JP2008013866A - Method for dyeing and functional processing - Google Patents

Method for dyeing and functional processing Download PDF

Info

Publication number
JP2008013866A
JP2008013866A JP2006184373A JP2006184373A JP2008013866A JP 2008013866 A JP2008013866 A JP 2008013866A JP 2006184373 A JP2006184373 A JP 2006184373A JP 2006184373 A JP2006184373 A JP 2006184373A JP 2008013866 A JP2008013866 A JP 2008013866A
Authority
JP
Japan
Prior art keywords
fiber
dyeing
carbon dioxide
supercritical carbon
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006184373A
Other languages
Japanese (ja)
Inventor
Saoaya Kuroda
幸乙綾 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2006184373A priority Critical patent/JP2008013866A/en
Publication of JP2008013866A publication Critical patent/JP2008013866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for dyeing, which maintains functionality and quality of fibers at the same time in dyeing fiber materials by using a supercritical carbon dioxide fluid, etc. <P>SOLUTION: In the method, when dyeing in the supercritical carbon dioxide fluid, a functionalizing agent which is previously kneaded in the fiber is contained in the supercritical carbon dioxide fluid, concentration gradient of the functionalizing agent in the fiber and in the supercritical carbon dioxide fluid is balanced, and bleed out of the functionalizing agent in the fiber is suppressed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超臨界二酸化炭素流体における染色および機能加工方法に関するものであり、特に染色する際に、染色する前の繊維自身が有している機能特性、品質を損なうことなく、超臨界流体を用いて染色する方法に関するものである。   The present invention relates to a dyeing and functional processing method in a supercritical carbon dioxide fluid, and in particular, when dyeing, a supercritical fluid is obtained without impairing the functional properties and quality of the fiber itself before dyeing. It is related with the method of using and dye | staining.

従来、繊維構造物を染色および機能加工する方法として様々な方法が知られている。染色方法については染料と各種助剤併用して水や多量の熱エネルギーを使用して染色する方法が一般的であり、又水分散体機能剤及び/又は水系機能剤を用いる機能加工方法に関しては、染色同時吸尽機能加工する方法やバインダーを用いたパディング(Dip→Nip→Dry→Cure)処理する方法が知られ、いずれにしても大量の廃液が発生するという問題があった。最近の地球環境改善への取り組みが叫ばれる中、廃水処理技術の向上が望まれている。   Conventionally, various methods are known as methods for dyeing and functionally processing fiber structures. As for the dyeing method, a method of dyeing with water and a large amount of heat energy in combination with a dye and various auxiliary agents is generally used, and regarding a functional processing method using an aqueous dispersion functional agent and / or an aqueous functional agent. In addition, there are known a method of processing the simultaneous dyeing exhaust function and a method of padding (Dip → Nip → Dry → Cure) using a binder, and in any case, a large amount of waste liquid is generated. While recent efforts to improve the global environment are screamed, improvement of wastewater treatment technology is desired.

例えば、新しい排水(廃水)処理プロセスとして、地球環境への配慮(大気汚染、排水汚染、資源の有効利用など)から、染色機能加工における染料や加工剤や各種機能剤などを大量に含んだ廃液を光触媒や微生物などにより分解する方法が提案されている。しかしその処理はケミカルコスト、設備コスト等の増大を伴うため、排水処理の工業化技術としてはかなり難しく現状では不利な面がある。   For example, as a new wastewater (wastewater) treatment process, wastewater containing a large amount of dyes, processing agents, and various functional agents in dyeing function processing due to consideration for the global environment (air pollution, wastewater pollution, effective use of resources, etc.) A method has been proposed for decomposing sucrose using a photocatalyst or a microorganism. However, since the treatment involves an increase in chemical cost, equipment cost, etc., it is quite difficult as an industrialization technology for wastewater treatment, and there is a disadvantage at present.

また他の染色や機能加工後の排水(廃液)処理コストが低減できる方法としては、特許文献1には、超臨界流体を繊維構造物の染色に利用することにより、排水(廃液)ゼロの染色を行うことができ、また従来多種多量使われていた染色助剤を使うこと無く、また染着(染料吸尽)されなかった染料(未染着染料)も完全回収できるという方法が提案されている。この方法により染色、機能加工の排水を大幅に低減できる可能性があるものの、通常の染色より高圧で行われるため、染色装置がオートクレーブ型装置のような特別の装置が必要となり、そのため流体の循環の無い状態で処理が行われるため、加工品位(均一染色性、加工性、風合い、加工剤の溶解性及び利用性など)は十分とは言えないものであった。   In addition, as a method for reducing wastewater (waste liquid) treatment costs after other dyeing and functional processing, Patent Document 1 discloses that wastewater (waste liquid) is dyed by using a supercritical fluid for dyeing fiber structures. In addition, a method has been proposed in which dyes that have not been dyed (dye exhausted) (undyed dyes) can be completely recovered without using dyeing assistants that have been used in large quantities in the past. Yes. Although there is a possibility that the waste water for dyeing and functional processing can be greatly reduced by this method, it is performed at a higher pressure than normal dyeing, so a special device such as an autoclave type device is required for the dyeing device, and therefore fluid circulation Since the process is carried out in the absence of the above, the processing quality (uniform dyeability, processability, texture, solubility of the processing agent and availability, etc.) cannot be said to be sufficient.

その解決方法として、特許文献2においては、超臨界流体を循環させながら染色および機能剤を付着させる方法が提案されている。この方法により加工品位の向上した染色が行えるものの、繊維自身に練り込まれた難燃剤、紫外線吸収剤(耐光性改良剤)などの機能剤が超臨界で行う染色処理によりブリードアウトし、染色と繊維の機能特性や品質とを両立させることが難しいという問題があった。   As a solution to this problem, Patent Document 2 proposes a method of attaching a dye and a functional agent while circulating a supercritical fluid. Dyeing with improved processing quality can be achieved by this method, but a functional agent such as a flame retardant kneaded into the fiber itself or a UV absorber (light resistance improver) is bleeded out by a supercritical dyeing process, There was a problem that it was difficult to achieve both the functional characteristics and quality of the fiber.

特開平4−245918号公報JP-A-4-245918 特開2002−212884号公報JP 2002-212884 A

本発明の目的は、上記従来技術の有する問題点を解消し、あらゆる繊維素材を超臨界二酸化炭素流体などの超臨界流体を用いて染色する際に、染色と繊維の機能特性、品質も保持する加工方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art and retain the dyeing and functional characteristics and quality of the fiber when dyeing all fiber materials using a supercritical fluid such as a supercritical carbon dioxide fluid. It is to provide a processing method.

本発明者らは上記目的を達成するために鋭意検討した結果、超臨界二酸化炭素流体を循環させながら染料吸尽(染色)する際に、予め繊維に練り込まれている機能剤を超臨界二酸化流体中に含有させることにより、繊維に練り込まれた機能剤のブリードアウトを抑制できることを究明し、本発明に到達した。   As a result of diligent investigations to achieve the above object, the present inventors have determined that a functional agent previously kneaded in the fiber is supercritical dioxide when exhausting (dying) the dye while circulating the supercritical carbon dioxide fluid. By investigating in the fluid, it was found that the bleeding out of the functional agent kneaded into the fiber can be suppressed, and the present invention has been achieved.

すなわち本発明によれば、超臨界二酸化炭素流体中で染色する際に、予め練り込まれた機能剤を超臨界二酸化炭素流体中に含ませることにより、繊維中と超臨界二酸化炭素流体中の機能剤の濃度勾配を平衡とすることができ、繊維中の機能剤のブリードアウトを抑制することが出来るので、染色と同時に繊維の機能特性、品質を保持できる。   That is, according to the present invention, when dyeing in a supercritical carbon dioxide fluid, a function agent kneaded in advance is included in the supercritical carbon dioxide fluid, so that the function in the fiber and in the supercritical carbon dioxide fluid is achieved. Since the concentration gradient of the agent can be balanced and bleed-out of the functional agent in the fiber can be suppressed, the functional characteristics and quality of the fiber can be maintained simultaneously with the dyeing.

超臨界二酸化炭素流体中で染色するに際し、問題であった繊維中の機能剤のブリードアウトが抑制されるので繊維の特性や品質が維持されるだけでなく、排水(廃液)ゼロの染色を行うことができるので非常に効率的な加工方法となる。   When dyeing in supercritical carbon dioxide fluid, bleeding out of the functional agent in the fiber, which was a problem, is suppressed, so that not only the characteristics and quality of the fiber are maintained, but also drainage (waste liquid) is dyed zero. Therefore, it becomes a very efficient processing method.

超臨界流体は、臨界温度および臨界圧力を超えた温度および圧力下の流動体であり、非凝縮性高密度流体と定義される。この状態は気相および液相のどちらに属するともいえない状態であり、密度は液体と同程度であるにもかかわらず、気体と同程度の運動性を持つ。   A supercritical fluid is a fluid under temperature and pressure above the critical temperature and pressure and is defined as a non-condensable dense fluid. This state cannot be said to belong to either the gas phase or the liquid phase, and has a mobility comparable to that of a gas, although the density is similar to that of a liquid.

上記超臨界流体には、通常の繊維加工で用いられる装置の圧力より充分高い、例えば1MPa以上の高圧状態にある気体または液体状の流動体も含まれる。
かかる超臨界流体(高圧状態にある気体または液体状の流動体を含む)としては、二酸化炭素、窒素、水、エタノール、メタノールなどが上げられるが、超臨界流体の状態にする条件の容易さ、安全性、設備の耐熱・耐圧・耐腐食性などを考慮して、本発明においては二酸化炭素を用いる。二酸化炭素の臨界温度は31.1℃、臨界圧力は7.2Mpaである。
The supercritical fluid includes a gas or liquid fluid which is in a high pressure state sufficiently higher than the pressure of an apparatus used in normal fiber processing, for example, 1 MPa or more.
Examples of such supercritical fluids (including gas or liquid fluids in a high pressure state) include carbon dioxide, nitrogen, water, ethanol, methanol, etc. In consideration of safety, heat resistance / pressure resistance / corrosion resistance of equipment, etc., carbon dioxide is used in the present invention. Carbon dioxide has a critical temperature of 31.1 ° C. and a critical pressure of 7.2 Mpa.

超臨界二酸化炭素は、わずかの圧力変化で大きな密度変化を起こす他、低粘度、高拡散性であるため、種々の染料を溶解可能であり、特に極性を持たない染料を良く溶解するため、これら染料を繊維構造物の細部まで浸透させることができ、染色加工に好適な流体であると考えられる。しかしながら、機能剤が練り込まれた繊維素材においては、超臨界二酸化炭素流体を用いた染色において、機能剤がブリードアウトしてしまい、本来の繊維特性や基本的な品質を発現することが難しいという問題があった。   Supercritical carbon dioxide causes a large density change with a slight change in pressure, and also has low viscosity and high diffusivity, so it can dissolve various dyes, especially those that have no polarity. The dye can penetrate into the details of the fiber structure and is considered to be a fluid suitable for dyeing. However, in the fiber material in which the functional agent is kneaded, the functional agent bleeds out in the dyeing using the supercritical carbon dioxide fluid, and it is difficult to express original fiber characteristics and basic quality. There was a problem.

本発明はこうした現状に鑑み、機能剤のブリードアウトを抑制する手段として、繊維中に練り込まれた機能剤と同種の機能剤を、好ましくは同量以上を超臨界二酸化炭素流体中に含有させることにより、機能剤のブリードアウトを著しく抑制することが可能であることを見出すことにより完成されたものである。   In view of the present situation, the present invention contains a functional agent of the same type as the functional agent kneaded in the fiber as a means for suppressing bleed out of the functional agent, preferably the same amount or more is contained in the supercritical carbon dioxide fluid. Thus, the present invention has been completed by finding out that the bleeding out of the functional agent can be remarkably suppressed.

本発明でいう繊維とは、布帛、糸、綿、不織布などの何れの形状でもよく、また機能剤が練り込まれた繊維素材であればポリエステル系、ポリプロピレン系、ポリエチレン系、PBO、アラミド系、ナイロン系、ポリ塩化ビニル系などの何れでもよく、またそれぞれからなる混繊、混紡、交編織物でも、あるいは綿・ウール・麻などの天然繊維との混繊、混紡、交編織物でも構わない。   The fiber referred to in the present invention may be any shape such as fabric, yarn, cotton, and non-woven fabric, and if it is a fiber material in which a functional agent is kneaded, polyester, polypropylene, polyethylene, PBO, aramid, Nylon-based or polyvinyl chloride-based may be used, and may be mixed fiber, mixed spinning, knitted fabric made of each, or mixed fiber, mixed spinning, knitted fabric with natural fibers such as cotton, wool, hemp, etc. .

なお、本発明で使用する染料は、分散染料、カチオン染料、油溶性染料を用いることができるが、分散染料が特に好ましい。分散染料としは、水に難溶性で水中に分散した系から疎水性繊維の染色に用いられる染料を使用することができ、通常ポリエステル繊維やアセテート繊維などの染色に用いられているベンゼンアゾ系(モノアゾ、ジスアゾなど)、複素環アゾ系(チアゾールアゾ、ベンゾシアゾールアゾ、キノリンアゾ、ピリジンアゾ、イミダゾールアゾ、チオフェノンアゾなど)、アントラキノン系、縮合系(キノフタリン、スチリン、クマリン)を任意に使用することができる。また染料中の色素固形分濃度がより高い方が染着しやすく好ましい。   In addition, although the dye used by this invention can use a disperse dye, a cationic dye, and an oil-soluble dye, a disperse dye is especially preferable. As the disperse dye, a dye which is hardly soluble in water and used for dyeing hydrophobic fibers from a system dispersed in water can be used, and benzeneazo type (monoazo) which is usually used for dyeing polyester fibers, acetate fibers and the like. , Disazo, etc.), heterocyclic azo series (thiazole azo, benzothiazole azo, quinoline azo, pyridine azo, imidazole azo, thiophenone azo, etc.), anthraquinone series, and condensed systems (quinophthaline, styrin, coumarin) can be arbitrarily used. Moreover, the one where the pigment | dye solid content density | concentration in dye is higher is easy to dye and is preferable.

また本発明で言う機能剤とは、繊維に一定量練り込み添加することで難燃性、酸化防止性、紫外線吸収性(耐光性)、染色性(向上)、制電防止性、殺菌性、消臭性等の機能を付与する剤であり、例えば難燃剤としては公知のハロゲン系、リン酸エステル系の難燃剤、酸化防止剤としては公知のヒンダードフェノール系酸化防止剤、紫外線吸収剤としては公知のベンゾフェノン系、ベンゾトリアゾール系の紫外線吸収剤、カチオン可染剤としては例えばアルキルベンゼンスルホン酸オニウム塩等のカチオン染色向上剤、制電防止剤としては公知のカーボンブラックやポリアルキレングリコール等の制電防止剤、等を好適に用いることができる。また着色用や艶調整用の顔料、無機粒子等も用いることができる。これら機能剤の群から選ばれる一種以上の機能剤を用いることが好ましい。   In addition, the functional agent referred to in the present invention is kneaded and added to a fiber in a certain amount to provide flame retardancy, antioxidant properties, ultraviolet absorption (light resistance), dyeability (improvement), antistatic properties, bactericidal properties, It is an agent that imparts functions such as deodorizing properties. For example, as a flame retardant, a known halogen-based, phosphoric ester-based flame retardant, as an antioxidant, a known hindered phenol-based antioxidant, an ultraviolet absorber, etc. Are known UV absorbers of benzophenone and benzotriazole, cationic dyeing improvers such as cation dyeing improvers such as alkylbenzenesulfonic acid onium salts, and known antistatic agents such as carbon black and polyalkylene glycol as antistatic agents. An antistatic agent etc. can be used conveniently. Further, pigments for coloring and gloss adjustment, inorganic particles, and the like can also be used. It is preferable to use one or more functional agents selected from the group of these functional agents.

超臨界二酸化炭素流体での処理は、100℃以上で行うのが好ましく、より好ましくは130℃以上である。該処理温度が100℃未満では、染色斑が顕在化し、加工再現性が劣る場合がある。また圧力は15Mpaが好ましく、15Mpa未満では再現性、加工性などが劣る場合がある。また流体の循環流量が著しく低減すると加工性、品位が劣る場合があり、従って、処理温度や圧力、循環流量は、設備仕様において可能な限り、高ければ高い方が、より均一且つ濃染性が向上する。   The treatment with the supercritical carbon dioxide fluid is preferably performed at 100 ° C. or higher, more preferably 130 ° C. or higher. When the treatment temperature is less than 100 ° C., stained spots become obvious and processing reproducibility may be inferior. The pressure is preferably 15 Mpa, and if it is less than 15 Mpa, the reproducibility and workability may be inferior. In addition, if the circulating flow rate of the fluid is significantly reduced, the workability and quality may be deteriorated. Therefore, the higher the processing temperature, pressure, and circulating flow rate, as much as possible in the equipment specifications, the more uniform and the deep dyeing property. improves.

次に実施例を挙げて本発明を更に詳しく説明する。尚、実施例中の物性は下記の方法により測定した。
(1) 染色性
染色性の評価は、マクベス カラーアイ(Macbeth COLOR−EYE)モデルCE−3100を用いて行った。
布帛全体の染色性としては、明度指数L*で表現したが、明度指数L*は、JIS Z 8701(2度視野XYZ系による色の表示方法)又はJIS Z 8728(10度視野XYZ系による色の表示方法)に規定する三刺激値のYを用いて、次式より求められるものである。ここで、明度指数L*は数値が小さい程、濃染化されていることを示す。
Y/Y>0.008856の場合
Y:XYZにおける三刺激値の値
:完全拡散反射面の標準の光によるYの値
L*=116(Y/Y1/3−16
但し、Y/Y≦0.008856の場合は、次式による。
L*=903.29(Y/Y
(2) 繊度、繊維長、強度、伸度、収縮率
JIS L1015 に準じて測定した。
Next, the present invention will be described in more detail with reference to examples. In addition, the physical property in an Example was measured with the following method.
(1) Dyeability Evaluation of stainability was performed using Macbeth COLOR-EYE model CE-3100.
The dyeing property of the entire fabric is expressed by the lightness index L *. The lightness index L * is JIS Z 8701 (color display method by 2 degree visual field XYZ system) or JIS Z 8728 (color by 10 degree visual field XYZ system). Using the tristimulus value Y defined in (Display method), the following expression is used. Here, the lightness index L * indicates that the smaller the value, the deeper the dyeing.
In the case of Y / Y n > 0.008856 Y: Tristimulus value in XYZ Y n : Y value by standard light of a completely diffuse reflecting surface L * = 116 (Y / Y n ) 1/3 -16
However, in the case of Y / Y n ≦ 0.008856, the following formula is used.
L * = 903.29 (Y / Y n)
(2) Fineness, fiber length, strength, elongation, shrinkage rate Measured according to JIS L1015.

[実施例1]
IV1.35dl/gのポリ−m−フェニレンイソフタルアミド30gをN−メチル−2−ピロリドン110gに溶解し、さらに3.6gのカチオン可染剤であるドデシルベンゼンスルフォン酸トリブチルベンジルアンモニウム塩を混合溶解し、減圧脱泡して紡糸ドープとした。
[Example 1]
Dissolve 30 g of poly-m-phenyleneisophthalamide of IV 1.35 dl / g in 110 g of N-methyl-2-pyrrolidone, and mix and dissolve 3.6 g of tributylbenzylammonium ammonium dodecylbenzenesulfonate which is a cationic dye. Then, vacuum degassing was performed to obtain a spinning dope.

このドープを85℃に加温し、口径0.07ミリ、孔数200の紡糸口金から凝固浴に湿式紡糸した。凝固浴の組成は、塩化カルシウムが40重量%、NMPが5重量%、残りの水は55重量%であり、該凝固浴の温度は85℃であった。この糸条を凝固浴中に約10cm走行させ6.2m/分の速度で引き出した。該糸条を水洗し、95℃の温水で3.3倍に延伸して120℃のロールで乾燥した後、300℃の熱板上で1.0倍延伸して364dtex/200フィラメントの延伸糸を得た。この延伸糸を100本集束して2万デニールのトウとし、捲縮を付与した後カットした。得られた繊維の繊度、カット長、強度、伸度、300℃の収縮率、湿熱135℃の収縮率はそれぞれ1.5dtex、51mm、3.8g/dtex、43.6%、8.4%、5.2%であった。   This dope was heated to 85 ° C. and wet-spun into a coagulation bath from a spinneret having a diameter of 0.07 mm and a hole number of 200. The composition of the coagulation bath was 40% by weight of calcium chloride, 5% by weight of NMP, 55% by weight of the remaining water, and the temperature of the coagulation bath was 85 ° C. The yarn was moved about 10 cm into the coagulation bath and pulled out at a speed of 6.2 m / min. The yarn is washed with water, stretched 3.3 times with warm water at 95 ° C., dried with a roll at 120 ° C., and then stretched 1.0 times on a hot plate at 300 ° C. to draw a 364 dtex / 200 filament drawn yarn. Got. 100 stretched yarns were bundled into a 20,000 denier tow, which was crimped and then cut. The fineness, cut length, strength, elongation, shrinkage rate at 300 ° C., and shrinkage rate at 135 ° C. of wet heat were 1.5 dtex, 51 mm, 3.8 g / dtex, 43.6%, and 8.4%, respectively. It was 5.2%.

この短繊維を供して通常の方法で混紡、合撚し、30/2紡績糸とし、次いで製織し、(30/2×30/2)/(55本/in×54本/in)の平織物を得た。次に該布帛をスコアロール400(花王製)で1g/l、80℃で20分間精錬した。水洗・乾燥後、190℃で1分間プレ・セットした。次いで、下記染料および有機溶剤(ベンジルアルコールと水)を供して、130℃×25MPa×30分間、2.6Lの超臨界二酸化炭素処理装置で超臨界二酸化炭素流体中での染色処理をした。得られた染色物は、アセトンで洗浄し、各種評価を行った。
染料 :C.I.Disperse Blue 56 1%owf
ドデシルベンゼンスルフォン酸トリブチルベンジルアンモニウム塩 2%owf
その結果、染色性L*:55.1で、染料の内部浸透性は良好であり、繊維中の上記カチオン可染剤保持率は85%であった。
Using this short fiber, it is blended and twisted in the usual way to form a 30/2 spun yarn, then woven, and (30/2 × 30/2) / (55 / in × 54 / in) flat A woven fabric was obtained. Next, the fabric was refined with score roll 400 (manufactured by Kao) at 1 g / l and 80 ° C. for 20 minutes. After washing and drying, it was pre-set at 190 ° C. for 1 minute. Next, the following dye and an organic solvent (benzyl alcohol and water) were used, and dyeing treatment was performed in a supercritical carbon dioxide fluid using a 2.6 L supercritical carbon dioxide treatment apparatus at 130 ° C. × 25 MPa × 30 minutes. The dyed product obtained was washed with acetone and subjected to various evaluations.
Dye: C.I. I. Disperse Blue 56 1% owf
Dodecylbenzenesulfonate tributylbenzylammonium salt 2% owf
As a result, the dyeability L * was 55.1, the internal permeability of the dye was good, and the cationic dyeing agent retention rate in the fiber was 85%.

[実施例2]
実施例1で下記式(1)で示されるリン酸エステル系難燃剤を6wt%含む繊維を用い、超臨界二酸化炭素処理時に同難燃剤を超臨界二酸化炭素流体濃度中に6wt%含まれた流体で染色同時加工を行った以外は、同様に処理し評価した。その結果、染色性L*:53.8で、染料の内部浸透性も良好であり、繊維中の上記難燃剤保持率も90%であり難燃性は良好であった。

Figure 2008013866
・・・式(1) [Example 2]
A fluid containing 6 wt% of a phosphate ester flame retardant represented by the following formula (1) in Example 1 and containing 6 wt% of the flame retardant in the supercritical carbon dioxide fluid concentration during supercritical carbon dioxide treatment In the same manner except that simultaneous dyeing was performed, the evaluation was performed. As a result, the dyeability L *: 53.8, the internal permeability of the dye was good, and the flame retardant retention rate in the fiber was 90%, so the flame retardancy was good.
Figure 2008013866
... Formula (1)

[実施例3]
実施例1で下記式(2)で示されるベンゾトリアゾール系紫外線吸収剤(耐光改良剤)を5wt%含まれた繊維を用い、超臨界二酸化炭素処理時に同紫外線吸収剤を超臨界二酸化炭素流体濃度中に5wt%含まれた流体で染色同時加工を行った以外は、同様に処理し評価した。
その結果、染色性L*:54.2で、染料の内部浸透性も良好であり、繊維中の上記紫外線吸収剤保持率も90%であった。

Figure 2008013866
・・・式(2) [Example 3]
In Example 1, a fiber containing 5 wt% of a benzotriazole-based ultraviolet absorber (light resistance improver) represented by the following formula (2) was used, and the supercritical carbon dioxide fluid concentration was used during supercritical carbon dioxide treatment. It processed and evaluated similarly except having performed simultaneous dyeing | staining with the fluid contained in 5 wt%.
As a result, the dyeability L * was 54.2, the internal permeability of the dye was good, and the ultraviolet absorbent retention rate in the fiber was 90%.
Figure 2008013866
... Formula (2)

[比較例1]
実施例1において、超臨界二酸化炭素浴中にドデシルベンゼンスルフォン酸トリブチルベンジルアンモニウム塩を用いなかった以外は、同様に処理し評価した。その結果、染色性L*:54.9、染料の内部浸透性も良好であったが、染浴中に添加していないため繊維中の上記カチオン可染剤の保持率は45%に低下していた。
[Comparative Example 1]
In Example 1, the same treatment and evaluation were conducted except that tributylbenzylammonium dodecylbenzenesulfonate was not used in the supercritical carbon dioxide bath. As a result, the dyeability L *: 54.9 and the internal permeability of the dye were good, but since the dye was not added to the dye bath, the retention rate of the cationic dye in the fiber decreased to 45%. It was.

[比較例2]
実施例2において、超臨界二酸化炭素浴中に難燃剤を用いなかった以外は、同様に処理し評価した。その結果、染色性L*:54.3、染料の内部浸透性も良好であったが、機能剤保持率が50%であった。
[Comparative Example 2]
In Example 2, it processed similarly and evaluated except not using the flame retardant in the supercritical carbon dioxide bath. As a result, the dyeability L *: 54.3 and the dye internal permeability were good, but the functional agent retention was 50%.

[比較例3]
実施例3において、超臨界二酸化炭素浴中に紫外線吸収剤を用いなかった以外は、同様に処理し評価した。その結果、染色性L*:53.1、染料の内部浸透性も良好であったが、機能剤保持率が20%であった。
[Comparative Example 3]
In Example 3, it processed similarly and evaluated except not using the ultraviolet absorber in a supercritical carbon dioxide bath. As a result, the dyeability L *: 53.1 and the internal permeability of the dye were good, but the functional agent retention was 20%.

超臨界流体二酸化炭素を循環させながら染料吸尽(染色)する際に、予め繊維に練り込まれている機能剤が超臨界二酸化流体中に含有させることにより、繊維に練り込まれた機能剤のブリードアウトを抑制できるので、染色と繊維の品質、機能を両立させることができ、地球環境改善型染色機能加工処理方法として産業的価値の極めて高いものとなる。   When the supercritical fluid carbon dioxide is circulated while dye is exhausted (dyed), the functional agent previously kneaded in the fiber is contained in the supercritical dioxide fluid, so that the functional agent kneaded in the fiber Since bleed-out can be suppressed, it is possible to achieve both dyeing and fiber quality and function, and the industrial value is extremely high as a global environmental improvement type dyeing function processing method.

Claims (4)

繊維を超臨界二酸化炭素流体中で染料を用いて染色するのに際し、予め繊維中に練り込まれている機能剤を超臨界二酸化炭素流体中に含有させることを特徴とする超臨界二酸化炭素流体における染色および機能加工方法。   In dyeing a fiber with a dye in a supercritical carbon dioxide fluid, a functional agent previously kneaded in the fiber is contained in the supercritical carbon dioxide fluid. Dyeing and functional processing methods. 繊維がポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維、ナイロン繊維、アラミド繊維、ポリベンズオキサゾール(PBO)繊維、ポリカーボネート(PC)繊維のうち1種類以上よりなる請求項1記載の超臨界二酸化炭素流体における染色および機能加工方法。   The dyeing in a supercritical carbon dioxide fluid according to claim 1, wherein the fiber comprises at least one of polyester fiber, polypropylene fiber, polyethylene fiber, nylon fiber, aramid fiber, polybenzoxazole (PBO) fiber, and polycarbonate (PC) fiber. Functional processing method. 機能剤が難燃剤、酸化防止剤、紫外線吸収剤、カチオン可染剤、制電剤、殺菌剤、消臭剤、顔料、無機粒子からなる群から選ばれる1種類以上の機能剤である請求項1〜2いずれか一項記載の超臨界二酸化炭素流体における染色および機能加工方法。   The functional agent is at least one functional agent selected from the group consisting of flame retardants, antioxidants, ultraviolet absorbers, cationic dyes, antistatic agents, bactericides, deodorants, pigments, and inorganic particles. The dyeing | staining and functional processing method in the supercritical carbon dioxide fluid as described in any one of 1-2. 染料が、分散染料、油溶性染料である請求項1〜3いずれか一項記載の染色および機能加工方法。   The dyeing and functional processing method according to any one of claims 1 to 3, wherein the dye is a disperse dye or an oil-soluble dye.
JP2006184373A 2006-07-04 2006-07-04 Method for dyeing and functional processing Pending JP2008013866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184373A JP2008013866A (en) 2006-07-04 2006-07-04 Method for dyeing and functional processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184373A JP2008013866A (en) 2006-07-04 2006-07-04 Method for dyeing and functional processing

Publications (1)

Publication Number Publication Date
JP2008013866A true JP2008013866A (en) 2008-01-24

Family

ID=39071160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184373A Pending JP2008013866A (en) 2006-07-04 2006-07-04 Method for dyeing and functional processing

Country Status (1)

Country Link
JP (1) JP2008013866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006681A (en) * 2009-05-29 2011-01-13 Mitsubishi Rayon Co Ltd Method for producing flame-resistant acrylonitrile polymer
CN106637753A (en) * 2016-11-21 2017-05-10 大连工业大学 Dyeing kettle and aramid fiber supercritical carbon dioxide waterless dyeing device and method
CN107558209A (en) * 2017-07-28 2018-01-09 上海工程技术大学 Utilize supercritical CO2The method that fluid technique carries out aramid fiber organic modification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006681A (en) * 2009-05-29 2011-01-13 Mitsubishi Rayon Co Ltd Method for producing flame-resistant acrylonitrile polymer
CN106637753A (en) * 2016-11-21 2017-05-10 大连工业大学 Dyeing kettle and aramid fiber supercritical carbon dioxide waterless dyeing device and method
CN107558209A (en) * 2017-07-28 2018-01-09 上海工程技术大学 Utilize supercritical CO2The method that fluid technique carries out aramid fiber organic modification
CN107558209B (en) * 2017-07-28 2020-05-29 上海工程技术大学 By using supercritical CO2Method for organically modifying aramid fibers by fluid technology

Similar Documents

Publication Publication Date Title
KR101548762B1 (en) Antistatic acrylic fiber and method for manufacturing the same
KR880001030B1 (en) Aromatic polyamide fibers and process for stabilizing such fibers
JP5671277B2 (en) Aramid fiber dyeing method
JP2008013866A (en) Method for dyeing and functional processing
US7018421B2 (en) Process for dyeing synthetic hair
CN107558251B (en) Dyeing and finishing process of acetate fiber interwoven fabric and dyeing agent thereof
CN110230212B (en) Polyester textile dyeing method
Goswami et al. Dyeing behaviour of lyocell fabric: effect of NaOH pre-treatment
JP5629104B2 (en) Method for dyeing polyetherimide fiber and dyed product thereof
JP2015124458A (en) Printed matter producing method
IT202200001487A1 (en) Chemical textile fiber dyeing method
CA3042500C (en) Textile materials containing dyed polyphenylene sulfide fibers and methods for producing the same
JP2010150704A (en) Wholly aromatic polyamide fiber structure
JP2006045702A (en) Method for dyeing meta-type wholly aromatic polyamide fiber
US4185058A (en) Process for spinning hydrophilic acrylic fibers with improved coloring response to dyes
BR112019025309A2 (en) LOW TEMPERATURE COLORING METHOD
JP2011042907A (en) Colored wholly aromatic polyamide fiber and method for producing the same
WO2007066415A1 (en) Method of dyeing fibrous material of meta-type wholly aromatic polyamide
JP2010163719A (en) Method for mercerization on composite fiber structure of polylactic acid fiber and cotton or cellulosic fiber
Huang et al. Study of the pretreatment and disperse dyeing process for the PLA/cotton blended fabric: high physical resistance and dyeing performance
WO2016163321A1 (en) Acrylonitrile-containing fiber dyeable with disperse dyes, method for producing same, and fiber product containing same
RU2158793C1 (en) Composition for dyeing materials based on aromatic heterocyclic polymers
Ahmed et al. Dyeing characteristics of a Tencel alloy fibre
JP2004250800A (en) Method for producing cellulose fatty acid ester fibrous structure
WO2020169614A1 (en) Method for producing coloured fibrous materials and the use thereof