JP5656185B2 - Method for producing flame-resistant acrylonitrile polymer - Google Patents

Method for producing flame-resistant acrylonitrile polymer Download PDF

Info

Publication number
JP5656185B2
JP5656185B2 JP2010123148A JP2010123148A JP5656185B2 JP 5656185 B2 JP5656185 B2 JP 5656185B2 JP 2010123148 A JP2010123148 A JP 2010123148A JP 2010123148 A JP2010123148 A JP 2010123148A JP 5656185 B2 JP5656185 B2 JP 5656185B2
Authority
JP
Japan
Prior art keywords
flame
acrylonitrile polymer
fiber
resistant
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010123148A
Other languages
Japanese (ja)
Other versions
JP2011006681A (en
Inventor
山田 輝之
輝之 山田
小亀 朗由
朗由 小亀
拓 斎藤
拓 斎藤
俊樹 早乙女
俊樹 早乙女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Tokyo University of Agriculture and Technology NUC
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd, Tokyo University of Agriculture and Technology NUC filed Critical Mitsubishi Chemical Corp
Priority to JP2010123148A priority Critical patent/JP5656185B2/en
Publication of JP2011006681A publication Critical patent/JP2011006681A/en
Application granted granted Critical
Publication of JP5656185B2 publication Critical patent/JP5656185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、各種の複合材料における補強繊維材料として好適な炭素繊維の前駆体としても利用可能な耐炎化アクリロニトリル重合体の製造方法に関する。   The present invention relates to a method for producing a flame-resistant acrylonitrile polymer that can also be used as a precursor of carbon fiber suitable as a reinforcing fiber material in various composite materials.

例えばアクリロニトリル重合体からなるアクリル繊維は、炭素繊維の前駆体として用いられている。アクリル繊維を前駆体として得られる、いわゆるポリアクリロニトリル炭素繊維(PAN系炭素繊維)は、機械的物性に優れ、また生産性もよいため、広く工業的に生産されている。   For example, acrylic fiber made of acrylonitrile polymer is used as a precursor of carbon fiber. A so-called polyacrylonitrile carbon fiber (PAN-based carbon fiber) obtained using an acrylic fiber as a precursor is excellent in mechanical properties and good in productivity, and thus is widely industrially produced.

アクリル繊維から炭素繊維を製造する場合、まず、アクリル繊維を酸化性雰囲気中、200〜300℃で加熱処理して耐炎化繊維とし(耐炎化工程)、ついで、炭素化処理して炭素繊維を得る。炭素化処理では、通常、公知の技術により、1000〜2000℃の不活性気体中で熱処理する(炭素化工程)。また、炭素化工程の前に、400〜700℃の上昇温度勾配の不活性雰囲気炉で熱処理する(前炭素化工程)ことが好ましいとされている。
こうして得られた炭素繊維をさらに高温の不活性ガス中で処理し、黒鉛繊維とする場合もある。
When producing carbon fibers from acrylic fibers, first, the acrylic fibers are heat-treated at 200 to 300 ° C. in an oxidizing atmosphere to make flame-resistant fibers (flame-proofing step), and then carbonized to obtain carbon fibers. . In the carbonization treatment, heat treatment is usually performed in an inert gas at 1000 to 2000 ° C. by a known technique (carbonization step). In addition, it is preferable to heat-treat in an inert atmosphere furnace having a rising temperature gradient of 400 to 700 ° C. (pre-carbonization step) before the carbonization step.
The carbon fiber thus obtained may be further processed in a high-temperature inert gas to obtain a graphite fiber.

耐炎化工程では、アクリル繊維などのアクリロニトリル重合体を構成する高分子鎖に結合したニトリル基の環化反応と、さらに環化した構造が酸化または脱水素化されナフチリジン環とアクリドン環が複合した構造に変わる脱水素反応(これら環化反応と脱水素反応を合わせて「耐炎化反応」という。)が起こる。
しかし、200〜300℃の酸化性雰囲気中での耐炎化反応では、アクリロニトリル重合体表面からの酸素の拡散具合により構造が変化しやすく、酸素の拡散が不充分であると脱水素反応まで反応が進行しにくかった。従って、得られる耐炎化繊維などの耐炎化アクリロニトリル重合体は、アクリロニトリル重合体が繊維状の場合は直径、粉体状の場合は粒径、フィルム状の場合は厚さにもよるが、外部はナフチリジン環とアクリドン環が複合した炭素の二重結合をもつ構造が主となり、内部はニトリル基が環化反応したのみの炭素の二重結合を持たない構造が主となり、内部まで均一な構造になりにくかった。このような構造となる傾向は、アクリロニトリル重合体の直径、粒径、厚みが大きくなるほど顕著であった。
In the flameproofing process, a cyclization reaction of a nitrile group bonded to a polymer chain constituting an acrylonitrile polymer such as acrylic fiber, and a structure in which a naphthyridine ring and an acridone ring are combined by oxidation or dehydrogenation of the cyclized structure The dehydrogenation reaction (which is referred to as “flame-resistant reaction” in combination) is performed.
However, in the flameproofing reaction in an oxidizing atmosphere at 200 to 300 ° C., the structure is likely to change due to the diffusion state of oxygen from the acrylonitrile polymer surface, and if the oxygen diffusion is insufficient, the reaction will continue until the dehydrogenation reaction. It was hard to progress. Therefore, the flame-resistant acrylonitrile polymer such as the flame-resistant fiber obtained depends on the diameter when the acrylonitrile polymer is fibrous, the particle size when it is powdery, and the thickness when it is a film, but the outside is A structure with a carbon double bond composed mainly of a naphthyridine ring and an acridone ring is the main structure, and the inside is mainly a structure without a carbon double bond, which is a cyclization reaction of a nitrile group. It was hard to become. The tendency to become such a structure became more prominent as the diameter, particle size, and thickness of the acrylonitrile polymer increased.

また、アクリロニトリル重合体としてアクリロニトリルを単独重合させた単独重合体を用いると、耐炎化工程での加熱処理に時間がかかりやすかった。そのため、通常、耐炎化反応を促進するモノマー(反応促進モノマー)をアクリロニトリルと共重合させた共重合体を用いる。
しかし、反応促進モノマーの割合が多くなるほど、耐炎化工程での加熱処理時間(耐炎化時間)を短縮できるが、その一方で、得られる炭素繊維などの品位ならびに性能が低下する傾向にあった。
Further, when a homopolymer obtained by homopolymerizing acrylonitrile is used as the acrylonitrile polymer, the heat treatment in the flameproofing process tends to take time. For this reason, a copolymer obtained by copolymerizing a monomer (reaction promoting monomer) that accelerates the flameproofing reaction with acrylonitrile is usually used.
However, as the proportion of the reaction promoting monomer increases, the heat treatment time (flame resistance time) in the flame resistance process can be shortened, but on the other hand, the quality and performance of the obtained carbon fibers tend to decrease.

耐炎化反応を促進させる方法として、例えば特許文献1には、アクリルプレカーサーを加圧下で耐炎化する方法が開示されている。   As a method for accelerating the flameproofing reaction, for example, Patent Document 1 discloses a method of flameproofing an acrylic precursor under pressure.

特開平3−76822号公報Japanese Patent Laid-Open No. 3-76822

しかしながら、特許文献1に記載の方法では、耐炎化反応を促進できるものの、例えば直径が大きいアクリル繊維(例えば直径が15μm以上のアクリル繊維)を用いた場合は、内部まで均一な構造の耐炎化繊維を得ることは必ずしも容易ではなかった。
また、特許文献1に記載の方法では、0.05〜100kg/cm−Gに加圧された200〜300℃の雰囲気中で、繊維束を加熱して耐炎化処理を行うが、実施例で示されている温度と圧力の範囲は超臨界雰囲気下ではない。
However, in the method described in Patent Document 1, although the flameproofing reaction can be promoted, for example, when an acrylic fiber having a large diameter (for example, an acrylic fiber having a diameter of 15 μm or more) is used, the flameproof fiber having a uniform structure up to the inside. It was not always easy to get.
Moreover, in the method of patent document 1, although a fiber bundle is heated and flame-resistant treatment is performed in the atmosphere of 200-300 degreeC pressurized to 0.05-100 kg / cm < 2 > -G, Example The temperature and pressure ranges indicated by are not under supercritical atmosphere.

本発明は上記事情に鑑みてなされたもので、耐炎化時間を短縮でき、かつ直径が大きい繊維状、粒径が大きい粉体状、または厚みのあるフィルム状のアクリロニトリル重合体を用いても、内部まで均一な構造の耐炎化アクリロニトリル重合体を製造できる方法の提供を課題とする。   The present invention has been made in view of the above circumstances, and the flame resistance time can be shortened, and a fiber having a large diameter, a powder having a large particle diameter, or a thick film acrylonitrile polymer can be used, An object is to provide a method capable of producing a flame-resistant acrylonitrile polymer having a uniform structure up to the inside.

本発明の耐炎化アクリロニトリル重合体の製造方法は、二酸化炭素を主成分とする超臨界流体中で、アクリロニトリル重合体を200〜300℃で加熱処理し、環化、脱水素反応を行うことを特徴とする
らに、前記超臨界流体が酸化性物質を含有することが好ましい。
また、前記アクリロニトリル重合体は繊維状、特に直径が15μm以上の繊維状でもよいし、粉体状でもよいし、フィルム状でもよい。
さらに、アクリロニトリル重合体がアクリロニトリル単位を90〜98質量%含有する共重合体であり、超臨界流体中で加熱処理する時間が60分以下であることが好ましい。
The method for producing a flame-resistant acrylonitrile polymer of the present invention is characterized in that the acrylonitrile polymer is heat-treated at 200 to 300 ° C. in a supercritical fluid containing carbon dioxide as a main component to carry out cyclization and dehydrogenation reactions. to.
Et al is, it is preferable that the supercritical fluid containing an oxidizing agent.
The acrylonitrile polymer may be in the form of a fiber, particularly a fiber having a diameter of 15 μm or more, a powder, or a film.
Furthermore, it is preferable that the acrylonitrile polymer is a copolymer containing 90 to 98% by mass of acrylonitrile units, and the heat treatment time in the supercritical fluid is 60 minutes or less.

本発明の耐炎化アクリロニトリル重合体の製造方法によれば、耐炎化時間を短縮でき、かつ直径が大きい繊維状、粒径が大きい粉体状、または厚みのあるフィルム状のアクリロニトリル重合体を用いても、内部まで均一な構造の耐炎化アクリロニトリル重合体を製造できる。
また、本発明により得られる耐炎化アクリロニトリル重合体は、内部まで均一な構造である。
According to the method for producing a flame-resistant acrylonitrile polymer of the present invention, a flame-resistant time can be shortened, and a fiber having a large diameter, a powder having a large particle size, or a thick film-like acrylonitrile polymer is used. However, a flame-resistant acrylonitrile polymer having a uniform structure up to the inside can be produced.
The flame-resistant acrylonitrile polymer obtained by the present invention has a uniform structure up to the inside.

実施例で用いた加熱処理装置1を示す概略構成図である。It is a schematic block diagram which shows the heat processing apparatus 1 used in the Example. 実施例で用いた加熱処理装置2を示す概略構成図である。It is a schematic block diagram which shows the heat processing apparatus 2 used in the Example. 実施例1、4、12、および比較例1、3で得られた耐炎化繊維の固体13C−NMRスペクトルを示した図である。It is the figure which showed the solid 13 C-NMR spectrum of the flameproof fiber obtained in Example 1, 4, 12, and Comparative Example 1, 3. FIG. 実施例7、および比較例2で得られた耐炎化繊維の赤外吸収スペクトルを示した図である。It is the figure which showed the infrared absorption spectrum of the flameproof fiber obtained in Example 7 and Comparative Example 2.

以下本発明を詳細に説明する。
本発明の耐炎化アクリロニトリル重合体の製造方法は、超臨界流体中でアクリロニトリル重合体を加熱処理し、環化、脱水素反応を行うことを特徴とする。
本発明に用いられるアクリロニトリル重合体の形状は、繊維状であってもよく、粉体状であってもよく、フィルム状であってもよい。
ここで、特にアクリロニトリル重合体が繊維状の場合を「アクリル繊維」と称し、該アクリル繊維を加熱処理して得られる繊維を「耐炎化繊維」と称する。
The present invention will be described in detail below.
The method for producing a flame-resistant acrylonitrile polymer of the present invention is characterized in that the acrylonitrile polymer is heated in a supercritical fluid to carry out cyclization and dehydrogenation reactions.
The shape of the acrylonitrile polymer used in the present invention may be a fiber, a powder, or a film.
Here, the case where the acrylonitrile polymer is particularly fibrous is referred to as “acrylic fiber”, and the fiber obtained by heat-treating the acrylic fiber is referred to as “flame-resistant fiber”.

アクリロニトリル重合体としては、アクリロニトリルを単独重合させた重合体(ホモポリマー)および/またはアクリロニトリルと共重合可能なモノマーとの共重合体を用いることができる。
アクリロニトリル重合体が共重合体の場合、炭素化を良好に行う目的で、アクリロニトリル重合体中のアクリロニトリル単位の含有量は90質量%以上であることが好ましい。特に、炭素繊維にしたときのアクリロニトリル重合体に起因する欠陥点を軽減し、炭素繊維の品位ならびに性能を向上させる目的で、アクリロニトリル単位の含有量は95質量%以上であることがより好ましい。一方、アクリロニトリル単位の含有量の上限値は98質量%以下が好ましい。
As the acrylonitrile polymer, a polymer obtained by homopolymerizing acrylonitrile (homopolymer) and / or a copolymer with a monomer copolymerizable with acrylonitrile can be used.
When the acrylonitrile polymer is a copolymer, the content of acrylonitrile units in the acrylonitrile polymer is preferably 90% by mass or more for the purpose of good carbonization. In particular, the content of the acrylonitrile unit is more preferably 95% by mass or more for the purpose of reducing defects caused by the acrylonitrile polymer when the carbon fiber is used and improving the quality and performance of the carbon fiber. On the other hand, the upper limit of the content of acrylonitrile units is preferably 98% by mass or less.

アクリロニトリルと共重合可能なモノマーは、耐炎化反応を促進するために用いられる。このようなモノマーとしては特に制限はないが、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピルなどに代表されるアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ウラリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチルなどに代表されるメタクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどの不飽和モノマー類;p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、及びこれらのアルカリ金属塩が挙げられる。これらは、1種でもよく、2種以上の組み合わせでもよい。   A monomer copolymerizable with acrylonitrile is used to accelerate the flameproofing reaction. Although there is no restriction | limiting in particular as such a monomer, For example, in methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, etc. Representative acrylic acid esters: methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, uraryl methacrylate, 2-hydroxyethyl methacrylate, hydroxy methacrylate Methacrylic acid esters represented by propyl, diethylaminoethyl methacrylate, etc .; acrylic acid, methacrylic acid, itaconic acid acrylamide, N-methylol acrylamide, diacetone acrylic , Unsaturated monomers such as styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, vinylidene fluoride; p-sulfophenylmethallyl ether, methallylsulfonic acid, Examples include allyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and alkali metal salts thereof. These may be one kind or a combination of two or more kinds.

アクリロニトリルと共重合可能な他のモノマーとして、後述する耐炎化工程での環化反応を特に促進する目的で、カルボン酸基を有するモノマーやアクリルアミドを用いることが好ましい。特に、溶剤に対する溶解性の向上の観点から、アクリルアミド単位がアクリロニトリル重合体に1質量%以上含まれていることが好ましい。
カルボン酸基を有するモノマーとしては、メタクリル酸やイタコン酸が好ましい。
As another monomer copolymerizable with acrylonitrile, a monomer having a carboxylic acid group or acrylamide is preferably used for the purpose of particularly promoting the cyclization reaction in the flameproofing step described later. In particular, from the viewpoint of improving solubility in a solvent, it is preferable that 1% by mass or more of acrylamide units are contained in the acrylonitrile polymer.
As the monomer having a carboxylic acid group, methacrylic acid and itaconic acid are preferable.

アクリロニトリル重合体は、溶液重合、懸濁重合など公知の重合方法により得ることができる。重合により得られたアクリロニトリル重合体からは、未反応モノマーなどの不純物を除く処理をすることが望ましい。   The acrylonitrile polymer can be obtained by a known polymerization method such as solution polymerization or suspension polymerization. It is desirable to remove impurities such as unreacted monomers from the acrylonitrile polymer obtained by polymerization.

アクリロニトリル重合体が繊維状の場合、このようにして得られたアクリロニトリル重合体、好ましくは不純物を除去したアクリロニトリル重合体を溶剤に溶解して紡糸原液とし、該紡糸原液を紡糸してアクリル繊維を得る。
溶剤としては、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミドなどの有機溶剤や、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液が使用できる。作製される繊維中に金属が混入されにくく、また、工程が簡略化される点で、有機溶剤が好ましい。
紡糸原液中のアクリロニトリル重合体の濃度は、紡糸工程上、その重合度にもよるが、17質量%以上が好ましく、より好ましくは19質量%以上である。また、25質量%以下が好ましい。
When the acrylonitrile polymer is fibrous, the acrylonitrile polymer thus obtained, preferably the acrylonitrile polymer from which impurities have been removed, is dissolved in a solvent to obtain a spinning stock solution, and the spinning stock solution is spun to obtain an acrylic fiber. .
As the solvent, organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate can be used. An organic solvent is preferable in that the metal is less likely to be mixed into the produced fiber and the process is simplified.
The concentration of the acrylonitrile polymer in the spinning dope is preferably 17% by mass or more, more preferably 19% by mass or more, depending on the degree of polymerization in the spinning process. Moreover, 25 mass% or less is preferable.

紡糸方法としては、公知の紡糸方法を用いることができる。具体的には、紡糸原液をノズル孔より直接凝固浴中に紡出する湿式紡糸法、一旦空気中へ紡出した後に浴中凝固させる乾湿式紡糸方法を用いることができる。
凝固浴には紡糸原液に用いられる溶剤を含む水溶液が使用される。水溶液中の溶剤の濃度は、使用する溶剤の種類にもよるが、例えば、ジメチルアセトアミドあるいはジメチルホルムアミドを使用する場合、50〜80質量%が好ましい。
凝固浴の温度は、20〜50℃が生産性上、好ましい。
A known spinning method can be used as the spinning method. Specifically, a wet spinning method in which the spinning solution is directly spun into a coagulation bath through a nozzle hole, or a dry wet spinning method in which the spinning solution is once spun into air and then coagulated in the bath can be used.
For the coagulation bath, an aqueous solution containing a solvent used for the spinning dope is used. The concentration of the solvent in the aqueous solution depends on the type of solvent used, but for example, when dimethylacetamide or dimethylformamide is used, it is preferably 50 to 80% by mass.
The temperature of the coagulation bath is preferably 20 to 50 ° C. in terms of productivity.

紡糸原液を紡出して得られた凝固糸は、水洗後、延伸処理、乾燥処理され、炭素繊維の前駆体であるアクリル繊維として用いられる。
延伸処理、乾燥処理は公知の方法により行うことができる。
延伸処理としては、限定されるものではなく、例えば、2本のロールに凝固糸を巻きつけ2本のロール間の回転速度を変える方法により行うことができる。延伸処理時の雰囲気も限定されるものではなく、例えば、凝固浴と同種の溶剤を含む水溶液中、熱水中、高圧水蒸気中等から適宜選択し、また組み合わせて行うことができる。
乾燥方法としても限定される訳ではないが、例えば、凝固糸を加熱されたロールに巻きつけ通過させる方法が例示できる。
The coagulated yarn obtained by spinning the spinning dope is washed with water, stretched and dried, and used as an acrylic fiber that is a carbon fiber precursor.
The stretching process and the drying process can be performed by a known method.
The stretching treatment is not limited and can be performed, for example, by a method in which a coagulated yarn is wound around two rolls and the rotation speed between the two rolls is changed. The atmosphere at the time of the stretching treatment is not limited, and for example, it can be appropriately selected from an aqueous solution containing the same kind of solvent as the coagulation bath, hot water, high-pressure steam, or the like, and can be combined.
Although it does not necessarily limit as a drying method, For example, the method of winding a coagulated yarn around a heated roll and making it pass can be illustrated.

なお、アクリロニトリル重合体が粉体状の場合は、重合後のアクリロニトリル重合体を造粒機などでペレット状に成形し、乾燥させることで得られる。
また、アクリロニトリル重合体がフィルム状の場合は、アクリロニトリル重合体の粉体を溶剤に溶解してキャスト溶液を調製し、該キャスト溶液を基材上に塗布し、乾燥させて溶剤を除去することや、前記キャスト溶液をTダイなどで押し出して凝固液中で凝固させた後、引き続き溶剤を水洗等にて除去し、乾燥することで得られる。溶剤としては、アクリル繊維の製法で例示した溶剤を用いることができる。
In addition, when an acrylonitrile polymer is a powder form, it can obtain by shape | molding the acrylonitrile polymer after superposition | polymerization into a pellet form with a granulator etc., and making it dry.
In the case where the acrylonitrile polymer is in the form of a film, a cast solution is prepared by dissolving acrylonitrile polymer powder in a solvent, the cast solution is applied onto a substrate, and dried to remove the solvent. The cast solution can be obtained by extruding the cast solution with a T-die or the like and coagulating it in a coagulating liquid, and subsequently removing the solvent by washing with water and drying. As a solvent, the solvent illustrated by the manufacturing method of an acrylic fiber can be used.

このようにして得られたアクリル繊維などのアクリロニトリル重合体を用い、超臨界流体中で前記アクリロニトリル重合体を加熱処理し、耐炎化アクリロニトリル重合体を得る(耐炎化工程)。
加熱処理の際の温度は、200〜300℃が好ましく、より好ましくは230〜270℃である。温度が200℃以上であれば、環化反応が進行しやすくなり、処理時間を短縮できる。温度が高くなるに連れて反応が速く進行するので、230℃以上がより好ましい。一方、温度が300℃以下であれば、分解反応を抑制できる。特に温度が270℃以下であれば、急速な反応の進行を抑制できるので、反応の制御が容易となる。
また、加熱処理の際の時間は、アクリロニトリル重合体の組成により異なり、アクリロニトリル単体からなる重合体の場合は15〜120分が好ましく、アクリロニトリルと共重合可能なモノマーとの共重合体の場合は15〜60分が好ましい。
Using the acrylonitrile polymer such as acrylic fiber thus obtained, the acrylonitrile polymer is heated in a supercritical fluid to obtain a flame resistant acrylonitrile polymer (flame resistant step).
The temperature during the heat treatment is preferably 200 to 300 ° C, more preferably 230 to 270 ° C. If temperature is 200 degreeC or more, a cyclization reaction will advance easily and processing time can be shortened. Since the reaction proceeds faster as the temperature becomes higher, 230 ° C. or higher is more preferable. On the other hand, if the temperature is 300 ° C. or lower, the decomposition reaction can be suppressed. In particular, when the temperature is 270 ° C. or lower, rapid progress of the reaction can be suppressed, so that the reaction can be easily controlled.
The time for the heat treatment varies depending on the composition of the acrylonitrile polymer, preferably 15 to 120 minutes in the case of a polymer composed of acrylonitrile alone, and 15 in the case of a copolymer of acrylonitrile and a copolymerizable monomer. ~ 60 minutes is preferred.

本発明における「超臨界流体」とは、臨界点以上の温度および圧力にすると、それ以上温度および圧力をかけても凝縮しない高密度な流体のことをいう。この状態は、液体と同程度の密度ながら、気体と同程度の拡散性を併せ持つ。このため、超臨界流体は高分子材料の細部まで浸透し、大きな可塑化効果を有する流体である。   The “supercritical fluid” in the present invention refers to a high-density fluid that does not condense even when a temperature and pressure above the critical point are applied. This state has the same diffusivity as a gas while having the same density as a liquid. Therefore, the supercritical fluid is a fluid that penetrates into the details of the polymer material and has a large plasticizing effect.

超臨界流体の流体としては、臨界点以上の温度および圧力の状態にある二酸化炭素(臨界温度31.0℃、臨界圧力7.38MPa)、亜酸化窒素(臨界温度36.5℃、臨界圧力7.27MPa)、エタン(臨界温度32.2℃、臨界圧力4.88MPa)、エチレン(臨界温度9.34℃、臨界圧力5.04MPa)が挙げられる。   As the fluid of the supercritical fluid, carbon dioxide (critical temperature 31.0 ° C., critical pressure 7.38 MPa), nitrous oxide (critical temperature 36.5 ° C., critical pressure 7) at a temperature and pressure above the critical point. .27 MPa), ethane (critical temperature 32.2 ° C., critical pressure 4.88 MPa), and ethylene (critical temperature 9.34 ° C., critical pressure 5.04 MPa).

本発明に用いる超臨界流体は、二酸化炭素を主成分とする。二酸化炭素は、臨界温度が31.0℃、臨界圧力が7.38MPaであることから、比較的取り扱いやすく、不燃性、不活性、無毒、安価であり、超臨界条件が適当であるためである。
本発明における「主成分」とは、超臨界流体(100体積%)中の二酸化炭素の割合が80〜100体積%であることを意味する。
The supercritical fluid used in the present invention contains carbon dioxide as a main component. Since carbon dioxide has a critical temperature of 31.0 ° C. and a critical pressure of 7.38 MPa, it is relatively easy to handle, nonflammable, inert, non-toxic, inexpensive, and suitable for supercritical conditions. .
The “main component” in the present invention means that the ratio of carbon dioxide in the supercritical fluid (100% by volume) is 80 to 100% by volume.

超臨界流体は、二酸化炭素のみから構成されていてもよいし、複数の成分で構成されていてもよい。特に、酸化性物質を含有することが好ましい。
酸化性物質としては、二酸化窒素、二酸化硫黄、酸素が挙げられる。経済性の観点からは、酸化性物質である酸素を含有する空気を利用することが好ましい。
本発明における「超臨界流体が酸化性物質を含有する」とは、超臨界流体が酸化性の物質を溶解している状態のこと、もしくは超臨界状態の混合流体のことをいう。
The supercritical fluid may be composed only of carbon dioxide, or may be composed of a plurality of components. In particular, it is preferable to contain an oxidizing substance.
Examples of the oxidizing substance include nitrogen dioxide, sulfur dioxide, and oxygen. From the viewpoint of economy, it is preferable to use air containing oxygen which is an oxidizing substance.
In the present invention, “the supercritical fluid contains an oxidizing substance” means a state where the supercritical fluid dissolves the oxidizing substance or a mixed fluid in a supercritical state.

上述したように、従来、耐炎化工程での加熱処理には時間がかかりやすかった。そのため、アクリロニトリルと促進モノマー(すなわち、アクリロニトリルと共重合可能なモノマー)とを共重合させた共重合体を例えばアクリル繊維として用い、耐炎化時間の短縮を図っていたが、得られる炭素繊維の品位ならびに性能が低下する傾向にあった。
また、耐炎化工程で得られる耐炎化繊維などの耐炎化アクリロニトリル重合体は、外部はナフチリジン環とアクリドン環が複合した炭素の二重結合をもつ構造が主となり、内部はニトリル基が環化反応したのみの炭素の二重結合を持たない構造が主となり、内部まで均一な構造になりにくかった。このような構造となる傾向は、アクリロニトリル重合体が繊維状の場合は直径、粉体状の場合は粒径、フィルム状の場合は厚さが大きくなるほど顕著であった。
As described above, conventionally, the heat treatment in the flameproofing process has been easy to take time. For this reason, a copolymer obtained by copolymerizing acrylonitrile and a accelerating monomer (that is, a monomer copolymerizable with acrylonitrile) was used as an acrylic fiber, for example, to shorten the flame resistance time. In addition, the performance tended to decrease.
In addition, flame-resistant acrylonitrile polymers such as flame-resistant fibers obtained in the flame-resistant process mainly have a structure with a carbon double bond composed of a naphthyridine ring and an acridone ring on the outside, and a nitrile group on the inside undergoes a cyclization reaction. However, it was difficult to obtain a uniform structure up to the inside. The tendency to have such a structure becomes more prominent as the diameter increases when the acrylonitrile polymer is fibrous, the particle diameter when it is powder, and the thickness when it is a film.

しかし、本発明の耐炎化アクリロニトリル重合体の製造方法によれば、超臨界流体中でアクリロニトリル重合体を加熱処理するので、超臨界流体からアクリロニトリル重合体への熱の伝達がよい。従って、耐炎化工程での熱化学反応(耐炎化反応)を大気中で行うよりも早く反応させることができ、耐炎化時間を短縮できる。   However, according to the method for producing a flame-resistant acrylonitrile polymer of the present invention, since the acrylonitrile polymer is heated in the supercritical fluid, heat transfer from the supercritical fluid to the acrylonitrile polymer is good. Accordingly, the thermochemical reaction (flame-proofing reaction) in the flame-proofing step can be performed faster than in the atmosphere, and the flame-proofing time can be shortened.

なお、アクリロニトリル重合体の耐炎化反応の進行度は、固体13C−NMR測定を行い、ニトリル基のピーク(約120ppm)と、環化脱水素化により生じるカーボンの二重結合のピーク(約137ppm)とを比較し、これらのピーク強度で進行度合いを確認することができる。 The progress of the flameproofing reaction of the acrylonitrile polymer was measured by solid 13 C-NMR measurement, and the peak of the nitrile group (about 120 ppm) and the peak of the carbon double bond (about 137 ppm) generated by cyclization dehydrogenation. ) And the degree of progress can be confirmed with these peak intensities.

また、顕微赤外分光装置を用いたKBr錠剤法によっても、アクリロニトリル重合体の耐炎化反応の進行度を確認することができる。具体的には、透過測定を行い、C−H振動の吸収ピーク(2940cm−1)に対するニトリル基の吸収ピーク(2240cm−1)、環化により生じるナフチリジン環の炭素の二重結合の吸収ピーク(1610cm−1)、および脱水素化により生じる炭素の二重結合の吸収ピーク(1580cm−1)のピーク強度を求め、これらのピーク強度で進行度合いを確認する。ニトリル基のピーク強度が小さくなるほど、また炭素の二重結合のピーク強度が大きくなるほど、耐炎化反応が進行していることを意味する。 Further, the progress of the flame resistance reaction of the acrylonitrile polymer can also be confirmed by the KBr tablet method using a micro-infrared spectrometer. Specifically, performs transmission measurements, C-H absorption peak of nitrile group to the absorption peak (2940 cm -1) of the vibration (2240 cm -1), the absorption peak of the carbon-carbon double bonds of the naphthyridine ring caused by cyclization ( 1610 cm −1 ), and the peak intensity of an absorption peak (1580 cm −1 ) of a carbon double bond generated by dehydrogenation, and the degree of progress is confirmed by these peak intensities. As the peak intensity of the nitrile group decreases and the peak intensity of the carbon double bond increases, it means that the flameproofing reaction proceeds.

また、本発明によれば、超臨界流体がアクリロニトリル重合体の分子を可塑化し、重合体内部まで超臨界流体中の成分(特に酸化性物質)が行き渡るので、均一に脱水素反応が進行する。従って、従来に比べて大きな直径のアクリル繊維や、粒径の大きい粉体、厚みのあるフィルムなどを用いても、内部まで均一な構造の耐炎化アクリロニトリル重合体を製造できる。すなわち、本発明は、直径の大きいアクリル繊維、特に直径(平均値)が15μm以上のアクリル繊維や、粒径の大きい粉体、厚みのあるフィルムを用いる場合にも適している。   Further, according to the present invention, the supercritical fluid plasticizes the molecules of the acrylonitrile polymer, and the components (particularly oxidizing substances) in the supercritical fluid reach the inside of the polymer, so that the dehydrogenation reaction proceeds uniformly. Therefore, a flame-resistant acrylonitrile polymer having a uniform structure up to the inside can be produced even by using acrylic fibers having a larger diameter than conventional ones, powders having a large particle diameter, and films having a large thickness. That is, the present invention is also suitable when acrylic fibers having a large diameter, particularly acrylic fibers having a diameter (average value) of 15 μm or more, powder having a large particle diameter, and a film having a thickness are used.

なお、耐炎化アクリロニトリル重合体の構造は、顕微赤外分光装置を用いた透過測定によって確認できる。例えばアクリロニトリル重合体としてアクリル繊維を用いた場合、得られる耐炎化繊維の表面から繊維軸に垂直方向に位置を変えて測定し、炭素の二重結合の吸収ピーク(1580cm−1)の強度を繊維の直径(繊維径)の位置に対してプロットすることで確認できる。脱水素反応が繊維内部まで均一に起こっている場合、ピーク強度は繊維径に比例する傾向にある。 The structure of the flame-resistant acrylonitrile polymer can be confirmed by transmission measurement using a micro-infrared spectrometer. For example, when an acrylic fiber is used as the acrylonitrile polymer, measurement is performed by changing the position from the surface of the obtained flame-resistant fiber in a direction perpendicular to the fiber axis, and the strength of the absorption peak (1580 cm −1 ) of the carbon double bond is measured by the fiber. This can be confirmed by plotting against the position of the diameter (fiber diameter). When the dehydrogenation reaction occurs uniformly to the inside of the fiber, the peak intensity tends to be proportional to the fiber diameter.

以上説明したように、本発明によれば、超臨界流体中でアクリロニトリル重合体を加熱処理するので、耐炎化時間を短縮できる。従って、アクリロニトリル重合体として、アクリロニトリルと促進モノマーとを共重合させた共重合体を用いなくても、充分に耐炎化時間が短縮されるので、促進モノマーの共重合の割合を軽減でき、得られる炭素繊維などの品位ならびに性能を良好に維持できる。
また、直径の大きいアクリル繊維、特に直径(平均値)が15μm以上のアクリル繊維や、粒径の大きい粉体、厚みのあるフィルムを用いても、重合体内部まで均一に脱水素反応が進行し、均一な構造の耐炎化アクリロニトリル重合体が得られる。従って、アクリロニトリル重合体として例えばアクリル繊維を用いれば、通常よりも直径の大きい炭素繊維を製造することが可能である。
As described above, according to the present invention, since the acrylonitrile polymer is heat-treated in the supercritical fluid, the flame resistance time can be shortened. Accordingly, the flame resistance time can be sufficiently shortened without using a copolymer obtained by copolymerizing acrylonitrile and an accelerating monomer as the acrylonitrile polymer, so that the ratio of copolymerization of the accelerating monomer can be reduced and obtained. Good quality and performance of carbon fiber can be maintained.
Even if acrylic fibers having a large diameter, particularly acrylic fibers having a diameter (average value) of 15 μm or more, powder having a large particle diameter, and a film having a large thickness are used, the dehydrogenation reaction proceeds evenly inside the polymer. A flame-resistant acrylonitrile polymer having a uniform structure is obtained. Therefore, for example, if an acrylic fiber is used as the acrylonitrile polymer, it is possible to produce a carbon fiber having a larger diameter than usual.

本発明により得られた耐炎化アクリロニトリル重合体は、内部まで均一な構造である。また、原料として、アクリロニトリルと促進モノマーとを共重合させた共重合体を用いなくても、耐炎化時間を短縮できるので、促進モノマーの共重合の割合を軽減できる。従って、この耐炎化アクリロニトリル重合体より得られる炭素繊維などの品位ならびに性能を良好に維持できる。   The flame-resistant acrylonitrile polymer obtained by the present invention has a uniform structure up to the inside. Further, since the flame resistance time can be shortened without using a copolymer obtained by copolymerizing acrylonitrile and a accelerating monomer as a raw material, the rate of copolymerization of the accelerating monomer can be reduced. Accordingly, the quality and performance of the carbon fiber obtained from the flame-resistant acrylonitrile polymer can be maintained well.

本発明により得られた耐炎化アクリロニトリル重合体は、公知の前炭素化工程、炭素化工程を経ることにより、例えば炭素繊維として用いられる。
前炭素化工程では、400〜700℃の上昇温度勾配で熱処理を行う。上昇温度勾配は、炉を複数設置し、それぞれに並んだ炉の温度を上昇するように設定することにより実現できる。また、前炭素化工程は不活性雰囲気炉で行うことができる。不活性雰囲気は限定されるものではないが、経済的に窒素を用いるのが好ましい。
炭素化工程では、1000〜2000℃で、好ましくは1000〜1500℃で熱処理を行う。また、炭素化工程は不活性気体中で行うことができる。不活性気体としては限定されるものではないが、経済的に窒素を用いるのが好ましい。
得られた炭素繊維は、公知の技術により、さらに2000〜3000℃の不活性雰囲気炉で黒鉛化処理をしてもよい。
The flame-resistant acrylonitrile polymer obtained by the present invention is used as, for example, carbon fiber through a known pre-carbonization step and carbonization step.
In the pre-carbonization step, heat treatment is performed with a rising temperature gradient of 400 to 700 ° C. The rising temperature gradient can be realized by setting a plurality of furnaces and increasing the temperature of the furnaces arranged in each. The pre-carbonization step can be performed in an inert atmosphere furnace. The inert atmosphere is not limited, but it is preferable to use nitrogen economically.
In the carbonization step, heat treatment is performed at 1000 to 2000 ° C., preferably 1000 to 1500 ° C. Moreover, the carbonization process can be performed in an inert gas. The inert gas is not limited, but it is preferable to use nitrogen economically.
The obtained carbon fiber may be further graphitized by a known technique in an inert atmosphere furnace at 2000 to 3000 ° C.

なお、粉体状のアクリロニトリル重合体を加熱処理して得られる耐炎化アクリロニトリル重合体は、例えば他のポリマーに混合することで、耐炎化アクリロニトリル重合体を含有する繊維、フィルム、中空体、成型体などを、溶液あるいは溶融体より成型することができる。また、粉体状の耐炎化アクリロニトリル重合体は、さらに炭素化して粉末状炭素とすることで、例えばリチウムイオン電池の電極活物質などとして用いられる。
また、フィルム状のアクリロニトリル重合体を加熱処理して得られる耐炎化アクリロニトリル重合体は、例えばフィルム状の炭素材料などとして用いられる。
In addition, the flame-resistant acrylonitrile polymer obtained by heat-treating a powdery acrylonitrile polymer is, for example, a fiber, a film, a hollow body, or a molded body containing the flame-resistant acrylonitrile polymer by mixing with another polymer. Can be formed from a solution or a melt. Further, the powdery flame-resistant acrylonitrile polymer is further carbonized to form powdery carbon, and is used, for example, as an electrode active material of a lithium ion battery.
Moreover, the flame-resistant acrylonitrile polymer obtained by heat-treating a film-like acrylonitrile polymer is used as a film-like carbon material, for example.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
本実施例に用いたアクリル繊維、加熱処理装置、および本実施例における測定方法は以下の通りである。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
The acrylic fiber, heat treatment apparatus, and measurement method used in this example are as follows.

[単繊維の直径の測定]
任意に10本サンプリングした単繊維の断面を、光学顕微鏡(オリンパス株式会社製、システム偏光顕微鏡、製品名:BX50−33P)を用いて直径を測定し、平均値を求め、これを単繊維の直径とした。
[Measurement of diameter of single fiber]
The diameter of the cross section of 10 single fibers arbitrarily sampled was measured using an optical microscope (manufactured by Olympus Co., Ltd., system polarization microscope, product name: BX50-33P), and the average value was obtained. It was.

[粉体の平均粒径の測定]
レーザー回折散乱法を原理としたSKレーザーマイクロンサイザー(株式会社セイシン企業製、製品名:LMS−350)を用いて、粉体の粒度分布を屈折率1.330−0.01i、形状係数1.000にて測定し、体積平均から算出された50%正規分布の値を平均粒径とした。
[Measurement of average particle size of powder]
Using a SK laser micronizer (product name: LMS-350, manufactured by Seishin Enterprise Co., Ltd.) based on the principle of laser diffraction / scattering method, the particle size distribution of the powder has a refractive index of 1.330-0.01i, a shape factor of 1. The value of 50% normal distribution calculated from the volume average was used as the average particle size.

[アクリル繊維Aの作製]
アクリロニトリル重合体A(アクリロニトリル単位の含有量:100質量%、数平均分子量20万)を濃度24質量%となるようにジメチルホルムアミドに溶解して紡糸原液とし、温度を60℃に調整した。前記紡糸原液を用いて乾湿式紡糸法により、アクリル繊維を得た。具体的には、直径150μmの丸断面の吐出孔を100個有するノズルを用いて紡糸原液を空気中へ紡出した後に、第一凝固浴(濃度79.5質量%、温度15℃のジメチルホルムアミド水溶液)中で凝固させて凝固糸を得た。ついで、凝固糸を第二凝固浴(95℃の温水)中にて2.7倍に延伸し、さらに90〜100℃の水中で1倍に延伸した後、温度180℃、圧力220kPaのスチーム中で3倍に延伸し、トータルの延伸倍率を8倍とし、アクリル繊維A(繊維A)の束を得た。
アクリル繊維Aの束を構成する単繊維の直径は、光学顕微鏡で測定した結果、16.3μmであった。
[Production of acrylic fiber A]
Acrylonitrile polymer A (acrylonitrile unit content: 100% by mass, number average molecular weight 200,000) was dissolved in dimethylformamide to a concentration of 24% by mass to obtain a spinning dope, and the temperature was adjusted to 60 ° C. Acrylic fibers were obtained by dry and wet spinning using the spinning solution. Specifically, after spinning the spinning dope into air using a nozzle having 100 round cross-section discharge holes with a diameter of 150 μm, the first coagulation bath (concentration 79.5 mass%, dimethylformamide at a temperature of 15 ° C. Solidified in an aqueous solution) to obtain a coagulated yarn. Next, the coagulated yarn was stretched 2.7 times in the second coagulation bath (95 ° C. warm water), further stretched 1 time in water at 90 to 100 ° C., and then in steam at a temperature of 180 ° C. and a pressure of 220 kPa. Was stretched 3 times, the total stretch ratio was 8 times, and a bundle of acrylic fibers A (fiber A) was obtained.
The diameter of the single fiber constituting the bundle of acrylic fibers A was 16.3 μm as a result of measurement with an optical microscope.

[アクリル繊維Bの作製]
アクリル繊維Aの束を得るのと同様の条件で、90〜100℃の水中で延伸まで行い、これをアクリル繊維B(繊維B)の束とした。
アクリル繊維Bの束を構成する単繊維の直径は、光学顕微鏡で測定した結果、25.4μmであった。
[Preparation of acrylic fiber B]
Under the same conditions as for obtaining a bundle of acrylic fibers A, stretching was performed in water at 90 to 100 ° C., and this was used as a bundle of acrylic fibers B (fibers B).
The diameter of the single fiber constituting the bundle of acrylic fibers B was 25.4 μm as a result of measurement with an optical microscope.

[粉体の作製]
アクリロニトリル、アクリルアミドおよびメタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=96/3/1(質量比)からなるアクリロニトリル重合体Bを得た。アクリロニトリル重合体Bの含水率は45質量%であった。
得られたアクリロニトリル重合体Bを、ペレタイザーでペレット状に成形し、乾燥機により乾燥して含水率1質量%の粉体を得た。粉体の平均粒径は、38.0μmであった。
[Preparation of powder]
Acrylonitrile, acrylamide and methacrylic acid were copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and from acrylonitrile unit / acrylamide unit / methacrylic acid unit = 96/3/1 (mass ratio). An acrylonitrile polymer B was obtained. The water content of the acrylonitrile polymer B was 45% by mass.
The obtained acrylonitrile polymer B was formed into pellets with a pelletizer and dried with a drier to obtain a powder having a water content of 1% by mass. The average particle size of the powder was 38.0 μm.

[アクリル繊維Cの作製]
粉体の作製と同様にしてアクリロニトリル重合体Bを得た。
得られたアクリロニトリル重合体Bをジメチルアセトアミドに溶解し、21質量%の紡糸原液を調製した。この紡糸原液を孔数3000、孔径75μmの紡糸口金を通して、濃度55質量%、温度30℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸を得た。得られた凝固糸を第1凝固浴中から紡糸原液吐出線速度の0.8倍の引き取り速度で引き取った。引き続き、凝固糸を濃度60質量%、温度30℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて2.8倍に延伸し、繊維束を得た。
ついで、得られた繊維束に対して水洗と同時に3倍の延伸を行い、これに1.5質量%に調製したアミノシリコン系油剤を添油した。添油後の繊維束を熱ロールにて乾燥し、スチーム延伸機にて1.9倍に延伸した。その後、タッチロールにて繊維束の水分率を調整し、繊維束に繊維当たり5質量%の水分を含有させた。ついで、繊維束をエアー圧405kPaのエアーによって交絡処理し、ワインダーで巻き取ることにより、単繊維繊度1.2dtexのアクリル繊維Cの束を得た。
アクリル繊維Cの束を構成する単繊維の直径は、光学顕微鏡で測定した結果、11.0μmであった。
[Production of acrylic fiber C]
Acrylonitrile polymer B was obtained in the same manner as the preparation of the powder.
The obtained acrylonitrile polymer B was dissolved in dimethylacetamide to prepare a 21% by mass spinning dope. This spinning dope was discharged through a spinneret having a pore number of 3000 and a pore diameter of 75 μm into a first coagulation bath composed of a dimethylacetamide aqueous solution having a concentration of 55% by mass and a temperature of 30 ° C. to obtain a coagulated yarn. The obtained coagulated yarn was taken out from the first coagulation bath at a take-up speed of 0.8 times the spinning solution discharge linear speed. Subsequently, the coagulated yarn was led to a second coagulation bath composed of a dimethylacetamide aqueous solution having a concentration of 60% by mass and a temperature of 30 ° C., and drawn 2.8 times in the bath to obtain a fiber bundle.
Next, the obtained fiber bundle was stretched 3 times at the same time as washing with water, and the aminosilicone oil prepared to 1.5% by mass was added thereto. The fiber bundle after the oil addition was dried with a hot roll, and stretched 1.9 times with a steam stretching machine. Thereafter, the moisture content of the fiber bundle was adjusted with a touch roll, and the fiber bundle contained 5% by mass of water per fiber. Subsequently, the fiber bundle was entangled with air having an air pressure of 405 kPa, and wound with a winder to obtain a bundle of acrylic fibers C having a single fiber fineness of 1.2 dtex.
The diameter of the single fiber constituting the bundle of acrylic fibers C was 11.0 μm as a result of measurement with an optical microscope.

[フィルムの作製]
先に得られた粉体を溶剤としてジメチルアセトアミドに溶解し、濃度21.2質量%のキャスト溶液を調製した。
次に、キャスト溶液を平滑なガラス板の上に流延し、適切なクリアランスを設けたガラス棒にてキャスト溶液を展開し、均一な流延体を得た。この流延体をガラス板に展開したまま110℃の乾燥機中で24時間保持し、溶剤を除去した。引き続きガラス板から溶剤を除去した流延体を回収し、更に80℃の真空乾燥機中で減圧乾燥を行った。この操作にて厚さ約150μmのフィルムを得た。
[Production of film]
The powder obtained previously was dissolved in dimethylacetamide as a solvent to prepare a cast solution having a concentration of 21.2% by mass.
Next, the cast solution was cast on a smooth glass plate, and the cast solution was developed with a glass rod provided with an appropriate clearance to obtain a uniform cast. The cast was held in a dryer at 110 ° C. for 24 hours while being spread on a glass plate to remove the solvent. Subsequently, the cast body from which the solvent was removed from the glass plate was collected, and further dried under reduced pressure in a vacuum dryer at 80 ° C. By this operation, a film having a thickness of about 150 μm was obtained.

[加熱処理装置1]
加熱処理に使用した加熱処理装置1の概略構成図を図1に示す。
図1に示す加熱処理装置1は、内容積240mL、最高使用圧力20MPaの高圧リアクター(耐圧硝子工業株式会社製)11に接続された一方のフローバルブ(二酸化炭素供給バルブ)12に、ガスポンプ(日本精密科学株式会社製、製品名: NP−KX−500J)13が接続され、さらに、前記ガスポンプ13と液化二酸化炭素ボンベ14とがシリンダー( 株式会社巴商会製)を介して接続されている。また、高圧リアクター11に接続された他方のフローバルブ(二酸化炭素リリースバルブ)15に、圧力調整弁(日本分光株式会社製、製品名:SCF−Bpg)16を接続し、常に圧力を一定に保てるようにした。なお、高圧リアクター11とフローバルブ15の間には、圧力計17と安全弁18が備わっている。
[Heat treatment apparatus 1]
The schematic block diagram of the heat processing apparatus 1 used for heat processing is shown in FIG.
A heat treatment apparatus 1 shown in FIG. 1 has a gas pump (Japan) connected to one flow valve (carbon dioxide supply valve) 12 connected to a high-pressure reactor (made by pressure-resistant glass industry) having an internal volume of 240 mL and a maximum working pressure of 20 MPa. Precision Science Co., Ltd., product name: NP-KX-500J) 13 is connected, and the gas pump 13 and the liquefied carbon dioxide cylinder 14 are connected via a cylinder (manufactured by Soshokai Co., Ltd.). In addition, a pressure regulating valve (manufactured by JASCO Corporation, product name: SCF-Bpg) 16 is connected to the other flow valve (carbon dioxide release valve) 15 connected to the high-pressure reactor 11 so that the pressure can always be kept constant. I did it. A pressure gauge 17 and a safety valve 18 are provided between the high pressure reactor 11 and the flow valve 15.

[加熱処理装置2]
加熱処理に使用した加熱処理装置2の概略構成図を図2に示す。
図2に示す加熱処理装置2は、内容積100mLの高圧リアクター(オーエムラボテック株式会社製、製品名:MMJ−100)21に接続されたフローバルブ(二酸化炭素供給バルブ)22に、ガスポンプ(日本精密科学株式会社製、製品名: NP−KX−500J)23が接続され、さらに、前記ガスポンプ23と液化二酸化炭素ボンベ24とがシリンダー( 株式会社巴商会製)を介して接続されている。さらに手動式のリークバルブ25と圧力計26、安全弁27が備わっている。また高圧リアクター21には熱電対28の挿入口があり、ここに熱電対28を据え付けて高圧リアクター21内の温度を測定した。また高圧リアクター21には攪拌軸29と攪拌翼が備わっているが、今回は攪拌を行わなかった為、攪拌翼を攪拌軸29から取り外して実験に供した。
[Heat treatment apparatus 2]
The schematic block diagram of the heat processing apparatus 2 used for heat processing is shown in FIG.
A heat treatment apparatus 2 shown in FIG. 2 includes a gas pump (Nippon Seimitsu) connected to a flow valve (carbon dioxide supply valve) 22 connected to a high-pressure reactor (product name: MMJ-100, manufactured by OM Labotech Co., Ltd.) 21 having an internal volume of 100 mL. Scientific Co., Ltd., product name: NP-KX-500J) 23 is connected, and the gas pump 23 and the liquefied carbon dioxide cylinder 24 are connected via a cylinder (manufactured by Soshokai Co., Ltd.). Further, a manual leak valve 25, a pressure gauge 26, and a safety valve 27 are provided. The high-pressure reactor 21 has an insertion port for a thermocouple 28, and the thermocouple 28 was installed therein to measure the temperature in the high-pressure reactor 21. The high-pressure reactor 21 is provided with a stirring shaft 29 and a stirring blade. Since stirring was not performed this time, the stirring blade was removed from the stirring shaft 29 and used for the experiment.

[固体13C−NMR測定]
アクリル繊維Aの束を用い、加熱処理して得られた耐炎化繊維について、固体13C−NMR測定を行った。
測定には、固体NMR測定装置(ブルカー・バイオスピン社、製品名:AVANCEII)、サンプル管が2.5mmのMASプローブを用いた。また、測定方法は、CP/MAS法を用い、H90゜パルス幅を3.0μs、コンタクトタイムを3ms、繰り返し時間を10s、積算回数を4096回とした。基準はTMSピークが0ppmになるようにグリシンで調整した。
[Solid 13 C-NMR measurement]
Solid 13 C-NMR measurement was performed on the flameproof fiber obtained by heat treatment using a bundle of acrylic fibers A.
For the measurement, a solid-state NMR measuring apparatus (Bruker Biospin, product name: AVANCE II) and a MAS probe having a sample tube of 2.5 mm were used. In addition, the CP / MAS method was used as the measurement method, the H90 ° pulse width was 3.0 μs, the contact time was 3 ms, the repetition time was 10 s, and the number of integrations was 4096. The reference was adjusted with glycine so that the TMS peak was 0 ppm.

[IR測定1]
アクリル繊維A〜Cの束、粉体、またはフィルムを用い、加熱処理して得られた耐炎化繊維束、耐炎化粉体、または耐塩化フィルムについて、定法に従いKBr錠剤法にてIR測定を行った。IR用錠剤はKBr200mgに対して、サンプルを1mg加えて調製した。
IR測定には、FT−IR装置(Nicolet社製、製品名:AVATAR330)を用い、Transmissionモード測定、積算回数64回の条件にて、以下のようにして測定した。
まず、KBr単独の錠剤にてIRのバックグラウンドスペクトルを測定した。ついで、サンプルのIRスペクトルを測定した。各吸収スペクトル(1580,1610,2940cm−1)のピーク高さを読み取り、2940cm−1のピーク高さに対する残りのピーク高さの比率(ピーク強度比)をそれぞれ求め、「1610cm−1のピーク高さ/2940cm−1のピーク高さ」で示されるピーク強度比1を環化の指標、「1580cm−1のピーク高さ/2940cm−1のピーク高さ」で示されるピーク強度比2を脱水素化の指標とした。
なお、ピーク高さは赤外分光分析方法通則(JIS K−0117)に従い、ピーク前後に基準線を引き、ピークと基準線からの距離を求め、これをピーク高さと定義した。
[IR measurement 1]
Using a bundle of acrylic fibers A to C, a powder, or a film, flame-resistant fiber bundles, flame-resistant powder, or chloride-resistant film obtained by heat treatment are subjected to IR measurement by the KBr tablet method according to a conventional method. It was. IR tablets were prepared by adding 1 mg of sample to 200 mg of KBr.
For the IR measurement, an FT-IR apparatus (manufactured by Nicolet, product name: AVATAR330) was used, and measurement was performed as follows under the conditions of transmission mode measurement and 64 integrations.
First, an IR background spectrum was measured with a tablet of KBr alone. The IR spectrum of the sample was then measured. The peak height of each absorption spectrum (1580, 1610, 2940 cm −1 ) is read, the ratio of the remaining peak height to the peak height of 2940 cm −1 (peak intensity ratio) is obtained, and “peak height of 1610 cm −1 is determined. is / indicators cyclization peak intensity ratio of 1 indicated by the peak height "of 2940 cm -1, the peak intensity ratio of 2 represented by the peak height" of the "peak of 1580 cm -1 height / 2940 cm -1 dehydrogenation It was used as an indicator of conversion.
The peak height was defined as the peak height by drawing a reference line before and after the peak in accordance with the general rules for infrared spectroscopy (JIS K-0117) to obtain the distance from the peak to the reference line.

<環化・脱水素化の定性評価>
(ピーク強度比1:1610cm−1のピーク高さ/2940cm−1のピーク高さ)
ピーク強度比1を求め、以下の評価基準にて環化の定性評価を行った。なお、ピーク強度比1の値が大きくなるほど環化が進行していることを意味する。
◎:ピーク強度比1が1.5より大きい。
○:ピーク強度比1が1.0より大きく、1.5以下。
△:ピーク強度比1が0.5より大きく、1.0以下。
×:ピーク強度比1が0.5以下。
<Qualitative evaluation of cyclization / dehydrogenation>
(Peak intensity ratio of 1: Peak of 1610 cm -1 height / 2940 cm peak height -1)
A peak intensity ratio of 1 was determined, and qualitative evaluation of cyclization was performed according to the following evaluation criteria. In addition, it means that cyclization is progressing, so that the value of peak intensity ratio 1 becomes large.
A: The peak intensity ratio 1 is larger than 1.5.
A: The peak intensity ratio 1 is greater than 1.0 and 1.5 or less.
Δ: Peak intensity ratio 1 is greater than 0.5 and 1.0 or less.
X: The peak intensity ratio 1 is 0.5 or less.

(ピーク強度比2:1580cm−1のピーク高さ/2940cm−1のピーク高さ)
ピーク強度比2を求め、以下の評価基準にて脱水素化の定性評価を行った。なお、ピーク強度比2の値が大きくなるほど脱水素化が進行していることを意味する。
◎:ピーク強度比2が1.5より大きい。
○:ピーク強度比2が1.0より大きく、1.5以下。
△:ピーク強度比2が0.5より大きく、1.0以下。
×:ピーク強度比2が0.5以下。
(Peak intensity ratio of 2: Peak of 1580 cm -1 height / 2940 cm peak height -1)
A peak intensity ratio of 2 was obtained and qualitative evaluation of dehydrogenation was performed according to the following evaluation criteria. In addition, it means that dehydrogenation has progressed, so that the value of peak intensity ratio 2 becomes large.
A: Peak intensity ratio 2 is larger than 1.5.
A: The peak intensity ratio 2 is greater than 1.0 and 1.5 or less.
(Triangle | delta): The peak intensity ratio 2 is larger than 0.5 and is 1.0 or less.
X: The peak intensity ratio 2 is 0.5 or less.

[IR測定2]
アクリル繊維Bの束を用い、加熱処理して得られた耐炎化繊維について、IR測定を行った。
測定装置としては、FT-IR(日本分光株式会社製、製品名:FT/IR−4100)と二次元赤外顕微鏡(日本分光株式会社製、製品名:IRT−5000)を連結し、FT−IRから二次元赤外顕微鏡に赤外線レーザーを取り込んだものを使用した。
測定の際には、予め耐炎化繊維を一本取り出し、二次元赤外顕微鏡のステージ上にセロハンテープで貼り付け、顕微鏡のピントを合わせた後、繊維軸の垂直方向に4μmずつ位置を変えながら、6点測定した。測定方法は、透過法を用い、積算回数を10回、分解能を4cm−1とした。
[IR measurement 2]
Using a bundle of acrylic fibers B, IR measurement was performed on the flame-resistant fibers obtained by heat treatment.
As a measuring apparatus, FT-IR (manufactured by JASCO Corporation, product name: FT / IR-4100) and a two-dimensional infrared microscope (manufactured by JASCO Corporation, product name: IRT-5000) are connected, and FT- An IR laser incorporated into a two-dimensional infrared microscope was used.
When measuring, take out one flame-resistant fiber in advance, paste it on the stage of a two-dimensional infrared microscope with cellophane tape, adjust the focus of the microscope, and then change the position by 4 μm in the direction perpendicular to the fiber axis. 6 points were measured. As a measurement method, a transmission method was used, the number of integrations was 10 times, and the resolution was 4 cm −1 .

[実施例1]
アクリル繊維Aの束を80cm切り出し、図1に示す加熱処理装置1を用い、高圧リアクター11内に無張力の状態で入れて密封した。入れる際に繊維Aの束は約10cmで折り返し、アルミホイルで支持し、耐圧容器の長手方向に伸びた状態になるようにした。圧力調整弁16を10MPaに設定して、二酸化炭素で置換せずに高圧リアクター11内に空気が残っている状態から、液化二酸化炭素ボンベ14よりガスポンプ13を用いて増圧して、高圧リアクター11内に液化二酸化炭素を導入した、圧力が10MPaになったところで、フローバルブ12を閉じて温度を上昇させた。なお、図1において、符号19はサンプル(アクリル繊維の束)である。
温度は45分かけて240℃まで昇温させた後、120分保持し、超臨界流体中でアクリル繊維Aの束を加熱処理した。保持時間が経過した後、ただちに圧力調整弁16の設定を大気圧にして圧力を開放し、耐炎化繊維の束を取り出した。
[Example 1]
A bundle of acrylic fibers A was cut out by 80 cm, and placed in a high-pressure reactor 11 in a non-tension state using the heat treatment apparatus 1 shown in FIG. When entering, the bundle of fibers A was folded back at about 10 cm, supported by aluminum foil, and extended in the longitudinal direction of the pressure vessel. The pressure regulating valve 16 is set to 10 MPa, and the pressure is increased from the liquefied carbon dioxide cylinder 14 using the gas pump 13 from the state in which the air remains in the high pressure reactor 11 without being replaced with carbon dioxide, and the inside of the high pressure reactor 11 When liquefied carbon dioxide was introduced and the pressure reached 10 MPa, the flow valve 12 was closed to raise the temperature. In FIG. 1, reference numeral 19 denotes a sample (a bundle of acrylic fibers).
The temperature was raised to 240 ° C. over 45 minutes, then held for 120 minutes, and the bundle of acrylic fibers A was heat-treated in a supercritical fluid. Immediately after the holding time had elapsed, the pressure adjustment valve 16 was set to atmospheric pressure, the pressure was released, and a bundle of flame-resistant fibers was taken out.

得られた耐炎化繊維について、0.5mm以下の長さに切断してから、前述のIR測定1の方法で、各吸収スペクトル(1580,1610,2940cm−1)のピーク高さを読み取り、ピーク強度比1、2を求め、環化・脱水素化の定性評価を行った。結果を表1に示す。 About the obtained flame-resistant fiber, after cutting to a length of 0.5 mm or less, the peak height of each absorption spectrum (1580, 1610, 2940 cm −1 ) is read by the method of IR measurement 1 described above. Strength ratios 1 and 2 were obtained, and qualitative evaluation of cyclization / dehydrogenation was performed. The results are shown in Table 1.

また、得られた耐炎化繊維について、固体13C−NMR測定を行った。固体13C−NMRスペクトルを図3に示す。
図3より、ニトリル基を示す122ppmのピークに対して、水素と結合した二重結合をもつカーボンを示す137ppmのピークが大きく、耐炎化反応が最も進行しているのがわかる。なお、137ppmのピークと122ppmのピークの強度比(137ppmのピーク強度/122ppmのピーク強度)は、0.36であった。
Moreover, solid 13 C-NMR measurement was performed about the obtained flameproof fiber. The solid 13 C-NMR spectrum is shown in FIG.
From FIG. 3, it can be seen that the peak at 137 ppm indicating carbon having a double bond bonded to hydrogen is larger than the peak at 122 ppm indicating nitrile group, and the flameproofing reaction is most advanced. The intensity ratio between the peak at 137 ppm and the peak at 122 ppm (peak intensity at 137 ppm / peak intensity at 122 ppm) was 0.36.

[実施例2、3]
加熱処理で保持する時間(加熱処理時間)を表1に示す値に変更した以外は、実施例1と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化繊維の束を得た。
得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Examples 2 and 3]
Except for changing the time for heat treatment (heat treatment time) to the value shown in Table 1, pressure was applied in the same manner as in Example 1 and heat treatment was performed in a supercritical fluid to obtain a bundle of flame-resistant fibers. It was.
The obtained flame-resistant fiber bundle was cut to a length of 0.5 mm or less and IR measurement 1 was performed to evaluate the qualitative evaluation of cyclization / dehydrogenation. The results are shown in Table 1.

[実施例4]
アクリル繊維Aの束を高圧リアクター11内に入れて密封した後、高圧リアクター11内を二酸化炭素で置換した以外は実施例1と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化繊維の束を得た。
得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Example 4]
After putting the bundle of acrylic fibers A in the high-pressure reactor 11 and sealing it, pressure was applied in the same manner as in Example 1 except that the inside of the high-pressure reactor 11 was replaced with carbon dioxide, heat treatment was performed in a supercritical fluid, and flame resistance A bundle of modified fibers was obtained.
The obtained flame-resistant fiber bundle was cut to a length of 0.5 mm or less and IR measurement 1 was performed to evaluate the qualitative evaluation of cyclization / dehydrogenation. The results are shown in Table 1.

また、得られた耐炎化繊維について、固体13C−NMR測定を行った。固体13C−NMRスペクトルを図3に示す。
図3より、122ppmのピークに対して137ppmのピークが実施例1の次に大きく、耐炎化反応が進行しているのがわかる。なお、137ppmのピークと122ppmのピークの強度比(137ppmのピーク強度/122ppmのピーク強度)は、0.33であった。
Moreover, solid 13 C-NMR measurement was performed about the obtained flameproof fiber. The solid 13 C-NMR spectrum is shown in FIG.
As can be seen from FIG. 3, the peak at 137 ppm is the second largest after Example 1 with respect to the peak at 122 ppm, and the flameproofing reaction proceeds. The intensity ratio between the peak at 137 ppm and the peak at 122 ppm (peak intensity at 137 ppm / peak intensity at 122 ppm) was 0.33.

[実施例5、6]
アクリル繊維Aの束を高圧リアクター11内に入れて密封した後、高圧リアクター11内を二酸化炭素で置換し、加熱処理時間を表1に示す値に変更した以外は実施例1と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化繊維の束を得た。
得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Examples 5 and 6]
After the bundle of acrylic fibers A was put in the high pressure reactor 11 and sealed, the inside of the high pressure reactor 11 was replaced with carbon dioxide, and the pressure was changed in the same manner as in Example 1 except that the heat treatment time was changed to the values shown in Table 1. Then, heat treatment was performed in a supercritical fluid to obtain a bundle of flame-resistant fibers.
The obtained flame-resistant fiber bundle was cut to a length of 0.5 mm or less and IR measurement 1 was performed to evaluate the qualitative evaluation of cyclization / dehydrogenation. The results are shown in Table 1.

[実施例7]
アクリル繊維Aの束の代わりに、アクリル繊維Bの束を用いた以外は、実施例1と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化繊維の束を得た。
得られた耐炎化繊維について、IR測定2を行った。赤外吸収スペクトルを図4に示す。なお、図4において、横軸は繊維の測定位置、縦軸は炭素間の二重結合を示す1580cm−1のピーク強度である。
図4より、繊維の中央部にピークをもつことがわかった。脱水素反応が繊維内部まで均一に起こっている場合、ピーク強度は繊維径に比例する傾向にある。従って、実施例7で得られた耐炎化繊維は、内部まで二重結合を有し、均一な構造であることがわかる。
[Example 7]
A bundle of flame-resistant fibers was obtained by applying pressure in the same manner as in Example 1 except that a bundle of acrylic fibers B was used instead of the bundle of acrylic fibers A, and performing heat treatment in a supercritical fluid.
IR measurement 2 was performed about the obtained flame-resistant fiber. The infrared absorption spectrum is shown in FIG. In FIG. 4, the horizontal axis represents the measurement position of the fiber, and the vertical axis represents the peak intensity of 1580 cm −1 indicating a double bond between carbons.
From FIG. 4, it was found that there was a peak at the center of the fiber. When the dehydrogenation reaction occurs uniformly to the inside of the fiber, the peak intensity tends to be proportional to the fiber diameter. Therefore, it can be seen that the flameproof fiber obtained in Example 7 has a double bond to the inside and has a uniform structure.

[実施例8、9]
アクリル繊維Aの束を高圧リアクター11内に入れて密封した後、高圧リアクター11内を二酸化炭素で置換し、高圧リアクター11内の温度(加熱処理温度)および加熱処理時間を表1に示す値に変更した以外は実施例1と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化繊維の束を得た。
得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Examples 8 and 9]
After the bundle of acrylic fibers A is put into the high pressure reactor 11 and sealed, the inside of the high pressure reactor 11 is replaced with carbon dioxide, and the temperature (heat treatment temperature) and the heat treatment time in the high pressure reactor 11 are set to the values shown in Table 1. Except for the change, pressure was applied in the same manner as in Example 1, and heat treatment was performed in a supercritical fluid to obtain a bundle of flame-resistant fibers.
The obtained flame-resistant fiber bundle was cut to a length of 0.5 mm or less and IR measurement 1 was performed to evaluate the qualitative evaluation of cyclization / dehydrogenation. The results are shown in Table 1.

[実施例10]
図2に示す加熱処理装置2を用い、高圧リアクター21内にアクリロニトリル重合体Bの粉体2.8gを入れて密封した。ついで、高圧リアクター21内の空気を液化二酸化炭素ボンベ24から導入した二酸化炭素で置換してから、さらに液化二酸化炭素を導入した。なお、開始時の高圧リアクター21内温度は14℃、圧力は5.0MPaであった。
ヒーター(図示略)により高圧リアクター21を加熱したところ、加熱開始から15分で高圧リアクター21内の温度計が202℃を示し、圧力が9.0MPaを示した。高圧リアクター21内の温度が210℃を超えない様にヒーターを制御し、圧力は9.0MPaを維持するようにリークバルブ25を手動で制御した。
加熱処理温度約202℃、加熱処理圧力9.0MPaの超臨界流体中で加熱処理を15分実施し、その後ヒーターの電源を落とした。
自然冷却にて高圧リアクター21内の温度が50℃を下回るまでおよそ2時間放置した後、高圧リアクター21内の圧力を開放し、耐炎化粉体を取り出した。
得られた耐炎化粉体について、IR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Example 10]
Using the heat treatment apparatus 2 shown in FIG. 2, 2.8 g of acrylonitrile polymer B powder was placed in a high-pressure reactor 21 and sealed. Subsequently, after replacing the air in the high-pressure reactor 21 with carbon dioxide introduced from the liquefied carbon dioxide cylinder 24, liquefied carbon dioxide was further introduced. The internal temperature of the high-pressure reactor 21 was 14 ° C. and the pressure was 5.0 MPa.
When the high pressure reactor 21 was heated by a heater (not shown), the thermometer in the high pressure reactor 21 showed 202 ° C. and the pressure showed 9.0 MPa in 15 minutes from the start of heating. The heater was controlled so that the temperature in the high-pressure reactor 21 did not exceed 210 ° C., and the leak valve 25 was controlled manually so that the pressure was maintained at 9.0 MPa.
Heat treatment was performed for 15 minutes in a supercritical fluid having a heat treatment temperature of about 202 ° C. and a heat treatment pressure of 9.0 MPa, and then the heater was turned off.
After standing for about 2 hours until the temperature in the high-pressure reactor 21 fell below 50 ° C. by natural cooling, the pressure in the high-pressure reactor 21 was released, and the flame-resistant powder was taken out.
About the obtained flame-resistant powder, IR measurement 1 was performed and qualitative evaluation of cyclization / dehydrogenation was performed. The results are shown in Table 1.

[実施例11、12]
図2に示す加熱処理装置2を用い、アクリル繊維Cの束(長さ2.5m、重さ3.6g)を高圧リアクター21内の攪拌軸29に巻きつけて密封した。加熱処理温度、加熱処理圧力、および加熱処理時間を表1に示す値に変更した以外は実施例10と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化繊維の束を得た。なお、図2において、符号30はサンプル(アクリル繊維の束)である。
得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Examples 11 and 12]
Using a heat treatment apparatus 2 shown in FIG. 2, a bundle of acrylic fibers C (length 2.5 m, weight 3.6 g) was wound around a stirring shaft 29 in the high-pressure reactor 21 and sealed. Except that the heat treatment temperature, the heat treatment pressure, and the heat treatment time were changed to the values shown in Table 1, pressure was applied in the same manner as in Example 10 and heat treatment was performed in a supercritical fluid to obtain a bundle of flame resistant fibers. It was. In FIG. 2, reference numeral 30 denotes a sample (a bundle of acrylic fibers).
The obtained flame-resistant fiber bundle was cut to a length of 0.5 mm or less and IR measurement 1 was performed to evaluate the qualitative evaluation of cyclization / dehydrogenation. The results are shown in Table 1.

また、実施例12により得られた耐炎化繊維について、固体13C−NMR測定を行った。固体13C−NMRスペクトルを図3に示す。
図3より、137ppmのピークと122ppmのピークの強度比(137ppmのピーク強度/122ppmのピーク強度)は、0.34であった。実施例12の場合は実施例4と同程度に反応していることがわかる。
このことから、原料にアクリルアミドおよびメタクリル酸を共重合したアクリロニトリル共重合体を用いると、アクリロニトリル単体の重合体を用いるよりも、より低温でかつ短時間で耐炎化反応が進行することがわかる。
Further, the flame-resistant fiber obtained in Example 12 was subjected to solid 13 C-NMR measurement. The solid 13 C-NMR spectrum is shown in FIG.
From FIG. 3, the intensity ratio of the peak at 137 ppm to the peak at 122 ppm (peak intensity at 137 ppm / peak intensity at 122 ppm) was 0.34. In the case of Example 12, it turns out that it is reacting as much as Example 4.
From this, it is understood that when an acrylonitrile copolymer obtained by copolymerizing acrylamide and methacrylic acid is used as a raw material, the flameproofing reaction proceeds at a lower temperature and in a shorter time than when a polymer of acrylonitrile alone is used.

[実施例13]
アクリロニトリル重合体Bのフィルムを幅2cm、長さ5cm、重さ0.35g切り出し、図2に示す加熱処理装置2を用い、高圧リアクター21内に切り出したフィルムを入れて密封した。加熱処理温度、加熱処理圧力、および加熱処理時間を表1に示す値に変更した以外は実施例10と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化フィルムを得た。
得られた耐炎化フィルムについて、乳鉢で粉砕してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Example 13]
A film of acrylonitrile polymer B was cut out to a width of 2 cm, a length of 5 cm, and a weight of 0.35 g, and the heat cut apparatus 2 shown in FIG. Except that the heat treatment temperature, the heat treatment pressure, and the heat treatment time were changed to the values shown in Table 1, pressure was applied in the same manner as in Example 10 and heat treatment was performed in a supercritical fluid to obtain a flame resistant film.
The obtained flame resistant film was pulverized in a mortar and then IR measurement 1 was performed to evaluate the qualification of cyclization / dehydrogenation. The results are shown in Table 1.

[比較例1]
アクリル繊維Aの束を高圧リアクター11内に入れて密封した後、高圧リアクター11内に二酸化炭素を入れずに大気圧下で加熱処理を行った以外は、実施例1と同様にして、耐炎化繊維の束を得た。
得られた耐炎化繊維について、固体13C−NMR測定を行った。固体13C−NMRスペクトルを図3に示す。137ppmのピークと122ppmのピークの強度比(137ppmのピーク強度/122ppmのピーク強度)は、0.12であった。
比較例1の場合、実施例1、4、12に比べて137ppmのピークと122ppmのピークの強度比が小さく、耐炎化反応が充分に進行していないことがわかる。
[Comparative Example 1]
Flame proofing was carried out in the same manner as in Example 1 except that a bundle of acrylic fibers A was put in the high pressure reactor 11 and sealed, and then heat treatment was performed under atmospheric pressure without carbon dioxide in the high pressure reactor 11. A bundle of fibers was obtained.
The obtained flame-resistant fiber was subjected to solid 13 C-NMR measurement. The solid 13 C-NMR spectrum is shown in FIG. The intensity ratio between the peak at 137 ppm and the peak at 122 ppm (peak intensity at 137 ppm / peak intensity at 122 ppm) was 0.12.
In the case of Comparative Example 1, the intensity ratio of the 137 ppm peak and the 122 ppm peak is smaller than in Examples 1, 4, and 12, indicating that the flameproofing reaction has not progressed sufficiently.

[比較例2]
アクリル繊維Aの束の代わりに、アクリル繊維Bの束を用い、前記アクリル繊維Bの束を高圧リアクター11内に入れて密封した後、高圧リアクター11内に二酸化炭素を入れずに大気圧下で加熱処理を行った以外は、実施例1と同様にして、耐炎化繊維の束を得た。
得られた耐炎化繊維について、IR測定2を行った。赤外吸収スペクトルを図4に示す。
図4より、繊維の中央部が平坦であり、繊維の内部まで脱水素反応が充分に進行していないことがわかる。すなわち、比較例2で得られた耐炎化繊維は、内部まで均一な構造ではなかった。
[Comparative Example 2]
Instead of the bundle of acrylic fibers A, a bundle of acrylic fibers B is used. After the bundle of acrylic fibers B is put in the high pressure reactor 11 and sealed, the carbon dioxide is not put in the high pressure reactor 11 at atmospheric pressure. A bundle of flameproof fibers was obtained in the same manner as in Example 1 except that the heat treatment was performed.
IR measurement 2 was performed about the obtained flame-resistant fiber. The infrared absorption spectrum is shown in FIG.
FIG. 4 shows that the center part of the fiber is flat and the dehydrogenation reaction has not sufficiently progressed to the inside of the fiber. That is, the flameproof fiber obtained in Comparative Example 2 did not have a uniform structure up to the inside.

[比較例3、4]
アクリル繊維Aの束を高圧リアクター11内に入れて密封した後、高圧リアクター11内を二酸化炭素で置換し、加熱処理圧力および加熱処理時間を表1に示す値に変更した以外は実施例1と同様に圧力をかけて加熱処理を行い、耐炎化繊維の束を得た。なお、加熱処理中の二酸化炭素は超臨界流体の状態ではなく、気体の状態であった。
比較例4により得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Comparative Examples 3 and 4]
After the bundle of acrylic fibers A was put in the high pressure reactor 11 and sealed, the inside of the high pressure reactor 11 was replaced with carbon dioxide, and the heat treatment pressure and the heat treatment time were changed to the values shown in Table 1 and Example 1. Similarly, a heat treatment was performed by applying pressure to obtain a bundle of flame-resistant fibers. The carbon dioxide during the heat treatment was not in a supercritical fluid state but in a gaseous state.
The flame-resistant fiber bundle obtained in Comparative Example 4 was cut to a length of 0.5 mm or less, then IR measurement 1 was performed, and qualitative evaluation of cyclization / dehydrogenation was performed. The results are shown in Table 1.

また、比較例3により得られた耐炎化繊維について、固体13C−NMR測定を行った。固体13C−NMRスペクトルを図3に示す。
図3より、137ppmのピークと122ppmのピークの強度比(137ppmのピーク強度/122ppmのピーク強度)は、0.12であった。比較例3の場合、実施例1、4、12に比べて137ppmのピークと122ppmのピークの強度比が小さく、耐炎化反応が充分に進行していないことがわかる。
Further, the flame-resistant fiber obtained in Comparative Example 3 was subjected to solid 13 C-NMR measurement. The solid 13 C-NMR spectrum is shown in FIG.
From FIG. 3, the intensity ratio of the peak at 137 ppm to the peak at 122 ppm (peak intensity at 137 ppm / peak intensity at 122 ppm) was 0.12. In the case of Comparative Example 3, the intensity ratio of the 137 ppm peak and the 122 ppm peak is smaller than in Examples 1, 4, and 12, indicating that the flameproofing reaction has not progressed sufficiently.

[比較例5]
アクリル繊維Aの束を高圧リアクター11内に入れて密封した後、高圧リアクター11内を窒素で置換した以外は、実施例1と同様に圧力をかけ、超臨界流体中で加熱処理を行い、耐炎化繊維の束を得た。
得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Comparative Example 5]
After putting the bundle of acrylic fibers A in the high-pressure reactor 11 and sealing it, and applying pressure in the same manner as in Example 1 except that the inside of the high-pressure reactor 11 is replaced with nitrogen, heat treatment is performed in a supercritical fluid, and flame resistance A bundle of modified fibers was obtained.
The obtained flame-resistant fiber bundle was cut to a length of 0.5 mm or less and IR measurement 1 was performed to evaluate the qualitative evaluation of cyclization / dehydrogenation. The results are shown in Table 1.

[比較例6]
図2に示す加熱処理装置2を用い、アクリル繊維Cの束(長さ2.5m、重さ3.6g)を高圧リアクター21内の攪拌軸29に巻きつけて密封した。加熱処理温度、加熱処理圧力、および加熱処理時間を表1に示す値に変更した以外は実施例10と同様に圧力をかけて加熱処理を行い、耐炎化繊維の束を得た。なお、加熱処理中の二酸化炭素は超臨界流体の状態ではなく、気体の状態であった。
得られた耐炎化繊維束について、0.5mm以下の長さに切断してからIR測定1を行い、環化・脱水素化の定性評価を行った。結果を表1に示す。
[Comparative Example 6]
Using a heat treatment apparatus 2 shown in FIG. 2, a bundle of acrylic fibers C (length 2.5 m, weight 3.6 g) was wound around a stirring shaft 29 in the high-pressure reactor 21 and sealed. Except that the heat treatment temperature, the heat treatment pressure, and the heat treatment time were changed to the values shown in Table 1, the heat treatment was performed in the same manner as in Example 10 to obtain a bundle of flame resistant fibers. The carbon dioxide during the heat treatment was not in a supercritical fluid state but in a gaseous state.
The obtained flame-resistant fiber bundle was cut to a length of 0.5 mm or less and IR measurement 1 was performed to evaluate the qualitative evaluation of cyclization / dehydrogenation. The results are shown in Table 1.

Figure 0005656185
Figure 0005656185

表1から明らかなように、各実施例で得られた耐炎化繊維、耐炎化粉体、および耐炎化フィルムは、ピーク強度比1の値が大きかった。この結果より、ニトリル基の環化が進行しているのがわかる。また、ピーク強度比2の値も大きく、脱水素化が進行しているのがわかる。
一方、各比較例で得られた耐炎化繊維は、ピーク強度比1の値が小さかった。この結果よりニトリル基の環化が充分に進行していないのがわかる。また、ピーク強度比2の値も小さく、脱水素化が充分に進行していないことがわかる。
As is clear from Table 1, the value of the peak intensity ratio 1 was large in the flameproofed fiber, flameproofed powder, and flameproofed film obtained in each example. From this result, it can be seen that the cyclization of the nitrile group proceeds. Moreover, the value of the peak intensity ratio 2 is also large, indicating that dehydrogenation is in progress.
On the other hand, the flame resistant fiber obtained in each comparative example had a small peak intensity ratio of 1. From this result, it can be seen that cyclization of the nitrile group does not proceed sufficiently. Moreover, the value of peak intensity ratio 2 is also small, and it turns out that dehydrogenation has not fully advanced.

1、2:加熱処理装置、
11、21:高圧リアクター、
12、22:フローバルブ、
13、23:ガスポンプ、
14、24:液化二酸化炭素ボンベ、
15:フローバルブ、
16:圧力調整弁、
17、26:圧力計、
18、27:安全弁、
19、30:サンプル、
25:リークバルブ、
28:熱電対、
29:攪拌軸。
1, 2: heat treatment apparatus,
11, 21: high pressure reactor,
12, 22: Flow valve,
13, 23: Gas pump,
14, 24: liquefied carbon dioxide cylinder,
15: Flow valve,
16: Pressure regulating valve,
17, 26: pressure gauge,
18, 27: Safety valve,
19, 30: sample,
25: Leak valve
28: thermocouple,
29: Stirring shaft.

Claims (7)

二酸化炭素を主成分とする超臨界流体中で、アクリロニトリル重合体を200〜300℃で加熱処理し、環化、脱水素反応を行う、耐炎化アクリロニトリル重合体の製造方法。 A method for producing a flame-resistant acrylonitrile polymer, comprising subjecting an acrylonitrile polymer to a heat treatment at 200 to 300 ° C. in a supercritical fluid containing carbon dioxide as a main component, followed by cyclization and dehydrogenation reactions. 前記超臨界流体が酸化性物質を含有する、請求項1に記載の耐炎化アクリロニトリル重合体の製造方法。 The method for producing a flame-resistant acrylonitrile polymer according to claim 1, wherein the supercritical fluid contains an oxidizing substance. 前記アクリロニトリル重合体が繊維状である、請求項1または2に記載の耐炎化アクリロニトリル重合体の製造方法。 The method for producing a flame-resistant acrylonitrile polymer according to claim 1 or 2 , wherein the acrylonitrile polymer is fibrous. 繊維の直径が15μm以上である、請求項に記載の耐炎化アクリロニトリル重合体の製造方法。 The method for producing a flame-resistant acrylonitrile polymer according to claim 3 , wherein the fiber has a diameter of 15 μm or more. 前記アクリロニトリル重合体が粉体状である、請求項1または2に記載の耐炎化アクリロニトリル重合体の製造方法。 The method for producing a flame-resistant acrylonitrile polymer according to claim 1 or 2 , wherein the acrylonitrile polymer is in a powder form. 前記アクリロニトリル重合体がフィルム状である、請求項1または2に記載の耐炎化アクリロニトリル重合体の製造方法。 The manufacturing method of the flame-resistant acrylonitrile polymer of Claim 1 or 2 whose said acrylonitrile polymer is a film form. アクリロニトリル重合体がアクリロニトリル単位を90〜98質量%含有する共重合体であり、超臨界流体中で加熱処理する時間が60分以下である、請求項1〜のいずれか一項に記載の耐炎化アクリロニトリル重合体の製造方法。 The flame resistance according to any one of claims 1 to 6 , wherein the acrylonitrile polymer is a copolymer containing 90 to 98% by mass of acrylonitrile units, and the heat treatment time in the supercritical fluid is 60 minutes or less. A method for producing a acrylonitrile polymer.
JP2010123148A 2009-05-29 2010-05-28 Method for producing flame-resistant acrylonitrile polymer Expired - Fee Related JP5656185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123148A JP5656185B2 (en) 2009-05-29 2010-05-28 Method for producing flame-resistant acrylonitrile polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009130557 2009-05-29
JP2009130557 2009-05-29
JP2010123148A JP5656185B2 (en) 2009-05-29 2010-05-28 Method for producing flame-resistant acrylonitrile polymer

Publications (2)

Publication Number Publication Date
JP2011006681A JP2011006681A (en) 2011-01-13
JP5656185B2 true JP5656185B2 (en) 2015-01-21

Family

ID=43563680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123148A Expired - Fee Related JP5656185B2 (en) 2009-05-29 2010-05-28 Method for producing flame-resistant acrylonitrile polymer

Country Status (1)

Country Link
JP (1) JP5656185B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352260A (en) * 2015-11-04 2018-07-31 日本宝翎株式会社 Double layer capacitor diaphragm
CN107740282A (en) * 2017-10-20 2018-02-27 东华大学 A kind of PAN carbon fibre precursors processing method
CN107653520A (en) * 2017-10-20 2018-02-02 东华大学 A kind of preparation method of cost degradation polyacrylonitrile-based carbon fibre
CN107653521B (en) * 2017-10-20 2020-04-21 东华大学 Mass production method and device for aromatic cyclization of PAN carbon fiber precursors
CN107675294A (en) * 2017-10-20 2018-02-09 东华大学 A kind of preparation method of nano material RPP nitrile PAN carbon fibre precursors
CN107557892B (en) * 2017-10-20 2020-04-17 东华大学 Method for preparing cyclized PAN fiber after aromatic cyclization of PAN spinning solution
CN107630268B (en) * 2017-10-20 2020-04-21 东华大学 Method for cyclizing PAN carbon fiber precursor
KR102351984B1 (en) * 2017-12-26 2022-01-18 주식회사 엘지화학 Polyacrylonitrile based oxidized fiber
JP7112668B2 (en) * 2018-05-25 2022-08-04 株式会社豊田中央研究所 Flameproof treatment apparatus for carbon material precursor and flameproof treatment method for carbon material precursor using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180379A (en) * 2000-12-15 2002-06-26 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same
JP4310126B2 (en) * 2003-04-10 2009-08-05 帝人株式会社 Method for producing graphitizable substance
JP2006104643A (en) * 2004-09-08 2006-04-20 Osaka Gas Chem Kk Blended felt and carbon fiber felt
JP2007063526A (en) * 2005-08-03 2007-03-15 Toray Ind Inc Polymer dispersion and method for producing the same
JP2007247104A (en) * 2006-03-16 2007-09-27 Mitsuya:Kk Method for producing chelate fiber and chelate fiber and fabric containing this chelate fiber
JP2008013866A (en) * 2006-07-04 2008-01-24 Teijin Techno Products Ltd Method for dyeing and functional processing
JP2008038258A (en) * 2006-08-01 2008-02-21 Gunze Ltd Method for processing fibrous product and processed fiber
JP2008266829A (en) * 2007-04-19 2008-11-06 Univ Of Fukui Functional fiber structure and method for producing the same
JP2009090223A (en) * 2007-10-10 2009-04-30 Toray Ind Inc Manufacturing method of filter membrane element, filter membrane element and membrane filtration module

Also Published As

Publication number Publication date
JP2011006681A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5656185B2 (en) Method for producing flame-resistant acrylonitrile polymer
KR101658298B1 (en) Carbon fiber bundle and method of producing carbon fibers
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
JP4910729B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same
JP7225173B2 (en) Manufacture of intermediate modulus carbon fiber
WO2000005440A1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
JP4979478B2 (en) Acrylonitrile-based carbon fiber precursor fiber bundle, carbon fiber bundle using the same, and method for producing the same
JP2018084002A (en) Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2004060126A (en) Carbon fiber and method for producing the same
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
RU2432422C2 (en) Fire-resistant fibre, carbon fibre and production method thereof
JP6232814B2 (en) Acrylic fiber manufacturing method
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP5892455B2 (en) Acrylonitrile precursor fiber for carbon fiber and method for producing the same
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2014167039A (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber
JP2014167038A (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JP2024508516A (en) Process for making polymer fibers and polymer fibers made therefrom
JP2007284807A (en) Fiber bundle of acrylonitrile-based carbon fiber precursor, method for producing the same and carbon fiber bundle
JP4190787B2 (en) Method for producing carbonaceous material
JP2011231412A (en) Polyacrylonitrile-based fiber and carbon fiber made from the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141118

R150 Certificate of patent or registration of utility model

Ref document number: 5656185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees