JP2010101212A - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
JP2010101212A
JP2010101212A JP2008271681A JP2008271681A JP2010101212A JP 2010101212 A JP2010101212 A JP 2010101212A JP 2008271681 A JP2008271681 A JP 2008271681A JP 2008271681 A JP2008271681 A JP 2008271681A JP 2010101212 A JP2010101212 A JP 2010101212A
Authority
JP
Japan
Prior art keywords
discharge
ignition
internal combustion
combustion engine
ignition device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271681A
Other languages
Japanese (ja)
Inventor
Naoki Shimada
直樹 島田
Kokichi Yamada
康吉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP2008271681A priority Critical patent/JP2010101212A/en
Publication of JP2010101212A publication Critical patent/JP2010101212A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely ignite in a lean burn engine, even if "blow off phenomenon" occurs by adapting a general self-excited thyristor series inverter type multiple spark ignition device to an internal combustion engine for an automobile. <P>SOLUTION: In this self-excited thyristor series inverter type ignition device I for the internal combustion engine making a thyristor series inverter circuit self-excited using an ignition coil as a load, and generating multiple spark discharge in a gap g of discharge electrodes 29a, 29b of a spark plug at high voltage generated on the secondary side of the ignition coil, multiple spark discharge is generated in the gap g of the discharge electrodes 29a, 29b by driving with a direct current power source, and the spark discharge is started upon receipt of ignition signal S1 from an engine computer with a first trigger element 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、サイリスタ直列インバータ回路をイグニションコイルを負荷として自励発振させ、該イグニションコイルの2次側に発生する高電圧で点火プラグの放電電極の間隙に複数の火花放電を飛ばす自励サイリスタ直列インバータ式の内燃機関用点火装置に関するものである。   The present invention is a self-excited thyristor series in which a thyristor series inverter circuit is self-excited by using an ignition coil as a load, and a plurality of spark discharges are blown into a gap between discharge electrodes of a spark plug with a high voltage generated on the secondary side of the ignition coil. The present invention relates to an inverter type ignition device for an internal combustion engine.

近年、車両搭載の内燃機関として、空燃比を極めて薄く設定した、いわゆる希薄燃焼エンジン(リーンバーンエンジン)が採用されつつある。しかし、この種のエンジンは着火効率が余り良くないため、点火装置には高エネルギ型のものが必要になる。そこで、従来からも、古典的な電流遮断原理により発生する点火コイル2次側出力にDC−DCコンバータの高圧出力を重畳する、重ね放電型点火装置が提案されている(例えば、特許文献1参照)。
特開平8−68372号公報
In recent years, so-called lean burn engines (lean burn engines) in which the air-fuel ratio is set to be extremely thin are being adopted as internal combustion engines mounted on vehicles. However, since this type of engine is not very efficient in ignition, a high energy type ignition device is required. In view of this, a multi-discharge ignition device has been proposed in which the high-voltage output of the DC-DC converter is superimposed on the secondary output of the ignition coil generated by the classic current interruption principle (see, for example, Patent Document 1). ).
JP-A-8-68372

すなわち、点火コイルの1次電流を遮断することでその2次側に発生する数kVの高圧電圧により、点火プラグの放電電極の間隙に放電破壊を起こして点火コイルの2次側から放電電流を流し始めた後に、当該放電状態を維持し得る放電維持電圧値以上の直流電圧(普通、500V程度以上)を別途に設けた昇圧回路によって保ちながら、当該昇圧回路からの出力電流を点火コイル放電電流に加算的に重畳する。事実、このような方式によると、点火プラグに比較的長い時間に亘り大きな放電エネルギを得ることができるため、燃料への着火性が向上し、ひいては燃費も向上する。   That is, by interrupting the primary current of the ignition coil, a high voltage of several kV generated on the secondary side thereof causes a discharge breakdown in the gap between the discharge electrodes of the spark plug so that the discharge current is generated from the secondary side of the ignition coil. After starting to flow, while maintaining a DC voltage (usually about 500 V or more) higher than the discharge sustaining voltage value capable of maintaining the discharge state by the separately provided booster circuit, the output current from the booster circuit is the ignition coil discharge current. Are additively superimposed. In fact, according to such a system, a large amount of discharge energy can be obtained in the spark plug for a relatively long time, so that the ignitability of the fuel is improved and, consequently, the fuel efficiency is also improved.

