JP2013053562A - High-frequency ignition device - Google Patents

High-frequency ignition device Download PDF

Info

Publication number
JP2013053562A
JP2013053562A JP2011192544A JP2011192544A JP2013053562A JP 2013053562 A JP2013053562 A JP 2013053562A JP 2011192544 A JP2011192544 A JP 2011192544A JP 2011192544 A JP2011192544 A JP 2011192544A JP 2013053562 A JP2013053562 A JP 2013053562A
Authority
JP
Japan
Prior art keywords
ignition
frequency
coil
ignition coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011192544A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Fukumura
義之 福村
Hideaki Shimakawa
英明 島川
Fumio Okumura
文雄 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2011192544A priority Critical patent/JP2013053562A/en
Publication of JP2013053562A publication Critical patent/JP2013053562A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that distortion occurs in current of the reverse direction of a diode when the current of frequency that is half-cycle longer than a reverse recovery time is caused to flow in such a configuration that the diode for back flow prevention is provided on an ignition device, wherein the reverse recovery time is defined as a time for discharging charges to be necessarily discharged before the diode blocks the reverse current when being switched from the conduction state to the shielding state.SOLUTION: A capacitor for protection which passes AC current from a high frequency ignition coil and does not pass DC current from the ignition coil is disposed on the winding starting side or/and the winding ending side of a secondary coil of a high-frequency ignition coil. Therein, in a switching element for high-frequency, the frequency of an ignition signal is set to be 100 kHz or less and, in the capacitor for protection, the breakdown voltage is set to be 30 kV or more.

Description

本発明は、内燃機関用点火装置において、高周波を用いた点火装置に関するものである。 The present invention relates to an ignition device using high frequency in an ignition device for an internal combustion engine.

従来より、内燃機関の燃費向上を実現するために、希薄混合気等による着火条件の厳しい状態で燃焼を行う必要があり、このような条件で安定した着火を行うために、従来からの点火に加えて高周波点火を付加することで着火不良を防ぐ点火装置が知られている。しかし、点火コイルに高周波点火コイルの電圧が印加される又は、高周波点火コイルに点火コイルの電圧が印加されると、所望の出力を満たせなくなる恐れがあり、さらには高周波点火コイルに点火コイルの高電圧が侵入すると電磁妨害が生じる恐れがある。このような問題を解決するために、点火コイルに火花放電のための高電圧が生じた際に、絶縁保持手段が高周波点火コイルをほぼ絶縁状態に保持することで、火花点火のための高電圧が高周波点火コイルに侵入することを防ぐものがあり、この代表的な例として、例えば特開2011−099410号公報(以下「特許文献1」)が知られている。 Conventionally, in order to improve the fuel efficiency of an internal combustion engine, it is necessary to perform combustion under severe ignition conditions such as a lean air-fuel mixture, and in order to perform stable ignition under such conditions, conventional ignition is required. In addition, an ignition device is known which prevents ignition failure by adding high-frequency ignition. However, if the voltage of the high frequency ignition coil is applied to the ignition coil or the voltage of the ignition coil is applied to the high frequency ignition coil, the desired output may not be satisfied. If voltage enters, electromagnetic interference may occur. In order to solve such a problem, when a high voltage for spark discharge is generated in the ignition coil, the insulation holding means holds the high-frequency ignition coil in a substantially insulated state, so that a high voltage for spark ignition is obtained. As a typical example, for example, Japanese Patent Application Laid-Open No. 2011-099410 (hereinafter “Patent Document 1”) is known.

上記特許文献1の点火装置の構成を示すブロック図を図6に示す。図6において、中心電極102と接地電極103とを有してなる点火プラグ101には、点火装置104が電気的に接続される。また、点火装置104は、イグナイタ105と点火コイル106とミキサ107と電界生成回路108と、絶縁保護手段である第一ダイオード109及び第二ダイオード110とを備えている。さらに、イグナイタ105は、エンジンの運転を制御するための図示しない電子制御装置から出力される点火タイミング信号を受けて、点火コイル106に対して点火パルス信号を出力する。 FIG. 6 is a block diagram showing the configuration of the ignition device disclosed in Patent Document 1. In FIG. 6, an ignition device 104 is electrically connected to a spark plug 101 having a center electrode 102 and a ground electrode 103. The ignition device 104 includes an igniter 105, an ignition coil 106, a mixer 107, an electric field generation circuit 108, and a first diode 109 and a second diode 110 that are insulation protection means. Further, the igniter 105 receives an ignition timing signal output from an electronic control device (not shown) for controlling the operation of the engine, and outputs an ignition pulse signal to the ignition coil 106.

また、点火コイル106は、一次側巻線と二次側巻線とを備えて、イグナイタ105からの点火パルス信号により二次側巻線に負の高圧パルス電圧を発生させる。さらに、イグナイタ105及び点火コイル106は、この分野でよく知られている構成のものであってよい。 The ignition coil 106 includes a primary winding and a secondary winding, and generates a negative high-voltage pulse voltage in the secondary winding by an ignition pulse signal from the igniter 105. Further, the igniter 105 and the ignition coil 106 may have structures well known in the art.

また、ミキサ107は、点火コイル106の二次側巻線に接続されるとともに、第一ダイオード109に接続され、点火コイル106の高圧パルス電圧を点火プラグ101の中心電極102に伝達するとともに、電界生成回路108が出力する高圧交流を整流した脈流を中心電極102に伝達する。さらに、電界生成回路108は、バッテリ111を電源として、低圧直流を高圧交流に変換する回路であって、バッテリ111の電圧例えば約12V(ボルト)を例えば約300V〜500Vに昇圧するDC‐DCコンバータ112と、DC‐DCコンバータ112が出力する直流を交流にするHブリッジ回路113と、Hブリッジ回路113が出力する交流をさらに高電圧に昇圧する昇圧トランス114とを備えている。 The mixer 107 is connected to the secondary winding of the ignition coil 106 and is connected to the first diode 109, and transmits the high-voltage pulse voltage of the ignition coil 106 to the center electrode 102 of the ignition plug 101, and the electric field. The pulsating flow obtained by rectifying the high-voltage alternating current output from the generation circuit 108 is transmitted to the center electrode 102. Further, the electric field generating circuit 108 is a circuit that converts the low-voltage direct current into the high-voltage alternating current using the battery 111 as a power source, and boosts the voltage of the battery 111, for example, about 12V (volt) to, for example, about 300V to 500V. 112, an H bridge circuit 113 that converts the direct current output from the DC-DC converter 112 into alternating current, and a step-up transformer 114 that boosts the alternating current output from the H bridge circuit 113 to a higher voltage.

また、Hブリッジ回路113は、直流を、周波数が約200kHz〜500MHz、好ましくは100MHzの交流に変化させる。さらに、昇圧トランス114は、一次側巻線と二次側巻線との巻線比が例えば1:10で、DC‐DCコンバータ112の出力を約3kVp‐p〜10kVp‐pに昇圧する。 The H bridge circuit 113 changes the direct current to an alternating current having a frequency of about 200 kHz to 500 MHz, preferably 100 MHz. Further, the step-up transformer 114 boosts the output of the DC-DC converter 112 to about 3 kVp-p to 10 kVp-p with a winding ratio of the primary side winding to the secondary side winding of, for example, 1:10.

