JP5659490B2 - Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid - Google Patents

Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid Download PDF

Info

Publication number
JP5659490B2
JP5659490B2 JP2009537338A JP2009537338A JP5659490B2 JP 5659490 B2 JP5659490 B2 JP 5659490B2 JP 2009537338 A JP2009537338 A JP 2009537338A JP 2009537338 A JP2009537338 A JP 2009537338A JP 5659490 B2 JP5659490 B2 JP 5659490B2
Authority
JP
Japan
Prior art keywords
methacrylic acid
catalyst
heteropolyacid
salt
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009537338A
Other languages
Japanese (ja)
Other versions
JPWO2010013749A1 (en
Inventor
洋子 篠田
洋子 篠田
柾 朋博
朋博 柾
近藤 正英
正英 近藤
内藤 啓幸
啓幸 内藤
雄一 田川
雄一 田川
俊雄 長谷川
俊雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009537338A priority Critical patent/JP5659490B2/en
Publication of JPWO2010013749A1 publication Critical patent/JPWO2010013749A1/en
Application granted granted Critical
Publication of JP5659490B2 publication Critical patent/JP5659490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するためのメタクリル酸製造用触媒(以下、単に「触媒」とも記す)の製造方法、この方法により製造される触媒、およびこの触媒を用いたメタクリル酸の製造方法に関する。   The present invention relates to a method for producing a catalyst for producing methacrylic acid (hereinafter also simply referred to as “catalyst”) for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, and a catalyst produced by this method. And a method for producing methacrylic acid using the catalyst.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸製造用触媒としては、モリブデンおよびリンを含むヘテロポリ酸系触媒が知られている。このようなヘテロポリ酸系触媒としては、カウンターカチオンがプロトンであるプロトン型ヘテロポリ酸、およびそのプロトンの一部をセシウム、ルビジウム、カリウムなどのアルカリ金属で置換し、ヘテロポリ酸塩にしたものが知られている(以下、プロトン型ヘテロポリ酸を単に「ヘテロポリ酸」とも言い、プロトン型ヘテロポリ酸および/またはヘテロポリ酸塩を「ヘテロポリ酸(塩)」とも言う。)。なお、プロトン型ヘテロポリ酸は水溶性であるが、プロトンがアルカリ金属で置換されたヘテロポリ酸塩はこれらカチオンのイオン半径が大きいため、一般に水に難溶性である。   As a methacrylic acid production catalyst for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, a heteropolyacid catalyst containing molybdenum and phosphorus is known. As such a heteropolyacid catalyst, a proton type heteropolyacid whose counter cation is a proton, and one obtained by substituting a part of the proton with an alkali metal such as cesium, rubidium, potassium, etc., are known. (Hereinafter, the proton type heteropolyacid is also simply referred to as “heteropolyacid”, and the proton type heteropolyacid and / or the heteropolyacid salt is also referred to as “heteropolyacid (salt)”). Proton type heteropolyacids are water-soluble, but heteropolyacid salts in which protons are substituted with alkali metals generally have poor solubility in water because of the ionic radius of these cations.

ヘテロポリ酸(塩)の構造としては、以下のような記載がある。
(a)ヘテロポリ酸(塩)は中心に異種元素(以下中心元素という)があり、酸素を共有して縮合酸基が縮合して形成される単核または複核の錯イオンを有している。縮合形態は数種類知られており、リン、ヒ素、ケイ素、ゲルマニウム、チタン等が中心元素となり得る(非特許文献1)。
The structure of the heteropolyacid (salt) includes the following description.
(A) The heteropolyacid (salt) has a heterogeneous element (hereinafter referred to as a central element) at the center and has a mononuclear or binuclear complex ion formed by condensing condensed acid groups while sharing oxygen. Several types of condensation forms are known, and phosphorus, arsenic, silicon, germanium, titanium, and the like can be the central element (Non-Patent Document 1).

またヘテロポリ酸系触媒を用い、メタクロレインからメタクリル酸の選択率を向上させる触媒としては、例えば以下の触媒が開示されている。
(b)触媒調製時にモリブデンおよびバナジウム成分の原料として酸化物を使用し、カリウム、ルビジウム、セシウムおよびタリウム以外の触媒原料と水との混合物を85℃以上に1〜10時間加熱したのち、該混合液を80℃以下に冷却し、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を添加し、次いで混合液温80℃以下でさらに硝酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、硫酸アンモニウムおよび硫酸水素アンモニウムからなる群より選ばれた少なくとも1種の化合物を熱処理することを特徴とするリン、モリブデンおよびバナジウムを含む多成分系のメタクリル酸製造用触媒(特許文献1)。
Further, as a catalyst for improving the selectivity of methacrylic acid from methacrolein using a heteropolyacid catalyst, for example, the following catalysts are disclosed.
(B) An oxide is used as a raw material for molybdenum and vanadium components at the time of catalyst preparation, and a mixture of catalyst raw material other than potassium, rubidium, cesium and thallium and water is heated to 85 ° C. or higher for 1 to 10 hours, and then mixed The liquid is cooled to 80 ° C. or lower, and at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium is added, and then ammonium nitrate, ammonium carbonate, ammonium bicarbonate, A multicomponent methacrylic acid production catalyst containing phosphorus, molybdenum and vanadium, characterized by heat-treating at least one compound selected from the group consisting of ammonium sulfate and ammonium hydrogen sulfate (Patent Document 1).

一方、ヘテロポリ酸系触媒を用い、イソブタンからメタクリル酸の選択率を向上させる触媒としては、例えば以下の触媒が開示されている。
(c)リンまたはヒ素を中心元素とし、モリブデンを含むヘテロポリ酸(塩)を、ヘテロポリ酸一分子当たり一〜六電子相当還元した触媒(特許文献2)。
(d)リン、ヒ素を中心元素、モリブデン、バナジウムを配位元素として含み、その比率がモリブデン12グラム原子に対して中心元素が0.5〜3グラム原子、バナジウムが0.01〜2グラム原子であるヘテロポリ酸(塩)を含む触媒(特許文献3)。
(e)ヘテロポリ酸の難水溶性の塩、およびリン、モリブデン、バナジウムを含む複合酸化物を含有する触媒(特許文献4)。
On the other hand, as a catalyst for improving the selectivity of methacrylic acid from isobutane using a heteropolyacid catalyst, for example, the following catalysts are disclosed.
(C) A catalyst in which a heteropolyacid (salt) containing molybdenum or phosphorus and containing molybdenum as a central element is reduced by 1 to 6 electrons per molecule of the heteropolyacid (Patent Document 2).
(D) containing phosphorus, arsenic as a central element, molybdenum and vanadium as coordination elements, the ratio of which is 0.5-3 gram atom for the central element and 0.01-2 gram atom for vanadium with respect to 12 gram atom of molybdenum A catalyst containing a heteropolyacid (salt) that is
(E) A catalyst containing a poorly water-soluble salt of a heteropolyacid and a composite oxide containing phosphorus, molybdenum, and vanadium (Patent Document 4).

特開平4−7037号公報JP-A-4-7037 特開昭63−145249号公報JP-A 63-145249 特開平02−42032号公報Japanese Patent Laid-Open No. 02-42032 特開2001−114726号公報JP 2001-114726 A

大竹正之,小野田武,触媒,vol.18,No.6(1976)Masayuki Otake, Takeshi Onoda, Catalyst, vol. 18, no. 6 (1976)

しかし、(b)〜(e)の触媒は、工業触媒としてはメタクリル酸の選択率がいまだ不充分であり、工業触媒として用いるためには、更なるメタクリル酸の選択率の向上が望まれている。   However, the catalysts (b) to (e) still have insufficient selectivity for methacrylic acid as an industrial catalyst, and further improvement in the selectivity of methacrylic acid is desired for use as an industrial catalyst. Yes.

本発明の目的は、メタクリル酸を高選択率で製造できるメタクリル酸製造用触媒の製造方法、およびこの触媒を用いたメタクリル酸の製造方法を提供することにある。 An object of the present invention is to provide a method of manufacturing a catalyze for producing methacrylic acid can be produced methacrylic acid with high selectivity, and a method for producing methacrylic acid using the catalyst.

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、リン元素、モリブデン元素、X元素(ケイ素、チタン、ゲルマニウム、ヒ素、アンチモンおよびセリウムからなる群より選ばれた少なくとも1種類の元素)およびアルカリ金属元素を含む触媒の製造方法であって、
(i)水中に少なくともモリブデン原料およびX元素の原料を添加して、ヘテロポリ酸を含む水性スラリーまたは水溶液を調製する工程と、
(ii)前記水性スラリーまたは水溶液に、アルカリ金属化合物を添加して、前記ヘテロポリ酸の少なくとも一部のアルカリ金属塩であるヘテロポリ酸塩を析出させる工程と、
(iii)前記ヘテロポリ酸塩が析出している水性スラリーまたは水溶液に、正リン酸、五酸化リンおよびリン酸アンモニウムからなる群から選択される少なくとも一種であるリン原料を添加する工程と、
(iv)全ての原料を含む水性スラリーまたは水溶液を乾燥して、乾燥物を得る工程と、
(v)前記乾燥物を熱処理する工程と
を有することを特徴とする。
The present invention relates to a phosphorus element, a molybdenum element, an X element (a group consisting of silicon, titanium, germanium, arsenic, antimony and cerium) used in producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen. A method for producing a catalyst comprising at least one element selected from the group consisting of an alkali metal element,
(I) adding at least a molybdenum raw material and an X element raw material in water to prepare an aqueous slurry or aqueous solution containing a heteropolyacid;
(Ii) adding an alkali metal compound to the aqueous slurry or aqueous solution to precipitate a heteropolyacid salt that is at least a part of the alkali metal salt of the heteropolyacid;
(Iii) adding a phosphorus raw material that is at least one selected from the group consisting of normal phosphoric acid, phosphorus pentoxide and ammonium phosphate to the aqueous slurry or aqueous solution in which the heteropolyacid salt is deposited;
(Iv) drying an aqueous slurry or aqueous solution containing all raw materials to obtain a dried product;
(V) heat-treating the dried product.

た、本発明は、上記の製造方法により、メタクリル酸製造用触媒を製造し、該触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法である。 Also, the present invention is the above method of manufacturing, and producing methacrylic acid catalyst for producing, manufacturing method for methacrylic acid to produce methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen using the catalyst It is.

本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を高選択率で製造できるメタクリル酸製造用触媒の製造方法、およびそのメタクリル酸製造用触媒を用いたメタクリル酸の製造方法を提供することができる。 According to the present invention, methacrylic acid using a method of manufacturing a catalyze for producing methacrylic acid which can be produced with high selectivity to methacrylic acid by the gas-phase catalytic oxidation of methacrolein with molecular oxygen, and the production of methacrylic acid catalyst The manufacturing method of can be provided.

<メタクリル酸製造用触媒およびその製造方法>
本発明は、リン元素、モリブデン元素、X元素(ケイ素、チタン、ゲルマニウム、ヒ素、アンチモンおよびセリウムからなる群より選ばれた少なくとも1種類の元素)およびアルカリ金属元素を含む触媒であり、下記式(1)で表される組成を有することが好ましい。
<Catalyst for methacrylic acid production and production method thereof>
The present invention is a catalyst comprising a phosphorus element, a molybdenum element, an X element (at least one element selected from the group consisting of silicon, titanium, germanium, arsenic, antimony and cerium) and an alkali metal element. It is preferable to have the composition represented by 1).

MoCu (1)
(式中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Xはケイ素、チタン、ゲルマニウム、ヒ素、アンチモンおよびセリウムからなる群より選ばれた少なくとも1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12のとき、b=0.5〜3、c=0.01〜3、d=0.01〜2、e=0.1〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)
本発明の触媒は、以下の工程を有する製造方法により製造される。
・工程(i):水中に少なくともモリブデン原料およびX元素の原料を添加して、ヘテロポリ酸を含む水性スラリーまたは水溶液を調製する(調製工程)。
・工程(ii):前記水性スラリーまたは水溶液にアルカリ金属化合物を添加して、前記ヘテロポリ酸の少なくとも一部がアルカリ金属塩になったヘテロポリ酸塩を析出させる(析出工程)。
・工程(iii):前記ヘテロポリ酸塩が析出している水性スラリーまたは水溶液に、リン原料を添加する(リン添加工程)。
・工程(iv):全ての原料を含む水性スラリーまたは水溶液を乾燥して、乾燥物を得る(乾燥工程)。
・工程(v):前記乾燥物を熱処理する(熱処理工程)。
Mo a P b V c Cu d X e Y f Z g O h (1)
(In the formula, Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively. X is selected from the group consisting of silicon, titanium, germanium, arsenic, antimony and cerium. Y represents at least one element, Y represents at least one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium and lanthanum; Represents at least one element selected from the group consisting of potassium, rubidium and cesium, where a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12. B = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0.1-3, f = 0-3, g = 0.01-3, h Is Serial is an atomic ratio of oxygen required to satisfy the valence of each element.)
The catalyst of the present invention is produced by a production method having the following steps.
Step (i): At least a molybdenum raw material and an X element raw material are added in water to prepare an aqueous slurry or aqueous solution containing a heteropolyacid (preparation step).
Step (ii): An alkali metal compound is added to the aqueous slurry or aqueous solution to precipitate a heteropolyacid salt in which at least a part of the heteropolyacid is an alkali metal salt (precipitation step).
Step (iii): A phosphorus raw material is added to the aqueous slurry or aqueous solution in which the heteropolyacid salt is deposited (phosphorus addition step).
Step (iv): The aqueous slurry or aqueous solution containing all raw materials is dried to obtain a dried product (drying step).
Step (v): The dried product is heat treated (heat treatment step).

さらに、前記乾燥物を賦型する工程(賦型工程)を有していてもよい。   Furthermore, you may have the process (molding process) of shaping the said dried material.

本発明者らは、触媒に含まれるヘテロポリ酸(塩)の中心元素としてX元素およびリン元素を用い、X元素の原料をヘテロポリ酸塩の析出前に添加し、リン原料をヘテロポリ酸塩の析出後に添加することにより、触媒性能が大きく向上することを見出した。   The present inventors use X element and phosphorus element as the central elements of the heteropolyacid (salt) contained in the catalyst, add the raw material of X element before precipitation of the heteropolyacid salt, and deposit the phosphorus raw material as precipitation of the heteropolyacid salt. It was found that the catalyst performance is greatly improved by adding it later.

この理由としては、触媒に含まれるヘテロポリ酸(塩)中に存在するX元素がメタクリル酸の選択率に影響を及ぼしており、X元素の原料をヘテロポリ酸塩の析出前に添加し、リン原料をヘテロポリ酸塩の析出後に添加することで、ヘテロポリ酸(塩)中に存在するX元素の割合が増加するためと推測している。   The reason for this is that the X element present in the heteropolyacid (salt) contained in the catalyst affects the selectivity of methacrylic acid, and the raw material for the X element is added before precipitation of the heteropolyacid salt. It is presumed that the ratio of the X element present in the heteropolyacid (salt) is increased by adding after the precipitation of the heteropolyacid salt.

触媒には、ヘテロポリ酸のカウンターカチオンが全て水素(プロトン)であるプロトン型ヘテロポリ酸と、そのプロトンの一部または全部をセシウム、ルビジウム、カリウムなどのアルカリ金属で置換し、ヘテロポリ酸塩にしたものが存在する。プロトン型へテロポリ酸はメタクロレインがそのヘテロポリ酸の酸素の供給を受けてメタクリル酸になる重要な化学構造であり、ヘテロポリ酸塩はメタクロレインがメタクリル酸に酸化された後、さらに酸化反応が継続してしまう逐次酸化反応を抑制する効果がある。一方、完成した触媒においては、ヘテロポリ酸(塩)以外にも、ヘテロポリ酸(塩)になり得なかった不純物も存在する。   The catalyst includes a proton-type heteropoly acid whose counter cation of the heteropoly acid is all hydrogen (proton), and a part or all of the proton substituted with an alkali metal such as cesium, rubidium, potassium, etc., to form a heteropoly acid salt Exists. Proton type heteropolyacid is an important chemical structure in which methacrolein is converted to methacrylic acid by the supply of oxygen of the heteropolyacid. Heteropolyacid salt is further oxidized after methacrolein is oxidized to methacrylic acid. This has the effect of suppressing the sequential oxidation reaction. On the other hand, in the completed catalyst, there are impurities other than the heteropolyacid (salt) that could not be the heteropolyacid (salt).

このヘテロポリ酸(塩)になり得なかった不純物の役割は明らかではないが、X元素はヘテロポリ酸(塩)を構成することでメタクリル酸の選択率向上に寄与しており、不純物として存在する割合が増加するとメタクリル酸の選択率は低下する。従って、ヘテロポリ酸(塩)中に存在するX元素の割合を増加させることで、メタクリル酸の選択性を向上することができる。   Although the role of impurities that could not become this heteropolyacid (salt) is not clear, the element X contributes to the improvement of the selectivity of methacrylic acid by constituting the heteropolyacid (salt), and the ratio that exists as an impurity As the value increases, the selectivity of methacrylic acid decreases. Therefore, the selectivity of methacrylic acid can be improved by increasing the proportion of the X element present in the heteropolyacid (salt).

本発明においては、中心元素の原料として、X元素の原料が存在する状態でアルカリ金属を添加し、X元素を中心元素とするヘテロポリ酸塩を析出させた後に、リン原料を添加する。これにより、リン元素を中心元素とするヘテロポリ酸(塩)に優先して、X元素を中心元素とするヘテロポリ酸塩が形成されるため、不純物として存在するX元素の割合が減少し、メタクリル酸の選択率が向上すると推測している。   In the present invention, as the raw material for the central element, an alkali metal is added in the presence of the raw material for the X element, and after depositing the heteropolyacid salt having the X element as the central element, the phosphorus raw material is added. As a result, the heteropoly acid salt having the X element as the central element is formed in preference to the heteropoly acid (salt) having the phosphorus element as the central element. The selectivity is estimated to improve.

〔調製工程〕
この工程では、水中に少なくともモリブデン原料およびX元素の原料を添加して、ヘテロポリ酸を含む水性スラリーまたは水溶液を調製する。リン原料は、この工程では添加しないことが好ましいが、X元素の原料中のX元素のモル数より少ないモル数のリン元素を供給する量のリン原料であれば添加してもよい。なお、モリブデン原料、リン原料、X元素の原料およびアルカリ金属化合物以外の原料(式(1)で表される組成を有する触媒を製造する場合においては、バナジウム原料、銅原料およびY元素の原料)等は、調製工程、析出工程およびリン添加工程のいずれの段階で添加しても構わない。添加する原料の配合量は、目的とする触媒の組成に応じて適宜決定すればよい。
[Preparation process]
In this step, at least a molybdenum raw material and an X element raw material are added to water to prepare an aqueous slurry or aqueous solution containing a heteropolyacid. The phosphorus raw material is preferably not added in this step, but may be added as long as the phosphorus raw material has an amount of supplying a phosphorus element having a mole number smaller than the mole number of the X element in the X element raw material. In addition, molybdenum raw material, phosphorus raw material, X element raw material and raw materials other than alkali metal compounds (in the case of producing a catalyst having a composition represented by the formula (1), vanadium raw material, copper raw material and Y element raw material) Etc. may be added at any stage of the preparation process, the precipitation process and the phosphorus addition process. What is necessary is just to determine the compounding quantity of the raw material to add suitably according to the composition of the target catalyst.

使用する原料としては、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等が挙げられる。モリブデン原料としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が挙げられる。銅原料としては、硝酸銅、酸化銅、炭酸銅、酢酸銅等が挙げられる。バナジウム原料としては、リンバナドモリブデン酸、メタバナジン酸アンモニウム、五酸化バナジウム等が挙げられる。ただし、バナジウム原料としてリンバナドモリブデン酸を用いる場合、リンバナドモリブデン酸中には、モリブデンが同時に含まれるため、リンバナドモリブデン酸の添加量に応じてモリブデン原料、リン原料の添加量を調整する必要がある。   Examples of the raw material used include nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element. Examples of the molybdenum raw material include ammonium paramolybdate, molybdenum trioxide, molybdic acid, and molybdenum chloride. Examples of the copper raw material include copper nitrate, copper oxide, copper carbonate, and copper acetate. Examples of the vanadium raw material include phosphovanadomolybdic acid, ammonium metavanadate, vanadium pentoxide, and the like. However, when phosphovanadomolybdic acid is used as the vanadium raw material, molybdenum is contained in the phosphovanadmolybdic acid at the same time. Therefore, it is necessary to adjust the addition amount of the molybdenum raw material and the phosphorus raw material according to the amount of phosphovanadmolybdic acid added. There is.

水性スラリーまたは水溶液の調製は、水に各元素の原料を加え、加熱しながら攪拌する方法が簡便であり好ましい。水に、各元素の原料の、水溶液、水性スラリーまたは水性ゾルを添加することもできる。調製工程で使用する水の量は、(調製工程で使用する原料の合計質量):(調製工程で使用する水の質量)=1:0.5〜1:15となる量が好ましく、1:1.0〜1:4.0となる量がより好ましく、1:1.0〜1:2.0となる量がさらに好ましい。なお、各元素の原料の、水溶液、水性スラリーまたは水性ゾルを用いた場合、そのうち原料のみを「調製工程で使用する原料」に算入し、溶媒としての水は「調製工程で使用する水」に算入する。また、各元素の原料が水和物の場合における結晶水は、「調製工程で使用する原料」に算入する。調製工程で使用する水の量をこの範囲にすることでメタクリル酸の選択率が向上する。調製工程で使用する水の量の役割は明らかではないが、水性スラリーの濃度が向上することで、次の析出工程で形成されるヘテロポリ酸塩の物理構造が逐次酸化反応を抑制する最適な構造となりメタクリル酸の選択率が向上するものと推定している。水性スラリーまたは水溶液の加熱温度は80〜130℃が好ましく、90〜130℃がより好ましい。   For preparing the aqueous slurry or aqueous solution, a method of adding a raw material of each element to water and stirring while heating is simple and preferable. An aqueous solution, an aqueous slurry, or an aqueous sol of the raw material of each element can be added to water. The amount of water used in the preparation step is preferably (total mass of raw materials used in the preparation step) :( mass of water used in the preparation step) = 1: 0.5 to 1:15. The amount of 1.0 to 1: 4.0 is more preferable, and the amount of 1: 1.0 to 1: 2.0 is more preferable. In addition, when an aqueous solution, aqueous slurry or aqueous sol of raw materials for each element is used, only the raw materials are included in the “raw materials used in the preparation step”, and the water as the solvent is “water used in the preparation step”. Include. Crystal water in the case where the raw material of each element is a hydrate is included in the “raw material used in the preparation process”. By setting the amount of water used in the preparation step within this range, the selectivity of methacrylic acid is improved. The role of the amount of water used in the preparation process is not clear, but by improving the concentration of the aqueous slurry, the physical structure of the heteropolyacid salt formed in the next precipitation process suppresses the sequential oxidation reaction. It is estimated that the selectivity of methacrylic acid is improved. The heating temperature of the aqueous slurry or aqueous solution is preferably 80 to 130 ° C, more preferably 90 to 130 ° C.

調製される水性スラリーまたは水溶液のpHが高い場合には、硝酸根等を多く含むように各原料を選択することが好ましい。調製される水性スラリーまたは水溶液のpHは4以下が好ましく、2以下がより好ましい。   When the pH of the aqueous slurry or aqueous solution to be prepared is high, it is preferable to select each raw material so as to contain a large amount of nitrate radicals. The pH of the prepared aqueous slurry or aqueous solution is preferably 4 or less, and more preferably 2 or less.

〔析出工程〕
この工程では、調製工程で得られた水性スラリーまたは水溶液にアルカリ金属化合物を添加して、ヘテロポリ酸の少なくとも一部がアルカリ金属塩になったヘテロポリ酸塩を析出させる。アルカリ金属化合物を添加する前に、水性スラリーまたは水溶液を冷却することが好ましい。冷却温度は20〜80℃が好ましく、40〜70℃がより好ましい。
[Precipitation process]
In this step, an alkali metal compound is added to the aqueous slurry or aqueous solution obtained in the preparation step to precipitate a heteropolyacid salt in which at least a part of the heteropolyacid is an alkali metal salt. It is preferred to cool the aqueous slurry or aqueous solution before adding the alkali metal compound. The cooling temperature is preferably 20 to 80 ° C, more preferably 40 to 70 ° C.

析出させるヘテロポリ酸塩は、ケギン型構造でも、ドーソン型等のケギン型以外の構造でも構わないが、ケギン型構造を有することが好ましい。析出させるヘテロポリ酸塩がケギン型であると、よりメタクリル酸の選択率が向上する。ケギン型構造のヘテロポリ酸塩を析出させるためには、例えばモリブデン原料として三酸化モリブデンを使用して、析出工程におけるpHを3以下に調整する方法が挙げられる。析出させたヘテロポリ酸塩の構造は、ヘテロポリ酸塩をろ過等により分離し乾燥させたものを赤外吸収分析で測定することにより確認することができる。ケギン型構造を有するヘテロポリ酸塩であれば、例えばX元素がヒ素である場合は、得られる赤外吸収スペクトルは、960、890、870、780cm−1付近に特徴的なピークを有する。ドーソン型構造を有するヘテロポリ酸塩である場合、得られる赤外吸収スペクトルは、930、870、720cm−1付近に特徴的なピークを有する。The heteropolyacid salt to be deposited may have a Keggin type structure or a structure other than Keggin type such as Dawson type, but preferably has a Keggin type structure. When the heteropoly acid salt to be precipitated is Keggin type, the selectivity of methacrylic acid is further improved. In order to precipitate the heteropolyacid salt having a Keggin type structure, for example, molybdenum trioxide is used as a molybdenum raw material, and the pH in the precipitation step is adjusted to 3 or less. The structure of the deposited heteropolyacid salt can be confirmed by measuring the heteropolyacid salt separated by filtration or the like and drying it by infrared absorption analysis. In the case of a heteropolyacid salt having a Keggin structure, for example, when the X element is arsenic, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 960, 890, 870, and 780 cm −1 . In the case of a heteropolyacid salt having a Dawson structure, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 930, 870, and 720 cm −1 .

アルカリ金属化合物としては、セシウム化合物、カリウム化合物、ルビジウム化合物等が挙げられる。式(1)で表される組成を有する触媒を製造する場合においては、Z元素の原料となる。熱安定性の点から、セシウム化合物が好ましい。セシウム化合物としては、重炭酸セシウム、硝酸セシウム、酸化セシウム等が挙げられる。アルカリ金属化合物の添加量は、目的とする触媒の組成に応じて適宜決定すればよい。   Examples of the alkali metal compound include a cesium compound, a potassium compound, and a rubidium compound. In the case of producing a catalyst having the composition represented by the formula (1), it becomes a raw material for the Z element. From the viewpoint of thermal stability, a cesium compound is preferable. Examples of the cesium compound include cesium bicarbonate, cesium nitrate, and cesium oxide. What is necessary is just to determine the addition amount of an alkali metal compound suitably according to the composition of the target catalyst.

アルカリ金属化合物は、溶媒に溶解または懸濁させたアルカリ金属化合物の溶液またはスラリーの状態で添加することが好ましい。溶媒としては、水、エチルアルコール、アセトン等が挙げられるが、水性スラリーまたは水溶液と同じ水を用いることが好ましい。   The alkali metal compound is preferably added in the form of a solution or slurry of an alkali metal compound dissolved or suspended in a solvent. Examples of the solvent include water, ethyl alcohol, acetone and the like, but it is preferable to use the same water as the aqueous slurry or aqueous solution.

アルカリ金属化合物の溶液またはスラリーの添加速度は、アルカリ金属化合物の溶液またはスラリーの全量を100質量部としたときに、1分間あたりアルカリ金属化合物の溶液またはスラリーを0.1〜80質量部の割合で添加することが好ましく、1〜20質量部の割合で添加することがより好ましい。   The addition rate of the alkali metal compound solution or slurry is a ratio of 0.1 to 80 parts by mass of the alkali metal compound solution or slurry per minute when the total amount of the alkali metal compound solution or slurry is 100 parts by mass. It is preferable to add at a ratio of 1 to 20 parts by mass.

アルカリ金属化合物を添加した水性スラリーまたは水溶液は引き続きリン添加工程に処しても、静置してもよいが、攪拌することが好ましい。撹拌装置としては、回転翼撹拌機、高速回転剪断撹拌機(ホモジナイザー等)等の回転式撹拌装置、振り子式の直線運動型撹拌機、容器ごと振とうする振とう機、超音波等を用いた振動式撹拌機等の公知の撹拌装置が挙げられる。回転式撹拌装置における撹拌翼または回転刃の回転速度は、液の飛散等の不都合が起きない程度に、容器、撹拌翼、邪魔板等の形状、液量等を勘案して適宜調整すればよい。撹拌は連続的または断続的のいずれの方法で行ってもよいが、連続的に行う方が好ましい。   The aqueous slurry or aqueous solution to which the alkali metal compound has been added may be subsequently subjected to the phosphorus addition step or may be allowed to stand, but is preferably stirred. As the agitator, a rotary agitator such as a rotary blade agitator, a high-speed rotary shear agitator (homogenizer, etc.), a pendulum linear motion agitator, a shaker that shakes the whole container, an ultrasonic wave, or the like was used. A known stirring device such as a vibration type stirrer can be used. The rotational speed of the stirring blade or the rotary blade in the rotary stirring device may be appropriately adjusted in consideration of the shape of the container, stirring blade, baffle plate, etc., the amount of liquid, etc., to the extent that inconvenience such as liquid scattering does not occur. . Stirring may be performed either continuously or intermittently, but is preferably performed continuously.

調製される水性スラリーまたは水溶液のpHを調整するために、硝酸もしくは硝酸化合物、アンモニア水もしくはアンモニア化合物を添加してもよい。硝酸化合物としては、硝酸アンモニウムが挙げられる。アンモニア化合物としては、炭酸水素アンモニウム、炭酸アンモニウム、硝酸アンモニウムが挙げられる。調製される水性スラリーまたは水溶液のpHは4以下が好ましく、2以下がより好ましい。   In order to adjust the pH of the aqueous slurry or aqueous solution to be prepared, nitric acid or a nitric acid compound, aqueous ammonia or an ammonia compound may be added. An example of the nitrate compound is ammonium nitrate. Examples of the ammonia compound include ammonium hydrogen carbonate, ammonium carbonate, and ammonium nitrate. The pH of the prepared aqueous slurry or aqueous solution is preferably 4 or less, and more preferably 2 or less.

撹拌時の水性スラリーまたは水溶液の温度は、20〜80℃が好ましく、40〜70℃がより好ましい。また、アルカリ金属化合物を添加した後の撹拌時間は、5〜60分が好ましく、10〜30分がより好ましい。   20-80 degreeC is preferable and, as for the temperature of the aqueous slurry or aqueous solution at the time of stirring, 40-70 degreeC is more preferable. Moreover, 5 to 60 minutes are preferable and, as for the stirring time after adding an alkali metal compound, 10 to 30 minutes are more preferable.

また静置する時の水性スラリーまたは水溶液の温度は、20〜80℃が好ましく、40〜70℃がより好ましい。静置する時間は、5〜60分が好ましく、10〜30分がより好ましい。   Moreover, 20-80 degreeC is preferable and, as for the temperature of the aqueous slurry or aqueous solution at the time of standing, 40-70 degreeC is more preferable. The time for standing still is preferably 5 to 60 minutes, and more preferably 10 to 30 minutes.

〔リン添加工程〕
この工程では、ヘテロポリ酸塩が析出している水性スラリーまたは水溶液に、リン原料を添加する。リン原料としては、正リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。リン原料の添加量は、目的とする触媒の組成に応じて適宜決定すればよい。ただし、前述のように、バナジウム原料としてリンバナドモリブデン酸を用いる場合、リンバナドモリブデン酸中にリンが同時に含まれるため、リンバナドモリブデン酸の添加量に応じてリン原料の添加量を調整する必要がある。
[Phosphorus addition process]
In this step, the phosphorus raw material is added to the aqueous slurry or aqueous solution in which the heteropolyacid salt is precipitated. Examples of the phosphorus raw material include orthophosphoric acid, phosphorus pentoxide, and ammonium phosphate. What is necessary is just to determine the addition amount of a phosphorus raw material suitably according to the composition of the target catalyst. However, as described above, when phosphorus vanadomolybdic acid is used as the vanadium raw material, it is necessary to adjust the amount of phosphorus raw material added in accordance with the amount of phosphorus vanadmolybdic acid added since phosphorus is simultaneously contained in the phosphorus vanad molybdic acid. There is.

リン原料はそのまま添加してもよく、溶媒に溶解または懸濁させたリン原料の溶液またはスラリーの状態で添加してもよい。溶媒を用いる場合における溶媒としては、水、エチルアルコール、アセトン等が挙げられるが、水性スラリーまたは水溶液と同じ水を用いることが好ましい。リン原料の溶液またはスラリーの濃度は、5〜85質量%が好ましく、15〜35質量%がより好ましい。   The phosphorus raw material may be added as it is, or may be added in the form of a solution or slurry of the phosphorus raw material dissolved or suspended in a solvent. Examples of the solvent in the case of using a solvent include water, ethyl alcohol, acetone and the like, but it is preferable to use the same water as the aqueous slurry or aqueous solution. The concentration of the phosphorus raw material solution or slurry is preferably 5 to 85% by mass, and more preferably 15 to 35% by mass.

リン原料を添加した水性スラリーまたは水溶液は引き続き乾燥工程に処しても、静置してもよいが、攪拌することが好ましい。撹拌装置としては、回転翼撹拌機、高速回転剪断撹拌機(ホモジナイザー等)等の回転式撹拌装置、振り子式の直線運動型撹拌機、容器ごと振とうする振とう機、超音波等を用いた振動式撹拌機等の公知の撹拌装置が挙げられる。回転式撹拌装置における撹拌翼または回転刃の回転速度は、液の飛散等の不都合が起きない程度に、容器、撹拌翼、邪魔板等の形状、液量等を勘案して適宜調整すればよい。撹拌は連続的または断続的のいずれの方法で行ってもよいが、連続的に行う方が好ましい。   The aqueous slurry or aqueous solution to which the phosphorus raw material is added may be subsequently subjected to a drying step or may be allowed to stand, but is preferably stirred. As the agitator, a rotary agitator such as a rotary blade agitator, a high-speed rotary shear agitator (homogenizer, etc.), a pendulum linear motion agitator, a shaker that shakes the whole container, an ultrasonic wave, or the like was used. A known stirring device such as a vibration type stirrer can be used. The rotational speed of the stirring blade or the rotary blade in the rotary stirring device may be appropriately adjusted in consideration of the shape of the container, stirring blade, baffle plate, etc., the amount of liquid, etc., to the extent that inconvenience such as liquid scattering does not occur. . Stirring may be performed either continuously or intermittently, but is preferably performed continuously.

撹拌時の水性スラリーまたは水溶液の温度は、20〜80℃が好ましく、40〜70℃がより好ましい。また、リン原料を添加した後の撹拌時間は、5〜60分が好ましく、10〜30分がより好ましい。   20-80 degreeC is preferable and, as for the temperature of the aqueous slurry or aqueous solution at the time of stirring, 40-70 degreeC is more preferable. Moreover, 5 to 60 minutes are preferable and, as for the stirring time after adding a phosphorus raw material, 10 to 30 minutes are more preferable.

また静置する時の水性スラリーまたは水溶液の温度は、20〜80℃が好ましく、40〜70℃がより好ましい。静置する時間は、5〜60分が好ましく、10〜30分がより好ましい。   Moreover, 20-80 degreeC is preferable and, as for the temperature of the aqueous slurry or aqueous solution at the time of standing, 40-70 degreeC is more preferable. The time for standing still is preferably 5 to 60 minutes, and more preferably 10 to 30 minutes.

攪拌または静置した水性スラリーまたは水溶液は引き続き乾燥工程に処しても、さらに静置してもよい。静置する時の水性スラリーまたは水溶液の温度は、5〜40℃が好ましく、20〜30℃がより好ましい。静置する時間は、短いほどよいが、2日以内が好ましい。   The aqueous slurry or aqueous solution stirred or allowed to stand may be subsequently subjected to a drying step or may be further allowed to stand. 5-40 degreeC is preferable and, as for the temperature of the aqueous slurry or aqueous solution at the time of standing still, 20-30 degreeC is more preferable. The shorter the standing time, the better, but it is preferably within 2 days.

〔乾燥工程〕
この工程では、全ての原料を含む水性スラリーまたは水溶液を加熱して乾燥することで、乾燥物を得ることができる。乾燥方法としては、例えば、ドラム乾燥法、気流乾燥法、蒸発乾固法、噴霧乾燥法等の公知の方法が挙げられる。乾燥は、通常、120〜500℃、好ましくは140〜350℃で、水性スラリーまたは水溶液が乾固するまで行う。この際に使用する乾燥機の機種や乾燥温度などの条件は特に限定されず、所望する乾燥品の形状や大きさにより適宜選択することができる。
[Drying process]
In this step, a dry product can be obtained by heating and drying an aqueous slurry or an aqueous solution containing all raw materials. Examples of drying methods include known methods such as drum drying, airflow drying, evaporation to dryness, and spray drying. The drying is usually performed at 120 to 500 ° C., preferably 140 to 350 ° C. until the aqueous slurry or the aqueous solution is dried. The conditions such as the model of the dryer used at this time and the drying temperature are not particularly limited, and can be appropriately selected depending on the desired shape and size of the dried product.

乾燥物中のヘテロポリ酸(塩)は、ケギン型構造でも、ドーソン型等のケギン型以外の構造でも構わないが、ケギン型構造を有することが好ましい。乾燥物中の前記ヘテロポリ酸(塩)がケギン型構造であると、メタクロレインの反応率が向上し、メタクリル酸の収率が高くなる。ケギン型構造のヘテロポリ酸(塩)の乾燥物を得るためには、例えば析出工程において上記の方法でケギン型構造のヘテロポリ酸塩を析出させ、リン添加工程および乾燥工程におけるpHを3以下に調整する方法が挙げられる。なお、乾燥物中のヘテロポリ酸(塩)の構造は、赤外吸収分析で測定することにより確認することができる。ケギン型構造を有するヘテロポリ酸(塩)である場合、得られる赤外吸収スペクトルは、1060、960、870、780cm−1付近に特徴的なピークを有する。一方、ドーソン型構造を有するヘテロポリ酸(塩)である場合、得られる赤外吸収スペクトルは、1040、1020、930、720、680cm−1付近に特徴的なピークを有する。The heteropolyacid (salt) in the dried product may have a Keggin type structure or a structure other than a Keggin type such as Dawson type, but preferably has a Keggin type structure. When the heteropolyacid (salt) in the dried product has a Keggin structure, the reaction rate of methacrolein is improved and the yield of methacrylic acid is increased. To obtain a dried product of Keggin-type heteropolyacid (salt), for example, the Keggin-type heteropolyacid salt is precipitated in the precipitation step by the above method, and the pH in the phosphorus addition step and the drying step is adjusted to 3 or less. The method of doing is mentioned. The structure of the heteropolyacid (salt) in the dried product can be confirmed by measurement by infrared absorption analysis. In the case of a heteropolyacid (salt) having a Keggin structure, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 1060, 960, 870, and 780 cm −1 . On the other hand, in the case of a heteropolyacid (salt) having a Dawson type structure, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 1040, 1020, 930, 720, and 680 cm −1 .

〔賦型工程〕
得られた乾燥物をそのまま熱処理してもよいが、その乾燥物を賦型し、得られた賦型品を熱処理してもよい。また、乾燥物を後述する熱処理工程で熱処理したものを賦形してもよい。乾燥物または熱処理した乾燥物の賦型に用いる装置としては、打錠成形機、押出成形機、転動造粒機等の公知の粉体用成形機が挙げられる。賦型品の形状としては特に制限はなく、球状、リング状、円柱状、星型状等の任意の形状が挙げられる。
[Molding process]
The obtained dried product may be heat-treated as it is, but the dried product may be shaped and the obtained shaped product may be heat-treated. Moreover, you may shape what heat-processed the dried material by the heat processing process mentioned later. Examples of the apparatus used for shaping the dried product or the heat-treated dried product include known powder molding machines such as a tableting machine, an extrusion molding machine, and a rolling granulator. There is no restriction | limiting in particular as a shape of a molded article, Arbitrary shapes, such as spherical shape, ring shape, cylindrical shape, and star shape, are mentioned.

〔熱処理工程〕
この工程では、乾燥物または乾燥物の賦型品を熱処理することで、触媒を得ることができる。熱処理条件としては、特に限定はなく、公知の熱処理条件を適用できる。熱処理は、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で、200〜500℃、好ましくは300〜450℃で、0.5時間以上、好ましくは1〜40時間で行う。
[Heat treatment process]
In this step, the catalyst can be obtained by heat-treating the dried product or the molded product of the dried product. The heat treatment conditions are not particularly limited, and known heat treatment conditions can be applied. The heat treatment is usually performed at 200 to 500 ° C., preferably 300 to 450 ° C., for 0.5 hours or more, preferably 1 to 40 hours under the flow of an oxygen-containing gas such as air and / or an inert gas. .

以上のような本発明のメタクリル酸製造用触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を高収率で製造できる触媒となる。   The catalyst for producing methacrylic acid according to the present invention as described above is a catalyst capable of producing methacrylic acid in high yield by gas phase catalytic oxidation of methacrolein with molecular oxygen.

<メタクリル酸の製造方法>
本発明のメタクリル酸の製造方法は、上記本発明のメタクリル酸製造用触媒を用いて、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造することを特徴とする。
<Method for producing methacrylic acid>
The method for producing methacrylic acid of the present invention is characterized in that methacrylic acid is produced by gas phase catalytic oxidation of methacrolein with molecular oxygen using the methacrylic acid production catalyst of the present invention.

具体的には、メタクロレインおよび分子状酸素を含む原料ガスと、本発明の触媒とを接触させることで、メタクリル酸を製造する。この反応は、通常、固定床で行う。また、触媒層は1層でもよく、2層以上でもよい。メタクリル酸製造用触媒は、担体に担持させたものであってもよく、その他の添加成分を混合したものであってもよい。   Specifically, methacrylic acid is produced by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the catalyst of the present invention. This reaction is usually carried out in a fixed bed. Further, the catalyst layer may be one layer or two or more layers. The catalyst for producing methacrylic acid may be supported on a carrier, or may be a mixture of other additive components.

原料ガス中のメタクロレインの濃度は、広い範囲で変えることができ、1〜20容量%が好ましく、3〜10容量%がより好ましい。メタクロレインは、水、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。   The concentration of methacrolein in the raw material gas can be varied within a wide range, preferably 1 to 20% by volume, more preferably 3 to 10% by volume. The methacrolein may contain a small amount of impurities such as water and lower saturated aldehyde that do not substantially affect this reaction.

原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4〜4モルが好ましく、0.5〜3モルがより好ましい。なお、分子状酸素源としては、経済性の点から、空気が好ましい。必要ならば、空気に純酸素を加えて分子状酸素を富化した気体等を用いてもよい。   The concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol, more preferably 0.5 to 3 mol, per 1 mol of methacrolein. The molecular oxygen source is preferably air from the viewpoint of economy. If necessary, a gas or the like enriched with molecular oxygen by adding pure oxygen to air may be used.

原料ガスは、メタクロレインおよび分子状酸素源を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに、水蒸気を加えてもよい。水の存在下で反応を行うことにより、メタクリル酸をより高収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1〜50容量%が好ましく、1〜40容量%が特に好ましい。   The source gas may be obtained by diluting methacrolein and a molecular oxygen source with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the source gas. By performing the reaction in the presence of water, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably from 0.1 to 50% by volume, particularly preferably from 1 to 40% by volume.

原料ガスとメタクリル酸製造用触媒との接触時間は、1.5〜15秒が好ましく、2〜5秒がより好ましい。   The contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds, and more preferably 2 to 5 seconds.

反応圧力は、大気圧(0.1MPa−G)〜数気圧(例えば1MPa−G)が好ましい。反応温度は200〜450℃が好ましく、250〜400℃が特に好ましい。   The reaction pressure is preferably atmospheric pressure (0.1 MPa-G) to several atmospheres (for example, 1 MPa-G). The reaction temperature is preferably 200 to 450 ° C, particularly preferably 250 to 400 ° C.

以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例および比較例中の「部」は質量部を意味する。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples. “Parts” in Examples and Comparative Examples means parts by mass.

触媒組成は、アンモニア水に溶解した成分をICP発光分析法と原子吸光分析法で分析することによって算出した。   The catalyst composition was calculated by analyzing components dissolved in aqueous ammonia by ICP emission analysis and atomic absorption spectrometry.

原料ガスおよび生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を下記式にて求めた。
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸の選択率(%) =(C/B)×100
メタクリル酸の収率(%) =(C/A)×100
式中、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
The analysis of the raw material gas and the product was performed using gas chromatography. From the results of gas chromatography, the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined by the following formula.
Reaction rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
In the formula, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

〔実施例1〕
純水680部に、リンバナドモリブデン酸101.2部、三酸化モリブデン100部、60質量%ヒ酸水溶液12.8部および硝酸銅(II)3水和物2.6部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水34部に溶解した重炭酸セシウム21.0部および純水34部に溶解した硝酸アンモニウム19.7部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。この溶液に85質量%リン酸水溶液7.4部を滴下し、さらに15分攪拌した。
[Example 1]
In 680 parts of pure water, 101.2 parts of phosphovanadomolybdic acid, 100 parts of molybdenum trioxide, 12.8 parts of 60% by weight aqueous arsenic acid solution and 2.6 parts of copper (II) nitrate trihydrate were dissolved. The mixture was heated to 95 ° C. while stirring and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., 21.0 parts of cesium bicarbonate dissolved in 34 parts of pure water and 19.7 parts of ammonium nitrate dissolved in 34 parts of pure water were added dropwise while stirring with a rotary blade stirrer. After the salt was precipitated, the mixture was stirred for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure. 7.4 parts of 85 mass% phosphoric acid aqueous solution was dripped at this solution, and also it stirred for 15 minutes.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を130℃で16時間さらに乾燥させた後、加圧成型により賦型した。得られた賦型品を空気流通下に380℃で5時間熱処理した。得られた触媒の酸素以外の元素組成(以下同じ)は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was further dried at 130 ° C. for 16 hours, and then shaped by pressure molding. The obtained shaped product was heat-treated at 380 ° C. for 5 hours under air flow. The elemental composition other than oxygen (hereinafter the same) of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の原料ガスを反応温度290℃、接触時間3.6秒で通じた。生成物を捕集し、ガスクロマトグラフィーで分析してメタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
The catalyst was filled in a reaction tube, and a raw material gas containing 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of steam, and 55% by volume of nitrogen was passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds. The product was collected and analyzed by gas chromatography to determine methacrolein reaction rate, methacrylic acid selectivity, and methacrylic acid yield. The results are shown in Table 1.

〔比較例1〕
85質量%リン酸水溶液7.4部を、析出工程後ではなく調製工程で添加した以外は、実施例1と同様にして、触媒を製造した。すなわち、純水680部に、リンバナドモリブデン酸101.2部、三酸化モリブデン100部、85質量%リン酸水溶液7.4部、60質量%ヒ酸水溶液12.8部および硝酸銅(II)3水和物2.6部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水34部に溶解した重炭酸セシウム21.0部および純水34部に溶解した硝酸アンモニウム19.7部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。
[Comparative Example 1]
A catalyst was produced in the same manner as in Example 1 except that 7.4 parts of 85 mass% phosphoric acid aqueous solution was added in the preparation step, not after the precipitation step. That is, 680 parts of pure water, 101.2 parts of phosphovanadomolybdic acid, 100 parts of molybdenum trioxide, 7.4 parts of 85 mass% phosphoric acid aqueous solution, 12.8 parts of 60 mass% arsenic acid aqueous solution, and copper (II) nitrate 2.6 parts of trihydrate was dissolved, and this was heated to 95 ° C. while stirring, and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., 21.0 parts of cesium bicarbonate dissolved in 34 parts of pure water and 19.7 parts of ammonium nitrate dissolved in 34 parts of pure water were added dropwise while stirring with a rotary blade stirrer. After the salt was precipitated, the mixture was stirred for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を、実施例1と同様に賦型し、熱処理することで、触媒を製造した。得られた触媒の元素組成は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was shaped in the same manner as in Example 1 and heat treated to produce a catalyst. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例2〕
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム3.1部、60質量%ヒ酸水溶液7.5部および硝酸銅(II)3水和物1.5部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水20部に溶解した重炭酸セシウム12.4部および純水20部に溶解した硝酸アンモニウム11.6部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。この溶液に85質量%リン酸水溶液7.3部を滴下し、さらに15分攪拌した。
[Example 2]
In 400 parts of pure water, 100 parts of molybdenum trioxide, 3.1 parts of ammonium metavanadate, 7.5 parts of 60% by weight aqueous arsenic acid solution and 1.5 parts of copper (II) nitrate trihydrate were dissolved. The temperature was raised to 95 ° C. while stirring, and the mixture was stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., 12.4 parts of cesium bicarbonate dissolved in 20 parts of pure water and 11.6 parts of ammonium nitrate dissolved in 20 parts of pure water were added dropwise while stirring with a rotary blade stirrer, and the heteropolyacid After the salt was precipitated, the mixture was stirred for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure. To this solution, 7.3 parts of an 85 mass% phosphoric acid aqueous solution was dropped, and the mixture was further stirred for 15 minutes.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を、実施例1と同様に賦型し、熱処理することで、触媒を製造した。得られた触媒の元素組成は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was shaped in the same manner as in Example 1 and heat treated to produce a catalyst. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔比較例2〕
85質量%リン酸水溶液7.3部を、析出工程後ではなく調製工程で添加した以外は、実施例2と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
[Comparative Example 2]
A catalyst was produced in the same manner as in Example 2 except that 7.3 parts of 85 mass% phosphoric acid aqueous solution was added in the preparation step, not after the precipitation step. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例3〕
メタバナジン酸アンモニウム3.1部を五酸化バナジウム2.4部に変更した以外は、実施例2と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 3
A catalyst was prepared in the same manner as in Example 2 except that 3.1 parts of ammonium metavanadate was changed to 2.4 parts of vanadium pentoxide. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔比較例3〕
85質量%リン酸水溶液7.3部を、析出工程後ではなく調製工程で添加した以外は、実施例3と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
[Comparative Example 3]
A catalyst was produced in the same manner as in Example 3 except that 7.3 parts of 85 mass% phosphoric acid aqueous solution was added in the preparation step, not after the precipitation step. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例4〕
純水340部に、リンバナドモリブデン酸101.2部、三酸化モリブデン100部および60質量%ヒ酸水溶液12.8部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水34部に溶解した硝酸セシウム21.1部を添加した。続いて、液温を70℃に昇温し、アンモニア水61.7部を加えてヘテロポリ酸塩を析出させた後、70℃で30分間攪拌した。析出したヘテロポリ酸塩はドーソン型構造を有していた。この溶液に85質量%リン酸水溶液7.4部を滴下し、さらに15分攪拌して硝酸銅(II)3水和物2.6部を加えた。
Example 4
In 340 parts of pure water, 101.2 parts of phosphovanadomolybdic acid, 100 parts of molybdenum trioxide and 12.8 parts of 60% by mass aqueous arsenic acid solution were dissolved, and the temperature was raised to 95 ° C. while stirring. The mixture was stirred for 3 hours while maintaining at 95 ° C. After cooling to 50 ° C., 21.1 parts of cesium nitrate dissolved in 34 parts of pure water was added while stirring with a rotary blade stirrer. Subsequently, the liquid temperature was raised to 70 ° C., 61.7 parts of aqueous ammonia was added to precipitate the heteropolyacid salt, and the mixture was stirred at 70 ° C. for 30 minutes. The precipitated heteropolyacid salt had a Dawson type structure. 7.4 parts of 85 mass% phosphoric acid aqueous solution was dripped at this solution, and also it stirred for 15 minutes, and added 2.6 parts of copper (II) nitrate trihydrate.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)はドーソン型構造を有していた。この乾燥物を130℃で16時間さらに乾燥させた後、加圧成型により賦型した。得られた賦型品を空気流通下に380℃で5時間熱処理した。得られた触媒の元素組成は次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Dawson type structure. The dried product was further dried at 130 ° C. for 16 hours, and then shaped by pressure molding. The obtained shaped product was heat-treated at 380 ° C. for 5 hours under air flow. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例5〕
純水200部に、三酸化モリブデン100部、メタバナジン酸アンモニウム6.1部、60質量%ヒ酸水溶液11.0部、硝酸セリウム(III)六水和物7.5部および硝酸銅(II)3水和物3.4部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水22部に溶解した重炭酸セシウム13.5部、純水6.0部に溶解した硝酸ルビジウム3.1部および純水16部に溶解した炭酸アンモニウム7.2部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。この溶液に85質量%リン酸水溶液4.0部を滴下し、さらに15分攪拌した。
Example 5
200 parts of pure water, 100 parts of molybdenum trioxide, 6.1 parts of ammonium metavanadate, 11.0 parts of 60% by weight aqueous arsenic acid solution, 7.5 parts of cerium (III) nitrate hexahydrate and copper (II) nitrate 3.4 parts of the trihydrate was dissolved, heated to 95 ° C. while stirring, and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., stirring with a rotary blade stirrer, 13.5 parts of cesium bicarbonate dissolved in 22 parts of pure water, 3.1 parts of rubidium nitrate dissolved in 6.0 parts of pure water, and pure water 16 After 7.2 parts of ammonium carbonate dissolved in the part was added dropwise to precipitate the heteropolyacid salt, the mixture was stirred for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure. To this solution, 4.0 parts of an 85 mass% phosphoric acid aqueous solution was added dropwise, and the mixture was further stirred for 15 minutes.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を、実施例1と同様に賦型し、熱処理することで、触媒を製造した。得られた触媒の元素組成は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was shaped in the same manner as in Example 1 and heat treated to produce a catalyst. The elemental composition of the obtained catalyst was as follows.

Mo120.90.6As0.8Ce0.3Cu0.24Cs1.2Rb0.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.9 P 0.6 As 0.8 Ce 0.3 Cu 0.24 Cs 1.2 Rb 0.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔比較例4〕
85質量%リン酸水溶液4.0部を、析出工程後ではなく調製工程で添加した以外は、実施例5と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
[Comparative Example 4]
A catalyst was produced in the same manner as in Example 5, except that 4.0 parts of an 85 mass% phosphoric acid aqueous solution was added in the preparation step, not after the precipitation step. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.90.6As0.8Ce0.3Cu0.24Cs1.2Rb0.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.9 P 0.6 As 0.8 Ce 0.3 Cu 0.24 Cs 1.2 Rb 0.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例6〕
純水200部に、三酸化モリブデン100部、メタバナジン酸アンモニウム0.68部、三酸化アンチモン8.4部、硝酸コバルト(II)六水和物3.4部および硝酸銅(II)3水和物0.84部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水27部に溶解した重炭酸セシウム16.8部および純水20部に溶解した硝酸アンモニウム11.6部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。この溶液に85質量%リン酸水溶液8.7部を滴下し、さらに15分攪拌した。
Example 6
200 parts of pure water, 100 parts of molybdenum trioxide, 0.68 parts of ammonium metavanadate, 8.4 parts of antimony trioxide, 3.4 parts of cobalt (II) nitrate hexahydrate and copper (II) nitrate trihydrate 0.84 parts of the product was dissolved, the temperature was raised to 95 ° C. while stirring, and the mixture was stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., 16.8 parts of cesium bicarbonate dissolved in 27 parts of pure water and 11.6 parts of ammonium nitrate dissolved in 20 parts of pure water were added dropwise while stirring with a rotary blade stirrer, and the heteropolyacid After the salt was precipitated, the mixture was stirred for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure. To this solution, 8.7 parts of an 85 mass% phosphoric acid aqueous solution was dropped, and the mixture was further stirred for 15 minutes.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を、実施例1と同様に賦型し、熱処理することで、触媒を製造した。得られた触媒の元素組成は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was shaped in the same manner as in Example 1 and heat treated to produce a catalyst. The elemental composition of the obtained catalyst was as follows.

Mo120.11.3Sb1.0Cu0.06Co0.2Cs1.5Rb0.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.1 P 1.3 Sb 1.0 Cu 0.06 Co 0.2 Cs 1.5 Rb 0.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔比較例5〕
85質量%リン酸水溶液8.7部を、析出工程後ではなく調製工程で添加した以外は、実施例6と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
[Comparative Example 5]
A catalyst was produced in the same manner as in Example 6 except that 8.7 parts of 85 mass% phosphoric acid aqueous solution was added in the preparation step, not after the precipitation step. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.11.3Sb1.0Cu0.06Co0.2Cs1.5Rb0.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.1 P 1.3 Sb 1.0 Cu 0.06 Co 0.2 Cs 1.5 Rb 0.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例7〕
純水200部に、三酸化モリブデン100部、メタバナジン酸アンモニウム6.1部、20質量%シリカゾル(溶媒:水)10.4部および硝酸銅(II)3水和物4.2部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水11部に溶解した重炭酸セシウム6.7部および純水20部に溶解した硝酸アンモニウム11.6部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。この溶液に85質量%リン酸水溶液4.7部を滴下し、さらに15分攪拌した。
Example 7
In 200 parts of pure water, 100 parts of molybdenum trioxide, 6.1 parts of ammonium metavanadate, 10.4 parts of 20% by mass silica sol (solvent: water) and 4.2 parts of copper (II) nitrate trihydrate were dissolved. The mixture was heated to 95 ° C. while stirring, and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., while stirring with a rotary blade stirrer, 6.7 parts of cesium bicarbonate dissolved in 11 parts of pure water and 11.6 parts of ammonium nitrate dissolved in 20 parts of pure water were added dropwise to form a heteropolyacid. After the salt was precipitated, the mixture was stirred for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure. To this solution, 4.7 parts of an 85 mass% phosphoric acid aqueous solution was added dropwise, and the mixture was further stirred for 15 minutes.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を、実施例1と同様に賦型し、熱処理することで、触媒を製造した。得られた触媒の元素組成は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was shaped in the same manner as in Example 1 and heat treated to produce a catalyst. The elemental composition of the obtained catalyst was as follows.

Mo120.90.7Si0.6Cu0.3Cs0.6
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.9 P 0.7 Si 0.6 Cu 0.3 Cs 0.6
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔比較例6〕
85質量%リン酸水溶液4.7部を、析出工程後ではなく調製工程で添加した以外は、実施例7と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
[Comparative Example 6]
A catalyst was produced in the same manner as in Example 7, except that 4.7 parts of 85 mass% phosphoric acid aqueous solution was added in the preparation step, not after the precipitation step. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.90.7Si0.6Cu0.3Cs0.6
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.9 P 0.7 Si 0.6 Cu 0.3 Cs 0.6
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例8〕
純水200部に、三酸化モリブデン100部、メタバナジン酸アンモニウム7.5部、20質量%シリカゾル(溶媒:水)26.1部、硝酸鉄(III)9水和物2.3部および硝酸銅(II)3水和物4.2部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、回転翼攪拌機を用いて攪拌しながら、純水20部に溶解した重炭酸セシウム12.4部および純水20部に溶解した硝酸アンモニウム11.6部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。この溶液に85質量%リン酸水溶液11.4部を滴下し、さらに15分攪拌した。
Example 8
200 parts pure water, 100 parts molybdenum trioxide, 7.5 parts ammonium metavanadate, 26.1 parts 20% silica sol (solvent: water), 2.3 parts iron (III) nitrate nonahydrate and copper nitrate (II) 4.2 parts of the trihydrate was dissolved, heated to 95 ° C. while stirring, and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., 12.4 parts of cesium bicarbonate dissolved in 20 parts of pure water and 11.6 parts of ammonium nitrate dissolved in 20 parts of pure water were added dropwise while stirring with a rotary blade stirrer, and the heteropolyacid After the salt was precipitated, the mixture was stirred for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure. 11.4 parts of 85 mass% phosphoric acid aqueous solution was dripped at this solution, and also it stirred for 15 minutes.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を、実施例1と同様に賦型し、熱処理することで、触媒を製造した。得られた触媒の元素組成は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was shaped in the same manner as in Example 1 and heat treated to produce a catalyst. The elemental composition of the obtained catalyst was as follows.

Mo121.11.7Si1.5Cu0.3Fe0.1Cs1.1Rb0.3
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 1.1 P 1.7 Si 1.5 Cu 0.3 Fe 0.1 Cs 1.1 Rb 0.3
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔比較例7〕
85質量%リン酸水溶液11.4部を、析出工程後ではなく調製工程で添加した以外は、実施例8と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
[Comparative Example 7]
A catalyst was produced in the same manner as in Example 8, except that 11.4 parts of 85 mass% phosphoric acid aqueous solution was added in the preparation step, not after the precipitation step. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo121.11.7Si1.5Cu0.3Fe0.1Cs1.1Rb0.3
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 1.1 P 1.7 Si 1.5 Cu 0.3 Fe 0.1 Cs 1.1 Rb 0.3
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例9〕
純水200部に、三酸化モリブデン100部、メタバナジン酸アンモニウム3.1部、60質量%ヒ酸水溶液7.5部および硝酸銅(II)3水和物1.5部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。50℃まで冷却後、50℃に保ちつつ、回転翼攪拌機を用いて攪拌しながら、重炭酸セシウム12.4部を純水20部に溶解した溶液32.4部を、1分間あたり1.62部の割合で添加し、次いで純水20部に溶解した硝酸アンモニウム11.6部を滴下して、ヘテロポリ酸塩を析出させた後、15分攪拌した。析出したヘテロポリ酸塩はケギン型構造を有していた。この溶液を50℃に保ちつつ、回転翼攪拌機を用いて攪拌しながら、85質量%リン酸水溶液7.3部を滴下し、さらに15分攪拌した。30℃まで冷却後、30分間静置した。
Example 9
In 200 parts of pure water, 100 parts of molybdenum trioxide, 3.1 parts of ammonium metavanadate, 7.5 parts of 60% by weight aqueous arsenic acid solution and 1.5 parts of copper (II) nitrate trihydrate were dissolved. The temperature was raised to 95 ° C. while stirring, and the mixture was stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 50 ° C., while maintaining at 50 ° C., stirring with a rotary blade stirrer, 32.4 parts of a solution obtained by dissolving 12.4 parts of cesium bicarbonate in 20 parts of pure water was 1.62 per minute. Then, 11.6 parts of ammonium nitrate dissolved in 20 parts of pure water was added dropwise to precipitate the heteropolyacid salt, followed by stirring for 15 minutes. The precipitated heteropolyacid salt had a Keggin type structure. While maintaining this solution at 50 ° C. while stirring using a rotary blade stirrer, 7.3 parts of 85 mass% phosphoric acid aqueous solution was added dropwise, and the mixture was further stirred for 15 minutes. After cooling to 30 ° C., it was allowed to stand for 30 minutes.

得られた混合液を101℃に加熱し、攪拌しながら蒸発乾固させた。得られた乾燥物中のヘテロポリ酸(塩)は、ケギン型構造を有していた。この乾燥物を、実施例1と同様に賦型し、熱処理することで、触媒を製造した。得られた触媒の元素組成は、次の通りであった。   The resulting mixture was heated to 101 ° C. and evaporated to dryness with stirring. The heteropolyacid (salt) in the obtained dried product had a Keggin type structure. The dried product was shaped in the same manner as in Example 1 and heat treated to produce a catalyst. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例10〕
析出工程の水性スラリー冷却温度を30℃に変更し、リン添加工程までの水性スラリー温度を30℃に維持することに変更した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 10
A catalyst was produced in the same manner as in Example 9, except that the aqueous slurry cooling temperature in the precipitation step was changed to 30 ° C and the aqueous slurry temperature until the phosphorus addition step was changed to 30 ° C. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例11〕
析出工程の水性スラリー冷却温度を70℃に変更し、リン添加工程までの水性スラリー温度を70℃に維持することに変更した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 11
A catalyst was produced in the same manner as in Example 9, except that the aqueous slurry cooling temperature in the precipitation step was changed to 70 ° C and the aqueous slurry temperature until the phosphorus addition step was maintained at 70 ° C. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例12〕
析出工程において添加する溶液を、重炭酸セシウム16.8部を純水27部に溶解した溶液43.8部に変更し、それを1分間あたり0.876部の割合で添加した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 12
Implementation was performed except that the solution added in the precipitation step was changed to 43.8 parts of a solution obtained by dissolving 16.8 parts of cesium bicarbonate in 27 parts of pure water and added at a rate of 0.876 parts per minute. A catalyst was prepared as in Example 9. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例13〕
析出工程において添加する溶液を、重炭酸セシウム16.8部を純水27部に溶解した溶液43.8部に変更し、それを1分間あたり26.3部の割合で添加した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 13
Implementation was performed except that the solution added in the precipitation step was changed to 43.8 parts of a solution obtained by dissolving 16.8 parts of cesium bicarbonate in 27 parts of pure water and added at a rate of 26.3 parts per minute. A catalyst was prepared as in Example 9. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例14〕
85質量%リン酸水溶液7.3部を純水20部に溶解して滴下することに変更した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 14
A catalyst was produced in the same manner as in Example 9 except that 7.3 parts of 85 mass% phosphoric acid aqueous solution was dissolved in 20 parts of pure water and dropped. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例15〕
85質量%リン酸水溶液7.3部を純水100部に溶解して滴下することに変更した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 15
A catalyst was produced in the same manner as in Example 9, except that 7.3 parts of an 85 mass% phosphoric acid aqueous solution was dissolved in 100 parts of pure water and dropped. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例16〕
30℃に冷却後の静置時間を2日間に変更した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 16
A catalyst was produced in the same manner as in Example 9, except that the standing time after cooling to 30 ° C was changed to 2 days. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

〔実施例17〕
30℃に冷却後の静置時間を7日間に変更した以外は、実施例9と同様にして、触媒を製造した。なお、析出工程で析出したヘテロポリ酸塩はケギン型構造を有しており、乾燥工程で得られた乾燥物中のヘテロポリ酸(塩)はケギン型構造を有していた。得られた触媒の元素組成は、次の通りであった。
Example 17
A catalyst was produced in the same manner as in Example 9 except that the standing time after cooling to 30 ° C was changed to 7 days. In addition, the heteropolyacid salt precipitated in the precipitation step had a Keggin type structure, and the heteropolyacid (salt) in the dried product obtained in the drying step had a Keggin type structure. The elemental composition of the obtained catalyst was as follows.

Mo120.451.1As0.55Cu0.11Cs1.1
この触媒を用いた以外は、実施例1と同様にしてメタクリル酸の製造を行い、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。
Mo 12 V 0.45 P 1.1 As 0.55 Cu 0.11 Cs 1.1
Except for using this catalyst, methacrylic acid was produced in the same manner as in Example 1, and the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid were determined. The results are shown in Table 1.

Figure 0005659490
Figure 0005659490

以上の結果から、ヘテロポリ酸塩を析出させた後、リン原料を添加し、続いて、乾燥物中のヘテロポリ酸(塩)がケギン型構造を有する実施例1〜3および5〜17では、いずれもメタクリル酸の選択率が増加し、かつ高い収率でメタクリル酸を製造することができた。一方、ヘテロポリ酸塩を析出させる前に、リン原料を添加した比較例1〜7では、いずれもメタクリル酸の選択率が低下していた。また、ヘテロポリ酸塩を析出させた後、リン原料を添加したが、乾燥物中のヘテロポリ酸(塩)がドーソン型構造を有する実施例4では、メタクリル酸の選択率が増加したが、触媒活性が低下していた。   From the above results, after depositing the heteropolyacid salt, the phosphorus raw material was added, and then in Examples 1 to 3 and 5 to 17 in which the heteropolyacid (salt) in the dried product has a Keggin-type structure, Also, the selectivity of methacrylic acid was increased, and methacrylic acid could be produced with a high yield. On the other hand, in Comparative Examples 1 to 7 in which the phosphorus raw material was added before the heteropolyacid salt was precipitated, the selectivity for methacrylic acid was lowered. In addition, the phosphorus raw material was added after the heteropolyacid salt was precipitated, but in Example 4 where the heteropolyacid (salt) in the dried product had a Dawson-type structure, the selectivity of methacrylic acid increased, but the catalytic activity Had fallen.

本発明のメタクリル酸製造用触媒は、メタクリル酸の選択率が高く、メタクリル酸の製造に有用である。   The catalyst for producing methacrylic acid of the present invention has high selectivity for methacrylic acid and is useful for producing methacrylic acid.

Claims (6)

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、リン元素、モリブデン元素、X元素(ケイ素、チタン、ゲルマニウム、ヒ素、アンチモンおよびセリウムからなる群より選ばれた少なくとも1種類の元素)およびアルカリ金属元素を含む触媒の製造方法であって、
(i)水中に少なくともモリブデン原料およびX元素の原料を添加して、ヘテロポリ酸を含む水性スラリーまたは水溶液を調製する工程と、
(ii)前記水性スラリーまたは水溶液にアルカリ金属化合物を添加して、前記ヘテロポリ酸の少なくとも一部がアルカリ金属塩になったヘテロポリ酸塩を析出させる工程と、
(iii)前記ヘテロポリ酸塩が析出している水性スラリーまたは水溶液に、正リン酸、五酸化リンおよびリン酸アンモニウムからなる群から選択される少なくとも一種であるリン原料を添加する工程と、
(iv)全ての原料を含む水性スラリーまたは水溶液を乾燥して、乾燥物を得る工程と、
(v)前記乾燥物を熱処理する工程と
を有することを特徴とするメタクリル酸製造用触媒の製造方法。
Phosphorus element, molybdenum element, X element (selected from the group consisting of silicon, titanium, germanium, arsenic, antimony and cerium) used in the production of methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen A method for producing a catalyst comprising at least one element) and an alkali metal element,
(I) adding at least a molybdenum raw material and an X element raw material in water to prepare an aqueous slurry or aqueous solution containing a heteropolyacid;
(Ii) adding an alkali metal compound to the aqueous slurry or aqueous solution to precipitate a heteropolyacid salt in which at least a part of the heteropolyacid is an alkali metal salt;
(Iii) adding a phosphorus raw material that is at least one selected from the group consisting of normal phosphoric acid, phosphorus pentoxide and ammonium phosphate to the aqueous slurry or aqueous solution in which the heteropolyacid salt is deposited;
(Iv) drying an aqueous slurry or aqueous solution containing all raw materials to obtain a dried product;
(V) A method for producing a catalyst for producing methacrylic acid, comprising a step of heat-treating the dried product.
(前記工程(i)で使用する原料の合計質量):(前記工程(i)で使用する水の質量)が、1:0.5〜1:15であることを特徴とする請求項1に記載のメタクリル酸製造用触媒の製造方法。   The total mass of the raw materials used in the step (i): (the mass of water used in the step (i)) is 1: 0.5 to 1:15. The manufacturing method of the catalyst for methacrylic acid manufacture of description. 前記工程(ii)で析出させる前記ヘテロポリ酸塩が、ケギン型構造を有することを特徴とする請求項1または2に記載のメタクリル酸製造用触媒の製造方法。   The method for producing a methacrylic acid production catalyst according to claim 1 or 2, wherein the heteropolyacid salt precipitated in the step (ii) has a Keggin type structure. 前記乾燥物中のヘテロポリ酸およびヘテロポリ酸塩が、ケギン型構造を有することを特徴とする請求項1〜3のいずれかに記載のメタクリル酸製造用触媒の製造方法。   The method for producing a methacrylic acid production catalyst according to any one of claims 1 to 3, wherein the heteropolyacid and the heteropolyacid salt in the dried product have a Keggin type structure. 前記乾燥物を賦型し、得られた賦型品を熱処理することを特徴とする請求項1〜4のいずれかに記載のメタクリル酸製造用触媒の製造方法。   The method for producing a catalyst for methacrylic acid production according to any one of claims 1 to 4, wherein the dried product is shaped, and the obtained shaped product is heat-treated. 請求項1〜5のいずれかに記載のメタクリル酸製造用触媒の製造方法により、メタクリル酸製造用触媒を製造し、該触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。 A methacrylic acid production catalyst is produced by the method for producing a methacrylic acid production catalyst according to any one of claims 1 to 5 , and methacrolein is vapor-phase catalytically oxidized with molecular oxygen using the catalyst to produce methacrylic acid. A process for producing methacrylic acid.
JP2009537338A 2008-07-29 2009-07-29 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid Active JP5659490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009537338A JP5659490B2 (en) 2008-07-29 2009-07-29 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008194759 2008-07-29
JP2008194759 2008-07-29
JP2009119753 2009-05-18
JP2009119753 2009-05-18
PCT/JP2009/063499 WO2010013749A1 (en) 2008-07-29 2009-07-29 Catalyst for methacrylic acid production, process for producing same, and process for producing methacrylic acid
JP2009537338A JP5659490B2 (en) 2008-07-29 2009-07-29 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPWO2010013749A1 JPWO2010013749A1 (en) 2012-01-12
JP5659490B2 true JP5659490B2 (en) 2015-01-28

Family

ID=41610448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009537338A Active JP5659490B2 (en) 2008-07-29 2009-07-29 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Country Status (4)

Country Link
JP (1) JP5659490B2 (en)
KR (1) KR101593723B1 (en)
CN (1) CN102105223B (en)
WO (1) WO2010013749A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626583B2 (en) * 2010-01-28 2014-11-19 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5424914B2 (en) * 2010-01-28 2014-02-26 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5842378B2 (en) * 2011-04-28 2016-01-13 三菱レイヨン株式会社 Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP5838613B2 (en) * 2011-06-27 2016-01-06 三菱レイヨン株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5915894B2 (en) * 2012-03-16 2016-05-11 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
JP5915895B2 (en) * 2012-03-16 2016-05-11 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
JP6837749B2 (en) * 2015-03-09 2021-03-03 日本化薬株式会社 Catalyst for methacrylic acid production
MY190906A (en) * 2016-12-12 2022-05-18 Mitsubishi Chem Corp Method for producing catalyst precursor for producing ?, b-unsaturated carboxylic acid, method for producing catalyst for producing ?, ?-unsaturated carboxylic acid, method for producing ?, ?-unsaturated carboxylic acid, and method for producing ?, ?-unsaturated carboxylic acid ester
JP7006477B2 (en) * 2018-04-18 2022-02-10 三菱ケミカル株式会社 A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid.
JP7031737B2 (en) * 2018-04-26 2022-03-08 三菱ケミカル株式会社 A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and a methacrylic acid ester.
CN111545228B (en) * 2020-05-29 2023-05-23 烟台大学 Microwave-assisted aging heteropolyacid salt/cerium oxide composite catalyst and preparation method thereof
CN113893879B (en) * 2021-11-04 2024-02-06 淄博市翔力致高新材料有限责任公司 Heteropoly acid catalyst and preparation method and application thereof
CN114797982A (en) * 2022-05-26 2022-07-29 中国科学技术大学 Catalyst for preparing methacrylic acid by isobutane one-step method, and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732734A (en) * 1980-08-05 1982-02-22 Standard Oil Co Metachlorine oxidation catalyst and its use
JPH081005A (en) * 1994-06-22 1996-01-09 Sumitomo Chem Co Ltd Production of catalyst for production of mathacrylic acid
JPH09183748A (en) * 1995-10-31 1997-07-15 Sun Co Inc R & M Conversion of alkane to unsaturated carboxylid acid
JP2001104793A (en) * 1999-08-17 2001-04-17 Rohm & Haas Co Heteropoly acid/polyoxomethalate catalyst
JP2001114726A (en) * 1999-10-12 2001-04-24 Nippon Shokubai Co Ltd Production process for methacrylic acid
JP2004008834A (en) * 2002-06-03 2004-01-15 Mitsubishi Rayon Co Ltd Method for producing catalyst for use in manufacturing methacrylic acid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733344B2 (en) 1986-12-06 1995-04-12 旭化成工業株式会社 Method for producing methacrylic acid and / or methacrolein
JPH085820B2 (en) 1988-04-05 1996-01-24 旭化成工業株式会社 Method for producing methacrylic acid and / or methacrolein
JPH047037A (en) 1990-04-23 1992-01-10 Mitsubishi Rayon Co Ltd Preparation of catalyst for manufacturing methacrylic acid
JP4856579B2 (en) * 2007-04-26 2012-01-18 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4943289B2 (en) * 2007-10-19 2012-05-30 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732734A (en) * 1980-08-05 1982-02-22 Standard Oil Co Metachlorine oxidation catalyst and its use
JPH081005A (en) * 1994-06-22 1996-01-09 Sumitomo Chem Co Ltd Production of catalyst for production of mathacrylic acid
JPH09183748A (en) * 1995-10-31 1997-07-15 Sun Co Inc R & M Conversion of alkane to unsaturated carboxylid acid
JP2001104793A (en) * 1999-08-17 2001-04-17 Rohm & Haas Co Heteropoly acid/polyoxomethalate catalyst
JP2001114726A (en) * 1999-10-12 2001-04-24 Nippon Shokubai Co Ltd Production process for methacrylic acid
JP2004008834A (en) * 2002-06-03 2004-01-15 Mitsubishi Rayon Co Ltd Method for producing catalyst for use in manufacturing methacrylic acid

Also Published As

Publication number Publication date
JPWO2010013749A1 (en) 2012-01-12
KR20110044266A (en) 2011-04-28
WO2010013749A1 (en) 2010-02-04
CN102105223A (en) 2011-06-22
KR101593723B1 (en) 2016-02-12
CN102105223B (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5659490B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4856579B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP6414343B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid and methacrylic acid ester
WO2004004900A1 (en) Process for producing catalysts for the production of methacrylic acid
JP5915895B2 (en) Method for producing a catalyst for methacrylic acid production
JP5915894B2 (en) Method for producing a catalyst for methacrylic acid production
JP5838613B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5789917B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5626583B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5424914B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4943289B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5362370B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5593605B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP4601420B2 (en) Method for producing a catalyst for methacrylic acid production
JP5691252B2 (en) Method for producing heteropolyacid catalyst for production of methacrylic acid, and method for producing methacrylic acid
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
CN110944747B (en) Catalyst precursor for production of methacrylic acid, acrylic acid and esters thereof, and method for production of catalyst
JP4846397B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5609396B2 (en) Catalyst for methacrylic acid production
JP5821379B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2012236186A (en) Method of producing catalyst for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5659490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250