、60000倍(1視野あたりの体積:約0.33μm)の5視野で行った。この観察で得られた画像において、観察されたアスペクト比が2以上の第二相(析出物)を炭化物とし、画像解析ソフト(ImageJ)を用いて長径が200nm以上の炭化物の個数を解析し、該炭化物の個数密度をμmあたりに換算して求めた。
[Measurement of carbide size and number density]
Disc-shaped flakes having a diameter of 3 mm × thickness: 0.1 mm were collected from a quarter of the plate thickness of each steel plate obtained above by cutting, polishing (thinning), and punching. Then, the thickness of the sample is polished to 0.1 μm or less by an electrolytic thin film method, and observed with a transmission electron microscope (TEM: Transmission Electron Microscope, trade name “H-800”, manufactured by Hitachi, Ltd.). The number density of carbides was measured. The TEM observation was performed with 5 visual fields of 60000 times (volume per visual field: about 0.33 μm 3 ). In the image obtained by this observation, the observed second phase (precipitate) having an aspect ratio of 2 or more is a carbide, and the number of carbides having a major axis of 200 nm or more is analyzed using image analysis software (ImageJ). The number density of the carbide was calculated by converting per μm 3 .
 [鋼板の耐遅れ破壊性評価試験]
 上記で得られた各鋼板から、幅:150mm×長さ:30mmの試験片を切り出し、切断端面をフライス加工した後に、試験片端部に応力付与のためのボルトを通す穴を開けた。さらにその後、ポンチ/ダイにより曲げ半径:10mmでU曲げ加工を行い、曲げ頭頂部に歪みゲージを貼り付け、曲げ試験片をボルト、ナットで締め付けることで鋼板の降伏強さYSに相当する応力を付与した。このU曲げ試験片を、0.1N-HCl溶液中に200時間で浸漬し、各3回の試験で1つも割れが発生しなかった試験片を耐遅れ破壊性に優れると評価し、1つでも割れが発生した試験片を耐遅れ破壊性が劣ると評価した。下記表3には、耐遅れ破壊性に優れる試験例を「○」で示し、耐遅れ破壊性に劣る試験例を「×」で示した。
[Evaluation test for delayed fracture resistance of steel sheet]
From each steel plate obtained above, a test piece of width: 150 mm × length: 30 mm was cut out and the cut end face was milled, and then a hole through which a bolt for applying stress was passed was formed at the end of the test piece. Further, U-bending is performed with a punch / die at a bending radius of 10 mm, a strain gauge is attached to the top of the bending head, and the bending test piece is tightened with bolts and nuts to apply a stress corresponding to the yield strength YS of the steel sheet. Granted. This U-bending test piece was immersed in a 0.1N-HCl solution for 200 hours, and a test piece in which no crack was generated in each of the three tests was evaluated as having excellent delayed fracture resistance. However, the specimens with cracks were evaluated as having poor delayed fracture resistance. In Table 3 below, a test example excellent in delayed fracture resistance is indicated by “◯”, and a test example inferior in delayed fracture resistance is indicated by “x”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、次のように考察できる。まず試験No.1~5、17~21、33~44は、本発明で規定する化学成分組成を満足する鋼板を用い、適切な製造条件で製造し、本発明で規定する要件を満足する試験例であり、引張強度が1270MPa以上の高強度を示しており、且つ曲げ性および耐遅れ破壊性に優れていることが分かる。 From these results, it can be considered as follows. First, test no. 1 to 5, 17 to 21, and 33 to 44 are test examples that use steel sheets that satisfy the chemical component composition defined in the present invention, are manufactured under appropriate manufacturing conditions, and satisfy the requirements defined in the present invention. It can be seen that the tensile strength is a high strength of 1270 MPa or more, and the bendability and delayed fracture resistance are excellent.
 これに対し、本発明で規定するいずれかの要件を満足しない試験例では、引張強度、曲げ性および耐遅れ破壊性のいずれかにおいて劣化している。すなわち、試験No.6~17、および試験No.22~32は、本発明で規定する化学成分組成は満足しているが、好ましい製造条件で製造されなかったため、組織、固溶C量、炭化物の個数密度のいずれかが本発明で規定する範囲をはずれ、引張強度、曲げ性および耐遅れ破壊性の少なくともいずれかが劣化している。 On the other hand, in the test examples that do not satisfy any of the requirements specified in the present invention, the tensile strength, the bendability, and the delayed fracture resistance are deteriorated. That is, test no. 6-17, and test no. Nos. 22 to 32 satisfy the chemical component composition specified in the present invention, but were not manufactured under preferable manufacturing conditions. Therefore, any of the structure, the amount of solute C, and the number density of carbides is within the range specified in the present invention. And at least one of tensile strength, bendability and delayed fracture resistance is deteriorated.
 具体的には、試験No.5および試験No.22は、焼入れ開始温度が低くマルテンサイト素地にフェライトが過剰に生成したため、耐遅れ破壊性が劣化した。また試験No.6および試験No.23は、焼鈍温度が低く、二相域での焼鈍となっており、フェライト-マルテンサイト組織の二相組織となっているため、引張強度および耐遅れ破壊性が低下した。 Specifically, test no. 5 and test no. No. 22 had a low quenching start temperature, and excessive ferrite was formed on the martensite substrate, so that the delayed fracture resistance deteriorated. In addition, Test No. 6 and test no. No. 23 has a low annealing temperature and is annealed in a two-phase region, and has a two-phase structure of ferrite-martensite structure. Therefore, the tensile strength and delayed fracture resistance decreased.
 試験No.8および試験No.24は、焼鈍温度での保持時間が短くなった例であり、組織がオーステナイト単相化しておらず、フェライト-マルテンサイト組織の二相組織となっているため、鋼板の引張強度が低下するとともに耐遅れ破壊性が劣化している。 Test No. 8 and test no. No. 24 is an example in which the holding time at the annealing temperature is shortened, and since the structure is not austenite single phase and has a two-phase structure of ferrite-martensite structure, the tensile strength of the steel sheet decreases. Delayed fracture resistance has deteriorated.
 試験No.9および試験No.25は、一段目の焼戻し温度T1が低くなっている例であり、マルテンサイト中の固溶C量が過剰になったため靱性が低下し、耐遅れ破壊性が劣化している。試験No.10および試験No.26は、一段目の焼戻し温度T1が高くなっている試験例であり、粗大な炭化物が多量に生成したため、鋼板の引張強度が低下するとともに耐遅れ破壊性が劣化している。 Test No. 9 and test no. No. 25 is an example in which the first-stage tempering temperature T1 is low. Since the amount of dissolved C in the martensite becomes excessive, the toughness is lowered and the delayed fracture resistance is deteriorated. Test No. 10 and test no. No. 26 is a test example in which the first-stage tempering temperature T1 is high. Since a large amount of coarse carbides is generated, the tensile strength of the steel sheet decreases and the delayed fracture resistance deteriorates.
 試験No.11および試験No.27は、一段目の焼戻しにおける保持時間t1が短くなっている試験例であり、マルテンサイト中の固溶C量が過剰になったため鋼板の靱性が低下して耐遅れ破壊性が劣化している。試験No.12および試験No.28は、一段目の焼戻しにおける保持時間t1が長くなっている試験例であり、粗大な炭化物が多量に生成したため、鋼板の曲げ性が劣化している。 Test No. 11 and test no. No. 27 is a test example in which the holding time t1 in the first tempering is shortened, and since the amount of dissolved C in the martensite becomes excessive, the toughness of the steel sheet is lowered and the delayed fracture resistance is deteriorated. . Test No. 12 and test no. No. 28 is a test example in which the holding time t1 in the first tempering is long, and a large amount of coarse carbides is generated, so that the bendability of the steel sheet is deteriorated.
 試験No.13および試験No.29は、二段目の焼戻しを行わなかった試験例であり、マルテンサイト中の固溶C量が過剰になったため鋼板の靱性が低下して耐遅れ破壊性が劣化している。試験No.14および試験No.30は、二段目の焼戻し温度T2が低くなっている試験例であり、マルテンサイト中の固溶C量が過剰になったため鋼板の靱性が低下して耐遅れ破壊性が劣化している。 Test No. 13 and test no. 29 is a test example in which the second-stage tempering was not performed. Since the amount of dissolved C in the martensite was excessive, the toughness of the steel sheet was lowered and the delayed fracture resistance was deteriorated. Test No. 14 and test no. 30 is a test example in which the second-stage tempering temperature T2 is low. Since the amount of dissolved C in the martensite is excessive, the toughness of the steel sheet is lowered and the delayed fracture resistance is deteriorated.
 試験No.15および試験No.31は、二段目の焼戻しにおける保持時間t2が短くなっている例であり、マルテンサイト中の固溶C量が過剰になったため鋼板の靱性が低下して耐遅れ破壊性が劣化している。試験No.16および試験No.32は、二段目の焼戻し温度T2が高くなっている試験例であり、粗大な炭化物が多量に生成したため、鋼板の曲げ性が劣化している。 Test No. 15 and test no. No. 31 is an example in which the holding time t2 in the second stage of tempering is shortened, and since the amount of dissolved C in the martensite becomes excessive, the toughness of the steel sheet is lowered and the delayed fracture resistance is deteriorated. . Test No. 16 and test no. No. 32 is a test example in which the second stage tempering temperature T2 is high, and a large amount of coarse carbides is generated, so that the bendability of the steel sheet is deteriorated.
 一方、試験No.45~49は、好ましい製造条件で製造されているが、本発明で規定する化学成分組成を満足しない鋼種U~Yを用いた試験例であり、引張強度及び耐遅れ破壊性の少なくともいずれかが劣化している。 On the other hand, test no. 45 to 49 are test examples using steel types U to Y that are manufactured under preferable manufacturing conditions but do not satisfy the chemical composition defined in the present invention, and at least one of tensile strength and delayed fracture resistance is selected. It has deteriorated.
 具体的には、試験No.45は、C量が不足している鋼種Uを用いた試験例であり、焼入れ性が不十分となって、フェライト-マルテンサイト組織の二相組織となっているため、引張強度が不足し、更に多量に存在するフェライトに加工歪みが集中するため鋼板の耐遅れ破壊性が劣化している。試験No.46は、C量が過剰な鋼種Vを用いた試験例であり、マルテンサイト中の固溶C量が過剰になったため、耐遅れ破壊性が劣化している。 Specifically, test no. No. 45 is a test example using a steel type U with insufficient C amount, because the hardenability is insufficient and the ferrite-martensite structure has a two-phase structure, so that the tensile strength is insufficient. Furthermore, since the processing strain concentrates on a large amount of ferrite, the delayed fracture resistance of the steel sheet is deteriorated. Test No. No. 46 is a test example using a steel type V having an excessive amount of C. Since the amount of dissolved C in the martensite is excessive, the delayed fracture resistance is deteriorated.
 試験No.47は、Si量が過剰な鋼種Wを用いた試験例であり、鋼板の焼入れ性が不十分となっており、フェライト-マルテンサイト組織の二相組織となっているため、鋼板の引張強度が低くなっており、また耐遅れ破壊性が劣化している。 Test No. No. 47 is a test example using a steel type W with an excessive amount of Si, and the hardenability of the steel sheet is insufficient, and since it has a two-phase structure of ferrite-martensite structure, the tensile strength of the steel sheet is high. The resistance to delayed fracture is deteriorated.
 試験No.48は、Mn量が過剰な鋼種Xを用いた試験例であり、中心偏析部にMnSが多量に生成していることが予想され、鋼板の耐遅れ破壊性が劣化している。試験No.49は、S量が過剰な鋼種Yを用いた試験例であり、MnSが多量に生成していることが予想され、鋼板の耐遅れ破壊性が劣化している。 Test No. 48 is a test example using the steel type X having an excessive amount of Mn, and it is expected that a large amount of MnS is generated in the center segregation part, and the delayed fracture resistance of the steel sheet is deteriorated. Test No. No. 49 is a test example using steel type Y with an excessive amount of S. MnS is expected to be produced in a large amount, and the delayed fracture resistance of the steel sheet is deteriorated.
 (試験例2)
 上記表2に示した試験No.4、5、18、41、およびNo.48の高強度鋼板(冷延鋼板)について、下記の条件で電気亜鉛めっきを施し、各種EG鋼板No.50~54を得た。
(Test Example 2)
Test No. shown in Table 2 above. 4, 5, 18, 41, and no. 48 high-strength steel sheets (cold-rolled steel sheets) were electrogalvanized under the following conditions, and various EG steel sheets No. 50-54 were obtained.