また、第一ダイオード109は、そのカソードが昇圧トランス114の二次側巻線の信号ライン115、つまりグランドライン116に接続されていない二次側巻線の端部に接続され、そのアノードがミキサ107に接続される。すなわち、点火コイル106に火花放電のための負の高圧パルス電圧が生じた際に、その負の高圧パルス電圧による電流の向きに対して逆方向になるように、第一ダイオード109を信号ライン115に接続している。第一ダイオード109の逆方向降伏電圧は、負の高圧パルス電圧を上回る電圧に設定する。 The first diode 109 has its cathode connected to the signal line 115 of the secondary winding of the step-up transformer 114, that is, the end of the secondary winding not connected to the ground line 116, and its anode connected to the mixer. Connected to 107. That is, when a negative high voltage pulse voltage for spark discharge is generated in the ignition coil 106, the first diode 109 is connected to the signal line 115 so as to be opposite to the direction of the current due to the negative high voltage pulse voltage. Connected to. The reverse breakdown voltage of the first diode 109 is set to a voltage exceeding the negative high voltage pulse voltage.

このようにして点火を実行する、すなわち点火コイル106に火花放電のための負の高圧パルス電圧が生じた際に、点火コイル106からミキサ107を介して負の高圧パルス電圧による電流が電界生成回路108に侵入しようとするが、第一ダイオード109が点火コイル106の信号ライン119に対して、負の高圧パルス電圧による電流の向きに対して逆方向に接続してあるので、電界発生回路108は点火コイル106に対して電気的にほぼ絶縁状態に保持される。同様にして、第二ダイオード110が、点火プラグ101において火花放電が生じた際に、グランド117を介して負の高圧パルス電圧による電流が電界生成回路108に流れるのを阻止することで、グランド117側においても同様に、電界生成回路108を点火コイル106に対して電気的にほぼ絶縁状態に保持する点火装置が提案されている。 In this way, when ignition is performed, that is, when a negative high voltage pulse voltage for spark discharge is generated in the ignition coil 106, a current due to the negative high voltage pulse voltage is generated from the ignition coil 106 via the mixer 107. The first diode 109 is connected to the signal line 119 of the ignition coil 106 in a direction opposite to the direction of the current due to the negative high voltage pulse voltage. The ignition coil 106 is kept electrically insulated. Similarly, the second diode 110 prevents the current due to the negative high voltage pulse voltage from flowing to the electric field generation circuit 108 via the ground 117 when a spark discharge occurs in the spark plug 101, thereby causing the ground 117. Similarly, an ignition device has also been proposed in which the electric field generation circuit 108 is electrically insulated from the ignition coil 106 on the side.

特開2011−099410号公報JP 2011-099410 A

しかしながら上記従来の点火装置では次のような問題が生じている。即ち、特許文献1の点火装置では、火花放電により発生する電流が電界生成回路の昇圧トランスの二次側巻線に流れた場合には、昇圧トランスによりその電流が増幅されて、電磁妨害を生じるが、その電流が電界生成回路に侵入することを第一ダイオード及び第二ダイオードにより遮断することができる。このようにして、電磁妨害を未然に防ぐことで、エンジンを制御する電子制御装置の動作や、エンジンに装着されている各種の電磁センサの動作が不安定になることを防止することができるが、ダイオードには導通状態から遮断状態に切り替わる際に、ダイオードが逆電流を阻止する前に放電される必要のある電荷を放電する時間を逆回復時間といい、この逆回復時間より半周期が長くなる周波数、例えば100kHz以下の電流を流すと、ダイオードの逆方向の電流にひずみが生じる。 However, the above conventional ignition device has the following problems. That is, in the ignition device disclosed in Patent Document 1, when a current generated by spark discharge flows to the secondary winding of the step-up transformer of the electric field generation circuit, the current is amplified by the step-up transformer, thereby causing electromagnetic interference. However, the first diode and the second diode can block the current from entering the electric field generation circuit. By preventing electromagnetic interference in this way, it is possible to prevent the operation of the electronic control device that controls the engine and the operations of various electromagnetic sensors mounted on the engine from becoming unstable. When a diode switches from a conductive state to a cut-off state, the time for the diode to discharge the charge that needs to be discharged before blocking the reverse current is called the reverse recovery time, and the half cycle is longer than this reverse recovery time. When a current having a frequency of, for example, 100 kHz or less flows, distortion occurs in the current in the reverse direction of the diode.

本発明は上記課題に鑑みなされたもので、従来の点火コイルの放電に高周波点火コイルの連続放電をアシスト点火させる点火装置において、低い周波数から高い周波数までの幅広い周波数範囲で安定した動作を行うことができる高周波点火コイルを用いた内燃機関用点火装置を提供することを目標とする。 The present invention has been made in view of the above problems, and in an ignition device for assisting ignition of continuous discharge of a high-frequency ignition coil to discharge of a conventional ignition coil, stable operation is performed in a wide frequency range from a low frequency to a high frequency. It is an object of the present invention to provide an ignition device for an internal combustion engine using a high-frequency ignition coil capable of

上記課題を解決するために本発明は次のような構成とする。即ち、請求項1の発明においては、1次コイル及び2次コイル、鉄芯、点火用スイッチング素子から構成される点火コイルと、1次コイル及び2次コイル、鉄芯、高周波点火用スイッチング素子から構成される高周波点火コイルを備え、前記点火用スイッチング素子は前記点火コイルに点火信号を供給し、前記高周波点火用スイッチング素子は前記高周波点火コイルに点火信号を供給し、前記点火コイル及び前記高周波点火コイルはシリンダ内に備えられた共通の点火プラグに出力する内燃機関用点火装置において、前記高周波点火コイルの前記2次コイルの巻き始め側又は/及び巻き終わり側に保護用コンデンサを備えたことを特徴とする内燃機関用点火装置とする。 In order to solve the above problems, the present invention is configured as follows. That is, in the invention of claim 1, an ignition coil composed of a primary coil and a secondary coil, an iron core, and an ignition switching element; A high-frequency ignition coil configured, wherein the switching element for ignition supplies an ignition signal to the ignition coil, the switching element for high-frequency ignition supplies an ignition signal to the high-frequency ignition coil, and the ignition coil and the high-frequency ignition In the internal combustion engine ignition device that outputs a coil to a common ignition plug provided in the cylinder, a protective capacitor is provided on the winding start side and / or winding end side of the secondary coil of the high-frequency ignition coil. The internal combustion engine ignition device is characterized.

上記構成においては、前記高周波用スイッチング素子は点火信号の周波数を100kHz以下にしてもよいし、前記保護用コンデンサは耐圧を30kV以上としてもよい。 In the above configuration, the high-frequency switching element may have an ignition signal frequency of 100 kHz or less, and the protective capacitor may have a withstand voltage of 30 kV or more.

上記の通り、従来の点火コイルの放電に高周波点火コイルの連続放電をアシスト点火させる点火装置において、高周波点火コイルの2次コイルの巻き始め側又は/及び巻き終わり側に保護用コンデンサを備えることで、ダイオード等の整流素子のように逆回復時間を考慮した周波数を選択せずとも低い周波数から高い周波数までの幅広い周波数範囲で安定した動作を行うことができる高周波点火コイルを用いた内燃機関用点火装置が実現できる。 As described above, in the ignition device for assisting ignition of the continuous discharge of the high-frequency ignition coil to the discharge of the conventional ignition coil, the protective capacitor is provided on the winding start side and / or the winding end side of the secondary coil of the high-frequency ignition coil. Ignition for internal combustion engines using a high-frequency ignition coil that can perform stable operation over a wide frequency range from a low frequency to a high frequency without selecting a frequency that takes reverse recovery time into account, such as a rectifier such as a diode A device can be realized.

また、保護用コンデンサは直流電流を通さず交流電流のみ通すため、交流電流である高周波点火コイルの放電電流は通過し、直流電流である従来の点火コイルの放電電流が高周波点火コイルへの侵入を阻止することができるため、点火コイルからの高電圧が高周波点火コイルの2次コイルに加わることで発生する点火コイルの出力不良や高周波点火コイルの電磁妨害を防ぐことができる。さらに、本発明の内燃機関用点火装置の高周波用スイッチング素子は点火信号の周波数を100kHz以下にすることで特に効果を得ることができる。 In addition, since the protective capacitor passes only alternating current without passing direct current, the discharge current of the high-frequency ignition coil that is alternating current passes, and the discharge current of the conventional ignition coil that is direct current does not enter the high-frequency ignition coil. Therefore, it is possible to prevent the output failure of the ignition coil and the electromagnetic interference of the high frequency ignition coil, which are generated when a high voltage from the ignition coil is applied to the secondary coil of the high frequency ignition coil. Furthermore, the high-frequency switching element of the ignition device for an internal combustion engine according to the present invention can obtain a particular effect by setting the frequency of the ignition signal to 100 kHz or less.

本発明の第1の実施例とする内燃機関用点火装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of an internal combustion engine ignition device according to a first embodiment of the present invention. FIG. 内燃機関用点火装置の斜視図である。It is a perspective view of the ignition device for internal combustion engines. (ア)は、図1のA点における高周波点火コイルの第1の実施例による放電電流波形、(イ)は、図1のA点における従来の高周波点火コイルのひずみ発生時の放電電流波形である。(A) is the discharge current waveform according to the first embodiment of the high-frequency ignition coil at point A in FIG. 1, and (A) is the discharge current waveform at the time of occurrence of distortion of the conventional high-frequency ignition coil at point A in FIG. is there. 本発明の第2の実施例とする内燃機関用点火装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the ignition device for internal combustion engines which is the 2nd Example of this invention. (ウ)は、図4のB点における高周波点火コイルの第2の実施例による放電電流波形、(エ)は、図4のB点における従来の高周波点火コイルのひずみ発生時の放電電流波形である。(C) is a discharge current waveform according to the second embodiment of the high frequency ignition coil at point B in FIG. 4, and (d) is a discharge current waveform at the time of occurrence of distortion of the conventional high frequency ignition coil at point B in FIG. is there. 特許文献1の点火装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ignition device of patent document 1. FIG.

以下に本発明の実施の形態を示す実施例を図1乃至図5に基づいて説明する。 An example showing the embodiment of the present invention will be described below with reference to FIGS.

本発明の第1の実施例とする内燃機関用点火装置の構成を示す回路図を図1に、内燃機関用点火装置の斜視図を図2に、(ア)は、図1のA点における高周波点火コイルの第1の実施例による放電電流波形、(イ)は、図1のA点における従来の高周波点火コイルのひずみ発生時の放電電流波形を図3にそれぞれ示す。 1 is a circuit diagram showing a configuration of an internal combustion engine ignition device according to a first embodiment of the present invention, FIG. 2 is a perspective view of the internal combustion engine ignition device, and FIG. FIG. 3 shows the discharge current waveform when the distortion of the conventional high-frequency ignition coil occurs at point A in FIG. 1, respectively.

図1及び図2において、点火装置90は点火コイル70と高周波点火コイル80を並列に接続しており、当該点火コイル70の点火用1次コイル10a及び当該高周波点火コイル80の高周波用1次コイル10bの低圧側は図示しない共通のバッテリのプラス側と接続されている。また、当該点火コイル70の当該1次コイル10aの高圧側は点火用スイッチング素子20のコレクタと接続され、当該高周波点火コイル80の当該1次コイル10bの高圧側は高周波用スイッチング素子22のコレクタと接続されている。さらに、当該点火用スイッチング素子20及び当該高周波用スイッチング素子22のエミッタはグランド52と接続されている。 1 and 2, the ignition device 90 has an ignition coil 70 and a high-frequency ignition coil 80 connected in parallel. The ignition primary coil 10a of the ignition coil 70 and the high-frequency primary coil of the high-frequency ignition coil 80 are connected to each other. The low voltage side of 10b is connected to the positive side of a common battery (not shown). The high voltage side of the primary coil 10a of the ignition coil 70 is connected to the collector of the ignition switching element 20, and the high voltage side of the primary coil 10b of the high frequency ignition coil 80 is connected to the collector of the high frequency switching element 22. It is connected. Further, the emitters of the ignition switching element 20 and the high-frequency switching element 22 are connected to the ground 52.

また、前記点火用スイッチング素子20のベースは第1のECU60aと接続され、前記高周波用スイッチング素子22のベースは第2のECU60bと接続されている。さらに、当該第1のECU60aは当該第2のECU60bと接続されている。 The base of the ignition switching element 20 is connected to the first ECU 60a, and the base of the high frequency switching element 22 is connected to the second ECU 60b. Further, the first ECU 60a is connected to the second ECU 60b.

また、前記高周波点火コイル80の高周波用2次コイル12bの高圧側は前記高周波点火コイル80からの交流電流を通して前記点火コイル70からの直流電流が流れ込むことを防ぐ耐圧が30kVの保護用コンデンサ30aの一端に接続され、当該保護用コンデンサ30aの他端及び前記点火コイル70の点火用2次コイル12aの高圧側は1つにまとめられてシリンダ内に備えられた点火プラグ50に接続されている。さらに、前記高周波点火コイル80の当該2次コイル12bの低圧側は前記点火コイル70からの直流電流が前記グランド52を介して前記高周波点火コイル80に流れ込むことを防ぐ耐圧が30kVの保護用コンデンサ30bの一端と接続され、当該保護用コンデンサ30bの他端及び前記点火コイル70の当該2次コイル12aの低圧側は前記グランド52と接続されている。 Further, the high voltage side of the high frequency secondary coil 12b of the high frequency ignition coil 80 is provided with a protective capacitor 30a having a withstand voltage of 30 kV which prevents a direct current from the ignition coil 70 from flowing through an alternating current from the high frequency ignition coil 80. Connected to one end, the other end of the protective capacitor 30a and the high voltage side of the ignition secondary coil 12a of the ignition coil 70 are combined together and connected to a spark plug 50 provided in the cylinder. Further, the low-voltage side of the secondary coil 12b of the high-frequency ignition coil 80 is a protective capacitor 30b having a withstand voltage of 30 kV that prevents direct current from the ignition coil 70 from flowing into the high-frequency ignition coil 80 via the ground 52. The other end of the protective capacitor 30b and the low voltage side of the secondary coil 12a of the ignition coil 70 are connected to the ground 52.

また、前記点火装置90の外形を形成するケース40は材質を樹脂として開口面を一面備える箱型で成形されており、当該ケース40のコイル収容部には、複数の薄板を積層して形成した点火用鉄芯14aと、当該鉄芯14aの外周に樹脂で成形された1次ボビンの外周に1次巻線を100ターン程度巻き回した前記1次コイル10aと、前記1次コイル10aの外周に樹脂で成形された2次ボビンの外周に2次巻線を15000ターン程度巻き回した前記2次コイル12aとから構成される前記点火コイル70及び複数の薄板を積層して形成した高周波用鉄芯14bと、当該鉄芯14bの外周に樹脂で成形された1次ボビンの外周に1次巻線を10ターン程度巻き回した前記1次コイル10bと、前記1次コイル10bの外周に樹脂で成形された2次ボビンの外周に2次巻線を500ターン程度巻き回した前記2次コイル12bとから構成された前記高周波点火コイル80が収容されている。 Further, the case 40 forming the outer shape of the ignition device 90 is formed in a box shape with a resin as a material and having an opening surface. The coil housing portion of the case 40 is formed by laminating a plurality of thin plates. The ignition iron core 14a, the primary coil 10a in which the primary winding is wound about 100 turns around the outer periphery of the primary bobbin formed of resin on the outer periphery of the iron core 14a, and the outer periphery of the primary coil 10a A high-frequency iron formed by laminating the ignition coil 70 and a plurality of thin plates composed of the secondary coil 12a in which a secondary winding is wound about 15000 turns around the outer periphery of a secondary bobbin formed of resin. The core 14b, the primary coil 10b in which the primary winding is wound about 10 turns around the outer periphery of the primary bobbin formed of resin on the outer periphery of the iron core 14b, and the outer periphery of the primary coil 10b with resin 500 turns of secondary winding on the outer periphery of the molded secondary bobbin The HF ignition coil 80, which is composed of a degree wrapping said secondary coil 12b is housed.

