JP5658872B2 - Ignition device for spark ignition internal combustion engine - Google Patents

Ignition device for spark ignition internal combustion engine Download PDF

Info

Publication number
JP5658872B2
JP5658872B2 JP2009255843A JP2009255843A JP5658872B2 JP 5658872 B2 JP5658872 B2 JP 5658872B2 JP 2009255843 A JP2009255843 A JP 2009255843A JP 2009255843 A JP2009255843 A JP 2009255843A JP 5658872 B2 JP5658872 B2 JP 5658872B2
Authority
JP
Japan
Prior art keywords
ignition
electric field
spark
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009255843A
Other languages
Japanese (ja)
Other versions
JP2011099410A (en
Inventor
毅 芹澤
毅 芹澤
宏朗 尾井
宏朗 尾井
文雄 奥村
文雄 奥村
義之 福村
義之 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Diamond Electric Manufacturing Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Diamond Electric Manufacturing Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2009255843A priority Critical patent/JP5658872B2/en
Publication of JP2011099410A publication Critical patent/JP2011099410A/en
Application granted granted Critical
Publication of JP5658872B2 publication Critical patent/JP5658872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Description

本発明は、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させてプラズマを生成して混合気に着火する火花点火式内燃機関の点火装置に関するものである。   The present invention relates to an ignition device for a spark ignition type internal combustion engine that generates plasma by reacting an electric field generated in a combustion chamber with a spark discharge by an ignition plug to ignite an air-fuel mixture.

従来、車両、特には自動車に搭載される火花点火式内燃機関においては、点火プラグの中心電極と接地電極との間の火花放電により、点火時期毎に燃焼室内の混合気に着火している。このような点火プラグによる着火にあって、例えば燃料を直接気筒内に噴射する型式の内燃機関において、噴射した燃料を点火プラグの火花放電の位置に分布させないと、着火しないことが希に生じる。   2. Description of the Related Art Conventionally, in a spark ignition internal combustion engine mounted on a vehicle, particularly an automobile, an air-fuel mixture in a combustion chamber is ignited at each ignition timing by spark discharge between a center electrode and a ground electrode of a spark plug. In such ignition by an ignition plug, for example, in an internal combustion engine of a type in which fuel is directly injected into a cylinder, if the injected fuel is not distributed at the spark discharge position of the ignition plug, it rarely occurs.

このため、このような内燃機関では、点火プラグの火花放電を補うために、例えば特許文献1に記載のもののように、点火プラグの放電領域にプラズマ雰囲気を生成しておき、プラズマ雰囲気中にアーク放電を行うことにより、従来に比べて高い電圧を印加することなく燃焼室内の混合気に確実に着火し、安定した火炎を得ることができるように構成したものが知られている。   For this reason, in such an internal combustion engine, a plasma atmosphere is generated in the discharge region of the spark plug, for example, as described in Patent Document 1, in order to compensate for the spark discharge of the spark plug, and an arc is generated in the plasma atmosphere. It is known that the discharge is performed to surely ignite the air-fuel mixture in the combustion chamber without applying a higher voltage than in the past and to obtain a stable flame.

特開2007‐32349号公報JP 2007-32349 A

ところで、プラズマ雰囲気と火花放電とを組み合わせて混合気を着火する場合に、上記特許文献1に記載のもののような特殊な電極構造の点火プラグを用いることなしに、現状広く使用されている、中心電極と接地電極とを有する点火プラグにより、同様な着火を実現させることが試みられている。この場合、点火プラグの中心電極に、プラズマ雰囲気を生成するための例えば高周波電圧を印加するために、高周波電源を電気的に接続するとともに、火花放電が起こるように点火コイルを電気的に接続する。   By the way, when the air-fuel mixture is ignited by combining the plasma atmosphere and the spark discharge, the center is widely used at present without using a spark plug having a special electrode structure such as that described in Patent Document 1. Attempts have been made to achieve similar ignition by means of a spark plug having an electrode and a ground electrode. In this case, in order to apply, for example, a high-frequency voltage for generating a plasma atmosphere to the center electrode of the spark plug, a high-frequency power source is electrically connected and an ignition coil is electrically connected so that spark discharge occurs. .

しかしながら、このような構成のものであると、火花放電時の点火コイルに発生する高電圧による電流が、中心電極を介して高周波電源に印加されることになり、高周波電源内において、その高電圧により高周波電源が電磁雑音を発生させることがあった。そして、そのような電磁雑音は、内燃機関に取り付けてある電磁式センサや、内燃機関の運転状態を制御する電子制御装置に悪影響を与えることがあった。   However, with such a configuration, a high-voltage current generated in the ignition coil at the time of spark discharge is applied to the high-frequency power supply via the center electrode, and the high-voltage power supply in the high-frequency power supply As a result, the high frequency power supply may generate electromagnetic noise. Such electromagnetic noise may adversely affect an electromagnetic sensor attached to the internal combustion engine and an electronic control device that controls the operating state of the internal combustion engine.

そこで本発明は、このような不具合を解消することを目的としている。   Therefore, the present invention aims to eliminate such problems.

すなわち、本発明の火花点火式内燃機関の点火装置は、火花点火式内燃機関の点火プラグに電気的に接続されて高電圧を点火プラグに印加する点火コイルと、点火プラグに電気的に接続されて燃焼室内に電界を生成する電界発生回路とを備えてなる火花点火式内燃機関の点火装置であって、火花点火式内燃機関は、高電圧により点火プラグに生じる火花放電と生成された電界とを反応させてプラズマを生成して混合気に着火するものであって、点火コイルに火花放電のための高電圧が生じた際に、電界発生回路を点火コイルに対して電気的にほぼ絶縁状態に保持する絶縁保持手段を備えており、絶縁保持手段が、点火コイルを点火プラグに接続する信号ライン経由で点火コイル電界発生回路との間を流れようとする電流の向きに対し逆方向に配置されるダイオードを用いてなり、電界発生回路が交流電圧を発生させる交流電圧発生回路であり、前記ダイオードがその交流電圧を整流して点火プラグに印加するべき脈流電圧を生成することを特徴とする。 That is, the ignition device for a spark ignition type internal combustion engine according to the present invention is electrically connected to an ignition plug of the spark ignition type internal combustion engine and applies a high voltage to the ignition plug, and is electrically connected to the ignition plug. An ignition device for a spark ignition internal combustion engine comprising an electric field generation circuit for generating an electric field in a combustion chamber, wherein the spark ignition internal combustion engine includes a spark discharge generated in a spark plug by a high voltage, a generated electric field, To generate plasma and ignite the air-fuel mixture. When a high voltage for spark discharge is generated in the ignition coil, the electric field generation circuit is electrically insulated from the ignition coil. held in includes an insulating holding means, the insulating holding means, opposite direction to the direction of current tends to flow between the ignition coil and the electric field generator to the ignition coil via a signal line to be connected to the spark plug Ri Na using placed the diode, an AC voltage generating circuit field generating circuit generates an AC voltage, to generate a pulsating voltage to the diode is applied to the spark plug by rectifying the AC voltage Features.

このような構成によれば、点火コイルに火花放電のための高電圧が生じた際に、絶縁保持手段が電界発生回路をほぼ絶縁状態に保持するので、火花放電のための高電圧が電界発生回路に侵入することを妨げる。これにより、電界発生回路に高電圧が侵入することで生じる電磁妨害(EMI)を抑制することが可能になる。   According to such a configuration, when a high voltage for spark discharge is generated in the ignition coil, the insulation holding means holds the electric field generation circuit in a substantially insulated state, so that the high voltage for spark discharge generates the electric field. Prevent entry into the circuit. As a result, it is possible to suppress electromagnetic interference (EMI) caused by the high voltage entering the electric field generating circuit.

また、本発明の火花点火式内燃機関の点火装置は、火花点火式内燃機関の点火プラグに電気的に接続されて高電圧を点火プラグに印加する点火コイルと、点火プラグに電気的に接続されて燃焼室内に電界を生成する電界発生回路とを備えてなる火花点火式内燃機関の点火装置であって、火花点火式内燃機関は、高電圧により点火プラグに生じる火花放電と生成された電界とを反応させてプラズマを生成して混合気に着火するものであって、点火コイルに火花放電のための高電圧が生じた際に、電界発生回路を点火コイルに対して電気的にほぼ絶縁状態に保持する絶縁保持手段を備えており、絶縁保持手段が、点火コイルを点火プラグに接続する信号ライン経由で点火コイルと電界発生回路との間を流れようとする電流の向きに対し逆方向に配置されるダイオードを用いてなり、前記信号ラインと前記電界発生回路との間、前記電界発生回路と内燃機関の金属部分に接続するグランドラインとの間にそれぞれ前記ダイオードを設けていることを特徴とする。 The spark ignition internal combustion engine ignition device of the present invention is electrically connected to an ignition plug of the spark ignition internal combustion engine to apply a high voltage to the spark plug, and is electrically connected to the spark plug. An ignition device for a spark ignition internal combustion engine comprising an electric field generation circuit for generating an electric field in a combustion chamber, wherein the spark ignition internal combustion engine includes a spark discharge generated in a spark plug by a high voltage, a generated electric field, To generate plasma and ignite the air-fuel mixture. When a high voltage for spark discharge is generated in the ignition coil, the electric field generation circuit is electrically insulated from the ignition coil. Insulating holding means is held in a direction opposite to the direction of current flowing between the ignition coil and the electric field generating circuit via a signal line connecting the ignition coil to the ignition plug. Arrangement It using the diodes is, between the field generator and the signal line, and characterized in that each provided with the diode between the ground line to be connected to the metal portion of the field generator and the internal combustion engine you.

電界発生回路は、点火プラグに対して交流電圧を印加する交流電圧発生回路、及び同じく点火プラグに脈流電圧を印加する脈流電圧発生回路などが挙げられる。交流電圧発生回路が出力する交流は、約200kHz〜500MHzの周波数で、約3kVp‐p〜10kVp‐pの電圧のものが好ましい。   Examples of the electric field generating circuit include an AC voltage generating circuit that applies an AC voltage to the spark plug, and a pulsating voltage generating circuit that also applies a pulsating voltage to the spark plug. The AC output from the AC voltage generation circuit is preferably about 200 kHz to 500 MHz and about 3 kVp-p to 10 kVp-p.

脈流電圧発生回路は、周期的に電圧が変化する直流電圧を発生させるものであればよく、その直流電圧の波形は任意であってよい。すなわち、本願における脈流電圧は、0ボルトを含む基準となる電圧から、一定周期で一定電圧まで変化するパルス電圧や、一定周期で順次増減する電圧まで変化する、例えば交流電圧を半波整流したような波形の直流電圧、さらには交流に直流バイアスをかけた直流電圧などを含むものである。この場合において、一定周期は、上述の周波数に対応するものであってよい。なお、波形は、正弦波、鋸歯状波、三角波などであってもよい。   The pulsating voltage generation circuit may be any circuit that generates a DC voltage whose voltage periodically changes, and the waveform of the DC voltage may be arbitrary. That is, the pulsating voltage in the present application changes from a reference voltage including 0 volt to a pulse voltage that changes to a constant voltage at a constant cycle or a voltage that increases or decreases sequentially at a fixed cycle, for example, AC voltage is half-wave rectified. Such a DC voltage having such a waveform, and a DC voltage obtained by applying a DC bias to the AC are included. In this case, the fixed period may correspond to the above-described frequency. The waveform may be a sine wave, a sawtooth wave, a triangular wave, or the like.

本発明は、以上説明したような構成であり、点火コイルに火花放電のための高電圧が生じた際に、絶縁保持手段が電界発生回路をほぼ絶縁状態に保持するので、火花放電のための高電圧が電界発生回路に侵入することを防ぐことができ、電界発生回路に高電圧が侵入することで生じる電磁妨害(EMI)を抑制することができる。   The present invention is configured as described above, and when a high voltage for spark discharge is generated in the ignition coil, the insulation holding means holds the electric field generation circuit in a substantially insulated state. High voltage can be prevented from entering the electric field generating circuit, and electromagnetic interference (EMI) caused by the high voltage entering the electric field generating circuit can be suppressed.

本発明の実施形態の構成を示すブロック図。The block diagram which shows the structure of embodiment of this invention. 同実施形態の電界生成回路の構成を示すブロック図。The block diagram which shows the structure of the electric field generation circuit of the embodiment. 同実施形態のHブリッジ回路の回路図。The circuit diagram of the H bridge circuit of the embodiment.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

火花点火式内燃機関(以下、エンジンと称する)100は、例えば3気筒のもので、各気筒の燃焼室の内部に面して取り付けられる点火プラグ1を備えている。エンジン100自体は、この分野でよく知られている構成のものであり、その構造の説明は割愛する。   A spark ignition internal combustion engine (hereinafter referred to as an engine) 100 is, for example, a three-cylinder engine, and includes a spark plug 1 that is attached facing the inside of a combustion chamber of each cylinder. The engine 100 itself has a structure well known in this field, and the description of the structure is omitted.

中心電極2と接地電極3とを有してなる点火プラグ1には、点火装置4が電気的に接続される。点火装置4は、イグナイタ5と点火コイル6とミキサ7と電界生成回路8と、絶縁保護手段である第一ダイオード9及び第二ダイオード10とを備えている。イグナイタ5は、エンジン100の運転を制御するための図示しない電子制御装置から出力される点火タイミング信号を受けて、点火コイル6に対して点火パルス信号を出力する。点火コイル6は、一次側巻線と二次側巻線とを備えて、イグナイタ5からの点火パルス信号により二次側巻線に負の高圧パルス電圧を発生させる。イグナイタ5及び点火コイル6は、この分野でよく知られている構成のものであってよい。ミキサ7は、点火コイル6の二次側巻線に接続されるとともに、第一ダイオード9に接続され、点火コイル6の高圧パルス電圧を点火プラグ1の中心電極2に伝達するとともに、電界生成回路8が出力する高圧交流を整流した脈流を中心電極2に伝達する。   An ignition device 4 is electrically connected to a spark plug 1 having a center electrode 2 and a ground electrode 3. The ignition device 4 includes an igniter 5, an ignition coil 6, a mixer 7, an electric field generation circuit 8, and a first diode 9 and a second diode 10 which are insulation protection means. The igniter 5 receives an ignition timing signal output from an electronic control device (not shown) for controlling the operation of the engine 100 and outputs an ignition pulse signal to the ignition coil 6. The ignition coil 6 includes a primary side winding and a secondary side winding, and generates a negative high voltage pulse voltage in the secondary side winding by an ignition pulse signal from the igniter 5. The igniter 5 and the ignition coil 6 may have a structure well known in this field. The mixer 7 is connected to the secondary winding of the ignition coil 6 and is connected to the first diode 9 to transmit the high-voltage pulse voltage of the ignition coil 6 to the center electrode 2 of the ignition plug 1 and an electric field generation circuit. A pulsating flow obtained by rectifying the high-voltage alternating current output by the power 8 is transmitted to the center electrode 2.

電界生成回路8は、バッテリ11を電源として、低圧直流を高圧交流に変換する回路であって、バッテリ11の電圧例えば約12V(ボルト)を例えば約300V〜500Vに昇圧するDC‐DCコンバータ12と、DC‐DCコンバータ12が出力する直流を交流にするHブリッジ回路13と、Hブリッジ回路13が出力する交流をさらに高電圧に昇圧する昇圧トランス14とを備えている。Hブリッジ回路13は、直流を、周波数が約200kHz〜500MHz、好ましくは100MHzの交流に変化させる。さらに昇圧トランス44により構成である昇圧トランスは、一次側巻線と二次側巻線との巻線比が例えば1:10で、DC‐DCコンバータ12の出力を約3kVp‐p〜10kVp‐pに昇圧する。   The electric field generation circuit 8 is a circuit that converts a low-voltage direct current into a high-voltage alternating current using the battery 11 as a power source, and a DC-DC converter 12 that boosts the voltage of the battery 11, for example, about 12 V (volts) to about 300 V to 500 V, for example. The H-bridge circuit 13 that converts the direct current output from the DC-DC converter 12 to alternating current, and the step-up transformer 14 that further boosts the alternating current output from the H-bridge circuit 13 to a higher voltage. The H bridge circuit 13 changes the direct current to an alternating current having a frequency of about 200 kHz to 500 MHz, preferably 100 MHz. Further, the step-up transformer constituted by the step-up transformer 44 has a turn ratio of the primary side winding and the secondary side winding of, for example, 1:10, and the output of the DC-DC converter 12 is about 3 kVp-p to 10 kVp-p. Boost to.

第一ダイオード9は、そのカソードが昇圧トランス14の二次側巻線の信号ライン15、つまりグランドライン16に接続されていない二次側巻線の端部に接続され、そのアノードがミキサ7に接続される。すなわち、点火コイル6に火花放電のための負の高圧パルス電圧が生じた際に、その負の高圧パルス電圧による電流の向きに対して逆方向になるように、第一ダイオード9を信号ライン15に接続している。第一ダイオード9の逆方向降伏電圧は、負の高圧パルス電圧を上回る電圧に設定する。   The first diode 9 has its cathode connected to the signal line 15 of the secondary winding of the step-up transformer 14, that is, the end of the secondary winding not connected to the ground line 16, and its anode connected to the mixer 7. Connected. That is, when a negative high voltage pulse voltage for spark discharge is generated in the ignition coil 6, the first diode 9 is connected to the signal line 15 so as to be opposite to the direction of the current due to the negative high voltage pulse voltage. Connected to. The reverse breakdown voltage of the first diode 9 is set to a voltage exceeding the negative high voltage pulse voltage.