 [電気亜鉛めっき処理条件]
 上記冷延鋼板を、55℃の亜鉛めっき浴に浸漬し、電気亜鉛めっき処理を施した後、水洗、乾燥して電気亜鉛めっき鋼板とした。このときの電気亜鉛めっき処理は、電流密度を40A/dmとして行った。また亜鉛めっき付着量は、片面あたり40g/mとした。なお、上記電気亜鉛めっき処理では、適宜アルカリ水溶液浸漬脱脂、水洗、酸洗等の洗浄処理を行い、冷延鋼板の表面に電気亜鉛めっき層を有するEG鋼板No.50~54を製造した。
[Electrogalvanizing treatment conditions]
The cold-rolled steel sheet was immersed in a galvanizing bath at 55 ° C., subjected to an electrogalvanizing treatment, then washed with water and dried to obtain an electrogalvanized steel sheet. The electrogalvanization process at this time was performed with a current density of 40 A / dm 2 . The amount of galvanized coating was 40 g / m 2 per side. In the electrogalvanizing treatment, an EG steel plate No. 1 having an electrogalvanized layer on the surface of the cold-rolled steel plate is appropriately subjected to washing treatment such as immersion in alkaline aqueous solution, degreasing, water washing and pickling. 50-54 were produced.
 [耐食性評価試験]
 上記で得られたEG鋼板について、下記の耐食性評価試験を行い、耐食性を評価した(下記表4の試験No.50~54)。このとき、各EG鋼板の素地鋼板である冷延鋼板についても(試験No.4、5、18、41、48)、同様の評価を行った。
[Corrosion resistance evaluation test]
The EG steel sheet obtained above was subjected to the following corrosion resistance evaluation test to evaluate the corrosion resistance (test Nos. 50 to 54 in Table 4 below). At this time, the same evaluation was performed also about the cold-rolled steel plate which is a base steel plate of each EG steel plate (test No. 4, 5, 18, 41, 48).
 幅:70mm×長さ:150mmの試験片を切り出し、後述の複合サイクル腐食試験を1週間行い、鋼板の腐食減量(腐食による鋼板の単位面積あたりの質量減量)を測定し、耐食性を評価した。ここで、腐食減量:500g/m以下を特に耐食性に優れる試験例として「◎」で示し、腐食減量:500g/mを超え1000g/m以下のものを耐食性に優れる試験例として「○」で示し、腐食減量:1000g/mを超えのものを耐食性に劣る試験例のとして「×」で示した。 A test piece having a width of 70 mm and a length of 150 mm was cut out, a combined cycle corrosion test described later was performed for one week, and the corrosion weight loss of the steel sheet (mass loss per unit area of the steel sheet due to corrosion) was measured to evaluate the corrosion resistance. Here, corrosion loss: 500 g / m 2 or less is indicated by “◎” as a test example that is particularly excellent in corrosion resistance, and corrosion weight loss: a test sample that is more than 500 g / m 2 and is 1000 g / m 2 or less is indicated as “○ Corrosion weight loss: those exceeding 1000 g / m 2 are indicated by “x” as test examples inferior in corrosion resistance.
 [耐遅れ破壊性試験]
 また上記で得られたEG鋼板について、下記の条件で耐遅れ破壊性試験を行い、耐遅れ破壊性を評価した(下記表4の試験No.50~54)。
[Delayed fracture resistance test]
Further, the obtained EG steel sheet was subjected to delayed fracture resistance test under the following conditions to evaluate delayed fracture resistance (test Nos. 50 to 54 in Table 4 below).