また、前記ケース40内に前記点火コイル70に点火信号を供給する前記点火用スイッチング素子20と、前記高周波点火コイル80に点火信号を供給する前記高周波用スイッチング素子22を備えている。さらに、前記ケース40には前記点火装置90を図示しないエンジンヘッドに取り付けて固定するためのケース固定部42が前記ケース40の開口面と略垂直面の2箇所に形成されている。 The case 40 includes the ignition switching element 20 that supplies an ignition signal to the ignition coil 70 and the high-frequency switching element 22 that supplies an ignition signal to the high-frequency ignition coil 80. Further, the case 40 is provided with two case fixing portions 42 for attaching and fixing the ignition device 90 to an engine head (not shown) at two locations, that is, an opening surface of the case 40 and a substantially vertical surface.

また、前記ケース40の底面には、2次電圧を前記点火プラグ50に供給する高圧端子を備えるための高圧タワー44がエンジンヘッドに形成されたプラグホール内に向かって突出するように形成され、当該高圧端子は前記点火コイル70及び前記高周波点火コイル80からの2次電圧を入力している。さらに、前記ケース40の側面には、前記点火コイル70及び前記高周波点火コイル80に前記バッテリからの電源電圧や前記第1のECU60a又は前記第2のECU60bからの点火信号を入力するためのコネクタ46が前記点火コイル70と前記高周波点火コイル80のそれぞれ個別に備えられている。 A high voltage tower 44 for providing a high voltage terminal for supplying a secondary voltage to the spark plug 50 is formed on the bottom surface of the case 40 so as to protrude into a plug hole formed in the engine head. The high-voltage terminal receives a secondary voltage from the ignition coil 70 and the high-frequency ignition coil 80. Further, on the side surface of the case 40, a connector 46 for inputting a power supply voltage from the battery and an ignition signal from the first ECU 60a or the second ECU 60b to the ignition coil 70 and the high-frequency ignition coil 80. Are individually provided for the ignition coil 70 and the high-frequency ignition coil 80, respectively.

また、前記ケース40内には前記点火コイル70及び前記高周波点火コイル80、前記点火用スイッチング素子20、前記高周波用スイッチング素子22、前記保護用コンデンサ30a,30bの電気的絶縁と物理的固定を実現するためのモールド樹脂が充填されている。さらに、前記プラグホール内には前記高圧タワー44と前記点火プラグ50を連結させるプロテクターが備えられ、前記点火コイル70及び前記高周波点火コイル80から出力される2次電圧は前記高圧端子から当該プロテクター内に収容された導電部材を介して前記点火プラグ50へ供給される。 Further, in the case 40, electrical insulation and physical fixation of the ignition coil 70 and the high-frequency ignition coil 80, the ignition switching element 20, the high-frequency switching element 22, and the protective capacitors 30a and 30b are realized. Mold resin for filling is filled. Further, a protector for connecting the high-voltage tower 44 and the spark plug 50 is provided in the plug hole, and a secondary voltage output from the ignition coil 70 and the high-frequency ignition coil 80 is supplied from the high-voltage terminal to the protector. The spark plug 50 is supplied to the spark plug 50 through a conductive member housed in the spark plug.

上記構成から前記点火装置90の一連の動作は、前記第1のECU60aから前記点火用スイッチング素子20への点火信号がオンにされると、前記点火コイル70の前記1次コイル10aに1次電流Iaが流れると同時に前記第2のECU60bから前記高周波用スイッチング素子22への点火信号がオンにされ、前記高周波点火コイル80の前記1次コイル10bに1次電流Ibが流れる。また、前記点火コイル70の前記1次コイル10aに流れる1次電流Iaが遮断電流値まで到達すると、前記第1のECU60aから前記点火用スイッチング素子20への点火信号がオフに切り替わり、前記点火コイル70の前記1次コイル10aに流れる1次電流Iaが遮断される。さらに、前記点火コイル70の前記1次コイル10aに流れる1次電流Iaが遮断されると、前記点火コイル70の前記2次コイル12aに2次電流が発生し、30kVの2次電圧が放電される。 From the above configuration, a series of operations of the ignition device 90 is such that when an ignition signal from the first ECU 60a to the ignition switching element 20 is turned on, a primary current is supplied to the primary coil 10a of the ignition coil 70. Simultaneously with the flow of Ia, the ignition signal from the second ECU 60b to the high-frequency switching element 22 is turned on, and the primary current Ib flows through the primary coil 10b of the high-frequency ignition coil 80. When the primary current Ia flowing through the primary coil 10a of the ignition coil 70 reaches the cutoff current value, the ignition signal from the first ECU 60a to the ignition switching element 20 is switched off, and the ignition coil The primary current Ia flowing through the primary coil 10a of 70 is cut off. Further, when the primary current Ia flowing through the primary coil 10a of the ignition coil 70 is cut off, a secondary current is generated in the secondary coil 12a of the ignition coil 70, and a secondary voltage of 30 kV is discharged. The

また、前記第2のECU60bから前記高周波用スイッチング素子22への点火信号がオフに切り替えられると、前記高周波点火コイル80の前記1次コイル10bに流れる1次電流Ibが遮断される。さらに、前記高周波点火コイル80の前記1次コイル10bに流れる1次電流Ibが遮断されると、前記高周波点火コイル80の前記2次コイル12bに2次電流が発生し、5kVの2次電圧が放電される。 When the ignition signal from the second ECU 60b to the high frequency switching element 22 is switched off, the primary current Ib flowing through the primary coil 10b of the high frequency ignition coil 80 is cut off. Further, when the primary current Ib flowing through the primary coil 10b of the high-frequency ignition coil 80 is cut off, a secondary current is generated in the secondary coil 12b of the high-frequency ignition coil 80, and a secondary voltage of 5 kV is generated. Discharged.

また、前記第2のECU60bから前記高周波用スイッチング素子22への点火信号は100kHzの周波数とされており、前記第2のECU60bから前記高周波用スイッチング素子22への点火信号のオン・オフが100kHzの周波数で切り替えられることで5kVの2次電圧を前記点火プラグ50に複数回放電している。 The ignition signal from the second ECU 60b to the high-frequency switching element 22 has a frequency of 100 kHz, and the on / off of the ignition signal from the second ECU 60b to the high-frequency switching element 22 is 100 kHz. By switching the frequency, the secondary voltage of 5 kV is discharged to the spark plug 50 a plurality of times.