内燃機関の各気筒燃焼室内での燃焼は、点火プラグに放電火花が飛んだときから、初期燃焼、中期燃焼、主燃焼へと順次移行するが、中期燃焼に移行すると、火炎伝播により燃焼室内で急激な気流の変化が起こり、DC−DCコンバータによって重ね放電電流を供給しているにもかかわらず、点火プラグの放電電極の間隙間にて生じていた放電火花が吹き消される、いわゆる“吹き消え現象”が生ずることがある。このような吹き消え現象が生ずると、放電は予定の持続時間まで延長されることなく、中断され、所期の燃焼エネルギが得られない。   Combustion in each cylinder combustion chamber of an internal combustion engine proceeds from initial discharge sparks to the spark plug to initial combustion, medium-term combustion, and main combustion. A sudden change in airflow occurs and the discharge spark generated in the gap between the discharge electrodes of the spark plug is blown out, despite the fact that the overlap discharge current is supplied by the DC-DC converter. "Phenomenon" may occur. When such a blow-out phenomenon occurs, the discharge is interrupted without being extended to a predetermined duration, and the intended combustion energy cannot be obtained.

そこで、以上のような課題を解決するために、高速繰り返し放電方式を採用し、万一、“吹き消え現象”が生じたとしても、その後も放電を繰り返すことにより、再放電を可能とすることが考えられる。   Therefore, in order to solve the above problems, a high-speed repetitive discharge method is adopted, and even if a “blown-out phenomenon” occurs, it is possible to re-discharge by repeating the discharge thereafter. Can be considered.

高速繰り返し放電を得る手段としては、石油などを燃料とする外燃機関用の点火装置として一般的な、自励サイリスタ直列インバータ式複数火花点火装置が知られている。   As a means for obtaining high-speed repetitive discharge, a self-excited thyristor series inverter type multiple spark ignition device, which is general as an ignition device for an external combustion engine using oil or the like as a fuel, is known.

図2は従来の自励サイリスタ直列インバータ式複数火花点火装置の概略構成図である。   FIG. 2 is a schematic configuration diagram of a conventional self-excited thyristor series inverter type multiple spark ignition device.

この図2を用いて、従来の自励サイリスタ直列インバータ式複数火花点火装置の動作について説明する。   The operation of the conventional self-excited thyristor series inverter type multiple spark ignition device will be described with reference to FIG.

自励サイリスタ直列インバータ式点火装置I1は、商用電源などの高圧交流電源100の1端子100aから抵抗2、抵抗7を介して交流の半サイクル期間でコンデンサ14を充電する。このコンデンサ14の充電電圧がトリガ素子13の閾値電圧(ブレークオーバ電圧)に達すると、このトリガ素子13が導通し、抵抗9を介して、当該コンデンサ14の共振電荷をサイリスタ6のゲートに放出し、トリガ電流として流す。   The self-excited thyristor series inverter ignition device I1 charges the capacitor 14 from one terminal 100a of a high-voltage AC power source 100 such as a commercial power source through a resistor 2 and a resistor 7 in a half cycle period of AC. When the charging voltage of the capacitor 14 reaches the threshold voltage (breakover voltage) of the trigger element 13, the trigger element 13 becomes conductive, and the resonance charge of the capacitor 14 is discharged to the gate of the thyristor 6 through the resistor 9. And let it flow as a trigger current.

上記トリガ電流が流れると、共振インダクタ5、サイリスタ6、共振コンデンサ8、電源他端子100bの経路で共振コンデンサ8が充電される。この充電電流は、共振インダクタ5、共振コンデンサ8の共振により振動し、充電電流が反転するときにサイリスタ6の電流が逆方向となることでオフとなる。すると、共振コンデンサ8の充電電荷は、イグニションコイルの1次巻線21を介して放電され、2次巻線23に高電圧が発生し、放電電極29a、29bの間隙gに火花放電を起こす。   When the trigger current flows, the resonant capacitor 8 is charged through the path of the resonant inductor 5, the thyristor 6, the resonant capacitor 8, and the power supply other terminal 100b. This charging current oscillates due to resonance of the resonant inductor 5 and the resonant capacitor 8 and turns off when the current of the thyristor 6 is reversed when the charging current is reversed. Then, the charged charge of the resonant capacitor 8 is discharged through the primary winding 21 of the ignition coil, a high voltage is generated in the secondary winding 23, and a spark discharge is caused in the gap g between the discharge electrodes 29a and 29b.

同時に、イグニションコイルの帰還巻線22には、1次巻線に関して図示の+、−の極性で電圧が発生するが、このときには、抵抗16を介して、ツェナダイオード18で短絡されており、サイリスタ6のゲートには、影響を及ぼさない。   At the same time, a voltage is generated in the return winding 22 of the ignition coil with the + and-polarities shown in the drawing with respect to the primary winding. At this time, the voltage is short-circuited by the Zener diode 18 via the resistor 16 and is connected to the thyristor. The gate 6 is not affected.

次に、共振コンデンサ8と1次巻線21との共振により、共振電流が反転して図示のように1次巻線に(+)、(−)の極性で電圧が発生すると、このときにも2次巻線23に高電圧が発生し、点火プラグの放電電極29a、29bの間隙gに火花放電が起きると同時に、帰還巻線22にも図示の(+)、(−)の極性で電圧が発生し、ダイオード11、コンデンサ15、抵抗16の経路で、コンデンサ15を充電する。そして、帰還巻線22の電圧が零となると、これまでに蓄積されたコンデンサ15の充電電荷が抵抗9を介して、サイリスタ6のゲートに流入し、サイリスタ6をターンオンさせる。以下、この動作が繰り返されていく。   Next, due to resonance between the resonant capacitor 8 and the primary winding 21, the resonance current is inverted, and a voltage is generated in the primary winding with (+) and (−) polarity as shown in the figure. In addition, a high voltage is generated in the secondary winding 23, and a spark discharge is generated in the gap g between the discharge electrodes 29a and 29b of the spark plug. At the same time, the feedback winding 22 is also shown in the (+) and (-) polarity. A voltage is generated, and the capacitor 15 is charged through the path of the diode 11, the capacitor 15, and the resistor 16. When the voltage of the feedback winding 22 becomes zero, the charge stored in the capacitor 15 accumulated so far flows into the gate of the thyristor 6 through the resistor 9 and turns on the thyristor 6. Thereafter, this operation is repeated.

上記従来例の自励サイリスタ直列インバータ式複数火花点火装置は、商用交流電源を電源としており、放電は、電源周波数に同期し、電源電圧がトリガ素子13の閾値電圧に相当する電圧以上の場合で行われ、一旦放電が始まれば、電源が存在する限り電源と同期して間欠的に継続されることになる。   The above-described conventional self-excited thyristor series inverter type multiple spark ignition device uses a commercial AC power supply as a power supply, and discharge is synchronized with the power supply frequency when the power supply voltage is equal to or higher than the voltage corresponding to the threshold voltage of the trigger element 13. Once the discharge is started, it will continue intermittently in synchronism with the power source as long as the power source exists.

一方、自動車用内燃機関の電源は直流電源であり、また点火の開始は、エンジンコンピュータ等により、正確に計算された時期が必要であり、放電持続時間も一般的には数ms程度と短い。このため、上記従来の自励サイリスタ直列インバータ式点火装置I1を自動車用内燃機関に適用して、希薄燃焼エンジンにおいて“吹き消え現象”が生じても確実に点火させるようにしようとしても、その適用が困難なのが現状であった。   On the other hand, the power source of the internal combustion engine for automobiles is a DC power source, and the start of ignition requires a time accurately calculated by an engine computer or the like, and the discharge duration is generally as short as several ms. For this reason, the conventional self-excited thyristor series inverter ignition device I1 is applied to an internal combustion engine for automobiles, and even if an attempt is made to ignite reliably even if a “blown-off phenomenon” occurs in a lean combustion engine, the application thereof The current situation is difficult.

この発明は上記に鑑み提案されたもので、一般的な自励サイリスタ直列インバータ式複数火花点火装置を、自動車用内燃機関に適合させ、希薄燃焼エンジンにおいて“吹き消え現象”が生じても確実に点火させることができるようにした内燃機関用点火装置を提供することを目的とする。   The present invention has been proposed in view of the above, and a general self-excited thyristor series inverter type multiple spark ignition device is adapted to an internal combustion engine for an automobile so that even if a “blown-off phenomenon” occurs in a lean combustion engine, it is ensured. An object of the present invention is to provide an ignition device for an internal combustion engine that can be ignited.