 幅:150mm×長さ:30mmの試験片を切り出し、切断端面をフライス加工した後に、試験片端部に応力付与のためのボルトを通す穴を開けた。さらにその後、ポンチ/ダイにより曲げ半径:10mmでU曲げ加工を行い、曲げ頭頂部に歪みゲージを貼り付け、曲げ試験片をボルト、ナットで締め付けることで鋼板の降伏強さYSに相当する応力を付与した。さらに母材鋼板とボルトの異種金属接触腐食を防止するためボルト部と穴部をシリコンシーラント(信越化学工業株式会社製信越シリコーンKE-45)でマスキングを行った。 A test piece having a width of 150 mm and a length of 30 mm was cut out and the cut end face was milled, and then a hole for passing a bolt for applying stress was formed in the end of the test piece. Further, U-bending is performed with a punch / die at a bending radius of 10 mm, a strain gauge is attached to the top of the bending head, and the bending test piece is tightened with bolts and nuts to apply a stress corresponding to the yield strength YS of the steel sheet. Granted. Furthermore, in order to prevent contact corrosion between different base metal plates and bolts, the bolts and holes were masked with a silicon sealant (Shin-Etsu Silicone KE-45 manufactured by Shin-Etsu Chemical Co., Ltd.).
 上記試験片を後述の複合サイクル腐食試験に4週間供し、遅れ破壊の有無について調査した。そして、複合サイクル腐食試験後に遅れ破壊(耐孔あき性、割れ)が発生しなかった試験例を「○」で示し、遅れ破壊が発生した試験例を「×」で示した。 The above specimen was subjected to the combined cycle corrosion test described later for 4 weeks, and the presence or absence of delayed fracture was investigated. A test example in which delayed fracture (perforation resistance, cracking) did not occur after the combined cycle corrosion test was indicated by “◯”, and a test example in which delayed fracture occurred was indicated by “x”.
 (複合サイクル腐食試験)
 塩水噴霧(5質量%-NaCl、35℃×2時間)→乾燥(相対湿度:20~30%、60℃×4時間)→湿潤(相対湿度:95%以上、50℃×2時間)を1サイクル(1サイクルは8時間)とし、一日に3サイクル行った。これを、上述の通り、耐食性評価試験については1週間、耐遅れ破壊性試験については4週間行った。
(Composite cycle corrosion test)
Salt spray (5% by mass-NaCl, 35 ° C. × 2 hours) → Dry (relative humidity: 20-30%, 60 ° C. × 4 hours) → Wet (relative humidity: 95% or more, 50 ° C. × 2 hours) 1 The cycle (one cycle is 8 hours) was performed three times a day. As described above, this was performed for 1 week for the corrosion resistance evaluation test and for 4 weeks for the delayed fracture resistance test.
 その結果を、下記表4に示す。なお、表4に示した冷延鋼板(試験No.4、5、18、41、48)における耐遅れ破壊性評価は、前記表3の結果を示したものである。 The results are shown in Table 4 below. In addition, the delayed fracture resistance evaluation in the cold-rolled steel plates (test Nos. 4, 5, 18, 41, and 48) shown in Table 4 shows the results in Table 3 above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 これらの結果から、次のように考察できる。まず試験No.50、51、52、53は化学成分組成を満足する鋼板を用い、適切な製造条件で製造した高強度鋼板に対し、電気亜鉛めっきを施した高強度電気亜鉛めっき鋼板の試験例であり、耐食性、および耐遅れ破壊性に優れていることが分かった。また上記試験No.50~53における素地鋼板となる冷延鋼板(試験No.4、5、18、41、48)についても、耐食性に優れていることが分かった。 From these results, it can be considered as follows. First, test no. 50, 51, 52, and 53 are test examples of high-strength electrogalvanized steel sheets obtained by electrogalvanizing high-strength steel sheets manufactured under appropriate manufacturing conditions using steel sheets that satisfy the chemical composition. , And delayed fracture resistance was found to be excellent. In addition, the above test No. It was found that the cold-rolled steel sheets (test Nos. 4, 5, 18, 41, and 48) that were the base steel sheets in 50 to 53 were also excellent in corrosion resistance.
 それに対し、試験No.48は、Mn量が過剰な鋼種Xを用いた例であり、元々冷延鋼板の耐遅れ破壊性が劣化していたが(表3)、このような冷延鋼板に対して電気亜鉛めっきを施しても十分な耐遅れ破壊性を示さないことが分かった(試験No.54)。 In contrast, test no. 48 is an example using steel type X with an excessive amount of Mn, and the delayed fracture resistance of the cold-rolled steel sheet was originally deteriorated (Table 3), but electrogalvanizing was applied to such cold-rolled steel sheet. It was found that even if it was applied, sufficient delayed fracture resistance was not exhibited (Test No. 54).
 この出願は、2016年12月28日に出願された日本国特許出願特願2016-255466及び2017年9月25日に出願された日本国特許出願特願2017-183608を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application Japanese Patent Application No. 2016-255466 filed on Dec. 28, 2016 and Japanese Patent Application No. 2017-183608 filed on Sep. 25, 2017. The contents thereof are included in the present application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、鋼板やめっき鋼板の技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field of steel sheets and plated steel sheets.

Claims (6)

  1.  C :0.10質量%以上0.35質量%以下、
     Si:0質量%以上0.6質量%以下、
     Mn:0質量%超1.5質量%以下、
     Al:0質量%超0.15質量%以下、
     N :0質量%超0.01質量%以下、
     P :0質量%超0.02質量%以下、および
     S :0質量%超0.01質量%以下
    を含有し、残部が鉄および不可避不純物であり、
     全組織中に占めるマルテンサイトの面積率が95%以上であること、
     前記マルテンサイトの固溶Cが0.05質量%以下であること、
     長径が200nm以上の炭化物の密度が50個/μm以下であること、並びに、
     引張強度が1270MPa以上であること特徴とする、高強度鋼板。
    C: 0.10% by mass to 0.35% by mass,
    Si: 0 mass% or more and 0.6 mass% or less,
    Mn: more than 0% by mass and 1.5% by mass or less,
    Al: more than 0% by mass and 0.15% by mass or less,
    N: more than 0% by mass and 0.01% by mass or less,
    P: more than 0% by mass and 0.02% by mass or less, and S: more than 0% by mass and 0.01% by mass or less, with the balance being iron and inevitable impurities,
    The area ratio of martensite in the entire organization is 95% or more,
    The solid solution C of the martensite is 0.05% by mass or less,
    The density of the carbide having a major axis of 200 nm or more is 50 pieces / μm 3 or less, and
    A high-strength steel sheet having a tensile strength of 1270 MPa or more.
  2.  更に、Cr:0質量%超1.0質量%以下およびB:0質量%超0.01質量%以下よりなる群から選ばれる少なくとも1種を含有する、請求項1に記載の高強度鋼板。 The high-strength steel sheet according to claim 1, further comprising at least one selected from the group consisting of Cr: more than 0% by mass and 1.0% by mass or less and B: more than 0% by mass and 0.01% by mass or less.
  3.  更に、Cu:0質量%超0.5質量%以下およびNi:0質量%超0.5質量%以下よりなる群から選ばれる少なくとも1種を含有する、請求項1に記載の高強度鋼板。 The high-strength steel sheet according to claim 1, further comprising at least one selected from the group consisting of Cu: more than 0% by mass and 0.5% by mass or less and Ni: more than 0% by mass and 0.5% by mass or less.
  4.  更に、V:0質量%超0.1質量%以下、Nb:0質量%超0.1質量%以下、Mo:0質量%超0.5質量%以下およびTi:0質量%超0.2質量%以下よりなる群から選択される少なくとも1種を含有する、請求項1に記載の高強度鋼板。 Furthermore, V: more than 0% by mass and 0.1% by mass or less, Nb: more than 0% by mass and 0.1% by mass or less, Mo: more than 0% by mass and 0.5% by mass or less, and Ti: more than 0% by mass and 0.2% by mass The high-strength steel sheet according to claim 1, comprising at least one selected from the group consisting of mass% or less.
  5.  更に、Ca:0質量%超0.005質量%以下およびMg:0質量%超0.005質量%以下よりなる群から選択される少なくとも1種を含有する、請求項1に記載の高強度鋼板。 The high-strength steel sheet according to claim 1, further comprising at least one selected from the group consisting of Ca: more than 0% by mass and 0.005% by mass or less and Mg: more than 0% by mass and 0.005% by mass or less. .
  6.  請求項1に記載の高強度鋼板の表面に、電気亜鉛めっき層を有することを特徴とする、高強度電気亜鉛めっき鋼板。 A high-strength electrogalvanized steel sheet having an electrogalvanized layer on the surface of the high-strength steel sheet according to claim 1.