次に、図3において、図1のA点における前記高周波点火コイル80の第1の実施例による放電電流波形は図3の(ア)に示すように、前記第2のECU60bから前記高周波点火コイル80への点火信号がオン・オフの交互に繰り返されることによって連続的に交流電流が流れる三角波となる。また、図1のA点における従来の高周波点火コイルのひずみ発生時の放電電流波形は図3の(イ)に示すように、前記第2のECU60bから前記高周波点火コイル80への点火信号がオン・オフの交互に繰り返されることによって流れる連続的な交流電流が前記高周波点火コイル80の2次コイル12bの高圧側に備えられる前記点火コイル70からの大電流の逆流を阻止する逆流防止ダイオードの逆回復時間より半周期が長くなる周波数の交流電流である場合、逆方向電流波形が破線円部に示したひずみを含む波形となる。 Next, in FIG. 3, the discharge current waveform according to the first embodiment of the high-frequency ignition coil 80 at point A in FIG. 1 is changed from the second ECU 60b to the high-frequency ignition coil as shown in FIG. The ignition signal to 80 is alternately turned on and off, thereby forming a triangular wave in which an alternating current continuously flows. Further, the discharge current waveform at the time of occurrence of distortion of the conventional high-frequency ignition coil at point A in FIG. 1 indicates that the ignition signal from the second ECU 60b to the high-frequency ignition coil 80 is on, as shown in FIG. A reverse current prevention diode that prevents a reverse flow of a large current from the ignition coil 70 provided on the high-voltage side of the secondary coil 12b of the high-frequency ignition coil 80 by a continuous alternating current flowing by alternately repeating OFF. In the case of an alternating current having a frequency whose half cycle is longer than the recovery time, the reverse current waveform is a waveform including the distortion indicated by the broken-line circle.

上記構成により、前記保護用コンデンサ30a,30bは交流電流を通して直流電流を通さない特性から、前記高周波点火コイル80の前記2次コイル12bの高圧側からの交流電流は前記保護用コンデンサ30aを通過して前記点火プラグ50へ流れ、前記点火コイル70の前記2次コイル12aの高圧側からの直流電流も確実に前記点火プラグ50へ流れる。また、前記高周波点火コイル80の前記2次コイル12bの低圧側からの交流電流は前記保護用コンデンサ30bを通過して前記グランド52へ流れ、前記点火コイル70の前記2次コイル12aの低圧側からの直流電流も確実に前記グランド52へ流れる。これにより、前記点火コイル70の直流電流が前記高周波点火コイル80の前記2次コイル12bへの侵入を阻止することができるため、前記点火コイル70の高電圧が前記高周波点火コイル80の前記2次コイル12bに加わることで発生する前記点火コイル70の出力不良や前記高周波点火コイル80の電磁妨害を防ぐことができる。 With the above configuration, the protective capacitors 30a and 30b do not pass a direct current through an alternating current, so that the alternating current from the high voltage side of the secondary coil 12b of the high-frequency ignition coil 80 passes through the protective capacitor 30a. Therefore, the direct current from the high voltage side of the secondary coil 12a of the ignition coil 70 also surely flows to the spark plug 50. The alternating current from the low-voltage side of the secondary coil 12b of the high-frequency ignition coil 80 flows through the protective capacitor 30b to the ground 52, and from the low-voltage side of the secondary coil 12a of the ignition coil 70. The DC current also flows to the ground 52 without fail. Thereby, since the direct current of the ignition coil 70 can prevent the high-frequency ignition coil 80 from entering the secondary coil 12b, the high voltage of the ignition coil 70 causes the secondary voltage of the high-frequency ignition coil 80 to It is possible to prevent the output failure of the ignition coil 70 and the electromagnetic interference of the high-frequency ignition coil 80 that are generated by adding to the coil 12b.

また、前記保護用コンデンサ30a,30bは逆流防止ダイオード等の整流素子のような逆回復時間が存在しないため、低い周波数の電流を流しても図3の(イ)の波形のように逆方向電流にひずみが生じることがない。これより逆回復時間より短い周波数の電流でも安定した動作を行うことができる。 Further, since the protective capacitors 30a and 30b do not have a reverse recovery time like a rectifying element such as a backflow prevention diode, a reverse current as shown in the waveform of FIG. No distortion occurs. Accordingly, stable operation can be performed even with a current having a frequency shorter than the reverse recovery time.

なお上記実施例1の変形例として、前記点火コイル70及び前記高周波点火コイル80の前記1次コイル10a,10b及び前記2次コイル12a,12bに巻き回される巻線の巻数は前記点火装置90に要求される2次電圧等の設計事情によって任意に変更してもよいし、前記高周波点火コイル80の前記高周波用鉄芯14bはフェライト材で成形してもよい。また、前記保護用コンデンサ30a,30bは前記高周波点火コイル80の前記2次コイル12bの巻き始め側又は巻き終わり側のどちらか一方に備える構成としてもよい。さらに、前記高周波点火コイル80への点火信号の周波数は100kHzとしたが、設計事項によって任意の周波数に変更してもよいし、100kHz以下の周波数としてもよい。 As a modification of the first embodiment, the number of windings wound around the primary coils 10a and 10b and the secondary coils 12a and 12b of the ignition coil 70 and the high-frequency ignition coil 80 is the ignition device 90. The high frequency iron core 14b of the high frequency ignition coil 80 may be formed of a ferrite material. The protective capacitors 30a and 30b may be provided on either the winding start side or the winding end side of the secondary coil 12b of the high-frequency ignition coil 80. Furthermore, although the frequency of the ignition signal to the high-frequency ignition coil 80 is 100 kHz, it may be changed to an arbitrary frequency depending on design matters, or may be a frequency of 100 kHz or less.

また、前記保護用コンデンサ30a,30bの耐圧は前記点火コイル70及び前記高周波点火コイル80の2次電圧の大きさによって前記保護用コンデンサ30a,30bが故障しない範囲の耐圧に変更してもよい。さらに、前記保護用コンデンサ30a,30bは前記点火コイル70及び前記高周波点火コイル80を収容した前記ケース40内に備えたが、前記点火コイル70及び前記高周波点火コイル80をそれぞれ個別のケースに収容し、前記高周波点火コイル80が収容されるケース内に前記保護用コンデンサ30a,30bを備える構成としてもよいし、前記保護用コンデンサ30a,30bは周囲の絶縁状態を保てる構成であれば任意の位置に配置してもよい。 Further, the withstand voltage of the protective capacitors 30a and 30b may be changed to a withstand voltage within a range in which the protective capacitors 30a and 30b do not fail depending on the magnitude of the secondary voltage of the ignition coil 70 and the high-frequency ignition coil 80. Further, the protective capacitors 30a and 30b are provided in the case 40 in which the ignition coil 70 and the high-frequency ignition coil 80 are accommodated. However, the ignition coil 70 and the high-frequency ignition coil 80 are accommodated in individual cases. The protective capacitors 30a and 30b may be provided in a case in which the high-frequency ignition coil 80 is accommodated, and the protective capacitors 30a and 30b may be arranged at any position as long as the surrounding insulating state can be maintained. You may arrange.

また、前記点火装置90は前記ケース40内に前記点火コイル70に点火信号を供給する前記点火用スイッチング素子20と、前記高周波用点火コイル80に点火信号を供給する前記高周波用スイッチング素子22を備えているが、前記点火用スイッチング素子20又は/及び前記高周波用スイッチング素子22を前記ケース40外に備える構成としてもよい。さらに、前記点火装置90は前記点火用スイッチング素子20から前記点火コイル70への点火信号がオンにされるタイミング及び前記高周波用スイッチング素子22から前記高周波点火コイル80への点火信号がオンにされるタイミングを同時に行ったが、設計事情によって例えば、前記点火装置90は前記点火用スイッチング素子20から前記点火コイル70への点火信号がオフに切り替わってから前記高周波用スイッチング素子22から前記高周波点火コイル80への点火信号をオンにする等のタイミングに適宜変更可能なものである。 The ignition device 90 includes the ignition switching element 20 for supplying an ignition signal to the ignition coil 70 in the case 40 and the high-frequency switching element 22 for supplying an ignition signal to the high-frequency ignition coil 80. However, the ignition switching element 20 and / or the high-frequency switching element 22 may be provided outside the case 40. Further, the ignition device 90 is turned on when the ignition signal from the ignition switching element 20 to the ignition coil 70 is turned on and the ignition signal from the high frequency switching element 22 to the high frequency ignition coil 80 is turned on. Although the timing is performed at the same time, depending on the design circumstances, for example, the ignition device 90 is connected to the high-frequency ignition coil 80 from the high-frequency switching element 22 after the ignition signal from the ignition switching element 20 to the ignition coil 70 is switched off. The timing of turning on the ignition signal can be appropriately changed.

また、前記高周波点火コイル80の前記1次コイル10bの低圧側を、例えばDC/DCコンバータなどで昇圧された任意の電圧にしてもよい。 Further, the low voltage side of the primary coil 10b of the high frequency ignition coil 80 may be set to an arbitrary voltage boosted by, for example, a DC / DC converter.

次に、本発明の第2の実施例を図4及び図5に基づき説明する。当該第2の実施例においては前記第1の実施例で説明した前記点火コイル70の前記点火用1次コイル10a及び前記高周波点火コイル80の前記高周波用1次コイル10bの低圧側に図示しない共通のバッテリのプラス側が接続されている点、及び前記高周波点火コイル80の前記1次コイル10bの高圧側に前記高周波用スイッチング素子22のコレクタが接続されている点を除いた他の構成は前記第1の実施例と同一であるため説明は省略する。 Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, common not shown on the low voltage side of the primary coil 10a for ignition of the ignition coil 70 and the primary coil 10b for high frequency of the high frequency ignition coil 80 described in the first embodiment is common. Except for the point that the positive side of the battery is connected and the point that the collector of the high-frequency switching element 22 is connected to the high-voltage side of the primary coil 10b of the high-frequency ignition coil 80, Since this is the same as the first embodiment, the description thereof is omitted.

本発明の第2の実施例とする内燃機関用点火装置の構成を示す回路図を図4に、(ウ)は、図4のB点における高周波点火コイルの第2の実施例による放電電流波形、(エ)は、図4のB点における従来の高周波点火コイルのひずみ発生時の放電電流波形を図5に示す。 FIG. 4 is a circuit diagram showing the configuration of an internal combustion engine ignition device according to a second embodiment of the present invention, and FIG. 4C shows a discharge current waveform according to the second embodiment of the high-frequency ignition coil at point B in FIG. FIGS. 5A and 5B show the discharge current waveform at the time of occurrence of distortion of the conventional high-frequency ignition coil at point B in FIG.

図4及び図5において、点火装置90は点火コイル70と高周波点火コイル80を並列に接続しており、当該点火コイル70の点火用1次コイル10aの低圧側は図示しないバッテリのプラス側と接続されている。また、当該高周波点火コイル80の高周波用1次コイル10bの低圧側は直流電流を交流電流にするハーフブリッジ回路56と接続され、当該ハーフブリッジ回路56は当該バッテリからの電源電圧を昇圧するDC/DCコンバータ54と接続されている。さらに、当該点火コイル70の当該1次コイル10aの高圧側は点火用スイッチング素子20のコレクタと接続され、当該点火用スイッチング素子20のエミッタ及び当該高周波点火コイル80の当該1次コイル10bの高圧側はグランド52と接続されている。 4 and 5, the ignition device 90 has an ignition coil 70 and a high-frequency ignition coil 80 connected in parallel, and the low voltage side of the ignition primary coil 10a of the ignition coil 70 is connected to the positive side of a battery (not shown). Has been. The low-frequency side of the high-frequency primary coil 10b of the high-frequency ignition coil 80 is connected to a half-bridge circuit 56 that converts a direct current into an alternating current. The half-bridge circuit 56 is a DC / DC that boosts the power supply voltage from the battery. It is connected to the DC converter 54. Further, the high voltage side of the primary coil 10 a of the ignition coil 70 is connected to the collector of the ignition switching element 20, and the high voltage side of the primary coil 10 b of the high frequency ignition coil 80 and the emitter of the ignition switching element 20. Is connected to the ground 52.

また、前記点火用スイッチング素子20のベースは第1のECU60aと接続され、前記ハーフブリッジ回路56は第2のECU60bと接続されている。さらに、当該第1のECU60aは当該第2のECU60bと接続されている。 The base of the ignition switching element 20 is connected to the first ECU 60a, and the half bridge circuit 56 is connected to the second ECU 60b. Further, the first ECU 60a is connected to the second ECU 60b.

また、前記高周波点火コイル80の高周波用2次コイル12bの高圧側は前記高周波点火コイル80からの交流電流を通して前記点火コイル70からの直流電流が流れ込むことを防ぐ耐圧が30kVの保護用コンデンサ30aの一端に接続され、当該保護用コンデンサ30aの他端及び前記点火コイル70の点火用2次コイル12aの高圧側は1つにまとめられてシリンダ内に備えられた点火プラグ50に接続されている。さらに、前記高周波点火コイル80の当該2次コイル12bの低圧側は前記点火コイル70からの直流電流が前記グランド52を介して前記高周波点火コイル80に流れ込むことを防ぐ耐圧が30kVの保護用コンデンサ30bの一端と接続され、当該保護用コンデンサ30bの他端及び前記点火コイル70の当該2次コイル12aの低圧側は前記グランド52と接続されている。 Further, the high voltage side of the high frequency secondary coil 12b of the high frequency ignition coil 80 is provided with a protective capacitor 30a having a withstand voltage of 30 kV which prevents a direct current from the ignition coil 70 from flowing through an alternating current from the high frequency ignition coil 80. Connected to one end, the other end of the protective capacitor 30a and the high voltage side of the ignition secondary coil 12a of the ignition coil 70 are combined together and connected to a spark plug 50 provided in the cylinder. Further, the low-voltage side of the secondary coil 12b of the high-frequency ignition coil 80 is a protective capacitor 30b having a withstand voltage of 30 kV that prevents direct current from the ignition coil 70 from flowing into the high-frequency ignition coil 80 via the ground 52. The other end of the protective capacitor 30b and the low voltage side of the secondary coil 12a of the ignition coil 70 are connected to the ground 52.

上記構成から前記点火装置90の一連の動作は、前記第1のECU60aから前記点火用スイッチング素子20への点火信号がオンにされると、前記点火コイル70の前記1次コイル10aに1次電流Iaが流れる。また、前記点火コイル70の前記1次コイル10aに流れる1次電流Iaが遮断電流値まで到達すると、前記第1のECU60aから前記点火用スイッチング素子20への点火信号がオフに切り替わり、前記点火コイル70の前記1次コイル10aに流れる1次電流Iaが遮断される。さらに、前記点火コイル70の前記1次コイル10aに流れる1次電流Iaが遮断されると、前記点火コイル70の前記2次コイル12aに2次電流が発生し、30kVの2次電圧が放電される。 From the above configuration, a series of operations of the ignition device 90 is such that when an ignition signal from the first ECU 60a to the ignition switching element 20 is turned on, a primary current is supplied to the primary coil 10a of the ignition coil 70. Ia flows. When the primary current Ia flowing through the primary coil 10a of the ignition coil 70 reaches the cutoff current value, the ignition signal from the first ECU 60a to the ignition switching element 20 is switched off, and the ignition coil The primary current Ia flowing through the primary coil 10a of 70 is cut off. Further, when the primary current Ia flowing through the primary coil 10a of the ignition coil 70 is cut off, a secondary current is generated in the secondary coil 12a of the ignition coil 70, and a secondary voltage of 30 kV is discharged. The

また、前記第2のECU60bから前記ハーフブリッジ回路56への動作信号がオンにされると、前記ハーフブリッジ回路56は前記DC/DCコンバータ54からの直流電圧を交流電圧へ変換し、前記高周波点火コイル80の前記1次コイル10bに1次交流電流Ibが流れ、前記高周波点火コイル80の前記2次コイル12bに2次交流電流が発生し、5kVの2次交流電圧が放電される。さらに、前記第2のECU60bから前記ハーフブリッジ回路56への動作信号は100kHzの周波数とされ、5kVの2次電圧を前記点火プラグ50に複数回放電している。 When the operation signal from the second ECU 60b to the half bridge circuit 56 is turned on, the half bridge circuit 56 converts the DC voltage from the DC / DC converter 54 into an AC voltage, and the high frequency ignition. A primary AC current Ib flows in the primary coil 10b of the coil 80, a secondary AC current is generated in the secondary coil 12b of the high-frequency ignition coil 80, and a secondary AC voltage of 5 kV is discharged. Further, the operation signal from the second ECU 60b to the half bridge circuit 56 has a frequency of 100 kHz, and a secondary voltage of 5 kV is discharged to the spark plug 50 a plurality of times.

次に、図5において、図4のB点における前記高周波点火コイル80の第2の実施例による放電電流波形は図5の(ウ)に示すように、前記第2のECU60bから前記ハーフブリッジ回路56への動作信号がオンにされると流れる正弦波の交流電流波形となる。また、図4のB点における従来の高周波点火コイルのひずみ発生時の放電電流波形は図5の(エ)に示すように、前記第2のECU60bから前記高周波点火コイル80への動作信号がオンにされると流れる交流電流が、前記高周波点火コイル80の2次コイル12bの高圧側に備えられる前記点火コイル70からの大電流の逆流を阻止する逆流防止ダイオードの逆回復時間より半周期が長くなる周波数の交流電流である場合、逆方向電流波形が破線円部に示したひずみを含む波形となる。 Next, in FIG. 5, the discharge current waveform according to the second embodiment of the high-frequency ignition coil 80 at the point B in FIG. 4 is changed from the second ECU 60b to the half bridge circuit as shown in FIG. When the operation signal to 56 is turned on, a sinusoidal alternating current waveform flows. The discharge current waveform at the time of occurrence of distortion of the conventional high-frequency ignition coil at point B in FIG. 4 indicates that the operation signal from the second ECU 60b to the high-frequency ignition coil 80 is on, as shown in FIG. The AC current that flows when the high-frequency ignition coil 80 is turned on has a half cycle longer than the reverse recovery time of the backflow prevention diode that prevents the backflow of a large current from the ignition coil 70 provided on the high voltage side of the secondary coil 12b of the high-frequency ignition coil 80. In the case of an alternating current having a frequency, a reverse current waveform is a waveform including distortion indicated by a broken-line circle.

上記構成により、前記保護用コンデンサ30a,30bは交流電流を通して直流電流を通さない特性から、前記高周波点火コイル80の前記2次コイル12bの高圧側からの交流電流は前記保護用コンデンサ30aを通過して前記点火プラグ50へ流れ、前記点火コイル70の前記2次コイル12aの高圧側からの直流電流も確実に前記点火プラグ50へ流れる。また、前記高周波点火コイル80の前記2次コイル12bの低圧側からの交流電流は前記保護用コンデンサ30bを通過して前記グランド52へ流れ、前記点火コイル70の前記2次コイル12aの低圧側からの直流電流も確実に前記グランド52へ流れる。これにより、前記点火コイル70の直流電流が前記高周波点火コイル80の前記2次コイル12bへの侵入を阻止することができるため、前記点火コイル70の高電圧が前記高周波点火コイル80の前記2次コイル12bに加わることで発生する前記点火コイル70の出力不良や前記高周波点火コイル80の電磁妨害を防ぐことができる。 With the above configuration, the protective capacitors 30a and 30b do not pass a direct current through an alternating current, so that the alternating current from the high voltage side of the secondary coil 12b of the high-frequency ignition coil 80 passes through the protective capacitor 30a. Therefore, the direct current from the high voltage side of the secondary coil 12a of the ignition coil 70 also surely flows to the spark plug 50. The alternating current from the low-voltage side of the secondary coil 12b of the high-frequency ignition coil 80 flows through the protective capacitor 30b to the ground 52, and from the low-voltage side of the secondary coil 12a of the ignition coil 70. The DC current also flows to the ground 52 without fail. Thereby, since the direct current of the ignition coil 70 can prevent the high-frequency ignition coil 80 from entering the secondary coil 12b, the high voltage of the ignition coil 70 causes the secondary voltage of the high-frequency ignition coil 80 to It is possible to prevent the output failure of the ignition coil 70 and the electromagnetic interference of the high-frequency ignition coil 80 that are generated by adding to the coil 12b.

また、前記保護用コンデンサ30a,30bは逆流防止ダイオード等の整流素子のような逆回復時間が存在しないため、低い周波数の電流を流しても図5の(エ)の波形のように逆方向電流にひずみが生じることがない。これより逆回復時間より短い周波数の電流でも安定した動作を行うことができる。 Further, since the protective capacitors 30a and 30b do not have a reverse recovery time like a rectifying element such as a backflow prevention diode, a reverse current as shown in the waveform of FIG. No distortion occurs. Accordingly, stable operation can be performed even with a current having a frequency shorter than the reverse recovery time.

なお上記実施例2の変形例として、前記高周波点火コイル80と接続される前記DC/DCコンバータ54及び前記ハーフブリッジ回路56の回路構成は設計事情によって任意の構成に変更してもよいし、前記ハーフブリッジ回路56の換わりにフルブリッジ回路を用いてもよい。また、前記保護用コンデンサ30a,30bは前記高周波点火コイル80の前記2次コイル12bの巻き始め側又は巻き終わり側のどちらか一方に備える構成としてもよい。さらに、前記高周波点火コイル80への動作信号の周波数は100kHzとしたが、設計事項によって任意の周波数に変更してもよいし、100kHz以下の周波数としてもよい。 As a modification of the second embodiment, the circuit configurations of the DC / DC converter 54 and the half bridge circuit 56 connected to the high-frequency ignition coil 80 may be changed to an arbitrary configuration depending on design circumstances. Instead of the half bridge circuit 56, a full bridge circuit may be used. The protective capacitors 30a and 30b may be provided on either the winding start side or the winding end side of the secondary coil 12b of the high-frequency ignition coil 80. Furthermore, although the frequency of the operation signal to the high frequency ignition coil 80 is 100 kHz, it may be changed to an arbitrary frequency depending on design matters, or may be a frequency of 100 kHz or less.

また、前記保護用コンデンサ30a,30bの耐圧は前記点火コイル70及び前記高周波点火コイル80の2次電圧の大きさによって前記保護用コンデンサ30a,30bが故障しない範囲の耐圧に変更してもよい。さらに、前記点火装置90は前記点火用スイッチング素子20から前記点火コイル70への点火信号がオンにされるタイミング及び前記ハーフブリッジ回路56から前記高周波点火コイル80への動作信号がオンにされるタイミングを同時に行ったが、設計事情によって例えば、前記点火装置90は前記点火用スイッチング素子20から前記点火コイル70への点火信号がオフに切り替わってから前記ハーフブリッジ回路56から前記高周波点火コイル80への動作信号をオンにする等のタイミングに適宜変更可能なものである。 Further, the withstand voltage of the protective capacitors 30a and 30b may be changed to a withstand voltage within a range in which the protective capacitors 30a and 30b do not fail depending on the magnitude of the secondary voltage of the ignition coil 70 and the high-frequency ignition coil 80. Further, the ignition device 90 has a timing at which an ignition signal from the ignition switching element 20 to the ignition coil 70 is turned on and a timing at which an operation signal from the half bridge circuit 56 to the high-frequency ignition coil 80 is turned on. However, depending on the design circumstances, for example, the ignition device 90 may switch from the half-bridge circuit 56 to the high-frequency ignition coil 80 after the ignition signal from the ignition switching element 20 to the ignition coil 70 is switched off. The timing can be appropriately changed such as when the operation signal is turned on.

10a,10b:1次コイル
12a,12b:2次コイル
14a,14b:鉄芯
20:点火用スイッチング素子
22:高周波用スイッチング素子
30a,30b:保護用コンデンサ
40:ケース
42:ケース固定部
44:高圧タワー
46:コネクタ
50:点火プラグ
52:グランド
54: DC/DCコンバータ
56: ハーフブリッジ回路
60a:第1のECU
60b:第2のECU
70:点火コイル
80:高周波点火コイル
90:点火装置
10a, 10b: Primary coil
12a, 12b: Secondary coil
14a, 14b: Iron core
20: Switching element for ignition
22: Switching element for high frequency
30a, 30b: Protection capacitors
40: Case
42: Case fixing part
44: High-pressure tower
46: Connector
50: Spark plug
52: Ground
54: DC / DC converter
56: Half-bridge circuit
60a: First ECU
60b: Second ECU
70: Ignition coil
80: High-frequency ignition coil
90: Ignition device

Claims (3)

1次コイル10a及び2次コイル12a、鉄芯14a、点火用スイッチング素子20から構成される点火コイル70と、1次コイル10b及び2次コイル12b、鉄芯14b、高周波点火用スイッチング素子22から構成される高周波点火コイル80を備え、
前記点火用スイッチング素子20は前記点火コイル70に点火信号を供給し、
前記高周波点火用スイッチング素子22は前記高周波点火コイル80に点火信号を供給し、
前記点火コイル70及び前記高周波点火コイル80はシリンダ内に備えられた共通の点火プラグ50に出力する内燃機関用点火装置90において、
前記高周波点火コイル80の前記2次コイル12bの巻き始め側又は/及び巻き終わり側に保護用コンデンサ30a,30bを備えたことを特徴とする内燃機関用点火装置90。
The primary coil 10a, the secondary coil 12a, the iron core 14a, the ignition coil 70 composed of the ignition switching element 20, the primary coil 10b, the secondary coil 12b, the iron core 14b, and the high frequency ignition switching element 22 With high frequency ignition coil 80,
The ignition switching element 20 supplies an ignition signal to the ignition coil 70,
The high-frequency ignition switching element 22 supplies an ignition signal to the high-frequency ignition coil 80,
In the ignition device 90 for an internal combustion engine, the ignition coil 70 and the high-frequency ignition coil 80 output to a common ignition plug 50 provided in a cylinder.
An internal combustion engine ignition device 90 comprising protective capacitors 30a and 30b on the winding start side and / or winding end side of the secondary coil 12b of the high-frequency ignition coil 80.
前記高周波用スイッチング素子22は点火信号の周波数を100kHz以下にすることを特徴とすることを特徴とする請求項1に記載の内燃機関用点火装置90。 2. The internal combustion engine ignition device 90 according to claim 1, wherein the high-frequency switching element 22 sets the frequency of an ignition signal to 100 kHz or less. 前記保護用コンデンサ30a,30bは耐圧が30kV以上であることを特徴とする請求項1又は2に記載の内燃機関用点火装置90。 3. The internal combustion engine ignition device 90 according to claim 1, wherein the protective capacitors 30a and 30b have a withstand voltage of 30 kV or more.
JP2011192544A 2011-09-05 2011-09-05 High-frequency ignition device Pending JP2013053562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192544A JP2013053562A (en) 2011-09-05 2011-09-05 High-frequency ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192544A JP2013053562A (en) 2011-09-05 2011-09-05 High-frequency ignition device

Publications (1)

Publication Number Publication Date
JP2013053562A true JP2013053562A (en) 2013-03-21

Family

ID=48130785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192544A Pending JP2013053562A (en) 2011-09-05 2011-09-05 High-frequency ignition device

Country Status (1)

Country Link
JP (1) JP2013053562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157677B1 (en) * 2016-04-07 2017-07-05 三菱電機株式会社 High frequency discharge ignition device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036198A (en) * 2007-07-12 2009-02-19 Imagineering Kk Ignition or plasma generation device
WO2011016569A1 (en) * 2009-08-06 2011-02-10 イマジニアリング株式会社 Mixer, matching device, ignition unit, and plasma generator
JP2011099410A (en) * 2009-11-09 2011-05-19 Daihatsu Motor Co Ltd Ignition device for spark ignition type internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036198A (en) * 2007-07-12 2009-02-19 Imagineering Kk Ignition or plasma generation device
WO2011016569A1 (en) * 2009-08-06 2011-02-10 イマジニアリング株式会社 Mixer, matching device, ignition unit, and plasma generator
JP2011099410A (en) * 2009-11-09 2011-05-19 Daihatsu Motor Co Ltd Ignition device for spark ignition type internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157677B1 (en) * 2016-04-07 2017-07-05 三菱電機株式会社 High frequency discharge ignition device
JP2017186972A (en) * 2016-04-07 2017-10-12 三菱電機株式会社 High-frequency discharge ignition device

Similar Documents

Publication Publication Date Title
US5947093A (en) Hybrid ignition with stress-balanced coils
US10302061B2 (en) Ignition apparatus for internal combustion engine
JP5255682B2 (en) Ignition device
US9709016B2 (en) Method for operating an ignition device for an internal combustion engine
US8276564B2 (en) Multiplexing drive circuit for an AC ignition system
JP5897099B1 (en) Ignition device
US20120055456A1 (en) Method for generating corona discharges in two combustion chambers of a combustion engine
JP5496297B2 (en) Ignition device for internal combustion engine
JP6773004B2 (en) Ignition system for internal combustion engine
JP5253144B2 (en) Ignition device for internal combustion engine
JPS6060270A (en) High energy ignition device
JP2013053562A (en) High-frequency ignition device
JP2013019301A (en) Operation state determination method for high-frequency ignition device
JP2011074906A (en) Ignitor for internal combustion engine
CN101112127B (en) Switch arrangement for a starting unit of a discharge lamp
JP2011157864A (en) Ignition device of spark ignition type internal combustion engine
WO2014002291A1 (en) Ignition device for internal combustion engine
JP5631651B2 (en) Ignition device for internal combustion engine
JP6041084B2 (en) Ignition device for overlap discharge type internal combustion engine
JP2013002427A (en) High frequency igniter
JP3097229U (en) Ignition device and coil device
JP2012122348A (en) Ignition device for internal combustion engine
WO2015132976A1 (en) Igniter for internal combustion engines
WO2015170418A1 (en) Ignition coil for internal combustion engine
JP5601642B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105