上記目的を達成するために、請求項1に記載の発明は、サイリスタ直列インバータ回路をイグニションコイルを負荷として自励発振させ、該イグニションコイルの2次側に発生する高電圧で点火プラグの放電電極の間隙に複数の火花放電を飛ばす自励サイリスタ直列インバータ式の内燃機関用点火装置において、直流電源で駆動して放電電極の間隙に複数の火花放電を行わせると共に、その火花放電は、エンジンコンピュータからの点火信号を第1のトリガ素子が受けて開始する、ことを特徴としている。   In order to achieve the above object, according to the present invention, a thyristor series inverter circuit is self-excitedly oscillated with an ignition coil as a load, and a discharge electrode of a spark plug is generated with a high voltage generated on the secondary side of the ignition coil. In a self-excited thyristor series inverter type internal combustion engine ignition device that blows a plurality of spark discharges in a gap between the two, a spark source is driven by a DC power source to cause a plurality of spark discharges in the gap between the discharge electrodes. The first trigger element receives the ignition signal from the first trigger element and starts.

請求項2に記載の発明は、上記した請求項1に記載の発明において、上記火花放電は、エンジンコンピュータからの停止信号を第2のトリガ素子が受けて停止するようにしたものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the spark discharge is such that the second trigger element receives a stop signal from the engine computer and stops.

この発明の内燃機関用点火装置は、サイリスタ直列インバータ回路を直流電源で駆動させ、火花放電は、エンジンコンピュータからの点火信号を第1のトリガ素子が受けて開始し、停止信号を第2のトリガ素子が受けて停止するようにしたので、放電電極の間隙に高速繰り返し放電を行わせることができ、その放電中の吹き消え現象が起こりにくく点火を着火性の良いものとすることができる。   In the ignition device for an internal combustion engine according to the present invention, the thyristor series inverter circuit is driven by a DC power source, and spark discharge is started when the first trigger element receives the ignition signal from the engine computer, and the stop signal is sent to the second trigger. Since the element is received and stopped, high-speed repetitive discharge can be performed in the gap between the discharge electrodes, and the blow-off phenomenon during the discharge hardly occurs, so that ignition can be performed with good ignitability.

以下にこの発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1はこの発明の内燃機関用点火装置の概略構成図である。図1中、従来例の図2と同一の構成要素には同一の符号を付してある。   FIG. 1 is a schematic configuration diagram of an ignition device for an internal combustion engine according to the present invention. In FIG. 1, the same components as those in FIG. 2 of the conventional example are denoted by the same reference numerals.

図1が、従来例の図2と相違している点は、電源がバッテリ電源40を昇圧するDC−DCコンバータ回路1を用いて電源が直流化されていること、放電を開始させるトリガ素子13、及び放電を終了させるトリガ素子24がトリガ信号発生部30からの信号で動作する構成となっていることである。また、トリガ信号発生部30はエンジンコンピュータ(ECU)からの点火信号S1を受けて、適切な時期にトリガ信号PC1を発生させ、ECUからの停止信号S2を受けて、適切な時期にトリガ信号PC2を発生させる。   FIG. 1 differs from FIG. 2 of the conventional example in that the power source is DC using the DC-DC converter circuit 1 that boosts the battery power source 40, and the trigger element 13 that starts discharge. In addition, the trigger element 24 that terminates the discharge is configured to operate with a signal from the trigger signal generation unit 30. The trigger signal generator 30 receives the ignition signal S1 from the engine computer (ECU), generates the trigger signal PC1 at an appropriate time, receives the stop signal S2 from the ECU, and receives the trigger signal PC2 at an appropriate time. Is generated.

以下、この図1を用いて、この発明の内燃機関用点火装置Iの動作について説明する。DC−DCコンバータ回路1の1端子1aから抵抗2、抵抗7を介してコンデンサ14を充電する。コンデンサ14はトリガ素子13、抵抗9を介して、サイリスタ6のゲートに接続されており、トリガ素子13が、ECUからの点火信号S1を受けてトリガ信号発生部30から出力されたトリガ信号PC1を受けて、適切な時期に、サイリスタ6のトリガ電流を流し、ターンオンさせる構成となっている。つまり、放電開始をECUの信号により任意の時期に決定できることになる。   Hereinafter, the operation of the internal combustion engine ignition device I according to the present invention will be described with reference to FIG. The capacitor 14 is charged from one terminal 1 a of the DC-DC converter circuit 1 through the resistors 2 and 7. The capacitor 14 is connected to the gate of the thyristor 6 through the trigger element 13 and the resistor 9, and the trigger element 13 receives the ignition signal S1 from the ECU and receives the trigger signal PC1 output from the trigger signal generator 30. In response to this, the trigger current of the thyristor 6 is supplied at an appropriate time to turn it on. That is, the start of discharge can be determined at an arbitrary time based on a signal from the ECU.

尚、本実施形態の場合、後述の説明のとおり、このトリガ信号PC1は放電開始時に必要なだけで、後の放電継続には不必要のため、サイリスタ6をターンオンさせるために必要かつ十分な、短時間のパルス状とし、ターンオン以降は、オフ状態とする。   In the present embodiment, as will be described later, this trigger signal PC1 is only necessary at the start of discharge, and is not necessary for continuing the subsequent discharge, and is necessary and sufficient for turning on the thyristor 6. A short pulse is used, and after the turn-on, it is turned off.

上記トリガ電流が流れると、共振インダクタ5、サイリスタ6、共振コンデンサ8、DC−DCコンバータ回路1の他端子1bの経路で共振コンデンサ8が充電される。この充電電流は、共振インダクタ5、共振コンデンサ8の共振により振動し、充電電流が反転するときにサイリスタ6の電流が逆方向となることでオフとなる。すると、共振コンデンサ8の充電電荷は、イグニションコイルの1次巻線21を介して放電され、2次巻線23に高電圧が発生し、点火プラグの放電電極29a、29bの間隙gに火花放電を起こす。   When the trigger current flows, the resonant capacitor 8 is charged through the path of the resonant inductor 5, the thyristor 6, the resonant capacitor 8, and the other terminal 1b of the DC-DC converter circuit 1. This charging current oscillates due to resonance of the resonant inductor 5 and the resonant capacitor 8 and turns off when the current of the thyristor 6 is reversed when the charging current is reversed. Then, the charge of the resonant capacitor 8 is discharged through the primary winding 21 of the ignition coil, a high voltage is generated in the secondary winding 23, and a spark discharge is generated in the gap g between the discharge electrodes 29a and 29b of the spark plug. Wake up.

同時に、イグニションコイルの帰還巻線22には、1次巻線に関して図示の+、−の極性で電圧が発生するが、このときには、抵抗16を介して、ツェナダイオード18で短絡されており、サイリスタ6のゲートには、影響を及ぼさない。   At the same time, a voltage is generated in the feedback winding 22 of the ignition coil with the + and-polarities shown in the drawing with respect to the primary winding. The gate 6 is not affected.

次に、共振コンデンサ8と1次巻線21との共振により、共振電流が反転して図示のように1次巻線に(+)、(−)の極性で電圧が発生すると、このときにも2次巻線23に高電圧が発生し、点火プラグの放電電極29a、29bの間隙gに火花放電を起きると同時に、帰還巻線22にも図示の(+)、(−)の極性で電圧が発生し、ダイオード11、コンデンサ15、抵抗16の経路で、コンデンサ15を充電する。そして、帰還巻線22の電圧が零となると、これまでに蓄積されたコンデンサ15の充電電荷が抵抗9を介して、サイリスタ6のゲートに流入し、サイリスタ6をターンオンさせる。以下、この動作が繰り返されていく。   Next, due to resonance between the resonant capacitor 8 and the primary winding 21, the resonance current is inverted, and a voltage is generated in the primary winding with (+) and (−) polarity as shown in the figure. In addition, a high voltage is generated in the secondary winding 23, and a spark discharge is generated in the gap g between the discharge electrodes 29a and 29b of the spark plug, and at the same time, the feedback winding 22 is also shown with (+) and (-) polarity. A voltage is generated, and the capacitor 15 is charged through the path of the diode 11, the capacitor 15, and the resistor 16. When the voltage of the feedback winding 22 becomes zero, the charge stored in the capacitor 15 accumulated so far flows into the gate of the thyristor 6 through the resistor 9 and turns on the thyristor 6. Thereafter, this operation is repeated.

ここで、この発明では、電源が直流電源化されており、放電は、完全に連続的に継続されることになる。従って、放電を終了させるために、ツェナダイオード18と相対する方向に、トリガ素子24を設置する。   Here, in the present invention, the power source is a DC power source, and the discharge is continuously continued completely. Therefore, the trigger element 24 is installed in the direction opposite to the Zener diode 18 in order to end the discharge.