PCT/JP2017/041809 2016-12-28 2017-11-21 High-strength steel sheet and high-strength electrogalvanized steel sheet WO2018123356A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016255466 2016-12-28
JP2016-255466 2016-12-28
JP2017183608A JP2018109222A (en) 2016-12-28 2017-09-25 High strength steel sheet and high strength electrogalvanized steel sheet
JP2017-183608 2017-09-25

Publications (1)

Publication Number Publication Date
WO2018123356A1 true WO2018123356A1 (en) 2018-07-05

Family

ID=62707369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041809 WO2018123356A1 (en) 2016-12-28 2017-11-21 High-strength steel sheet and high-strength electrogalvanized steel sheet

Country Status (1)

Country Link
WO (1) WO2018123356A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020002285A1 (en) * 2018-06-26 2020-01-02 Tata Steel Nederland Technology B.V. Cold-rolled martensite steel with high strength and high bendability and method of producing thereof
WO2020026838A1 (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 Thin steel sheet and production method therefor
WO2020079925A1 (en) * 2018-10-18 2020-04-23 Jfeスチール株式会社 High yield ratio, high strength electro-galvanized steel sheet, and manufacturing method thereof
JPWO2021039776A1 (en) * 2019-08-30 2021-03-04
EP3702477A4 (en) * 2017-10-26 2021-03-31 University Of Science And Technology Beijing Method for producing ultra high strength martensitic cold-rolled steel sheet by means of ultra fast heating process
JPWO2021153393A1 (en) * 2020-01-31 2021-08-05
WO2021153392A1 (en) * 2020-01-31 2021-08-05 Jfeスチール株式会社 Steel plate, member, and methods for manufacturing said steel plate and said member
WO2022138894A1 (en) * 2020-12-25 2022-06-30 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet, and method for producing said member
WO2022138895A1 (en) * 2020-12-25 2022-06-30 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet, and method for producing said member
JP7311067B1 (en) * 2022-03-30 2023-07-19 Jfeスチール株式会社 Steel plate and member, and manufacturing method thereof
JP7311070B1 (en) * 2022-03-30 2023-07-19 Jfeスチール株式会社 Steel plate and member, and manufacturing method thereof
WO2023188504A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member
WO2023188505A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel sheet and member, and methods for producing same
EP4071260A4 (en) * 2020-01-21 2024-05-01 Kobe Steel Ltd High strength steel sheet having excellent delayed fracture resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248565A (en) * 2009-04-15 2010-11-04 Jfe Steel Corp Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
JP5662920B2 (en) * 2011-11-11 2015-02-04 株式会社神戸製鋼所 High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2015168841A (en) * 2014-03-06 2015-09-28 株式会社神戸製鋼所 High strength alloy galvanized steel sheet excellent in baking hardenability and bendability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248565A (en) * 2009-04-15 2010-11-04 Jfe Steel Corp Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
JP5662920B2 (en) * 2011-11-11 2015-02-04 株式会社神戸製鋼所 High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2015168841A (en) * 2014-03-06 2015-09-28 株式会社神戸製鋼所 High strength alloy galvanized steel sheet excellent in baking hardenability and bendability

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3702477A4 (en) * 2017-10-26 2021-03-31 University Of Science And Technology Beijing Method for producing ultra high strength martensitic cold-rolled steel sheet by means of ultra fast heating process
WO2020002285A1 (en) * 2018-06-26 2020-01-02 Tata Steel Nederland Technology B.V. Cold-rolled martensite steel with high strength and high bendability and method of producing thereof
WO2020026838A1 (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 Thin steel sheet and production method therefor
JPWO2020026838A1 (en) * 2018-07-31 2020-08-06 Jfeスチール株式会社 Thin steel plate
CN112513311A (en) * 2018-07-31 2021-03-16 杰富意钢铁株式会社 Thin steel sheet and method for producing same
US11965223B2 (en) 2018-07-31 2024-04-23 Jfe Steel Corporation Thin steel sheet and method for manufacturing the same
WO2020079925A1 (en) * 2018-10-18 2020-04-23 Jfeスチール株式会社 High yield ratio, high strength electro-galvanized steel sheet, and manufacturing method thereof
JP6760520B1 (en) * 2018-10-18 2020-09-23 Jfeスチール株式会社 High yield ratio High strength electrogalvanized steel sheet and its manufacturing method
JPWO2021039776A1 (en) * 2019-08-30 2021-03-04
WO2021039776A1 (en) * 2019-08-30 2021-03-04 Jfeスチール株式会社 Steel sheet, member, and methods for producing same
JP6958752B2 (en) * 2019-08-30 2021-11-02 Jfeスチール株式会社 Steel sheets, members and their manufacturing methods
EP4071260A4 (en) * 2020-01-21 2024-05-01 Kobe Steel Ltd High strength steel sheet having excellent delayed fracture resistance
JPWO2021153392A1 (en) * 2020-01-31 2021-08-05
WO2021153393A1 (en) * 2020-01-31 2021-08-05 Jfeスチール株式会社 Steel plate, member, and methods for manufacturing said steel plate and said member
JP7001197B2 (en) 2020-01-31 2022-01-19 Jfeスチール株式会社 Steel sheets, members and their manufacturing methods
JP7001198B2 (en) 2020-01-31 2022-01-19 Jfeスチール株式会社 Steel sheets, members and their manufacturing methods
JPWO2021153393A1 (en) * 2020-01-31 2021-08-05
WO2021153392A1 (en) * 2020-01-31 2021-08-05 Jfeスチール株式会社 Steel plate, member, and methods for manufacturing said steel plate and said member
JP7140302B1 (en) * 2020-12-25 2022-09-21 Jfeスチール株式会社 Steel plate, member and manufacturing method thereof
JP7140301B1 (en) * 2020-12-25 2022-09-21 Jfeスチール株式会社 Steel plate, member and manufacturing method thereof
WO2022138895A1 (en) * 2020-12-25 2022-06-30 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet, and method for producing said member
WO2022138894A1 (en) * 2020-12-25 2022-06-30 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet, and method for producing said member
JP7311067B1 (en) * 2022-03-30 2023-07-19 Jfeスチール株式会社 Steel plate and member, and manufacturing method thereof
JP7311070B1 (en) * 2022-03-30 2023-07-19 Jfeスチール株式会社 Steel plate and member, and manufacturing method thereof
WO2023188504A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member
WO2023188505A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel sheet and member, and methods for producing same

Similar Documents

Publication Publication Date Title
WO2018123356A1 (en) High-strength steel sheet and high-strength electrogalvanized steel sheet
KR102173601B1 (en) High-strength thin steel sheet and its manufacturing method
KR101615463B1 (en) Hot-dip galvanized steel sheet and method for producing same
TWI399442B (en) High strength galvanized steel sheet with excellent formability and method for manufacturing the same
TWI412609B (en) High strength steel sheet and method for manufacturing the same
US8840834B2 (en) High-strength steel sheet and method for manufacturing the same
KR101335069B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
TWI488976B (en) A high-strength steel sheet excellent in shape freezing property, a high-strength galvanized steel sheet and a manufacturing method thereof
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
KR101831020B1 (en) High-yield-ratio and high-strength steel sheet excellent in workability
JP3889768B2 (en) High-strength cold-rolled steel sheets and automotive steel parts with excellent coating film adhesion and ductility
WO2017179372A1 (en) High strength steel sheet and manufacturing method therefor
WO2017026125A1 (en) Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same
JP2018109222A (en) High strength steel sheet and high strength electrogalvanized steel sheet
JP6223905B2 (en) High strength galvannealed steel sheet with excellent yield strength and workability
KR20110110367A (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
JP2011001579A (en) High-strength galvannealed steel sheet excellent in workability and fatigue resistance, and method of producing the same
KR101740843B1 (en) High-strength steel sheet and method for producing the same
JP6965956B2 (en) High-strength steel plate and its manufacturing method
WO2011125738A1 (en) Hot dipped galvanized steel sheet and alloyed hot-dip galvanized steel sheet, each having excellent processability, high yield ratio and high strength
JPWO2018088421A1 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
KR102119017B1 (en) High strength cold rolled thin steel sheet and method for manufacturing the same
CN108713066B (en) High-strength steel sheet and method for producing same
WO2017009938A1 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888009

Country of ref document: EP

Kind code of ref document: A1