第二ダイオード10は、そのアノードが昇圧トランス14の二次側巻線のグランドライン16に接続され、そのカソードがグランド17すなわちエンジン100の金属部分に接続される。すなわち、第一ダイオード9と同様に、点火コイル6に火花放電のための負の高圧パルス電圧が生じた際に、その負の高圧パルス電圧による電流の向き対して逆方向になるように、第二ダイオード10をグランドライン16に接続している。この第二ダイオード10は、第一ダイオード9と同じ電気特性のものであってよい。   The second diode 10 has an anode connected to the ground line 16 of the secondary winding of the step-up transformer 14 and a cathode connected to the ground 17, that is, a metal portion of the engine 100. That is, similarly to the first diode 9, when a negative high voltage pulse voltage for spark discharge is generated in the ignition coil 6, the first direction is such that the direction of the current due to the negative high voltage pulse voltage is opposite. The two diodes 10 are connected to the ground line 16. The second diode 10 may have the same electrical characteristics as the first diode 9.

このような構成において、点火に際しては、点火プラグ1に点火コイル6からの負の高圧パルス電圧により火花放電を発生させて、火花放電開始とほぼ同時あるいは火花放電開始直後あるいは火花放電開始直前に電界生成回路8から出力される高圧交流を第一及び第二ダイオード9、10で整流した脈流により、中心電極2と接地電極3との周辺に電界を発生させ、火花放電と電界とを反応させて中心電極2と接地電極3との間隙18を含む空間にプラズマを生成させることにより、燃焼室内の混合気を急速に燃焼させる構成である。なお、火花放電開始直後とは、遅くとも火花放電を構成する誘導放電の開始時が好ましい。   In such a configuration, at the time of ignition, a spark discharge is generated in the spark plug 1 by the negative high voltage pulse voltage from the ignition coil 6, and an electric field is generated almost simultaneously with the start of the spark discharge or immediately after the start of the spark discharge or immediately before the start of the spark discharge. An electric field is generated around the center electrode 2 and the ground electrode 3 by a pulsating current rectified by the first and second diodes 9 and 10 from the high-voltage alternating current output from the generation circuit 8 to cause the spark discharge and the electric field to react. Thus, the air-fuel mixture in the combustion chamber is rapidly burned by generating plasma in a space including the gap 18 between the center electrode 2 and the ground electrode 3. It should be noted that “immediately after the start of spark discharge” is preferably at the start of induction discharge constituting the spark discharge at the latest.

具体的には、点火プラグ1による火花放電が電界中でプラズマになり、当該プラズマにて混合気に着火を行うことで火炎伝播燃焼の始まりとなる火炎核が火花放電のみの点火に比べて大きくなるとともに燃焼室内に大量のラジカルが発生することで燃焼が促進される。   Specifically, the spark discharge generated by the spark plug 1 becomes plasma in an electric field, and the flame nucleus at the beginning of flame propagation combustion is larger than ignition by only spark discharge by igniting the mixture with the plasma. In addition, combustion is promoted by generating a large amount of radicals in the combustion chamber.

これは、火花放電による電子の流れ及び火花放電によって生じたイオンやラジカルが、電界の影響を受け振動、蛇行することで行路長が長くなり、周囲の水分子や窒素分子と衝突する回数が飛躍的に増加することによるものである。イオンやラジカルの衝突を受けた水分子や窒素分子は、OHラジカルやNラジカルになると共に、イオンやラジカルの衝突を受けた周囲の気体は電離した状態、言換するとプラズマ状態となることで、飛躍的に混合気への着火領域が大きくなり、火炎伝播燃焼の始まりとなる火炎核も大きくなるものである。   This is because the flow of electrons due to the spark discharge and the ions and radicals generated by the spark discharge are vibrated and meandered by the influence of the electric field, resulting in a longer path length and a dramatic increase in the number of collisions with surrounding water and nitrogen molecules. This is due to the increase. Water molecules and nitrogen molecules that have been struck by ions and radicals become OH radicals and N radicals, and the surrounding gas that has been struck by ions and radicals is ionized, in other words, a plasma state. The ignition region for the air-fuel mixture dramatically increases, and the flame kernel that starts the flame propagation combustion also increases.

この結果、火花放電と電界とが反応し発生したプラズマにより混合気に着火するため、着火領域が拡大し、点火プラグ1のみの二次元的な着火から三次元的な着火になる。したがって、初期燃焼が安定し、上述したラジカルの増加に伴って燃焼が燃焼室内に急速に伝播し、高い燃焼速度で燃焼が拡大する。   As a result, the air-fuel mixture is ignited by the plasma generated by the reaction between the spark discharge and the electric field, so that the ignition region is expanded and the two-dimensional ignition of only the spark plug 1 is changed to the three-dimensional ignition. Therefore, the initial combustion is stabilized, the combustion rapidly propagates into the combustion chamber with the increase of the radicals described above, and the combustion expands at a high combustion rate.

このようにして点火を実行する、すなわち点火コイル6に火花放電のための負の高圧パルス電圧が生じた際に、点火コイル6からミキサ7を介して負の高圧パルス電圧による電流が電界生成回路8に侵入しようとするが、第一ダイオード9が点火コイル6の信号ライン19に対して、負の高圧パルス電圧による電流の向きに対して逆方向に接続してあるので、電界発生回路8は点火コイル6に対して電気的にほぼ絶縁状態に保持される。同様にして、第二ダイオード10が、点火プラグ1において火花放電が生じた際に、グランド17を介して負の高圧パルス電圧による電流が電界生成回路8に流れるのを阻止することで、グランド17側においても同様に、電界生成回路8を点火コイル6に対して電気的にほぼ絶縁状態に保持する。   In this way, when ignition is performed, that is, when a negative high voltage pulse voltage for spark discharge is generated in the ignition coil 6, a current due to the negative high voltage pulse voltage is generated from the ignition coil 6 via the mixer 7. 8, the first diode 9 is connected to the signal line 19 of the ignition coil 6 in a direction opposite to the direction of the current due to the negative high voltage pulse voltage. The ignition coil 6 is kept electrically insulated. Similarly, the second diode 10 prevents the current due to the negative high voltage pulse voltage from flowing to the electric field generation circuit 8 via the ground 17 when a spark discharge occurs in the spark plug 1, thereby causing the ground 17. Similarly, the electric field generating circuit 8 is kept electrically insulated from the ignition coil 6 on the side.

したがって、このような火花放電により発生する電流が電界生成回路8の昇圧トランス14の二次側巻線に流れた場合には、昇圧トランス14によりその電流が増幅されて、電磁妨害を生じるが、その電流が電界生成回路8に侵入することを第一ダイオード9及び第二ダイオード10により遮断ことができる。このようにして、電磁妨害を未然に防ぐことで、エンジン100を制御する電子制御装置の動作や、エンジン100に装着されている各種の電磁センサの動作が不安定になることを防止することができる。   Therefore, when a current generated by such a spark discharge flows to the secondary winding of the step-up transformer 14 of the electric field generation circuit 8, the current is amplified by the step-up transformer 14 to cause electromagnetic interference. The first diode 9 and the second diode 10 can block the current from entering the electric field generation circuit 8. By preventing electromagnetic interference in this way, it is possible to prevent the operation of the electronic control device that controls the engine 100 and the operations of various electromagnetic sensors mounted on the engine 100 from becoming unstable. it can.

なお、本発明は、上述の実施形態に限定されるものではない。   In addition, this invention is not limited to the above-mentioned embodiment.

上述の実施形態にあっては、火花放電のために点火コイル6の二次側巻線に負の高圧パルス電圧が発生するものを説明したが、正の高圧パルス電圧が発生するものであってもよい。この場合、第一ダイオード及び第二ダイオードの接続方向は、上述の実施形態のものと反対方向になることはいうまでもない。   In the above-described embodiment, the case where the negative high voltage pulse voltage is generated in the secondary winding of the ignition coil 6 due to the spark discharge has been described. However, the positive high voltage pulse voltage is generated. Also good. In this case, it goes without saying that the connection direction of the first diode and the second diode is opposite to that in the above-described embodiment.

上述の実施形態の電界生成回路としては、脈流を発生させる回路を使用するものであってもよい。つまり、点火プラグに交流を印加する代わりに、パルス電圧などの脈流電圧を印加することにより、点火プラグの中心電極と接地電極間に電界を生成するものである。脈流発生回路は、上述の実施形態のものと同様に、バッテリから供給される直流をDC?DCコンバータで昇圧し、高圧の直流を所定周期で断続することにより脈流とし、その脈流を昇圧トランスにより昇圧して一対の電極に印加する構成である。脈流発生装置の場合、Hブリッジ回路に代えて周期的にオン・オフするスイッチング回路を用いる。このような脈流発生回路を使用することによっても、中心電極と接地電極間に電界を生成することができる。   As the electric field generation circuit of the above-described embodiment, a circuit that generates a pulsating flow may be used. That is, instead of applying an alternating current to the spark plug, a pulsating voltage such as a pulse voltage is applied to generate an electric field between the center electrode and the ground electrode of the spark plug. In the pulsating flow generation circuit, the direct current supplied from the battery is DC? The voltage is boosted by a DC converter, and a pulsating flow is generated by intermittently applying a high-voltage direct current at a predetermined cycle. In the case of a pulsating flow generator, a switching circuit that is periodically turned on and off is used instead of the H-bridge circuit. By using such a pulsating flow generation circuit, an electric field can be generated between the center electrode and the ground electrode.

