JP6295893B2 - Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same - Google Patents

Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same Download PDF

Info

Publication number
JP6295893B2
JP6295893B2 JP2014176493A JP2014176493A JP6295893B2 JP 6295893 B2 JP6295893 B2 JP 6295893B2 JP 2014176493 A JP2014176493 A JP 2014176493A JP 2014176493 A JP2014176493 A JP 2014176493A JP 6295893 B2 JP6295893 B2 JP 6295893B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hydrogen embrittlement
embrittlement resistance
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014176493A
Other languages
Japanese (ja)
Other versions
JP2016050343A (en
Inventor
卓史 横山
卓史 横山
玄紀 虻川
玄紀 虻川
裕之 川田
川田  裕之
邦夫 林
邦夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014176493A priority Critical patent/JP6295893B2/en
Publication of JP2016050343A publication Critical patent/JP2016050343A/en
Application granted granted Critical
Publication of JP6295893B2 publication Critical patent/JP6295893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は超高強度冷延鋼板及びその製造方法に関する。具体的には、主として自動車用鋼板においてプレス加工等により様々な形状に成形される、耐水素脆化特性に優れた超高強度冷延鋼板に関する。   The present invention relates to an ultra-high strength cold-rolled steel sheet and a method for producing the same. Specifically, the present invention relates to an ultra-high strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance, which is mainly formed into various shapes by pressing or the like in a steel sheet for automobiles.

近年、地球温暖化対策に伴う温室効果ガス排出量規制の観点から自動車の燃費向上が求められており、車体の軽量化と衝突安全性確保のために高強度鋼板の適用がますます拡大しつつある。特に最近では、引張強度1300MPa以上の超高強度冷延鋼板のニーズが高まりつつある。
しかしながら、引張強度が1300MPaを超えるような超高強度鋼板を自動車用部材として適用する場合、そのプレス成形性もさることながら、鋼板の水素脆化割れを解決する必要がある。
In recent years, there has been a demand for improved fuel efficiency of automobiles from the perspective of regulating greenhouse gas emissions associated with global warming countermeasures, and the application of high-strength steel sheets is becoming increasingly popular to reduce vehicle weight and ensure collision safety. is there. In particular, recently, there is an increasing need for ultra-high strength cold-rolled steel sheets having a tensile strength of 1300 MPa or more.
However, when an ultra-high strength steel sheet having a tensile strength exceeding 1300 MPa is applied as a member for an automobile, it is necessary to solve hydrogen embrittlement cracking of the steel sheet as well as its press formability.

水素脆化割れとは、使用状況下において高い応力が作用している鋼部材が、環境から鋼中に侵入した水素に起因して、突然破壊する現象である。この現象は、破壊の発生形態から、遅れ破壊とも呼称される。一般に、鋼板の水素脆化割れは、鋼板の引張強度が上昇するほど発生し易くなることが知られている。これは、鋼板の引張強度が高いほど、部品成形後に鋼板に残留する応力が増大するためであると考えられている。この水素脆化割れ(遅れ破壊)に対する感受性のことを耐水素脆化特性と呼称する。   Hydrogen embrittlement cracking is a phenomenon in which a steel member on which a high stress is applied under use conditions suddenly breaks due to hydrogen that has entered the steel from the environment. This phenomenon is also called delayed destruction because of the form of destruction. In general, it is known that hydrogen embrittlement cracking of a steel sheet is more likely to occur as the tensile strength of the steel sheet increases. This is considered to be because the higher the tensile strength of the steel sheet, the greater the stress remaining on the steel sheet after forming the part. This sensitivity to hydrogen embrittlement cracking (delayed fracture) is called hydrogen embrittlement resistance.

これまでにも鋼板の耐水素脆化特性を改善しようとする試みが種々なされてきた。その検討事例を以下に示す。
特許文献1および2には所定の化学組成を有する冷延鋼板をAc3点以上に加熱し、焼き入れ焼き戻しを行うことで鋼組織をマルテンサイト主体組織とし、耐水素脆化特性を改善したとする超高強度冷延鋼板に関する技術が開示されている。しかし、いずれの発明でも延性や穴広げ性などの加工性に関する記述がないため、プレス成型用途に供される冷延鋼板として適切な発明であるかは不明である。
There have been various attempts to improve the hydrogen embrittlement resistance of steel sheets. Examples of the study are shown below.
In Patent Documents 1 and 2, a cold-rolled steel sheet having a predetermined chemical composition is heated to Ac3 point or higher and subjected to quenching and tempering to make the steel structure a martensitic main structure and improve hydrogen embrittlement resistance. A technology relating to an ultra-high strength cold-rolled steel sheet is disclosed. However, since there is no description regarding workability such as ductility and hole expansibility in any of the inventions, it is unclear whether the invention is suitable as a cold-rolled steel sheet used for press molding.

特許文献3には、化学組成としてCu、Cr、Nb、Ni等を微量含有させ、かつ、鋼組織をベイナイト主体組織とすることで、耐水素脆化特性を改善したとする、引張強度120kg/mm以上を有する高強度冷延鋼板に関する技術が開示されている。しかしながら、同発明では深絞り成形した鋼を純水に浸漬し、その際の割れ発生有無にて耐水素脆化特性の評価を行っており、同発明が十分な耐水素脆化特性を有しているかは不明である。
特許文献4には所定の化学組成を有する鋼板を、表層脱炭焼鈍後、Ac3点以上に加熱し、焼き入れ、焼き戻しを行うことにより、鋼内部の組織を焼き戻しマルテンサイト主体組織としながらも、表層を軟質化させることで曲げ性と耐遅れ破壊特性を改善したとする1270MPa級以上の引張強度を有する冷延鋼板に関する技術が開示されている。しかしながら、同発明では曲げ性を改善する手法として表層組織の軟質化を用いており、疲労強度の低下が懸念される。
In Patent Document 3, it is assumed that a small amount of Cu, Cr, Nb, Ni, etc. is contained as a chemical composition and that the steel structure is a bainite main structure, thereby improving the hydrogen embrittlement resistance. A technique related to a high-strength cold-rolled steel sheet having mm 2 or more is disclosed. However, in the present invention, deep-drawn steel is immersed in pure water, and the hydrogen embrittlement resistance is evaluated based on the presence or absence of cracking at that time, and the present invention has sufficient hydrogen embrittlement resistance. It is unknown whether it is.
In Patent Document 4, a steel sheet having a predetermined chemical composition is subjected to surface decarburization annealing, heated to Ac3 point or higher, quenched, and tempered to make the steel internal structure a tempered martensite main structure. In particular, a technique relating to a cold-rolled steel sheet having a tensile strength of 1270 MPa or higher, which is said to have improved bendability and delayed fracture resistance by softening the surface layer, is disclosed. However, in the present invention, the softening of the surface layer structure is used as a method for improving the bendability, and there is a concern that the fatigue strength is lowered.

特許文献5には鋼組織中に含まれる残留オーステナイトの量および分散形態を制御し、残留オーステナイトの水素トラップ効果を利用することにより、耐水素脆化特性を改善したとする高強度冷延鋼板に関する技術が開示されている。しかし、自動車用鋼板は必ずプレス成型された後に実車として使用されるため、残留オーステナイトの一部ないし大部分は、プレス成型時に導入される歪みによって、マルテンサイトへ変態する。マルテンサイトへ変態した残留オーステナイトはその水素トラップ能を失うため、残留オーステナイトを利用した耐遅れ破壊特性の改善は、プレス成型用途に供される自動車用鋼板では必ずしも有効でない。   Patent Document 5 relates to a high-strength cold-rolled steel sheet having improved hydrogen embrittlement resistance by controlling the amount and dispersion form of retained austenite contained in the steel structure and utilizing the hydrogen trap effect of retained austenite. Technology is disclosed. However, since a steel plate for automobiles is always used as an actual vehicle after being press-molded, a part or most of the retained austenite is transformed into martensite by strain introduced during press molding. Since the retained austenite transformed into martensite loses its hydrogen trapping ability, the improvement of delayed fracture resistance using the retained austenite is not necessarily effective for automotive steel sheets used for press forming applications.

特開平10−001740号公報JP-A-10-001740 特開平9−111398号公報JP-A-9-111398 特開平6−145891号公報Japanese Patent Laid-Open No. 6-145891 国際公開第2011/105385号International Publication No. 2011/105385 特開2007−197819号公報JP 2007-197819 A

CAMP-ISIJ Vol.17(2004)p.396CAMP-ISIJ Vol. 17 (2004) p. 396 鉄と鋼,vol.74(1988),p.2353Iron and steel, vol. 74 (1988), p. 2353

本発明は上記のような現状に鑑みてなされたものであり、本発明の目的は、耐水素脆化特性に優れ、かつ1300MPa以上の引張強度を有する超高強度冷延鋼板及びそれらの製造方法を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is an ultra-high-strength cold-rolled steel sheet having excellent hydrogen embrittlement resistance and having a tensile strength of 1300 MPa or more, and a method for producing them. Is to provide.

本発明者らは耐水素脆性に優れた1300MPa以上の引張強度を有する超高強度冷延鋼板を得るため鋭意検討を重ねた。
その結果、所定の化学組成を有する鋼が、下記i〜vを同時に満たした場合、鋼板の耐水素脆化特性が大幅に向上することを見出した。
i:鋼の組織分率が、面積率で、ポリゴナルフェライトが10%以下、ベイナイトが30%以下、残留オーステナイトが6%以下、焼き戻しマルテンサイトが60%以上
ii:焼き戻しマルテンサイト中のFe系炭化物の個数密度が1×10/mm以上
iii:鋼の平均有効結晶粒径が7.0μm以下
iv:鋼の平均転位密度が1.0×1015〜2.0×1016/m
とし、さらに、
v:固溶状態として鋼中に存在する固溶B量solB[質量%]と旧オーステナイト粒径Dγ[μm]について、これらの積で規定される値が、図1に示すように下記の関係を満足すること
solB・Dγ≧0.0010
The inventors of the present invention have made extensive studies in order to obtain an ultra-high strength cold-rolled steel sheet having a tensile strength of 1300 MPa or more excellent in hydrogen embrittlement resistance.
As a result, it has been found that when a steel having a predetermined chemical composition satisfies the following i to v, the hydrogen embrittlement resistance of the steel sheet is greatly improved.
i: The structural fraction of steel is an area ratio, polygonal ferrite is 10% or less, bainite is 30% or less, retained austenite is 6% or less, and tempered martensite is 60% or more.
ii: Fe-type carbide number density in tempered martensite is 1 × 10 6 / mm 2 or more
iii: The average effective grain size of steel is 7.0 μm or less
iv: The average dislocation density of the steel is 1.0 × 10 15 to 2.0 × 10 16 / m 2
And then
v: As for the solid solution B amount solB [mass%] existing in the steel as a solid solution state and the prior austenite particle diameter Dγ [μm], the values defined by these products are as shown in FIG. Be satisfied
solB · Dγ ≧ 0.0010

本発明は上記知見に基づいてなされたものであり、その要旨を以下に示す。
(1)質量%で、
C:0.150%〜0.300%、
Si:0.001%〜2.0%、
Mn:2.10%〜4.0%、
P:0.05%以下、
S:0.01%以下、
N:0.01%以下、
Al:0.001%〜1.0%、
Ti:0.001%〜0.10%、
B:0.0001%〜0.010%、
を含み、残部がFe及び不可避的不純物からなる化学組成を有し、かつ、鋼中の固溶B量solB[質量%]及び旧オーステナイト粒径Dγ[μm]の値が下記(式1)の関係を満たし、さらに、面積率で、ポリゴナルフェライトが10%以下、ベイナイトが30%以下、残留オーステナイトが6%以下、焼き戻しマルテンサイトが60%以上であり、焼き戻しマルテンサイト中のFe炭化物の個数密度が1×10/mm以上で、鋼全体の平均転位密度が1.0×1015/m以上、2.0×1016/m以下で、有効結晶粒径が7.0μm以下である鋼組織を有することを特徴とする、引張強度が1300MPa以上で耐水素脆化特性に優れた超高強度冷延鋼板。
solB・Dγ≧0.0010 ・・・(式1)
This invention is made | formed based on the said knowledge, The summary is shown below.
(1) In mass%,
C: 0.150% to 0.300%,
Si: 0.001% to 2.0%,
Mn: 2.10% to 4.0%,
P: 0.05% or less,
S: 0.01% or less,
N: 0.01% or less,
Al: 0.001% to 1.0%,
Ti: 0.001% to 0.10%,
B: 0.0001% to 0.010%,
And the balance has a chemical composition consisting of Fe and inevitable impurities, and the values of the solute B amount solB [mass%] and the prior austenite particle diameter Dγ [μm] in the steel are as follows (formula 1): In addition, the area ratio of polygonal ferrite is 10% or less, bainite is 30% or less, retained austenite is 6% or less, tempered martensite is 60% or more, and Fe carbides in tempered martensite The number density of the steel is 1 × 10 6 / mm 2 or more, the average dislocation density of the whole steel is 1.0 × 10 15 / m 2 or more, 2.0 × 10 16 / m 2 or less, and the effective grain size is 7 An ultra-high strength cold-rolled steel sheet having a tensile strength of 1300 MPa or more and excellent hydrogen embrittlement resistance, having a steel structure of 0.0 μm or less.
solB · Dγ ≧ 0.0010 (Formula 1)

(2)前記(1)に記載の化学組成が、Feの一部に代えて、Mo:0.001%〜0.50%を含有するものであることを特徴とする、前記(1)に記載の耐水素脆化特性に優れた超高強度冷延鋼板。
(3)前記(1)または(2)に記載の化学組成が、Feの一部に代えて、Cr:0.001%〜1.0%、Ni:0.001%〜1.0%、Cu:0.001〜1.0%の一種または二種以上を含有するものであることを特徴とする、前記(1)または(2)に記載の耐水素脆化特性に優れた超高強度冷延鋼板。
(4)前記(1)〜(3)のいずれかに記載の化学組成が、Feの一部に代えて、V:0.001%〜0.50%、Nb:0.001%〜0.10%の一種または二種を含有するものであることを特徴とする、前記(1)〜(3)のいずれかに記載の耐水素脆化特性に優れた超高強度冷延鋼板。
(5)前記(1)〜(4)のいずれかに記載の化学組成が、Feの一部に代えて、質量%で、Ca:0.0001%〜0.01%、Mg:0.0001%〜0.01%、Bi:0.0001%〜0.01%、REM:0.0001%〜0.1%の一種または二種以上を含有するものであることを特徴とする、前記(1)〜(4)のいずれかに記載の耐水素脆化特性に優れた超高強度冷延鋼板。
(6)降伏強度相当の応力を付与した際の、限界拡散性水素量が0.20ppm以上であることを特徴とする、前記(1)〜(5)のいずれかに記載の耐水素脆化特性に優れた超高強度冷延鋼板。
(2) In the above (1), the chemical composition described in the above (1) contains Mo: 0.001% to 0.50% instead of a part of Fe. Super high strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance as described.
(3) The chemical composition according to the above (1) or (2) is replaced with a part of Fe, Cr: 0.001% to 1.0%, Ni: 0.001% to 1.0%, Cu: 0.001 to 1.0% of one type or two or more types, characterized in that it has excellent high resistance to hydrogen embrittlement as described in (1) or (2) above Cold rolled steel sheet.
(4) The chemical composition according to any one of (1) to (3) described above is replaced with a part of Fe, V: 0.001% to 0.50%, Nb: 0.001% to 0.00. The ultra-high-strength cold-rolled steel sheet having excellent hydrogen embrittlement resistance according to any one of (1) to (3), characterized by containing 10% of one or two kinds.
(5) The chemical composition according to any one of (1) to (4) described above is replaced by a part of Fe, and is in mass%, Ca: 0.0001% to 0.01%, Mg: 0.0001. % To 0.01%, Bi: 0.0001% to 0.01%, REM: 0.0001% to 0.1%, or one or more of them, An ultrahigh strength cold-rolled steel sheet having excellent hydrogen embrittlement resistance according to any one of 1) to (4).
(6) The hydrogen embrittlement resistance according to any one of (1) to (5) above, wherein the amount of critical diffusible hydrogen when a stress corresponding to yield strength is applied is 0.20 ppm or more. Super high strength cold-rolled steel sheet with excellent properties.

(7)前記(1)〜(5)のいずれかに記載の化学組成を有するスラブに対して、下記工程(A)〜(C)の工程を施すことを特徴とする、前記(1)〜(6)のいずれかに記載の耐水素脆化特性に優れた超高強度冷延鋼板の製造方法。
(A)以下の工程を備える熱間圧延工程
(A−1)1180℃以上にスラブを加熱する工程
(A−2)加熱されたスラブを1050℃以上、1150℃以下での総圧下率が50%以上となるよう圧延する粗圧延工程
(A−3)1050℃以下〜仕上げ最終パス前までの総圧下率が60〜95%、かつ、仕上げ最終パスの圧延率が10%〜30%、仕上げ最終パスの温度が880℃〜980℃とする仕上げ圧延工程
(A−4)仕上げ圧延工程終了から1秒以上経過後に、5℃/秒以上、50℃/秒以下の冷却速度で巻き取り温度450℃〜700℃まで冷却する冷却工程
(B)20%以上80%以下の冷間圧延を行う工程
(C)以下の工程を備える連続焼鈍工程
(C−1)冷間圧延後の鋼板をAc3以上、900℃以下の温度に加熱し、該温度域で1秒以上、500秒以下の保持を行う工程であり、700℃〜Ac3の温度範囲における平均加熱速度を0.1℃/秒以上、10℃/秒以下とする加熱工程
(C−2)200℃以上、(Ms−50)℃以下まで冷却を行う冷却工程であって、その際の冷却開始温度が620℃以上であり、かつ、平均冷却速度が10℃/秒以上である工程
(C−3)冷却過程で200℃以上、350℃以下の温度で100秒以上、600秒以下保持する工程
(7) The following steps (A) to (C) are performed on the slab having the chemical composition according to any one of (1) to (5) above, (1) to (1) above (6) The manufacturing method of the ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance according to any one of (6).
(A) Hot rolling step comprising the following steps (A-1) Step of heating the slab to 1180 ° C. or higher (A-2) The total rolling reduction at 50 ° C. or higher and 1150 ° C. or lower of the heated slab is 50 Rough rolling step (A-3) for rolling to be not less than 1050 ° C. The total reduction ratio from 1050 ° C. or less to before the final finishing pass is 60 to 95%, and the rolling reduction in the final finishing pass is 10% to 30%. Finishing rolling step (A-4) in which the temperature of the final pass is 880 ° C. to 980 ° C. After a lapse of 1 second or more from the end of the finishing rolling step, the winding temperature is 450 ° C. or more and 50 ° C./second or less. A cooling step (B) for cooling to 20 ° C. to 700 ° C. (C) A step of performing cold rolling of 20% or more and 80% or less (C) A continuous annealing step comprising the following steps (C-1) A steel plate after cold rolling is Ac3 or more , Heated to a temperature of 900 ° C. or less, the temperature Is a step of holding for 1 second or more and 500 seconds or less, and a heating step (C-2) in which an average heating rate in a temperature range of 700 ° C. to Ac3 is 0.1 ° C./second or more and 10 ° C./second or less. A cooling step of cooling to 200 ° C. or higher and (Ms−50) ° C. or lower, wherein the cooling start temperature is 620 ° C. or higher and the average cooling rate is 10 ° C./second or higher (C -3) A step of holding at a temperature of 200 ° C. or higher and 350 ° C. or lower during the cooling process for 100 seconds or more and 600 seconds or less.

本発明により耐水素脆性に優れた1300MPa以上の引張強度を有する超高強度冷延鋼板を得ることができる。   According to the present invention, an ultra-high strength cold-rolled steel sheet having a tensile strength of 1300 MPa or more excellent in hydrogen embrittlement resistance can be obtained.

優れた耐水素脆性が得られる固溶B量solB[質量%]と旧オーステナイト粒径Dγ[μm]の範囲を示す図である。It is a figure which shows the range of solid solution B amount solB [mass%] from which the outstanding hydrogen embrittlement resistance is obtained, and the prior austenite particle size Dγ [μm]. 限界拡散性水素量の測定に用いた切欠付き引張試験片の形状を示す図である。It is a figure which shows the shape of the tensile test piece with a notch used for the measurement of the amount of limit diffusible hydrogen. 熱処理条件をダイヤグラムで示す図である。It is a figure which shows the heat processing conditions with a diagram.

まず、本発明にかかる鋼板の化学組成を上述のように限定した理由について説明する。なお、化学組成を規定する「%」は全て「質量%」である。
[C:0.150%〜0.300%]
Cは、所望の引張強度を達成するために必須の元素である。一方、過度の添加は耐水素脆化特性や溶接性を劣化させる。従って、その含有量は0.150%〜0.300%とする。
First, the reason why the chemical composition of the steel sheet according to the present invention is limited as described above will be described. Note that “%” defining the chemical composition is all “mass%”.
[C: 0.150% to 0.300%]
C is an essential element for achieving a desired tensile strength. On the other hand, excessive addition deteriorates hydrogen embrittlement resistance and weldability. Therefore, the content is 0.150% to 0.300%.

[Si:0.001%〜2.0%]
Siは鋼板の高強度化に有効な元素であるが、過度の添加は鋼板の化成処理性や耐水素脆化特性を劣化させる。従ってその含有量は0.001%〜2.0%とする。好ましくは0.001%〜1.30%、より好ましくは0.001%〜0.80%である。
[Mn:2.10%〜4.0%]
Mnは強力なオーステナイト安定化元素であり、鋼板の焼入性向上には必須の元素であるため、その下限値は2.10%とする。一方、過度の添加はスポット溶接部の靭性や耐水素脆化特性を劣化させる。従って、その上限値は4.0%とする。好ましくは2.10%〜3.0%である。
[Si: 0.001% to 2.0%]
Si is an element effective for increasing the strength of a steel sheet, but excessive addition deteriorates the chemical conversion property and hydrogen embrittlement resistance of the steel sheet. Therefore, the content is made 0.001% to 2.0%. Preferably it is 0.001%-1.30%, More preferably, it is 0.001%-0.80%.
[Mn: 2.10% to 4.0%]
Since Mn is a strong austenite stabilizing element and an essential element for improving the hardenability of the steel sheet, its lower limit is set to 2.10%. On the other hand, excessive addition degrades the toughness and hydrogen embrittlement resistance of the spot weld. Therefore, the upper limit is set to 4.0%. Preferably it is 2.10%-3.0%.

[P:0.05%以下]
Pは固溶強化元素であり、鋼板の高強度化には有効な元素であるが、過度の添加は溶接性及び靱性を劣化させる。従って、P含有量は0.05%以下とする。より好ましくは0.02%以下である。
[S:0.01%以下]
Sは不純物として含有される元素であり、鋼中でMnSを形成して靱性や穴広げ性を劣化させる。したがって、靱性や穴広げ性の劣化が顕著でない範囲として、S含有量を0.01%以下とする。好ましくは0.005%以下、より好ましくは0.003%以下である。
[P: 0.05% or less]
P is a solid solution strengthening element and is an effective element for increasing the strength of the steel sheet, but excessive addition deteriorates weldability and toughness. Therefore, the P content is 0.05% or less. More preferably, it is 0.02% or less.
[S: 0.01% or less]
S is an element contained as an impurity, and forms MnS in steel and deteriorates toughness and hole expandability. Therefore, the S content is set to 0.01% or less as a range in which deterioration of toughness and hole expansibility is not remarkable. Preferably it is 0.005% or less, More preferably, it is 0.003% or less.

[N:0.01%以下]
Nは不純物として含有される元素であり、その含有量が0.01%を超えると鋼中に粗大な窒化物を形成して穴広げ性を劣化させる。したがって、N含有量は0.01%以下とする。好ましくは0.006%以下である。
[Al:0.001%〜1.0%]
Alは、鋼の脱酸のため少なくとも0.001%を添加する。しかし、過剰に添加しても効果が飽和し徒にコスト上昇を招くばかりか、鋼の変態温度を上昇させ熱間圧延時の負荷を増大させる。従ってその含有量は1.0%を上限とする。好ましくは0.001%〜0.50%、より好ましくは0.005%〜0.20%である。
[N: 0.01% or less]
N is an element contained as an impurity, and when its content exceeds 0.01%, coarse nitrides are formed in the steel to deteriorate the hole expandability. Therefore, the N content is 0.01% or less. Preferably it is 0.006% or less.
[Al: 0.001% to 1.0%]
Al is added at least 0.001% for deoxidation of steel. However, even if it is added excessively, the effect is saturated and the cost is naturally increased, and the transformation temperature of the steel is raised to increase the load during hot rolling. Therefore, the upper limit is 1.0%. Preferably it is 0.001%-0.50%, More preferably, it is 0.005%-0.20%.

[Ti:0.001%〜0.10%]
Tiは鋼中でTiNとしてNを固定することで、焼入性低下因子となるBNの形成を抑制する。また加熱時のオーステナイト粒径を微細化し靱性および耐水素脆性を向上させる。一方、過剰に添加すると粗大なTi炭化物が生成し、鋼板の靭性および耐水素脆性が低下する。従ってその含有量は0.001%〜0.10%とする。好ましくは0.005%〜0.070%、より好ましくは0.010%〜0.050%である。
[Ti: 0.001% to 0.10%]
Ti fixes N as TiN in the steel, thereby suppressing the formation of BN that becomes a hardenability lowering factor. It also refines the austenite grain size during heating and improves toughness and hydrogen embrittlement resistance. On the other hand, if added excessively, coarse Ti carbide is generated, and the toughness and hydrogen embrittlement resistance of the steel sheet are lowered. Therefore, the content is made 0.001% to 0.10%. Preferably it is 0.005%-0.070%, More preferably, it is 0.010%-0.050%.

[B:0.0001%〜0.010%]
Bは鋼板の加熱時にオーステナイト粒界に偏析し、オーステナイト粒界を安定化することで鋼の焼入性を高める。また、オーステナイト粒界の結合力を高めることにより鋼板の靭性および耐水素脆化特性を向上させる。一方、過度の添加はホウ化物を形成することにより、鋼の焼入性を損なう結果となる。従ってその含有量は0.0001〜0.010%とする。好ましくは0.0006%〜0.0050%、より好ましくは0.0011〜0.0040%である。
[B: 0.0001% to 0.010%]
B segregates at the austenite grain boundary during heating of the steel sheet, and stabilizes the austenite grain boundary to enhance the hardenability of the steel. Moreover, the toughness and hydrogen embrittlement resistance of the steel sheet are improved by increasing the bonding strength of the austenite grain boundaries. On the other hand, excessive addition results in a decrease in the hardenability of the steel by forming borides. Therefore, the content is made 0.0001 to 0.010%. Preferably it is 0.0006%-0.0050%, More preferably, it is 0.0011-0.0040%.

本発明では、さらに以下の元素を必要に応じて含有させることができる。
[Mo:0.001%〜0.50%]
Moは鋼板の焼入れ性の向上に有効な元素であり、鋼板の加熱中のオーステナイト粒径を微細化することで靭性および耐水素脆化特性を向上させる効果も有するため、添加することが好ましい元素である。一方、過度の添加は効果が飽和し徒にコストの増大を招く。従ってその含有量は0.001%〜0.50%とする。より好ましくは0.050〜0.30%である。
In the present invention, the following elements can be further contained as required.
[Mo: 0.001% to 0.50%]
Mo is an element effective for improving the hardenability of the steel sheet, and has an effect of improving toughness and hydrogen embrittlement resistance by refining the austenite grain size during heating of the steel sheet, so it is an element that is preferably added. It is. On the other hand, excessive addition causes the effect to be saturated and causes an increase in cost. Therefore, the content is made 0.001% to 0.50%. More preferably, it is 0.050 to 0.30%.

[Cr:0.001%〜 1.0%、Ni:0.001%〜1.0%、Cu:0.001%〜1.0%の一種または二種以上]
Cr、Ni、Cuはいずれも鋼板の高強度化に有効な元素であるため必要に応じて添加してもよい。しかしこれらの元素を過度に添加すると効果が飽和し徒にコストの増大を招く。従って、その含有量はCr:0.001%〜1.0%、Ni:0.001%〜1.0%、Cu:0.001%〜1.0%とする。より好ましくはCr:0.001%〜0.50%、Ni:0.001%〜0.50%、Cu:0.001%〜0.50%である。
[Cr: 0.001% to 1.0%, Ni: 0.001% to 1.0%, Cu: 0.001% to 1.0%, or two or more]
Since Cr, Ni, and Cu are all effective elements for increasing the strength of the steel sheet, they may be added as necessary. However, if these elements are added excessively, the effect is saturated and the cost is increased. Therefore, the content is made Cr: 0.001% to 1.0%, Ni: 0.001% to 1.0%, Cu: 0.001% to 1.0%. More preferably, Cr: 0.001% to 0.50%, Ni: 0.001% to 0.50%, Cu: 0.001% to 0.50%.

[V:0.001%〜0.50%、Nb:0.001%〜0.10%の一種または二種以上]
VおよびNbは炭化物形成元素であり、鋼板の高強度化に有効な元素であることから必要に応じて添加してもよい。しかし、過度に添加しても効果が飽和し徒にコストを上昇させる。従ってその含有量はそれぞれV:0.001%〜0.50%、Nb:0.001%〜0.10%とする。好ましくはV:0.030%〜0.20%、Nb:0.005%〜0.050%とする。
[V: 0.001% to 0.50%, Nb: one or more of 0.001% to 0.10%]
V and Nb are carbide forming elements, and are elements effective for increasing the strength of the steel sheet, and may be added as necessary. However, even if added excessively, the effect is saturated and the cost is increased. Therefore, the contents are V: 0.001% to 0.50% and Nb: 0.001% to 0.10%, respectively. Preferably, V: 0.030% to 0.20%, Nb: 0.005% to 0.050%.

[Ca:0.0001%〜0.01%、Mg:0.0001%〜0.01%、Bi:0.0001%〜0.01%、REM:0.0001%〜0.1%の一種または二種以上]
Ca、Mg、REMは鋼中介在物の微細分散化に寄与する元素であり、Biは鋼中におけるMn、Si等の置換型合金元素のミクロ偏析を軽減する元素であり、それぞれ鋼板の耐水素脆化特性および靭性向上に寄与することから、必要に応じて添加することが好ましい。その効果を得るには、それぞれ0.0001%以上の添加を要する。一方、過度の添加は延性の劣化を引き起こすため、その含有量はCa:0.01%、Mg:0.01%、Bi:0.01%、REM:0.1%とする。
ここで、REMとは、Sc、Y、およびランタノイドの合計17元素を指し、REMの含有量とは、これら元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
[Ca: 0.0001% to 0.01%, Mg: 0.0001% to 0.01%, Bi: 0.0001% to 0.01%, REM: 0.0001% to 0.1% Or two or more]
Ca, Mg, and REM are elements that contribute to the fine dispersion of inclusions in steel, and Bi is an element that reduces microsegregation of substitutional alloy elements such as Mn and Si in steel. Since it contributes to an embrittlement characteristic and toughness improvement, it is preferable to add as needed. In order to obtain the effect, 0.0001% or more of each addition is required. On the other hand, since excessive addition causes deterioration of ductility, its content is set to Ca: 0.01%, Mg: 0.01%, Bi: 0.01%, and REM: 0.1%.
Here, REM refers to a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM refers to the total content of these elements. In the case of a lanthanoid, it is industrially added in the form of misch metal.

次に、本発明にかかる鋼板の鋼組織を上述のように限定した理由について説明する。
[ポリゴナルフェライトが面積率で10%以下、ベイナイトが30%以下、残留オーステナイトが6%以下、焼き戻しマルテンサイトが60%以上]
1300MPa以上の引張強度と優れた耐水素脆化特性を全て満足するためには鋼組織をこのように限定する必要がある。ポリゴナルフェライトが10%を超える、あるいはベイナイトが30%を超えると1300MPa以上の引張強度を得ることが困難となる場合がある。焼き戻しマルテンサイトが60%を下回る、あるいは残留オーステナイトが6%を超えると優れた耐水素脆化特性を得ることが困難となる場合がある。
Next, the reason which limited the steel structure of the steel plate concerning this invention as mentioned above is demonstrated.
[Polygonal ferrite is 10% or less in area ratio, bainite is 30% or less, retained austenite is 6% or less, tempered martensite is 60% or more]
In order to satisfy all of the tensile strength of 1300 MPa or more and the excellent hydrogen embrittlement resistance, it is necessary to limit the steel structure in this way. If polygonal ferrite exceeds 10% or bainite exceeds 30%, it may be difficult to obtain a tensile strength of 1300 MPa or more. If the tempered martensite is less than 60% or the retained austenite exceeds 6%, it may be difficult to obtain excellent hydrogen embrittlement resistance.

[焼き戻しマルテンサイト中のFe炭化物の個数密度が1×10/mm以上]
優れた耐水素脆化特性を得るには、焼き戻しマルテンサイト中のFe炭化物の個数密度を1×10/mm以上とする必要がある。
[Number density of Fe carbides in tempered martensite is 1 × 10 6 / mm 2 or more]
In order to obtain excellent hydrogen embrittlement resistance, the number density of Fe carbides in the tempered martensite needs to be 1 × 10 6 / mm 2 or more.

[鋼全体の平均転位密度が1.0×1015/m以上、2.0×1016/m以下]
1300MPa以上の引張強度と、優れた耐水素脆化特性を両立するには、鋼全体の平均転位密度が1.0×1015/m以上、2.0×1016/m以下とする必要がある。
[Average dislocation density of the whole steel is 1.0 × 10 15 / m 2 or more, 2.0 × 10 16 / m 2 or less]
In order to achieve both a tensile strength of 1300 MPa or more and excellent hydrogen embrittlement resistance, the average dislocation density of the entire steel is 1.0 × 10 15 / m 2 or more and 2.0 × 10 16 / m 2 or less. There is a need.

[有効結晶粒径が7.0μm以下]
優れた耐水素脆化特性を得るには有効結晶粒径を7.0μm以下とする必要がある。好ましくは5.0μm以下である。なお有効結晶粒径とは後述の手法にて述べる結晶方位差15°以上の粒界に囲まれた領域の結晶粒径を意味し、例えばマルテンサイトではそのブロック粒径に相当する。
[Effective crystal grain size is 7.0 μm or less]
In order to obtain excellent hydrogen embrittlement resistance, the effective crystal grain size needs to be 7.0 μm or less. Preferably it is 5.0 micrometers or less. The effective crystal grain size means a crystal grain size in a region surrounded by a grain boundary having a crystal orientation difference of 15 ° or more, which will be described later. For example, in martensite, it corresponds to the block grain size.

本発明における鋼組織の面積率算出方法については以下の通りとする。
ポリゴナルフェライト、ベイナイト、パーライト、セメンタイト、マルテンサイト、焼戻しマルテンサイトの面積率については、鋼板の圧延方向断面を切出し、ナイタール液により鋼組織を現出後、1/8〜3/8厚さ位置を走査型電子顕微鏡(倍率:5000倍、5視野)を用いて撮影し、得られた組織写真から、ポイントカウンティング法によって算出した値をその面積率とする。残留オーステナイトの面積率については、鋼板の1/4厚さの面を観察面としてX線回折を行い、bccとfccのピーク面積比から算出した値をその面積率とする。
The steel structure area ratio calculation method in the present invention is as follows.
For the area ratio of polygonal ferrite, bainite, pearlite, cementite, martensite, and tempered martensite, cut the steel sheet in the rolling direction and reveal the steel structure with nital solution, then 1/8 to 3/8 thickness position Is taken using a scanning electron microscope (magnification: 5000 times, 5 fields of view), and the area ratio is a value calculated from the obtained tissue photograph by the point counting method. As for the area ratio of retained austenite, X-ray diffraction is performed with a 1 / 4-thickness surface of the steel sheet as the observation plane, and a value calculated from the peak area ratio of bcc and fcc is defined as the area ratio.

マルテンサイトに存在するFe炭化物の個数密度については、鋼板の圧延方向断面を切出し、ナイタール液により鋼組織を現出後、1/8〜3/8厚さ位置を走査型電子顕微鏡(倍率:10000倍、5視野)で撮影し、その個数密度を測定するものとする。 Regarding the number density of Fe carbides present in martensite, a cross section in the rolling direction of the steel sheet was cut out, the steel structure was revealed with a nital solution, and the 1/8 to 3/8 thickness position was measured with a scanning electron microscope (magnification: 10,000). The number density is measured and the number density is measured.

鋼全体の平均転位密度については、非特許文献1「X線回折を利用した転位密度の評価方法」に記載の方法に準じて行い、(110)α、(211)α、(220)αの半価幅から平均転位密度を算出する。   The average dislocation density of the entire steel is determined according to the method described in Non-Patent Document 1 “Method for evaluating dislocation density using X-ray diffraction”, and (110) α, (211) α, (220) α The average dislocation density is calculated from the half width.

本発明における有効結晶粒径についてはEBSP−OIM(Electron Back Scatter Diffraction Pattern−Orientation Image Microscopy)法による測定することとする。EBSP−OIM法は走査型電子顕微鏡(SEM)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影し、コンピュータ画像処理する事により照射点の結晶方位を短待間で測定する装置およびソフトウエアで構成されている。EBSP法では鋼組織の微細構造並びに結晶方位を定量的に解析ができる。その分解能についてはSEMの分解能に依存するが、最小20nmの分解能で分析できる。本発明においては、鋼の結晶粒界を、一般的に結晶粒界として認識されている大角粒界の閾値である15°と定義し、方位差15°以上の粒界をマッピングした画像より粒を可視化することにより、その平均結晶粒径を求めた。   The effective crystal grain size in the present invention is measured by an EBSP-OIM (Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy) method. The EBSP-OIM method irradiates an electron beam onto a highly inclined sample in a scanning electron microscope (SEM), images the Kikuchi pattern formed by backscattering with a high-sensitivity camera, and processes the computer image. It consists of a device and software that measure the crystal orientation of the glass in a short time. The EBSP method can quantitatively analyze the microstructure and crystal orientation of the steel structure. Although the resolution depends on the resolution of the SEM, analysis can be performed with a resolution of 20 nm minimum. In the present invention, the grain boundary of steel is defined as 15 °, which is a threshold value of a large-angle grain boundary that is generally recognized as a grain boundary, and is obtained from an image obtained by mapping grain boundaries having an orientation difference of 15 ° or more. Was visualized to determine the average crystal grain size.

[solB[質量%]・Dγ[μm]≧0.0010 ・・・(1)]
solBは固溶状態として存在するB量、Dγは旧オーステナイト粒径を表し、式(1)の左辺は旧オーステナイト粒界中のB濃度に対応する値である。
本発明者らが、上記B量と旧オーステナイト粒径を種々変化させて、式(1)の左辺の値と耐水素脆化特性の関係について調査した結果、図1の本発明範囲で示される領域で、耐水素脆化特性が向上する結果が得られた。すなわち、式(1)左辺の値が0.0010以上であれば、旧オーステナイト粒界が固溶Bの偏析により十分安定化するため、耐水素脆化特性が向上することが認められた。
なお旧オーステナイト粒界が微細になるほど、全体積に占めるオーステナイト粒界の割合が増大するために、粒界B濃度は低下する。従って、Dγが微細な鋼ほど、式(1)を満足するためにより多くのsolBが必要となる。
[SolB [mass%] · Dγ [μm] ≧ 0.0010 (1)]
solB represents the amount of B present as a solid solution, Dγ represents the prior austenite grain size, and the left side of the formula (1) is a value corresponding to the B concentration in the prior austenite grain boundary.
As a result of investigations on the relationship between the value on the left side of the formula (1) and the hydrogen embrittlement resistance by varying the B amount and the prior austenite grain size, the present inventors show the range of the present invention in FIG. In the region, the result of improved hydrogen embrittlement resistance was obtained. That is, when the value of the left side of the formula (1) is 0.0010 or more, the prior austenite grain boundaries are sufficiently stabilized by the segregation of the solid solution B, so that it is recognized that the hydrogen embrittlement resistance is improved.
In addition, since the ratio of the austenite grain boundary in the whole volume increases as the prior austenite grain boundary becomes finer, the grain boundary B concentration decreases. Accordingly, the finer the Dγ, the more solB is required to satisfy the formula (1).

solBは、抽出残さ法により鋼中のボロン化物の質量を測定することにより、析出物として消費されたB量:insolBを算出し、鋼中全B量からinsolBを引いた値をsolBとした。抽出残さ法によるinsolB量の定量法については非特許文献2に開示されている手法を用いる。
Dγについては、鋼板の圧延方向断面を切出し、ピクリン酸アルコール溶液を用いて旧オーステナイト粒界を現出後、1/8〜3/8厚さ位置を光学顕微鏡(倍率:1000倍、5視野)を用いて撮影し、得られた組織写真から、線分法により算出した値とした。
For solB, the amount of boron consumed as a precipitate: insolB was calculated by measuring the mass of boronated material in the steel by the extraction residue method, and the value obtained by subtracting insolB from the total B amount in the steel was defined as solB. The method disclosed in Non-Patent Document 2 is used as a method for determining the amount of insolB by the extraction residue method.
For Dγ, after cutting out the cross section in the rolling direction of the steel sheet and revealing the prior austenite grain boundary using a picric acid alcohol solution, the 1/8 to 3/8 thickness position was optical microscope (magnification: 1000 times, 5 fields of view) The value was calculated by the line segment method from the obtained tissue photograph.

次に、本発明にかかる鋼板の機械特性の限定理由について述べる。
[引張強度が1300MPa以上]
本発明における超高強度冷延鋼板の引張強度は1300MPa以上とする。近年の自動車用鋼板に要求される軽量化と衝突安全性を満足するためには引張強度で1300MPa以上を有することが必要である。より好ましくは1470MPa以上である。
Next, the reasons for limiting the mechanical properties of the steel sheet according to the present invention will be described.
[Tensile strength is 1300 MPa or more]
The tensile strength of the ultra high strength cold-rolled steel sheet in the present invention is 1300 MPa or more. In order to satisfy the weight reduction and collision safety required for automobile steel plates in recent years, it is necessary to have a tensile strength of 1300 MPa or more. More preferably, it is 1470 MPa or more.

[降伏強度相当の応力を付与した際の、限界拡散性水素量が0.20ppm以上]
限界拡散性水素量とは、鋼板にある応力を負荷した際に水素脆化割れが発生する鋼中水素量のしきい値であり、この値が高い鋼板ほど、耐水素脆化特性が優れることとなる。
本発明では、降伏強度相当の応力を付与した際の限界拡散性水素量を好ましくは0.20ppm以上とする。なお、降伏強度とは、0.2%オフセット法により測定された0.2%耐力をもって、その鋼板の降伏強度とする。
[Limit diffusible hydrogen content when stress equivalent to yield strength is applied is 0.20 ppm or more]
The critical diffusible hydrogen content is a threshold value for the amount of hydrogen in steel that causes hydrogen embrittlement cracking when a certain stress is applied to the steel sheet. The higher this value, the better the hydrogen embrittlement resistance. It becomes.
In the present invention, the critical diffusible hydrogen amount when a stress corresponding to the yield strength is applied is preferably 0.20 ppm or more. The yield strength is defined as the yield strength of the steel sheet with a 0.2% proof stress measured by the 0.2% offset method.

限界拡散性水素量の測定は以下の手法を用いた。
図2に示す形状の切欠付き引張試験片を、試験片の長手方向が圧延方向と平行となるよう採取した。電気化学セル内で、引張試験片の切欠部に負荷される応力が降伏強度相当となるよう定荷重を負荷し、その後、試験片が破断に至るまで連続的に陰極水素チャージを行った。電解液には3%NaCl水溶液に3g/Lのチオシアン酸アンモニウムを加えたものを使用し、チャージ電流密度は−0.05mA/cmとした。破断後の試験片は即座に液体窒素中に保管し、ガスクロマトグラフによる昇温水素分析法(昇温速度:100℃/時間、300℃まで測定)で鋼中の水素量を測定した。室温から200℃までに鋼材から放出された水素量を拡散性水素量とした。同様の試験を3回行い、その平均値を降伏強度相当の応力を付与した際の限界拡散性水素量と定義した。
The following method was used for the measurement of the limit diffusible hydrogen content.
A notched tensile test piece having the shape shown in FIG. 2 was collected so that the longitudinal direction of the test piece was parallel to the rolling direction. In the electrochemical cell, a constant load was applied so that the stress applied to the notch of the tensile test piece was equivalent to the yield strength, and then the cathode hydrogen was continuously charged until the test piece was broken. The electrolyte used was a 3% NaCl aqueous solution with 3 g / L ammonium thiocyanate added, and the charge current density was -0.05 mA / cm 2 . The test piece after breakage was immediately stored in liquid nitrogen, and the amount of hydrogen in the steel was measured by a temperature rising hydrogen analysis method using a gas chromatograph (temperature rising rate: 100 ° C./hour, measured up to 300 ° C.). The amount of hydrogen released from the steel material from room temperature to 200 ° C. was defined as the amount of diffusible hydrogen. The same test was performed three times, and the average value was defined as the critical diffusible hydrogen amount when a stress corresponding to the yield strength was applied.

次に、本発明に係る超高強度冷延鋼板の製造方法の限定理由について説明する。
上記のように成分調整された溶鋼から鋼スラブとし、そのスラブを以下のような(A)熱間圧延工程、(B)冷間圧延工程、(C)連続焼鈍工程を経て鋼板とする。
Next, the reason for limitation of the manufacturing method of the ultra high strength cold-rolled steel sheet according to the present invention will be described.
The molten steel having the components adjusted as described above is used as a steel slab, and the slab is converted into a steel plate through the following (A) hot rolling step, (B) cold rolling step, and (C) continuous annealing step.

[1180℃以上にスラブを加熱する工程]
熱間圧延におけるスラブ加熱温度は以上のように規定する。最終製品板において、十分なsolB量を得るには、ボロン化物の溶解を促進するためスラブ加熱温度を1180℃以上とする必要がある。
なお使用する鋼スラブは、製造性の観点から連続鋳造法にて鋳造することが好ましいが、造塊法、薄スラブ鋳造法でもよい。また、鋳造したスラブは一旦室温まで冷却しても、室温まで冷却することなく加熱炉に直送しても構わない。
[Step of heating slab to 1180 ° C. or higher]
The slab heating temperature in hot rolling is specified as described above. In the final product plate, in order to obtain a sufficient amount of solB, it is necessary to set the slab heating temperature to 1180 ° C. or higher in order to promote the dissolution of the boronized product.
The steel slab to be used is preferably cast by a continuous casting method from the viewpoint of manufacturability, but may be an ingot-making method or a thin slab casting method. The cast slab may be once cooled to room temperature, or directly sent to the heating furnace without being cooled to room temperature.

[加熱されたスラブを1050℃以上、1150℃以下での総圧下率が50%以上となるよう圧延する粗圧延工程]
熱間圧延の粗圧延工程での圧下率および圧延温度は以上のように規定する。1050℃以上、1150℃以下での総圧下率が50%以下であると、熱間圧延中の再結晶が不十分となるため、熱延板組織の不均質化につながる。
[Rough rolling step of rolling the heated slab so that the total rolling reduction at 1050 ° C or higher and 1150 ° C or lower becomes 50% or higher]
The rolling reduction and rolling temperature in the rough rolling process of hot rolling are specified as described above. When the total rolling reduction at 1050 ° C. or more and 1150 ° C. or less is 50% or less, recrystallization during hot rolling becomes insufficient, leading to inhomogeneous hot rolled sheet structure.

[1050℃以下〜仕上げ最終パス前までの総圧下率が60〜95%、かつ、仕上げ最終パスの圧延率が10%〜30%、仕上げ最終パスの温度が880℃〜980℃とする仕上げ圧延工程]
粗圧延工程に続く仕上げ圧延工程での圧下配分および圧延温度は以上のように規定する。1050℃以下〜仕上げ最終パス前までの総圧下率(1050℃以下で行われるパスから仕上げ最終パスの直前のパスまでの合計圧下率)が95%を超える、または仕上げ最終パスの圧延率が30%を超える、または仕上げ最終パスの温度(入側温度)が880℃を下回った場合、ボロン化物の熱間圧延中の析出が促進されるため、最終製品板におけるsolB量の確保が困難となる。一方、1050℃以下〜仕上げ最終パス前までの総圧下率が60%を下回る、または仕上げ最終パスの圧延率が10%を下回る、または仕上げ最終パスの温度が980℃を上回ると、熱延板組織の粗大化を招き、最終製品板組織の粗大化につながるため、本発明が規定する有効結晶粒径を得ることが困難となる。
[Finish rolling with a total rolling reduction of 1050 ° C. or lower to the final finishing pass 60 to 95%, a finishing final pass rolling rate of 10% to 30%, and a finishing final pass temperature of 880 ° C. to 980 ° C. Process]
The rolling distribution and rolling temperature in the finish rolling process following the rough rolling process are defined as described above. The total rolling reduction from 1050 ° C. or lower to the final finishing pass (the total rolling reduction from the pass performed at 1050 ° C. or lower to the pass immediately before the finishing final pass) exceeds 95%, or the rolling reduction of the final finishing pass is 30 If the temperature of the final pass (finishing side temperature) is less than 880 ° C., precipitation during hot rolling of the boronized product is promoted, and it is difficult to ensure the amount of solB in the final product plate. . On the other hand, when the total rolling reduction from 1050 ° C. or less to before the final finishing pass is less than 60%, the rolling rate of the finishing final pass is lower than 10%, or the temperature of the finishing final pass is higher than 980 ° C. Since the coarsening of the structure leads to the coarsening of the final product plate structure, it is difficult to obtain an effective crystal grain size defined by the present invention.

[仕上げ圧延工程終了から1秒以上経過後に、5℃/秒以上、50℃/秒以下の冷却速度で巻き取り温度450℃〜700℃まで冷却する冷却工程]
仕上げ最終パス後の冷却条件は以上のように規定する。仕上げ圧延終了から冷却開始までの時間が1秒未満であると、オーステナイトの再結晶が不十分となり鋼板の異方性が顕在化するため好ましくない。仕上げ圧延終了から巻き取り温度までの冷却速度が5℃/秒未満であると、高温域でのフェライト変態が促進され、熱延板組織が粗大化するため好ましくない。一方、冷却速度を50℃/秒以上とすることは、実操業上困難であるため、50℃/秒を冷却速度の上限とする。
[Cooling step of cooling to a coiling temperature of 450 ° C. to 700 ° C. at a cooling rate of 5 ° C./second or more and 50 ° C./second or less after 1 second or more from the end of the finish rolling step]
The cooling conditions after the final finishing pass are specified as described above. If the time from the end of finish rolling to the start of cooling is less than 1 second, the austenite recrystallization is insufficient and the anisotropy of the steel sheet becomes obvious, which is not preferable. When the cooling rate from the finish rolling to the coiling temperature is less than 5 ° C./second, ferrite transformation in a high temperature range is promoted and the hot rolled sheet structure becomes coarse, which is not preferable. On the other hand, since it is difficult in actual operation to set the cooling rate to 50 ° C./second or more, 50 ° C./second is set as the upper limit of the cooling rate.

巻き取り温度が700℃を上回ると、熱延組織の粗大化が顕著になるとともに、ボロン化物の析出が促進されるため、最終製品板において十分なsolB量が得られず、また、最終製品板における有効結晶粒径が粗大化する。一方、巻取温度が450℃を下回ると、熱延板強度が過剰に増大するため、その後の冷間圧延性を阻害する。より好ましい巻取温度の範囲は500℃〜650℃である。
なお、巻取った熱延コイルの酸洗方法は常法に従えばよい。また、熱延コイルの形状矯正および酸洗性向上のためにスキンパス圧延を行ってもよい。
[20%以上80%以下の冷間圧延]
When the coiling temperature exceeds 700 ° C., coarsening of the hot rolled structure becomes remarkable and precipitation of boronated products is promoted, so that a sufficient amount of solB cannot be obtained in the final product plate. The effective crystal grain size becomes coarse. On the other hand, when the coiling temperature is lower than 450 ° C., the hot-rolled sheet strength is excessively increased, so that subsequent cold rolling properties are hindered. A more preferable winding temperature range is 500 ° C to 650 ° C.
In addition, what is necessary is just to follow the pickling method of the wound hot-rolled coil according to a conventional method. Further, skin pass rolling may be performed to correct the shape of the hot-rolled coil and improve the pickling property.
[Cold rolling between 20% and 80%]

最終焼鈍工程において加熱中のオーステナイト粒径を微細化するため冷間圧延率は20%以上とする。一方、過度の圧下は圧延加重が過大となり冷延ミルの負荷増大を招くため、その上限は80%とする。好ましくは30%〜70%である。   In order to refine the austenite grain size during heating in the final annealing step, the cold rolling rate is set to 20% or more. On the other hand, excessive rolling causes an excessive rolling load and increases the load on the cold rolling mill, so the upper limit is made 80%. Preferably, it is 30% to 70%.

[700℃〜Ac3の温度範囲における平均加熱速度を0.1℃/秒以上、10℃/秒以下]
冷間圧延後の連続焼鈍工程における鋼板の加熱速度については、ボロン元素のオーステナイト界面への偏析を促すため、700℃〜Ac3の温度範囲における平均加熱速度は10℃/秒以下とする。一方、この範囲の加熱速度が遅すぎると、鋼板の製造性を阻害するため、0.1℃/秒を下限値とする。
[Average heating rate in the temperature range of 700 ° C to Ac3 is 0.1 ° C / second or more and 10 ° C / second or less]
About the heating rate of the steel plate in the continuous annealing step after cold rolling, the average heating rate in the temperature range of 700 ° C. to Ac 3 is set to 10 ° C./second or less in order to promote segregation of boron element to the austenite interface. On the other hand, if the heating rate in this range is too slow, the manufacturability of the steel sheet is hindered, so 0.1 ° C./second is set as the lower limit.

[Ac3以上、900℃以下の温度域で1秒以上、500秒以下の保持]
オーステナイト化を十分に進行させるために、連続焼鈍工程における鋼板の最高加熱温度はAc3以上とし、1秒以上保持することとする。一方で最高加熱温度が高すぎた場合、オーステナイト粒径が粗大化し、最終製品板における有効結晶粒径が粗大化するため耐水素脆性が劣化する。従って、最高加熱温度の上限は900℃以下とする。また、保持時間が長すぎると鋼板の製造性を阻害するため、500秒を保持時間の上限値とする。
[Holding for 1 second or more and 500 seconds or less in a temperature range of Ac3 or more and 900 ° C. or less]
In order to sufficiently advance austenitization, the maximum heating temperature of the steel sheet in the continuous annealing step is set to Ac3 or higher, and is maintained for 1 second or longer. On the other hand, if the maximum heating temperature is too high, the austenite grain size becomes coarse, and the effective crystal grain size in the final product plate becomes coarse, so that the hydrogen embrittlement resistance deteriorates. Therefore, the upper limit of the maximum heating temperature is 900 ° C. or less. Further, if the holding time is too long, the productivity of the steel sheet is hindered, so 500 seconds is set as the upper limit value of the holding time.

[200℃以上、(Ms−50)℃以下まで冷却を行う冷却工程であって、その際の冷却開始温度が620℃以上であり、かつ、平均冷却速度が10℃/秒以上である工程]
上記のように加熱保持された鋼板の冷却工程における二次冷却の冷却開始温度、冷却停止温度、および平均冷却速度は以上のように規定する。すなわち、冷却工程において十分にマルテンサイトを生成させ、60%以上のマルテンサイトを得るためには、冷却停止温度を(Ms−50℃)以下とする必要がある。一方、冷却停止温度が200℃を下回ると、鋼板内の温度むらの増大を招き、材質のばらつきを助長する。より好ましい冷却停止温度の範囲は200℃〜(Ms−80℃)、より好ましくは200℃〜(Ms−120℃)である。冷却開始温度が620℃を下回ると、フェライト変態が過剰に進行する。好ましい冷却開始温度は650℃以上、より好ましくは700℃以上である。平均冷却速度が10℃/秒を下回ると、フェライト変態が過剰に進行する。好ましい冷却速度は20℃/秒以上、より好ましくは50℃/秒以上である。なお、最高加熱温度から冷却開始までの冷却速度は特に規定するものではないが、1℃/秒以上、10℃/秒未満であることが好ましい。
[Cooling step of cooling to 200 ° C. or higher and (Ms−50) ° C. or lower, in which the cooling start temperature is 620 ° C. or higher and the average cooling rate is 10 ° C./second or higher]
The cooling start temperature, the cooling stop temperature, and the average cooling rate of the secondary cooling in the cooling process of the steel sheet heated and held as described above are defined as described above. That is, in order to sufficiently generate martensite in the cooling process and obtain martensite of 60% or more, it is necessary to set the cooling stop temperature to (Ms-50 ° C.) or lower. On the other hand, when the cooling stop temperature is lower than 200 ° C., the temperature unevenness in the steel plate is increased, and the variation of the material is promoted. A more preferable range of the cooling stop temperature is 200 ° C to (Ms-80 ° C), and more preferably 200 ° C to (Ms-120 ° C). When the cooling start temperature is below 620 ° C., the ferrite transformation proceeds excessively. A preferable cooling start temperature is 650 ° C. or higher, more preferably 700 ° C. or higher. When the average cooling rate is less than 10 ° C./second, the ferrite transformation proceeds excessively. A preferable cooling rate is 20 ° C./second or more, more preferably 50 ° C./second or more. The cooling rate from the maximum heating temperature to the start of cooling is not particularly specified, but is preferably 1 ° C./second or more and less than 10 ° C./second.

[200℃以上、350℃以下の温度で100秒以上、600秒以下保持する工程]
以上のような冷却に引き続いて、上記の温度範囲で保持する過時効処理を行う。保持温度が200℃未満である、または、保持時間が100秒未満であると所望の転位密度および炭化物密度を得ることが困難となる。一方、保持温度が350℃を上回る、または、保持時間が600秒を上回ると鋼板強度の低下が著しくなり、所望の引張強度を得ることが困難となる。好ましい保持温度の範囲は220℃〜320℃である。
[Step of holding at a temperature of 200 ° C. or higher and 350 ° C. or lower for 100 seconds or more and 600 seconds or less]
Subsequent to the cooling as described above, an overaging treatment is performed in the above temperature range. If the holding temperature is less than 200 ° C. or the holding time is less than 100 seconds, it becomes difficult to obtain the desired dislocation density and carbide density. On the other hand, when the holding temperature exceeds 350 ° C. or the holding time exceeds 600 seconds, the strength of the steel sheet is significantly reduced, and it becomes difficult to obtain a desired tensile strength. A preferable holding temperature range is 220 ° C to 320 ° C.

なお、上記熱処理後は、鋼板の平坦矯正、表面粗度の調整のために、調質圧延を行ってもよい。この場合、延性の劣化を避けるため、伸び率を2%以下とすることが好ましい。   In addition, after the said heat processing, you may perform temper rolling for the flatness correction of a steel plate, and adjustment of surface roughness. In this case, in order to avoid deterioration of ductility, it is preferable that the elongation is 2% or less.

以下にて本発明に係る超高強度冷延鋼板の実施例を説明する。
表1に示す化学組成を有する鋼を実験室で溶製してスラブを鋳造し、表2に示す条件にて熱間圧延を施し2.5mm厚の熱延鋼板を得た。その後酸洗を施し、表2に示す圧下率の冷間圧延を行い、1.0mm厚の冷延鋼板を得た。得られた冷延鋼板について、図3及び表2に示す条件の熱処理を行った。
Examples of the ultra high strength cold rolled steel sheet according to the present invention will be described below.
Steel having the chemical composition shown in Table 1 was melted in the laboratory to cast a slab, and hot rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet having a thickness of 2.5 mm. Thereafter, pickling was performed, and cold rolling at a reduction rate shown in Table 2 was performed to obtain a cold-rolled steel sheet having a thickness of 1.0 mm. About the obtained cold-rolled steel plate, the heat processing of the conditions shown in FIG. 3 and Table 2 was performed.

このようにして得られた冷延鋼板から圧延方向に直角方向からJIS5号引張試験片を採取し、引張試験を行い、引張強度(TS)、降伏強度(YS)、全伸び(EL)を測定した。また、日本鉄鋼連盟規格の「JFS T 1001 穴拡げ試験方法」を行い、穴広げ率(λ)を測定した。また前述の方法に従って鋼組織の同定を行った。耐水素脆化特性の評価は、前述の試験方法により行い、鋼の限界拡散性水素量を測定した。   A JIS No. 5 tensile test piece is taken from the cold-rolled steel sheet thus obtained from a direction perpendicular to the rolling direction, and subjected to a tensile test to measure tensile strength (TS), yield strength (YS), and total elongation (EL). did. Moreover, the “JFS T 1001 hole expansion test method” of the Japan Iron and Steel Federation standard was performed, and the hole expansion ratio (λ) was measured. The steel structure was identified according to the method described above. The hydrogen embrittlement resistance was evaluated by the test method described above, and the critical diffusible hydrogen content of the steel was measured.

結果を表3に示す。化学組成および製造方法が本発明の規定する範囲に合致する例では、鋼組織が本発明の規定する範囲に合致するため、1300MPa以上の引張強度と良好な耐水素脆化特性が得られる。一方、化学組成および製造条件のいずれかあるいは両方が本発明の規定する範囲に合致しない例では、1300MPa以上の引張強度または良好な耐水素脆化特性が得られない。   The results are shown in Table 3. In an example where the chemical composition and the manufacturing method match the range specified by the present invention, the steel structure matches the range specified by the present invention, so that a tensile strength of 1300 MPa or more and good hydrogen embrittlement resistance can be obtained. On the other hand, in an example in which either or both of the chemical composition and production conditions do not match the range defined by the present invention, a tensile strength of 1300 MPa or more or good hydrogen embrittlement resistance cannot be obtained.

Figure 0006295893
Figure 0006295893

Figure 0006295893
Figure 0006295893

Figure 0006295893
Figure 0006295893

Claims (7)

質量%で、
C:0.150%〜0.300%、
Si:0.001%〜2.0%、
Mn:2.10%〜4.0%、
P:0.05%以下、
S:0.01%以下、
N:0.01%以下、
Al:0.001%〜1.0%、
Ti:0.001%〜0.10%、
B:0.0001%〜0.010%
を含み、残部がFe及び不可避的不純物からなる化学組成を有し、かつ、鋼中の固溶B量solB[質量%]及び旧オーステナイト粒径Dγ[μm]の値が下記式(1)の関係を満たし、さらに、面積率で、ポリゴナルフェライトが10%以下、ベイナイトが30%以下、残留オーステナイトが6%以下、焼き戻しマルテンサイトが60%以上であり、焼き戻しマルテンサイト中のFe炭化物の個数密度が1×10/mm以上で、鋼全体の平均転位密度が1.0×1015/m以上、2.0×1016/m以下で、有効結晶粒径が7.0μm以下である鋼組織を有することを特徴とする、引張強度が1300MPa以上で耐水素脆化特性に優れた超高強度冷延鋼板。
solB・Dγ≧0.0010 ・・・(1)
% By mass
C: 0.150% to 0.300%,
Si: 0.001% to 2.0%,
Mn: 2.10% to 4.0%,
P: 0.05% or less,
S: 0.01% or less,
N: 0.01% or less,
Al: 0.001% to 1.0%,
Ti: 0.001% to 0.10%,
B: 0.0001% to 0.010%
And the balance has a chemical composition consisting of Fe and unavoidable impurities, and the values of the solute B amount solB [mass%] and the prior austenite grain size Dγ [μm] in the steel of the following formula (1) In addition, the area ratio of polygonal ferrite is 10% or less, bainite is 30% or less, retained austenite is 6% or less, tempered martensite is 60% or more, and Fe carbides in tempered martensite The number density of the steel is 1 × 10 6 / mm 2 or more, the average dislocation density of the whole steel is 1.0 × 10 15 / m 2 or more, 2.0 × 10 16 / m 2 or less, and the effective grain size is 7 An ultra-high strength cold-rolled steel sheet having a tensile strength of 1300 MPa or more and excellent hydrogen embrittlement resistance, having a steel structure of 0.0 μm or less.
solB · Dγ ≧ 0.0010 (1)
請求項1に記載の化学組成が、Feの一部に代えて、Mo:0.001%〜0.50%を含有するものであることを特徴とする、請求項1に記載の耐水素脆化特性に優れた超高強度冷延鋼板。   2. The hydrogen embrittlement resistance according to claim 1, wherein the chemical composition according to claim 1 contains Mo: 0.001% to 0.50% instead of part of Fe. Super high-strength cold-rolled steel sheet with excellent forming properties. 請求項1または2に記載の化学組成が、Feの一部に代えて、Cr:0.001%〜1.0%、Ni:0.001%〜1.0%、Cu:0.001%〜1.0%の一種または二種以上を含有するものであることを特徴とする、請求項1または2に記載の耐水素脆化特性に優れた超高強度冷延鋼板。   The chemical composition according to claim 1 or 2, wherein instead of a part of Fe, Cr: 0.001% to 1.0%, Ni: 0.001% to 1.0%, Cu: 0.001% The ultra-high-strength cold-rolled steel sheet having excellent hydrogen embrittlement resistance according to claim 1 or 2, characterized by containing ~ 1.0% of one kind or two or more kinds. 請求項1〜3のいずれか1項に記載の化学組成が、Feの一部に代えて、V:0.001%〜0.50%、Nb:0.001%〜0.10%の一種または二種を含有するものであることを特徴とする、請求項1〜3のいずれか1項に記載の耐水素脆化特性に優れた超高強度冷延鋼板。   The chemical composition according to any one of claims 1 to 3, wherein V is 0.001% to 0.50% and Nb is 0.001% to 0.10% instead of part of Fe. The ultra-high-strength cold-rolled steel sheet having excellent hydrogen embrittlement resistance according to any one of claims 1 to 3, wherein the steel sheet contains two types. 請求項1〜4のいずれか1項に記載の化学組成が、Feの一部に代えて、質量%で、Ca:0.0001%〜0.01%、Mg:0.0001%〜0.01%、Bi:0.0001%〜0.01%、REM:0.0001%〜0.1%の一種または二種以上を含有するものであることを特徴とする、請求項1〜4のいずれか1項に記載の耐水素脆化特性に優れた超高強度冷延鋼板。   The chemical composition according to any one of claims 1 to 4 is replaced by a part of Fe in mass%, Ca: 0.0001% to 0.01%, Mg: 0.0001% to 0.00. One or two or more of 01%, Bi: 0.0001% to 0.01%, REM: 0.0001% to 0.1%, characterized in that The ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance according to any one of the above items. 降伏強度相当の応力を付与した際の、限界拡散性水素量が0.20ppm以上であることを特徴とする、請求項1〜5のいずれか1項に記載の耐水素脆化特性に優れた超高強度冷延鋼板。   The excellent hydrogen embrittlement resistance according to any one of claims 1 to 5, wherein a critical diffusible hydrogen amount is 0.20 ppm or more when a stress corresponding to a yield strength is applied. Super high strength cold rolled steel sheet. 請求項1〜5のいずれか1項に記載の化学組成を有するスラブに対して、下記(A)〜(C)の工程を施すことを特徴とする、請求項1〜6のいずれか1項に記載の耐水素脆化特性に優れた超高強度冷延鋼板の製造方法。
(A)以下の工程を備える熱間圧延工程
(A−1)1180℃以上にスラブを加熱する工程
(A−2)加熱されたスラブを1050℃以上、1150℃以下での総圧下率が50%以上となるよう圧延する粗圧延工程
(A−3)1050℃以下〜仕上げ最終パス前までの総圧下率が60〜95%、かつ、仕上げ最終パスの圧延率が10%〜30%、仕上げ最終パスの温度が880℃〜980℃とする仕上げ圧延工程
(A−4)仕上げ圧延工程終了から1秒以上経過後に、5℃/秒以上、50℃/秒以下の冷却速度で巻き取り温度450℃〜700℃まで冷却する冷却工程
(B)20%以上80%以下の冷間圧延を行う工程
(C)以下の工程を備える連続焼鈍工程
(C−1)冷間圧延後の鋼板をAc3以上、900℃以下の温度に加熱し、該温度域で1秒以上、500秒以下の保持を行う工程であり、700℃〜Ac3の温度範囲における平均加熱速度を0.1℃/秒以上、10℃/秒以下とする加熱工程
(C−2)200℃以上、(Ms−50)℃以下まで冷却を行う冷却工程であって、その際の冷却開始温度が620℃以上であり、かつ、平均冷却速度が10℃/秒以上である工程
(C−3)冷却過程の200℃以上、350℃以下の温度で100秒以上、600秒以下保持する工程
The slab having the chemical composition according to any one of claims 1 to 5 is subjected to the following steps (A) to (C): The manufacturing method of the ultra-high-strength cold-rolled steel plate excellent in the hydrogen embrittlement resistance described in 1.
(A) Hot rolling step comprising the following steps (A-1) Step of heating the slab to 1180 ° C. or higher (A-2) The total rolling reduction at 50 ° C. or higher and 1150 ° C. or lower of the heated slab is 50 Rough rolling step (A-3) for rolling to be not less than 1050 ° C. The total reduction ratio from 1050 ° C. or less to before the final finishing pass is 60 to 95%, and the rolling reduction in the final finishing pass is 10% to 30%. Finishing rolling step (A-4) in which the temperature of the final pass is 880 ° C. to 980 ° C. After a lapse of 1 second or more from the end of the finishing rolling step, the winding temperature is 450 ° C. or more and 50 ° C./second or less. A cooling step (B) for cooling to 20 ° C. to 700 ° C. (C) A step of performing cold rolling of 20% or more and 80% or less (C) A continuous annealing step comprising the following steps (C-1) A steel plate after cold rolling is Ac3 or more , Heated to a temperature of 900 ° C. or less, the temperature Is a step of holding for 1 second or more and 500 seconds or less, and a heating step (C-2) in which an average heating rate in a temperature range of 700 ° C. to Ac3 is 0.1 ° C./second or more and 10 ° C./second or less. A cooling step of cooling to 200 ° C. or higher and (Ms−50) ° C. or lower, wherein the cooling start temperature is 620 ° C. or higher and the average cooling rate is 10 ° C./second or higher (C -3) The process of hold | maintaining for 100 second or more and 600 second or less at the temperature of 200 degreeC or more and 350 degrees C or less of a cooling process.
JP2014176493A 2014-08-29 2014-08-29 Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same Active JP6295893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014176493A JP6295893B2 (en) 2014-08-29 2014-08-29 Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176493A JP6295893B2 (en) 2014-08-29 2014-08-29 Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016050343A JP2016050343A (en) 2016-04-11
JP6295893B2 true JP6295893B2 (en) 2018-03-20

Family

ID=55658074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176493A Active JP6295893B2 (en) 2014-08-29 2014-08-29 Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP6295893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026922A4 (en) * 2019-09-03 2022-07-13 Nippon Steel Corporation Steel sheet

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072381B (en) * 2016-04-14 2020-12-15 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
WO2017183348A1 (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Steel plate, plated steel plate, and production method therefor
JP6210183B1 (en) * 2016-04-19 2017-10-11 Jfeスチール株式会社 Steel sheet, plated steel sheet, and manufacturing method thereof
MX2019001045A (en) * 2016-08-10 2019-04-25 Jfe Steel Corp Thin steel sheet, and production method therefor.
US10787727B2 (en) * 2016-09-21 2020-09-29 Nippon Steel Corporation Steel sheet
WO2018062380A1 (en) * 2016-09-28 2018-04-05 Jfeスチール株式会社 Steel sheet and method for producing same
JP6892842B2 (en) * 2017-06-29 2021-06-23 Jfeスチール株式会社 Material for high-strength cold-rolled steel sheet Hot-rolled steel sheet and its manufacturing method
US11473164B2 (en) * 2018-03-19 2022-10-18 Nippon Steel Corporation High-strength cold-rolled steel sheet and manufacturing method therefor
US11753693B2 (en) 2018-09-28 2023-09-12 Posco Co., Ltd High-strength cold rolled steel sheet having high hole expansion ratio, highstrength hot-dip galvanized steel sheet, and manufacturing methods therefor
US20210381076A1 (en) * 2018-10-17 2021-12-09 Jfe Steel Corporation Thin steel sheet and method for manufacturing same
WO2020162561A1 (en) * 2019-02-06 2020-08-13 日本製鉄株式会社 Hot-dip zinc-coated steel sheet and method for manufacturing same
US11970752B2 (en) 2019-03-29 2024-04-30 Nippon Steel Corporation Steel sheet
CN110306123A (en) * 2019-07-26 2019-10-08 马鞍山钢铁股份有限公司 A kind of tensile strength >=1800MPa grades of high-toughness hot forming steel and its production method
MX2022008976A (en) * 2020-01-22 2022-08-11 Nippon Steel Corp Steel sheet and method for producing same.
JP7298647B2 (en) * 2020-07-15 2023-06-27 Jfeスチール株式会社 High-strength steel plate and its manufacturing method
EP4223892A4 (en) * 2020-09-30 2024-03-13 Nippon Steel Corporation Steel sheet and steel sheet manufacturing method
KR20240032937A (en) 2021-08-24 2024-03-12 제이에프이 스틸 가부시키가이샤 High-strength steel plate and manufacturing method thereof
JPWO2023037878A1 (en) 2021-09-09 2023-03-16
CN118119724A (en) 2021-10-21 2024-05-31 日本制铁株式会社 Steel plate
JPWO2023068369A1 (en) 2021-10-21 2023-04-27
KR20240115859A (en) * 2022-01-14 2024-07-26 제이에프이 스틸 가부시키가이샤 High-strength steel plate and manufacturing method thereof
CN117867385A (en) * 2023-12-25 2024-04-12 鞍钢股份有限公司 1.2 GPa-grade hydrogen embrittlement-resistant cold-formed automotive steel and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630188B2 (en) * 2005-12-19 2011-02-09 株式会社神戸製鋼所 Steel sheet for hot forming and hot-formed product excellent in joint strength and hot formability of spot welds
JP5020572B2 (en) * 2006-08-31 2012-09-05 新日本製鐵株式会社 High strength thin steel sheet with excellent delayed fracture resistance after forming
JP4164537B2 (en) * 2006-12-11 2008-10-15 株式会社神戸製鋼所 High strength thin steel sheet
JP4712882B2 (en) * 2008-07-11 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5637342B2 (en) * 2008-09-18 2014-12-10 国立大学法人 岡山大学 Hot-pressed steel plate member and method for manufacturing the same
JP5423072B2 (en) * 2009-03-16 2014-02-19 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same
IN2014DN03211A (en) * 2011-09-30 2015-05-22 Nippon Steel & Sumitomo Metal Corp
JP5662920B2 (en) * 2011-11-11 2015-02-04 株式会社神戸製鋼所 High strength steel plate with excellent delayed fracture resistance and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026922A4 (en) * 2019-09-03 2022-07-13 Nippon Steel Corporation Steel sheet

Also Published As

Publication number Publication date
JP2016050343A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP6295893B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same
CN110678569B (en) High-strength steel sheet and method for producing same
US10550446B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
US10711333B2 (en) High-strength steel sheet and method for manufacturing same
US10954578B2 (en) High-strength steel sheet and method for manufacturing same
EP3214199B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
US10718044B2 (en) Hot-dip galvanized steel sheet
US10570475B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
RU2599934C2 (en) Steel sheet for hot stamping, method of its manufacturing and item made from hot-stamped steel sheet
KR101926244B1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
TWI504757B (en) High strength molten galvanized steel sheet and its manufacturing method
WO2016171237A1 (en) Plated steel plate
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
KR20200011475A (en) Hot rolled steel sheet and its manufacturing method
US11447841B2 (en) High-strength steel sheet and method for producing same
US10253387B2 (en) Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
KR101831094B1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
JP5585623B2 (en) Hot-formed steel plate member and manufacturing method thereof
JPWO2012120692A1 (en) Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
WO2020195605A1 (en) Steel sheet, method for manufacturing same and plated steel sheet
EP4223892A1 (en) Steel sheet and steel sheet manufacturing method
US20190284656A1 (en) High-strength steel sheet and method for producing same
JP6719518B2 (en) High-strength cold-rolled steel sheet or high-strength hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more and a 0.2% yield strength of less than 700 MPa, which is excellent in ductility, stretch flangeability, and weldability.
JP2021509147A (en) Ultra-high-strength hot-rolled steel sheets, steel pipes, members, and their manufacturing methods
JP6719517B2 (en) High-strength cold-rolled steel sheet or high-strength hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more and a 0.2% proof stress of 700 MPa or more, which are excellent in ductility, stretch flangeability, and weldability.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180205

R151 Written notification of patent or utility model registration

Ref document number: 6295893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350