このトリガ素子24は、ECUからの停止信号S2を受けてトリガ信号発生部30から出力されたトリガ信号PC2を適切な時期に受け、トリガ素子24がオンすることにより、ツェナダイオード18の両端は双方向で短絡状態となる。この動作により、帰還巻線22に発生する電圧をキャンセルし、すなわち、帰還巻線22の動作を無効化することにより、前述のとおりサイリスタ6を再ターンオンさせるためのコンデンサ15への充電が行われず、放電は停止する。つまり、放電停止時期を任意に決定できることになる。   The trigger element 24 receives the stop signal S2 from the ECU and receives the trigger signal PC2 output from the trigger signal generator 30 at an appropriate time. When the trigger element 24 is turned on, both ends of the Zener diode 18 are both connected. In a short-circuit state. By this operation, the voltage generated in the feedback winding 22 is canceled, that is, by invalidating the operation of the feedback winding 22, the capacitor 15 for re-turning on the thyristor 6 is not charged as described above. The discharge stops. That is, the discharge stop timing can be arbitrarily determined.

以上述べたように、この発明の内燃機関用点火装置Iは、サイリスタ直列インバータ回路を直流電源で駆動させ、火花放電は、ECUからの点火信号S1をトリガ素子13が受けて開始し、ECUからの停止信号S2をトリガ素子24が受けて停止するようにしたので、放電電極29a、29bの間隙gに高速繰り返し放電を行わせることができ、その放電中の吹き消え現象が起こりにくく点火を着火性の良いものとすることができる。   As described above, the internal combustion engine ignition device I according to the present invention drives the thyristor series inverter circuit with a DC power source, and spark discharge starts when the trigger element 13 receives the ignition signal S1 from the ECU, Since the trigger element 24 receives the stop signal S2 and stops, the gap g between the discharge electrodes 29a and 29b can be repeatedly discharged at high speed, and the blow-off phenomenon during the discharge hardly occurs and ignition is ignited. It can be a good one.

この発明の内燃機関用点火装置の概略構成図である。It is a schematic block diagram of the ignition device for internal combustion engines of this invention. 従来の自励サイリスタ直列インバータ式複数火花点火装置の概略構成図である。It is a schematic block diagram of the conventional self-excited thyristor series inverter type multiple spark ignition device.

符号の説明Explanation of symbols

1 DC−DCコンバータ回路
1a DC−DCコンバータ回路の1端子
1b DC−DCコンバータ回路の他端子
2 抵抗
5 共振インダクタ
6 サイリスタ
7 抵抗
8 共振コンデンサ
9 抵抗
11 ダイオード
13 トリガ素子
14 コンデンサ
15 コンデンサ
16 抵抗
18 ツェナダイオード
21 1次巻線
22 帰還巻線
23 2次巻線
24 トリガ素子
29a,29b 放電電極
30 トリガ信号発生部
40 バッテリ電源
I 内燃機関用点火装置
PC1 点火用トリガ信号
PC2 停止用トリガ信号
S1 点火信号
S2 停止信号
g 放電電極の間隙
DESCRIPTION OF SYMBOLS 1 DC-DC converter circuit 1a 1 terminal of DC-DC converter circuit 1b Other terminal of DC-DC converter circuit 2 Resistance 5 Resonance inductor 6 Thyristor 7 Resistance 8 Resonance capacitor 9 Resistance 11 Diode 13 Trigger element 14 Capacitor 15 Capacitor 16 Resistance 18 Zener diode 21 Primary winding 22 Feedback winding 23 Secondary winding 24 Trigger element 29a, 29b Discharge electrode 30 Trigger signal generator 40 Battery power supply I Internal combustion engine ignition device PC1 Ignition trigger signal PC2 Stop trigger signal S1 Ignition Signal S2 Stop signal g Discharge electrode gap

Claims (2)

サイリスタ直列インバータ回路をイグニションコイルを負荷として自励発振させ、該イグニションコイルの2次側に発生する高電圧で点火プラグの放電電極の間隙に複数の火花放電を飛ばす自励サイリスタ直列インバータ式の内燃機関用点火装置において、
直流電源で駆動して放電電極の間隙に複数の火花放電を行わせると共に、その火花放電は、エンジンコンピュータからの点火信号を第1のトリガ素子が受けて開始する、
ことを特徴とする内燃機関用点火装置。
A self-excited thyristor series inverter type internal combustion engine that causes a thyristor series inverter circuit to self-oscillate using an ignition coil as a load, and causes a plurality of spark discharges to fly between the discharge electrodes of a spark plug with a high voltage generated on the secondary side of the ignition coil. In the engine ignition device,
A plurality of spark discharges are performed in the gaps between the discharge electrodes by being driven by a DC power source, and the spark discharges are started when the first trigger element receives an ignition signal from the engine computer.
An internal combustion engine ignition device.
上記火花放電は、エンジンコンピュータからの停止信号を第2のトリガ素子が受けて停止する、請求項1に記載の内燃機関用点火装置。   The ignition device for an internal combustion engine according to claim 1, wherein the spark discharge is stopped when the second trigger element receives a stop signal from the engine computer.
JP2008271681A 2008-10-22 2008-10-22 Ignition device for internal combustion engine Pending JP2010101212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271681A JP2010101212A (en) 2008-10-22 2008-10-22 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271681A JP2010101212A (en) 2008-10-22 2008-10-22 Ignition device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010101212A true JP2010101212A (en) 2010-05-06

Family

ID=42292074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271681A Pending JP2010101212A (en) 2008-10-22 2008-10-22 Ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010101212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168248A1 (en) * 2013-04-11 2014-10-16 株式会社デンソー Ignition control device for internal combustion engine
JP2014206068A (en) * 2013-04-11 2014-10-30 株式会社デンソー Ignition control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086323A (en) * 1983-10-18 1985-05-15 Hanshin Electric Co Ltd Plural spark ignition device
JPH09268963A (en) * 1996-04-03 1997-10-14 Kokusan Denki Co Ltd Capacitor discharge type ignition device for internal combustion engine
JP2001123929A (en) * 1999-10-26 2001-05-08 Kokusan Denki Co Ltd Ignition method and ignition device for internal combustion engine
JP2001140739A (en) * 1999-11-15 2001-05-22 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086323A (en) * 1983-10-18 1985-05-15 Hanshin Electric Co Ltd Plural spark ignition device
JPH09268963A (en) * 1996-04-03 1997-10-14 Kokusan Denki Co Ltd Capacitor discharge type ignition device for internal combustion engine
JP2001123929A (en) * 1999-10-26 2001-05-08 Kokusan Denki Co Ltd Ignition method and ignition device for internal combustion engine
JP2001140739A (en) * 1999-11-15 2001-05-22 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168248A1 (en) * 2013-04-11 2014-10-16 株式会社デンソー Ignition control device for internal combustion engine
JP2014206068A (en) * 2013-04-11 2014-10-30 株式会社デンソー Ignition control device
US10794354B2 (en) 2013-04-11 2020-10-06 Denso Corporation Ignition control apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4497027B2 (en) Engine ignition device
US7685999B2 (en) Ignition control device for internal combustion engine
JP5255682B2 (en) Ignition device
JP5474120B2 (en) Ignition device and ignition method for internal combustion engine
KR20150070385A (en) Plasma ignition device for internal combustion engines
JP2017190683A (en) Ignition control device and ignition control method for internal combustion engine
JP5253144B2 (en) Ignition device for internal combustion engine
JP5496297B2 (en) Ignition device for internal combustion engine
US6662792B2 (en) Capacitor discharge ignition (CDI) system
JP6773004B2 (en) Ignition system for internal combustion engine
JP2010101212A (en) Ignition device for internal combustion engine
JP2011074906A (en) Ignitor for internal combustion engine
JP5295305B2 (en) Ignition device
JP2014211148A (en) Ignition system
JP5340431B2 (en) Ignition device
JPS60178967A (en) Ignition device for internal-combustion engine
JP5601643B2 (en) Ignition device for internal combustion engine
RU2276282C2 (en) Ignition system of internal combustion engine
US10066593B2 (en) Electronic spark timing control system for an AC ignition system
JP6992170B2 (en) Ignition system for internal combustion engine
JP5610456B2 (en) Ignition device for internal combustion engine
JP2012122348A (en) Ignition device for internal combustion engine
JP2023176833A (en) Ignition device for internal combustion engine
JP5610457B1 (en) Ignition device for internal combustion engine
JP4893477B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002