また、電圧生成回路は、高周波発振器に上述の昇圧トランス14を接続して構成するものであってもよい。高周波発振器の発振周波数は、上述の実施形態にて説明したものと同等であってよい。   The voltage generation circuit may be configured by connecting the step-up transformer 14 to a high-frequency oscillator. The oscillation frequency of the high frequency oscillator may be equivalent to that described in the above embodiment.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の活用例として、ガソリンや液化天然ガスを燃料として点火プラグによる火花放電を着火に必要とする火花点火式内燃機関に活用することができる。   As an application example of the present invention, it can be used for a spark ignition type internal combustion engine that uses gasoline or liquefied natural gas as fuel and requires spark discharge by an ignition plug for ignition.

1…点火プラグ
6…点火コイル
8…電界生成回路
9…第一ダイオード
10…第二ダイオード
DESCRIPTION OF SYMBOLS 1 ... Spark plug 6 ... Ignition coil 8 ... Electric field generation circuit 9 ... 1st diode 10 ... 2nd diode

Claims (2)

火花点火式内燃機関の点火プラグに電気的に接続されて高電圧を点火プラグに印加する点火コイルと、点火プラグに電気的に接続されて燃焼室内に電界を生成する電界発生回路とを備えてなる火花点火式内燃機関の点火装置であって、火花点火式内燃機関は、高電圧により点火プラグに生じる火花放電と生成された電界とを反応させてプラズマを生成して混合気に着火するものであって、
点火コイルに火花放電のための高電圧が生じた際に、電界発生回路を点火コイルに対して電気的にほぼ絶縁状態に保持する絶縁保持手段を備えており、
絶縁保持手段が、点火コイルを点火プラグに接続する信号ライン経由で点火コイル電界発生回路との間を流れようとする電流の向きに対し逆方向に配置されるダイオードを用いてなり、
電界発生回路が交流電圧を発生させる交流電圧発生回路であり、前記ダイオードがその交流電圧を整流して点火プラグに印加するべき脈流電圧を生成する火花点火式内燃機関の点火装置。
An ignition coil that is electrically connected to an ignition plug of a spark ignition internal combustion engine and applies a high voltage to the ignition plug, and an electric field generation circuit that is electrically connected to the ignition plug and generates an electric field in the combustion chamber. An ignition device for a spark ignition internal combustion engine, wherein the spark ignition internal combustion engine generates a plasma by reacting a spark discharge generated in a spark plug with a high voltage and a generated electric field to ignite an air-fuel mixture Because
When a high voltage for spark discharge is generated in the ignition coil, the electric field generating circuit is provided with an insulating holding means that holds the electric field generating circuit in an electrically insulated state with respect to the ignition coil.
Insulating holding means Ri Na by using a diode which is arranged in the opposite direction to the direction of the current tends to flow between the ignition coil and the electric field generating circuit via a signal line connecting the ignition coil to the spark plug,
An ignition device for a spark ignition type internal combustion engine , wherein an electric field generation circuit is an AC voltage generation circuit for generating an AC voltage, and the diode rectifies the AC voltage to generate a pulsating voltage to be applied to a spark plug .
火花点火式内燃機関の点火プラグに電気的に接続されて高電圧を点火プラグに印加する点火コイルと、点火プラグに電気的に接続されて燃焼室内に電界を生成する電界発生回路とを備えてなる火花点火式内燃機関の点火装置であって、火花点火式内燃機関は、高電圧により点火プラグに生じる火花放電と生成された電界とを反応させてプラズマを生成して混合気に着火するものであって、
点火コイルに火花放電のための高電圧が生じた際に、電界発生回路を点火コイルに対して電気的にほぼ絶縁状態に保持する絶縁保持手段を備えており、
絶縁保持手段が、点火コイルを点火プラグに接続する信号ライン経由で点火コイルと電界発生回路との間を流れようとする電流の向きに対し逆方向に配置されるダイオードを用いてなり、
前記信号ラインと前記電界発生回路との間、前記電界発生回路と内燃機関の金属部分に接続するグランドラインとの間にそれぞれ前記ダイオードを設けている火花点火式内燃機関の点火装置。
An ignition coil that is electrically connected to an ignition plug of a spark ignition internal combustion engine and applies a high voltage to the ignition plug, and an electric field generation circuit that is electrically connected to the ignition plug and generates an electric field in the combustion chamber. An ignition device for a spark ignition internal combustion engine, wherein the spark ignition internal combustion engine generates a plasma by reacting a spark discharge generated in a spark plug with a high voltage and a generated electric field to ignite an air-fuel mixture Because
When a high voltage for spark discharge is generated in the ignition coil, the electric field generating circuit is provided with an insulating holding means that holds the electric field generating circuit in an electrically insulated state with respect to the ignition coil.
The insulation holding means uses a diode arranged in a direction opposite to the direction of the current to flow between the ignition coil and the electric field generating circuit via a signal line connecting the ignition coil to the ignition plug;
An ignition device for a spark ignition type internal combustion engine, wherein the diode is provided between the signal line and the electric field generation circuit, and between the electric field generation circuit and a ground line connected to a metal portion of the internal combustion engine.
JP2009255843A 2009-11-09 2009-11-09 Ignition device for spark ignition internal combustion engine Expired - Fee Related JP5658872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255843A JP5658872B2 (en) 2009-11-09 2009-11-09 Ignition device for spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255843A JP5658872B2 (en) 2009-11-09 2009-11-09 Ignition device for spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011099410A JP2011099410A (en) 2011-05-19
JP5658872B2 true JP5658872B2 (en) 2015-01-28

Family

ID=44190781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255843A Expired - Fee Related JP5658872B2 (en) 2009-11-09 2009-11-09 Ignition device for spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP5658872B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002427A (en) * 2011-06-21 2013-01-07 Diamond Electric Mfg Co Ltd High frequency igniter
JP5936101B2 (en) * 2011-08-17 2016-06-15 日本特殊陶業株式会社 Ignition system and control method thereof
JP5873709B2 (en) * 2011-08-22 2016-03-01 株式会社日本自動車部品総合研究所 High-frequency plasma generation system and high-frequency plasma ignition device using the same.
JP2013053562A (en) * 2011-09-05 2013-03-21 Diamond Electric Mfg Co Ltd High-frequency ignition device
JP5469229B1 (en) 2012-10-26 2014-04-16 三菱電機株式会社 Ignition coil device for high frequency discharge
JP5658729B2 (en) * 2012-11-29 2015-01-28 日本特殊陶業株式会社 Ignition system
JP5805125B2 (en) 2013-03-18 2015-11-04 三菱電機株式会社 Ignition device
JP5535363B1 (en) * 2013-04-16 2014-07-02 三菱電機株式会社 Ignition coil device for high frequency discharge and high frequency discharge ignition device
JP2014211148A (en) 2013-04-22 2014-11-13 三菱電機株式会社 Ignition system
JP5859060B2 (en) 2014-05-08 2016-02-10 三菱電機株式会社 Control device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934566A (en) * 1974-08-12 1976-01-27 Ward Michael A V Combustion in an internal combustion engine
JPS5799272A (en) * 1980-12-11 1982-06-19 Nissan Motor Co Ltd Plasma ignition device
US4996967A (en) * 1989-11-21 1991-03-05 Cummins Engine Company, Inc. Apparatus and method for generating a highly conductive channel for the flow of plasma current
WO2009008518A1 (en) * 2007-07-12 2009-01-15 Imagineering, Inc. Ignition or plasma generation device

Also Published As

Publication number Publication date
JP2011099410A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5658872B2 (en) Ignition device for spark ignition internal combustion engine
WO2011001548A1 (en) Method for controlling spark-ignition internal combustion engine and spark plug
JP5255682B2 (en) Ignition device
JP2015187415A (en) internal combustion engine
JP2011007163A (en) Spark-ignition internal combustion engine
JP5283576B2 (en) Operation control method for spark ignition internal combustion engine
JP5936101B2 (en) Ignition system and control method thereof
JP2013160216A (en) Ignition apparatus
JP5593081B2 (en) Ignition device for spark ignition internal combustion engine
JP5794814B2 (en) Spark ignition internal combustion engine
JP2013182718A (en) Ignition plug
JP5787532B2 (en) Spark ignition control method for spark ignition internal combustion engine
JP5681425B2 (en) Spark ignition method for internal combustion engine
JP2010249029A (en) Spark ignition type internal combustion engine
JP5584484B2 (en) Control method for spark ignition internal combustion engine
JP5800508B2 (en) Spark ignition control method for spark ignition internal combustion engine
JP5208062B2 (en) Control method for spark ignition internal combustion engine
JP2010144618A (en) Plasma ignition device
JP2011007162A (en) Method for controlling spark-ignition internal combustion engine
JP2012067707A (en) Spark ignition method of internal combustion engine
JP6218622B2 (en) Internal combustion engine
JP2012154217A (en) Ignition device of spark-ignition internal combustion engine
JP6218623B2 (en) Internal combustion engine
JP2010101212A (en) Ignition device for internal combustion engine
JP6057799B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5658872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees