JP5655228B2 - Manufacturing method of semiconductor structure - Google Patents

Manufacturing method of semiconductor structure Download PDF

Info

Publication number
JP5655228B2
JP5655228B2 JP2008223713A JP2008223713A JP5655228B2 JP 5655228 B2 JP5655228 B2 JP 5655228B2 JP 2008223713 A JP2008223713 A JP 2008223713A JP 2008223713 A JP2008223713 A JP 2008223713A JP 5655228 B2 JP5655228 B2 JP 5655228B2
Authority
JP
Japan
Prior art keywords
group
plane
substrate
semiconductor
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008223713A
Other languages
Japanese (ja)
Other versions
JP2010058988A (en
Inventor
克広 冨岡
克広 冨岡
孝志 福井
孝志 福井
順一 本久
順一 本久
原 真二郎
真二郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Sharp Corp
Original Assignee
Hokkaido University NUC
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Sharp Corp filed Critical Hokkaido University NUC
Priority to JP2008223713A priority Critical patent/JP5655228B2/en
Publication of JP2010058988A publication Critical patent/JP2010058988A/en
Application granted granted Critical
Publication of JP5655228B2 publication Critical patent/JP5655228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、半導体基板と、その表面から延びる半導体ナノワイヤとを含む半導体構造物の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor structure including a semiconductor substrate and semiconductor nanowires extending from the surface thereof.

シリコントランジスタを高性能化するために、1)トランジスタを柱状として高密度に集積化すること、2)シリコンよりも電子移動度が高い半導体材料をシリコン基板の一部に集積すること、が提案されている。つまり、シリコン基板上にIII−V族化合物半導体のナノワイヤを成長させれば、シリコントランジスタの高性能化が実現されうる。   In order to improve the performance of silicon transistors, it has been proposed to 1) integrate the transistors in a columnar shape with a high density, and 2) integrate a semiconductor material having a higher electron mobility than silicon on a part of the silicon substrate. ing. That is, if a nanowire of a III-V compound semiconductor is grown on a silicon substrate, high performance of the silicon transistor can be realized.

シリコン基板上にIII−V族化合物半導体(GaP、GaAs、InP、InAsなど)ナノワイヤを成長させた例が報告がされている(非特許文献1〜3を参照)。ところが、これらの報告では、1)シリコン基板上に成長させるナノワイヤを位置制御できなかったり、2)ナノワイヤの成長方向を制御できないなどの問題がある。
Nano Lett, 4. 1987 (2004) Appl. Phys. Lett., 89, 033114 (2006) Adv. Mat, 19, 1801 (2007)
An example in which a III-V compound semiconductor (GaP, GaAs, InP, InAs, etc.) nanowire is grown on a silicon substrate has been reported (see Non-Patent Documents 1 to 3). However, in these reports, there are problems such as 1) the position of the nanowire grown on the silicon substrate cannot be controlled, and 2) the growth direction of the nanowire cannot be controlled.
Nano Lett, 4. 1987 (2004) Appl. Phys. Lett., 89, 033114 (2006) Adv. Mat, 19, 1801 (2007)

前記の通り、シリコン基板上に半導体ナノワイヤを成長させるときに、その成長方向を制御できない、つまり基板面に対して選択的に垂直に成長させることが困難であった。本発明は、シリコンを始めとするIV族半導体基板上に、基板面に対して垂直に延びるIII−V族化合物半導体ナノワイヤを配置することを第一の目的とする。それにより、例えば、シリコントランジスタの高性能化を実現する。また、ゲルマニウム基板にIII−V族化合物半導体ナノワイヤを配置することをも可能として、ゲルマニウム基板上の太陽電池に代表される半導体素子の高性能化を実現する。   As described above, when a semiconductor nanowire is grown on a silicon substrate, the growth direction cannot be controlled, that is, it is difficult to grow selectively perpendicularly to the substrate surface. The first object of the present invention is to dispose III-V compound semiconductor nanowires extending perpendicularly to the substrate surface on a group IV semiconductor substrate such as silicon. Thereby, for example, high performance of the silicon transistor is realized. In addition, it is possible to dispose III-V compound semiconductor nanowires on the germanium substrate, thereby realizing high performance of a semiconductor element typified by a solar cell on the germanium substrate.

III−V族化合物半導体を、シリコン基板を始めとするIV族半導体基板に、成長方向を制御しつつ形成するには、IV族半導体基板の表面の結晶構造が重要である。つまりIII−V族化合物半導体は、その種類によって、IV族半導体基板の(111)A面に対して垂直に成長したり、(111)B面に対して垂直に成長したりする。   In order to form a group III-V compound semiconductor on a group IV semiconductor substrate such as a silicon substrate while controlling the growth direction, the crystal structure of the surface of the group IV semiconductor substrate is important. That is, the group III-V compound semiconductor grows perpendicularly to the (111) A plane of the group IV semiconductor substrate or grows perpendicular to the (111) B plane, depending on the type.

(111)A面に対して垂直に成長するIII−V族化合物半導体の例には、InP、GaP、InGaPが含まれる。一方、その他のIII−V族化合物半導体は、(111)B面に対して垂直に成長する。   Examples of III-V group compound semiconductors grown perpendicular to the (111) A plane include InP, GaP, and InGaP. On the other hand, other group III-V compound semiconductors grow perpendicular to the (111) B plane.

本発明者は、このIV族半導体基板の表面の結晶構造によって、III−V族化合物半導体の成長方向が制御されるという性質を利用することを検討した。その結果、IV族半導体基板の表面の結晶構造を適切に制御することが可能となり、IV速半導体基板に、III−V族化合物半導体を方向制御をしつつ形成することを可能とした。   The present inventor has studied to utilize the property that the growth direction of the III-V compound semiconductor is controlled by the crystal structure of the surface of the group IV semiconductor substrate. As a result, the crystal structure of the surface of the group IV semiconductor substrate can be appropriately controlled, and the group III-V compound semiconductor can be formed on the IV speed semiconductor substrate while controlling the direction.

すなわち本発明は、以下に示す半導体構造物の製造方法に関する。
[1]IV族半導体基板と、前記IV族半導体基板の表面から垂直に延びるIII−V族化合物半導体ナノワイヤとを含む半導体構造物の製造方法であって、
(111)面を有するIV族半導体基板と、前記(111)面を被覆し、開口部を有する絶縁膜とを含む基板を準備するステップと;前記基板について、化合物半導体ナノワイヤを成長させるのに必要な温度範囲よりも高い温度で高温熱処理を行うことにより生じた(111)7×7面を介し、化合物半導体ナノワイヤを成長させるのに必要な温度範囲よりも低い温度で低温熱処理をして(111)1×1面とするステップと;前記基板に前記低温熱処理の条件下で、III族原料またはV族原料を供給して、前記(111)面を、(111)A面または(111)B面に変換するステップと;前記(111)A面または(111)B面に、V族原料とIII族原料を交互に供給することで、III−V族化合物半導体の薄膜を形成するステップと;前記III−V族化合物半導体の薄膜を形成した後に、前記IV族半導体基板の表面から前記開口部を通して、III−V化合物半導体ナノワイヤを成長させるステップとを含む、製造方法。
That is, this invention relates to the manufacturing method of the semiconductor structure shown below.
[1] A method for producing a semiconductor structure comprising a group IV semiconductor substrate and a group III-V compound semiconductor nanowire extending vertically from the surface of the group IV semiconductor substrate,
Preparing a substrate comprising a group-IV semiconductor substrate having a (111) plane and an insulating film covering the (111) plane and having an opening; necessary for growing compound semiconductor nanowires on the substrate; The low temperature heat treatment is performed at a temperature lower than the temperature range necessary for growing the compound semiconductor nanowires through the (111) 7 × 7 plane generated by performing the high temperature heat treatment at a temperature higher than the temperature range (111). ) steps and to 1 × 1 surface; under conditions of the low-temperature heat treatment to the substrate, by supplying the group III source or group V material, said (111) plane, (111) a plane or (111) B Converting into a plane; forming a thin film of a III-V group compound semiconductor by alternately supplying a group V source and a group III source to the (111) A plane or the (111) B plane; III-V grouping Forming a compound semiconductor thin film, and then growing a III-V compound semiconductor nanowire from the surface of the group IV semiconductor substrate through the opening.

[2]前記開口部を有する絶縁膜を含む基板を準備した後に、前記基板を高温熱処理することにより、前記IV半導体基板の表面に形成された自然酸化膜を除去するステップ、をさらに含む、[1]に記載の製造方法。
[3]前記(111)A面または(111)B面に、V族原料とIII族原料を交互に供給するステップは、前記変換された面が前記(111)A面のときはまずIII族原料を供給し、その後V族原料とIII族原料を交互に供給し、前記変換された面が前記(111)B面のときはまずV族原料を供給し、その後III族原料とV族原料を交互に供給する、[1]に記載の製造方法。
[4]前記(111)面を(111)1×1面とするステップと、前記(111)面を前記(111)A面または(111)B面に変換するステップとを、順に行なうか、または同時に行う、[1]に記載の製造方法。
[2] After preparing a substrate including an insulating film having the opening, the substrate further includes a step of removing a natural oxide film formed on the surface of the IV semiconductor substrate by performing a high-temperature heat treatment on the substrate. 1].
[3] The step of alternately supplying the group V raw material and the group III raw material to the (111) A surface or the (111) B surface is such that when the converted surface is the (111) A surface, first the group III The raw material is supplied, and then the Group V raw material and the Group III raw material are alternately supplied . When the converted surface is the (111) B surface, the Group V raw material is supplied first, and then the Group III raw material and the Group V raw material are supplied. Are alternately supplied . The production method according to [1].
[4] The step of setting the (111) plane as a (111) 1 × 1 plane and the step of converting the (111) plane into the (111) A plane or the (111) B plane are sequentially performed. Or the manufacturing method as described in [1] performed simultaneously.

[5]前記IV族半導体基板はシリコン基板またはゲルマニウム基板である、[1]に記載の製造方法。
[6]前記III族原料は、ホウ素、アルミニウム、ガリウム、インジウムおよびタリウムのいずれかを含むガスまたはそれに類する化合物である、[1]に記載の製造方法。
[7]前記V族原料は、窒素、リン、ヒ素、アンチモン、ビスマスのいずれかを含むガスまたはそれに類する化合物である、[1]に記載の製造方法。
[8]前記III−V化合物半導体は、InAs、InP、GaAs、GaN、InSb、GaSb、AlSb、AlGaAs、InGaAs、InGaN、AlGaN、GaNAs、InAsSb、GaAsSb、InGaSb、AlInSb、InGaAlN、AlInGaP、InGaAsPまたはGaInAsN、InGaAlSb、InGaAsSb、AlInGaPSbである、[1]に記載の製造方法。
[9]前記(111)面を被覆する絶縁膜は、前記IV族半導体基板の表面の熱酸化膜である、[1]に記載の製造方法。
[5] The manufacturing method according to [1], wherein the group IV semiconductor substrate is a silicon substrate or a germanium substrate.
[6] The manufacturing method according to [1], wherein the group III raw material is a gas containing any of boron, aluminum, gallium, indium, and thallium or a similar compound.
[7] The production method according to [1], wherein the group V raw material is a gas containing any of nitrogen, phosphorus, arsenic, antimony, and bismuth or a similar compound.
[8] The III-V compound semiconductor is InAs, InP, GaAs, GaN, InSb, GaSb, AlSb, AlGaAs, InGaAs, InGaN, AlGaN, GaNAs, InAsSb, GaAsSb, InGaSb, AlInSb, InGaAlN, AlInGaP, InGaAsP, or GaInAsN. The manufacturing method according to [1], which is InGaAlSb, InGaAsSb, or AlInGaPSb.
[9] The manufacturing method according to [1], wherein the insulating film covering the (111) plane is a thermal oxide film on the surface of the group IV semiconductor substrate.

さらに本発明は、以下に示す半導体構造物に関する。
[10]IV族半導体基板と、前記IV族半導体基板の(111)面を(111)1×1面を経て変換された(111)A面または(111)B面の表面から延びる、複数本のIII−V族化合物半導体ナノワイヤとを含む半導体構造物であって、前記複数本のIII−V族化合物半導体ナノワイヤのうちの90%以上が、前記IV族半導体基板の前記(111)A面または前記(111)B面の表面から垂直に延びている、半導体構造物。
[11]前記IV族半導体基板の表面1cm2あたり、1億本以上の前記III−V族化合物半導体ナノワイヤを有する、[10]に記載の半導体構造物。
Furthermore, this invention relates to the semiconductor structure shown below.
[10] A group IV semiconductor substrate and a plurality of (111) planes of the group IV semiconductor substrate extending from the (111) A plane or (111) B plane converted through the (111) 1 × 1 plane Of the group III-V compound semiconductor nanowires, wherein 90% or more of the plurality of group III-V compound semiconductor nanowires is the (111) A plane of the group IV semiconductor substrate or A semiconductor structure extending vertically from the surface of the (111) B surface .
[11] The semiconductor structure according to [10], which has 100 million or more of the III-V compound semiconductor nanowires per 1 cm 2 of the surface of the group IV semiconductor substrate.

本発明により、シリコンを始めとするIV族半導体基板に、III-V族化合物半導体ナノワイヤを、基板表面に垂直に、かつ高密度に配置することができる。それにより、シリコントランジスタなどの高性能化やゲルマニウム基板上の太陽電池の高効率化に寄与する。   According to the present invention, III-V compound semiconductor nanowires can be arranged on a group IV semiconductor substrate such as silicon at a high density perpendicular to the substrate surface. This contributes to higher performance of silicon transistors and the like and higher efficiency of solar cells on germanium substrates.

半導体構造物について
本発明における半導体構造物とは、IV族半導体基板と、IV族半導体基板の表面から延びるIII−V族化合物半導体ナノワイヤとを有する。IV族半導体基板の表面には、複数本のナノワイヤが配置されていてもよい。
About Semiconductor Structure The semiconductor structure in the present invention includes a group IV semiconductor substrate and a group III-V compound semiconductor nanowire extending from the surface of the group IV semiconductor substrate. A plurality of nanowires may be arranged on the surface of the group IV semiconductor substrate.

本発明における半導体構造物は、IV族半導体基板の表面から垂直に延びる半導体ナノワイヤを選択的に有しており、一方で、IV族半導体基板の表面から垂直ではなく、斜めに(例えば基板表面との交差角度が約20℃)延びる半導体ナノワイヤをあまり有さないことを特徴とする。選択的とは、例えば半導体ナノワイヤの総本数に対して通常は60%以上、好ましくは80%以上、より好ましくは90%以上の半導体ナノワイヤが、基板表面に対して垂直に延びていることをいう。   The semiconductor structure according to the present invention selectively includes semiconductor nanowires extending perpendicularly from the surface of the group IV semiconductor substrate, while not obliquely perpendicular to the surface of the group IV semiconductor substrate (for example, with the substrate surface). It is characterized by few semiconductor nanowires extending at an intersection angle of about 20 ° C. “Selective” means that, for example, 60% or more, preferably 80% or more, more preferably 90% or more of semiconductor nanowires extend perpendicularly to the substrate surface with respect to the total number of semiconductor nanowires. .

このように、半導体ナノワイヤが、基板表面に対して選択的に垂直に配置されているので、高密度に配置することも可能となる。例えば、ナノワイヤの配列周期をナノメートル領域の精度で制御することが可能で、1平方センチメートル当たりのナノワイヤの本数を 10億本以上、さらには1000億本以上の高密度に配列することができる。ナノワイヤの太さは、直径(例えば、円相当径)が200nm、さらには50nm以下にすることができる。   As described above, since the semiconductor nanowires are selectively arranged perpendicularly to the substrate surface, they can be arranged at high density. For example, the arrangement period of nanowires can be controlled with accuracy in the nanometer range, and the number of nanowires per square centimeter can be arranged at a high density of 100 billion or more, and further 100 billion or more. As for the thickness of the nanowire, the diameter (for example, equivalent circle diameter) can be set to 200 nm, and further to 50 nm or less.

本発明における半導体構造物のIV族半導体の例には、シリコン半導体やガリウム半導体が含まれる。また、III−V族化合物半導体は、2つの元素からなる半導体、3つの元素からなる半導体、4つの元素からなる半導体、それ以上の元素からなる半導体のいずれでもよい。2つの元素からなる半導体の例には、InAs、InP、GaAs、GaN,InSb、GaSb、AlSbが含まれ;3つの元素からなる半導体の例には、AlGaAs、InGaAs、InGaN、AlGaN、GaNAs、InAsSb、GaAsSb、InGaSb、AlInSbが含まれ;4つ以上の元素からなる半導体の例には、InGaAlN、AlInGaP、InGaAsP、GaInAsN、InGaAlSb、InGaAsSb、AlInGaPSbが含まれる。   Examples of the group IV semiconductor of the semiconductor structure in the present invention include a silicon semiconductor and a gallium semiconductor. The III-V compound semiconductor may be a semiconductor composed of two elements, a semiconductor composed of three elements, a semiconductor composed of four elements, or a semiconductor composed of more elements. Examples of semiconductors consisting of two elements include InAs, InP, GaAs, GaN, InSb, GaSb, AlSb; examples of semiconductors consisting of three elements include AlGaAs, InGaAs, InGaN, AlGaN, GaNAs, InAsSb. , GaAsSb, InGaSb, AlInSb; examples of semiconductors composed of four or more elements include InGaAlN, AlInGaP, InGaAsP, GaInAsN, InGaAlSb, InGaAsSb, and AlInGaPSb.

従来、「VLS法」という、触媒金属を用いた手法で得られていたナノワイヤは、成長中に触媒金属が不純物として混入する難点があった。これと比較して、本発明の選択成長法によれば、結晶内の不純物がより少ない、高品質な半導体ナノワイヤを得ることができる。   Conventionally, nanowires obtained by a technique using a catalyst metal called “VLS method” have a problem that the catalyst metal is mixed as an impurity during growth. Compared with this, according to the selective growth method of the present invention, it is possible to obtain a high-quality semiconductor nanowire with fewer impurities in the crystal.

半導体構造物の製造プロセスについて
本発明における半導体構造物は、(111)面を有するIV半導体基板1であって、その(111)面1−1が、開口部3を有する絶縁膜2で被覆されている基板を準備するステップ(図1C参照)と;半導体ナノワイヤ4を成長させるステップとを含む(図1D参照)。
Manufacturing Process of Semiconductor Structure A semiconductor structure in the present invention is an IV semiconductor substrate 1 having a (111) plane, and the (111) plane 1-1 is covered with an insulating film 2 having an opening 3. Preparing a substrate (see FIG. 1C); and growing semiconductor nanowires 4 (see FIG. 1D).

IV半導体基板1は、(111)面1−1を有していればよく、例えばn型シリコン(111)基板である(図1A参照)。図1Bに示されるように、IV族半導体基板1の(111)面1−1を覆う絶縁膜2を配置する。絶縁膜2の材質は特に限定されず、無機絶縁材料からなる膜であればよい。無機絶縁材料の例には、酸化シリコン、窒化シリコンなどが含まれる。酸化シリコン膜は、例えばシリコン基板を熱酸化して形成することができる。もちろん、スパッタ法などの通常の薄膜形成法で形成してもよい。IV族半導体基板1の(111)面1−1を被覆する絶縁膜2の厚さは特に限定されず、数十nmであればよいが、20nm以下であることが好ましい。   The IV semiconductor substrate 1 only needs to have the (111) plane 1-1, and is, for example, an n-type silicon (111) substrate (see FIG. 1A). As shown in FIG. 1B, an insulating film 2 covering the (111) plane 1-1 of the group IV semiconductor substrate 1 is disposed. The material of the insulating film 2 is not particularly limited as long as it is a film made of an inorganic insulating material. Examples of the inorganic insulating material include silicon oxide and silicon nitride. The silicon oxide film can be formed, for example, by thermally oxidizing a silicon substrate. Of course, you may form by normal thin film formation methods, such as a sputtering method. The thickness of the insulating film 2 covering the (111) plane 1-1 of the group IV semiconductor substrate 1 is not particularly limited and may be several tens of nm, but is preferably 20 nm or less.

IV族半導体基板1の(111)面1−1を被覆する絶縁膜2には、一つまたは二つ以上の開口部3が形成される。絶縁膜2の開口部3は、電子線(EB)リソグラフィーや、フォトリソグラフィーを用いて、IV族半導体基板1の(111)面1−1を被覆する絶縁膜2をパターニングして形成すればよい。開口部3を通してIV族半導体基板1の(111)面1−1が露出している。   One or two or more openings 3 are formed in the insulating film 2 covering the (111) plane 1-1 of the group IV semiconductor substrate 1. The opening 3 of the insulating film 2 may be formed by patterning the insulating film 2 covering the (111) surface 1-1 of the group IV semiconductor substrate 1 using electron beam (EB) lithography or photolithography. . The (111) plane 1-1 of the group IV semiconductor substrate 1 is exposed through the opening 3.

絶縁膜2の開口部3の形状は任意であり、矩形、三角形、六角形、または円形などのいずれでもよい。開口部3の開口面積は特に制限されないが、開口部3を通して半導体ナノワイヤ4を成長させる(後述)ので、所望の半導体ナノワイヤ4の太さに応じて、開口部3の面積を設定する。つまり、開口部3の面積が小さいほど細い半導体ナノワイヤ4を成長させることができる。開口部3の開口面積の円相当径の目安は、約30〜600nmである。   The shape of the opening 3 of the insulating film 2 is arbitrary, and may be any of a rectangle, a triangle, a hexagon, or a circle. The opening area of the opening 3 is not particularly limited, but the semiconductor nanowire 4 is grown through the opening 3 (described later), so the area of the opening 3 is set according to the desired thickness of the semiconductor nanowire 4. That is, as the area of the opening 3 is smaller, the thinner semiconductor nanowire 4 can be grown. The standard of the equivalent circle diameter of the opening area of the opening 3 is about 30 to 600 nm.

IV族半導体基板1の表面には、通常、自然酸化膜が形成されている。この自然酸化膜は、半導体ナノワイヤ4の成長(後述)を阻害するので、除去されることが好ましい。そこで、IV半導体基板1の(111)面1−1を覆う絶縁膜2に開口部3を設けた後、高温熱処理することにより、IV半導体基板1の表面に形成された自然酸化膜を除去することが好ましい。高温熱処理は、水素ガスや、窒素ガス、アルゴンガスのような不活性ガス雰囲気中で行えばよく、約900℃の条件で熱処理すればよい。   A natural oxide film is usually formed on the surface of the group IV semiconductor substrate 1. Since this natural oxide film inhibits the growth (described later) of the semiconductor nanowire 4, it is preferably removed. Therefore, the natural oxide film formed on the surface of the IV semiconductor substrate 1 is removed by providing an opening 3 in the insulating film 2 covering the (111) plane 1-1 of the IV semiconductor substrate 1 and then performing high-temperature heat treatment. It is preferable. The high-temperature heat treatment may be performed in an inert gas atmosphere such as hydrogen gas, nitrogen gas, or argon gas, and may be heat-treated at about 900 ° C.

高温熱処理により自然酸化膜を除去するとともに、IV族半導体と自然酸化膜との界面の結晶構造から、酸素原子が除去されると考えられる。除去された酸素原子の代わりに、後述のIII族原子またはV族原子が吸着すると考えられる(後に詳細に説明する)。   It is considered that the natural oxide film is removed by high-temperature heat treatment, and oxygen atoms are removed from the crystal structure at the interface between the group IV semiconductor and the natural oxide film. It is considered that a group III atom or group V atom described later is adsorbed instead of the removed oxygen atom (described in detail later).

高温熱処理後の(111)面は、1×1構造で構成される。ところが、そのまま基板の温度を下げると、図2に示した分類(化合物半導体成長温度範囲)のように不規則な原子配列が基板表面に形成される。しかしながら、さらに温度を400℃程度にまで下げると再び、基板表面が1×1構造に回復する。   The (111) plane after the high-temperature heat treatment has a 1 × 1 structure. However, when the temperature of the substrate is lowered as it is, an irregular atomic arrangement is formed on the substrate surface as shown in the classification (compound semiconductor growth temperature range) shown in FIG. However, when the temperature is further lowered to about 400 ° C., the substrate surface is restored to the 1 × 1 structure again.

そこで本発明におけるプロセスは、高温熱処理後に、一旦、低温(約400℃程度)にまで基板温度を下げることを特徴とする。低温とは、化合物半導体ナノワイヤを成長させるのに必要な温度よりも低い。それにより、(111)面を、(111)1×1面に変換する。(111)面とは、図3Aに示されるように、原子配列を構成する最小単位が2原子間隔×1原子間隔となっている面をいう。つまり(111)面は、(111)1×2面とも称される。一方、(111)1×1面とは、図3Bに示されるように、原子配列を構成する最小単位が1原子間隔×1原子間隔となっている面をいう。   Therefore, the process in the present invention is characterized in that the substrate temperature is once lowered to a low temperature (about 400 ° C.) after the high-temperature heat treatment. Low temperature is lower than the temperature required to grow compound semiconductor nanowires. Thereby, the (111) plane is converted into a (111) 1 × 1 plane. As shown in FIG. 3A, the (111) plane refers to a plane in which the minimum unit constituting the atomic arrangement is 2 atomic intervals × 1 atomic interval. That is, the (111) plane is also referred to as a (111) 1 × 2 plane. On the other hand, as shown in FIG. 3B, the (111) 1 × 1 plane refers to a plane in which the minimum unit constituting the atomic arrangement is 1 atomic interval × 1 atomic interval.

後述の通り、IV族半導体基板の(111)1×1面は、III族元素またはV族元素により、(111)A面または(111)B面に変換される。ここで、(111)A面とは表面にIII族元素が配置している面を、(111)B面とはV族元素が配置している面をいう。   As will be described later, the (111) 1 × 1 plane of the group IV semiconductor substrate is converted into a (111) A plane or a (111) B plane by a group III element or a group V element. Here, the (111) A plane is a plane on which a group III element is arranged, and the (111) B plane is a plane on which a group V element is arranged.

IV族半導体基板の(111)1×1面を、(111)A面または(111)B面にすると、その面からIII−V族化合物半導体を成長させやすくなる。III−V族化合物半導体の(111)A面または(111)B面は、(111)2×2面、つまり最小単位が2原子間隔×2原子間隔の周期で構成された構造である。よって、IV族半導体基板の表面に、2原子間隔×2原子間隔よりも小さい最小単位でIII元素またはV族元素が配置されていると、その表面にIII−V族化合物半導体が成長しやすい。   When the (111) 1 × 1 plane of the group IV semiconductor substrate is a (111) A plane or a (111) B plane, a III-V group compound semiconductor is easily grown from that plane. The (111) A plane or the (111) B plane of the III-V compound semiconductor has a (111) 2 × 2 plane, that is, a structure in which the minimum unit is a period of 2 atomic intervals × 2 atomic intervals. Therefore, when a group III element or group V element is arranged on the surface of the group IV semiconductor substrate in a minimum unit smaller than 2 atom intervals × 2 atom intervals, a III-V group compound semiconductor is likely to grow on the surface.

一方、シリコン基板を熱処理することによって生じやすい(111)面の安定構造は、(111)7×7面であると報告されている(Surf. Sci. 164 (1985) 367)。(111)7×7面を、(111)A面または(111)B面に変換しても、最小単位が7原子間隔×7原子間隔の配列周期となる。この最小単位は、III−V族化合物半導体の結晶構造における配列周期の最小単位よりも大きすぎる。よって、その表面にIII−V族化合物半導体は成長しにくい。   On the other hand, it has been reported that the stable structure of the (111) plane that is likely to occur by heat treatment of the silicon substrate is the (111) 7 × 7 plane (Surf. Sci. 164 (1985) 367). Even if the (111) 7 × 7 plane is converted to the (111) A plane or the (111) B plane, the minimum unit is an array period of 7 atomic intervals × 7 atomic intervals. This minimum unit is too larger than the minimum unit of the arrangement period in the crystal structure of the III-V compound semiconductor. Therefore, the III-V compound semiconductor is difficult to grow on the surface.

(111)面を、(111)1×1面にするための低温熱処理は、約350〜450℃(例えば、約400℃)の温度で行えばよい。また低温とは、半導体ナノワイヤを成長させるために必要な温度よりも低い。低温熱処理は、水素ガス、窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス囲気下で行うことが好ましい。   The low temperature heat treatment for making the (111) plane into the (111) 1 × 1 plane may be performed at a temperature of about 350 to 450 ° C. (for example, about 400 ° C.). The low temperature is lower than the temperature necessary for growing semiconductor nanowires. The low-temperature heat treatment is preferably performed in an atmosphere of an inert gas such as hydrogen gas, nitrogen gas, argon gas, or helium gas.

IV半導体基板の(111)面を低温熱処理により(111)1×1面に変換するとともに、III族原料またはV族原料を供給して、(111)A面または(111)B面に変換する。III族原料とは、ホウ素、アルミニウム、ガリウム、インジウムおよびタリウムのいずれかを含むガス(有機金属化合物であってもよい)であることが好ましく、例えばトリメチルインジウムなどの有機アルキル金属化合物である。V族原料とは、窒素、リン、ヒ素、アンチモン、ビスマスのいずれかを含むガス(有機金属化合物であってもよい)であることが好ましく、例えばアルシンである。III族原料またはV族原料の供給は、400〜500℃にて行うことが好ましい。 The (111) surface of the IV semiconductor substrate is converted into a (111) 1 × 1 surface by low-temperature heat treatment, and a group III material or a group V material is supplied to convert it to a (111) A surface or a (111) B surface. . The group III raw material is preferably a gas containing any one of boron, aluminum, gallium, indium and thallium (which may be an organometallic compound), for example, an organic alkyl metal compound such as trimethylindium. The group V raw material is preferably a gas containing any of nitrogen, phosphorus, arsenic, antimony, and bismuth (which may be an organometallic compound), such as arsine. The supply of the Group III material or the Group V material is preferably performed at 400 to 500 ° C.

(111)A面または(111)B面への変換は、(111)1×1面への変換の後に行ってもよいが、同時に行ってもよい。つまり、(111)面を、約400℃での低温熱処理により(111)1×1面に変換しながら、III族原料またはV族原料も供給して(111)A面または(111)B面に変換することもできる。   The conversion to the (111) A plane or the (111) B plane may be performed after the conversion to the (111) 1 × 1 plane, but may be performed simultaneously. In other words, the (111) plane is converted to the (111) 1 × 1 plane by low-temperature heat treatment at about 400 ° C., and the group III material or the group V material is supplied to the (111) plane or the (111) plane B. Can also be converted.

前記の通り、IV族半導体基板の(111)面を、高温(例えば900℃)熱処理して自然酸化膜を除去するときに、酸素原子が除去される。酸素原子が除去された状態で(111)面とすると、IV族元素同士の結合が切れている部分が形成される。高温熱処理したあとの(111)面は、図2に示すように1×1構造で構成され、そのまま温度を下げると、図2の分類に記した、様々な不規則な原子配列周期が表面に形成される。さらに温度を400℃程度まで下げることで、1×1構造に回復する。回復した1×1構造は、熱力学的に不安定であり、この状態にIII族元素またはV族元素を供給すると、III族元素またはV族元素は、最表面のSi原子と置き換わるようにIII族原子またはV族原子が表面吸着して、(111)A面または(111)B面を形成する。このため、比較的容易に、(111)A面または(111)B面が得られる。   As described above, when the (111) plane of the group IV semiconductor substrate is heat-treated at a high temperature (for example, 900 ° C.) to remove the natural oxide film, oxygen atoms are removed. When the (111) plane is formed in a state where oxygen atoms are removed, a portion where bonds between group IV elements are broken is formed. The (111) plane after the high-temperature heat treatment has a 1 × 1 structure as shown in FIG. 2. When the temperature is lowered as it is, various irregular atomic arrangement periods described in the classification of FIG. It is formed. Further, by reducing the temperature to about 400 ° C., the 1 × 1 structure is restored. The recovered 1 × 1 structure is thermodynamically unstable, and when a group III element or group V element is supplied to this state, the group III element or group V element is replaced with a surface Si atom. Group atoms or Group V atoms are adsorbed on the surface to form (111) A plane or (111) B plane. For this reason, the (111) A surface or the (111) B surface can be obtained relatively easily.

交互原料供給変調法について
次に、(111)A面または(111)B面に変換された(111)面に、さらにIII族元素を含む原料ガスと、V族元素を含む原料ガスとを、交互に提供する(「交互原料供給変調」ともいう)ことが好ましい。これにより、絶縁膜の開口部を通して露出した基板表面に、III−V化合物半導体の薄膜を形成する。この交互原料供給変調法による薄膜形成は、III−V族化合物半導体ナノロッドを成長させる(後述)ために必要な温度よりも低い温度にて行うことが好ましい。具体的には約400℃で行うか、または400℃から昇温しながら行ってもよい。
About the alternate raw material supply modulation method Next, on the (111) plane converted to the (111) A plane or the (111) B plane, a source gas further containing a group III element, and a source gas containing a group V element, It is preferable to provide them alternately (also referred to as “alternating raw material supply modulation”). Thereby, a thin film of a III-V compound semiconductor is formed on the substrate surface exposed through the opening of the insulating film. The thin film formation by this alternate material supply modulation method is preferably performed at a temperature lower than that required for growing III-V compound semiconductor nanorods (described later). Specifically, it may be carried out at about 400 ° C. or while raising the temperature from 400 ° C.

具体的には、(111)A面が形成されている場合は、まずIII族元素を含む原料ガスを供給し;その後、V族元素を含む原料ガス供給する。さらに、III族元素を含む原料ガスとV族元素を含む原料ガスとを交互に繰り返し供給する。
一方、(111)B面が形成されている場合は、まずV族元素を含む原料ガスを供給し;その後、III族元素を含む原料ガス供給する。さらに、V族元素を含む原料ガスとIII族元素を含む原料ガスとを交互に繰り返し供給する。
Specifically, when the (111) A plane is formed, first, a source gas containing a group III element is supplied; then, a source gas containing a group V element is supplied. Further, a source gas containing a group III element and a source gas containing a group V element are alternately and repeatedly supplied.
On the other hand, when the (111) B surface is formed, first, a source gas containing a group V element is supplied; then, a source gas containing a group III element is supplied. Further, a source gas containing a group V element and a source gas containing a group III element are alternately and repeatedly supplied.

V族元素を含む原料ガスとIII族元素を含む原料ガスとを、それぞれ数秒供給し、互いの供給の間に数秒のインターバルを設けることが好ましい。化合物半導体の薄膜が所望の厚さになるまで、V族元素を含む原料ガスとIII族元素を含む原料ガスとを交互に供給すればよい。何回か繰り返してガスを供給することにより、III−V化合物半導体の薄膜を形成する。   It is preferable to supply a source gas containing a group V element and a source gas containing a group III element for several seconds, respectively, and provide an interval of several seconds between the supply. A source gas containing a group V element and a source gas containing a group III element may be alternately supplied until the compound semiconductor thin film has a desired thickness. By repeatedly supplying the gas several times, a thin film of III-V compound semiconductor is formed.

この交互原料供給変調は、(111)A面または(111)B面に変換したときに変換できなかった部位があったとしても、(111)A面または(111)B面を再形成することができるという、補償効果もある。交互原料供給変調により、IV族元素とIII族元素またはV族元素が結合するからである。   This alternate material supply modulation re-forms the (111) A surface or the (111) B surface even if there is a portion that could not be converted when converted to the (111) A surface or the (111) B surface. There is also a compensation effect that can be done. This is because the group IV element and the group III element or the group V element are bonded by the alternating raw material supply modulation.

この後、半導体ナノワイヤを成長させるために基板温度を上げるが、交互原料供給変調により形成されたIII−V化合物半導体の薄膜は、基板に吸着したIII族元素やIV族元素が熱で乖離することを防ぐこともできる。   After this, the substrate temperature is raised in order to grow semiconductor nanowires, but the III-V compound semiconductor thin film formed by alternating source supply modulation has the group III elements and group IV elements adsorbed on the substrate separated by heat. Can also be prevented.

III−V化合物半導体の薄膜を形成した後に、IV族半導体基板の表面から、絶縁膜の開口部を通して、III−V族化合物半導体を成長させて、半導体ナノワイヤを成長させる(図1D)。III−V族化合物半導体ナノワイヤの成長は、例えば、有機金属化学気相エピタキシ法(「MOVPE法」ともいう)や、分子線エピタキシ法(「MBE法」ともいう)により行われるが、好ましくはMOVPE法により行われる。   After forming a thin film of a III-V compound semiconductor, a group III-V compound semiconductor is grown from the surface of the group IV semiconductor substrate through the opening of the insulating film to grow semiconductor nanowires (FIG. 1D). The growth of the group III-V compound semiconductor nanowire is performed by, for example, a metal organic chemical vapor phase epitaxy method (also referred to as “MOVPE method”) or a molecular beam epitaxy method (also referred to as “MBE method”), but preferably MOVPE. Done by law.

MOVPE法による半導体ナノワイヤの形成は、通常のMOVPE装置を用いて行うことができる。つまり、所定の温度にて減圧条件下で、III族元素を含む原料ガスと、V族元素を含む原料ガスとを提供することが好ましい。
例えば、InAsナノワイヤを形成するときは、約540℃にて、水素化ヒ素(AsH)とトリメチルインジウムを提供すればよい。また、GaAsナノワイヤを形成するときは、約750℃にて、水素化ヒ素(AsH)とトリメチルガリウムを提供すればよい。
Formation of semiconductor nanowires by the MOVPE method can be performed using a normal MOVPE apparatus. That is, it is preferable to provide a source gas containing a group III element and a source gas containing a group V element under a reduced pressure condition at a predetermined temperature.
For example, when forming InAs nanowires, arsenic hydride (AsH 3 ) and trimethylindium may be provided at about 540 ° C. When forming GaAs nanowires, arsenic hydride (AsH 3 ) and trimethylgallium may be provided at about 750 ° C.

本発明の半導体構造物の製造方法によれば、IV族半導体基板の表面を(111)1×1面として、かつ(111)A面またはB面にしているので、III−V族化合物半導体を、基板表面に対して垂直に成長させることができる。   According to the method for manufacturing a semiconductor structure of the present invention, the surface of the group IV semiconductor substrate is the (111) 1 × 1 plane and the (111) A plane or the B plane. Can be grown perpendicular to the substrate surface.

[実施例1]シリコン基板面へのInAsナノワイヤの形成
n型シリコン(111)半導体基板を、熱酸化処理して、表面に20nmの酸化シリコン膜を形成した。形成された酸化シリコン膜を、電子線ビームリソグラフィとウェットケミカルエッチングにより開口させて、シリコン表面を露出させた。開口の形状を六角形として、開口の面積円相当径は60nmとした。
[Example 1] Formation of InAs nanowires on a silicon substrate surface An n-type silicon (111) semiconductor substrate was thermally oxidized to form a 20 nm silicon oxide film on the surface. The formed silicon oxide film was opened by electron beam lithography and wet chemical etching to expose the silicon surface. The shape of the opening was hexagonal, and the area circle equivalent diameter of the opening was 60 nm.

得られた基板を、減圧横型MOVPE装置(大陽日酸製HR2339)にセットした。MOVPE装置の内圧は0.1atmにすることができる。基板にセットしたMOVPE装置の内温を925℃に上昇させて、同温度にて5分間維持した(図4Aの符号10参照)。これにより、基板表面に形成された自然酸化膜を除去した。   The obtained substrate was set in a reduced pressure horizontal MOVPE apparatus (HR2339 manufactured by Taiyo Nippon Sanso). The internal pressure of the MOVPE device can be 0.1 atm. The internal temperature of the MOVPE apparatus set on the substrate was raised to 925 ° C. and maintained at that temperature for 5 minutes (see reference numeral 10 in FIG. 4A). Thereby, the natural oxide film formed on the substrate surface was removed.

その後、装置の内温を925℃から400℃に降温した。400℃にて水素化ヒ素(AsH)を、キャリアガスである水素ガスとともに供給した(図4Aの符号11参照)。水素化ヒ素の分圧を1.3×10−4atmとした。 Thereafter, the internal temperature of the apparatus was lowered from 925 ° C. to 400 ° C. Arsenic hydride (AsH 3 ) was supplied at 400 ° C. together with hydrogen gas as a carrier gas (see reference numeral 11 in FIG. 4A). The partial pressure of arsenic hydride was 1.3 × 10 −4 atm.

次に、交互原料供給変調法によりInAsの薄膜を形成した(図4Aの符号12参照)。交互原料供給変調の条件を図4Bに示す。図4Bに示されるように、水素化ヒ素とトリメチルインジウムの供給を、交互に行った。つまり、トリメチルインジウムの供給を2秒間(符号20)、水素ガスによるインターバルを1秒間(符号21)、水素化ヒ素の供給を2秒間(符号22)、水素ガスによるインターバルを2秒間(符号23)の組合せを1サイクルとして、このサイクルを繰り返した。具体的には、2分間かけて前記サイクルを20回繰り返した。   Next, an InAs thin film was formed by an alternating material supply modulation method (see reference numeral 12 in FIG. 4A). The conditions for alternating raw material supply modulation are shown in FIG. 4B. As shown in FIG. 4B, arsenic hydride and trimethylindium were alternately supplied. That is, the supply of trimethylindium for 2 seconds (reference 20), the hydrogen gas interval for 1 second (reference 21), the arsenic hydride supply for 2 seconds (reference 22), and the hydrogen gas interval for 2 seconds (reference 23) This cycle was repeated with a combination of Specifically, the cycle was repeated 20 times over 2 minutes.

また、供給される水素化ヒ素の分圧を2.5×10−4atm、トリメチルインジウムの分圧を9.6×10−7atmとした。 The partial pressure of arsenic hydride supplied was 2.5 × 10 −4 atm, and the partial pressure of trimethylindium was 9.6 × 10 −7 atm.

その後、装置の内温を400℃から540℃に昇温した。540℃にて、水素化ヒ素と、トリメチルインジウムを水素ガスとともに供給して、InAsナノワイヤを、MOVPE法で成長させた(図4Aの符号13参照)。   Thereafter, the internal temperature of the apparatus was increased from 400 ° C. to 540 ° C. Arsenic hydride and trimethylindium were supplied together with hydrogen gas at 540 ° C., and InAs nanowires were grown by the MOVPE method (see reference numeral 13 in FIG. 4A).

その結果、2μm程度のInAsナノワイヤが基板表面に形成された。そのSEM写真を図7に示す。図7に示されるように、ナノワイヤは基板面に対して、選択的に垂直に成長している。   As a result, InAs nanowires of about 2 μm were formed on the substrate surface. The SEM photograph is shown in FIG. As shown in FIG. 7, the nanowires are selectively grown perpendicular to the substrate surface.

[実施例2]
実施例1と同様であるが、図5Aのグラフに示されるように、交互原料供給変調法によるInAsの薄膜形成(図4Aの符号12参照)を行わなかった。
[Example 2]
As in Example 1, as shown in the graph of FIG. 5A, thin film formation of InAs (see reference numeral 12 in FIG. 4A) by the alternating material supply modulation method was not performed.

[比較例1]
実施例1に対して、400℃での低温熱処理(図4Aの符号11参照)と、交互原料供給変調法によるInAsの成長(図4Aの符号12参照)を行わなかった(図5Bを参照)。つまり、925℃で高温熱処理したのち、540℃にまでは降温させるが、400℃にまで降温させなかった。540℃にてそのままMOVPE法よりInAsナノワイヤを成長させた。
[Comparative Example 1]
Example 1 was not subjected to low-temperature heat treatment at 400 ° C. (see reference numeral 11 in FIG. 4A) and InAs growth (see reference numeral 12 in FIG. 4A) by the alternating material supply modulation method (see FIG. 5B). . That is, after the high temperature heat treatment at 925 ° C., the temperature was lowered to 540 ° C., but not lowered to 400 ° C. InAs nanowires were grown as they were at 540 ° C. by the MOVPE method.

図6には、実施例1〜2と比較例1で得られた半導体構造物における、半導体ナノワイヤの制御結果が示される。図6において、●は基板面に対して垂直に成長したナノワイヤの割合を;■は基板面に対して傾いて成長したナノワイヤの割合を;○は開口部からナノワイヤが成長しなかった割合を示す。   FIG. 6 shows the control result of the semiconductor nanowires in the semiconductor structures obtained in Examples 1 and 2 and Comparative Example 1. In FIG. 6, ● indicates the proportion of nanowires grown perpendicular to the substrate surface; ■ indicates the proportion of nanowires grown with inclination relative to the substrate surface; ○ indicates the proportion of nanowires that did not grow from the openings .

図6に示されたように、比較例1では垂直に成長したナノワイヤの割合が約30%であって低く、またナノワイヤが成長していない確立も高かった。これに対して実施例1および2は、垂直に成長したナノワイヤの割合が高い。この結果は、高熱処理後にいったん400℃にて低温熱処理を施したことによることが示唆される。   As shown in FIG. 6, in Comparative Example 1, the proportion of nanowires grown vertically was about 30%, which was low, and the probability that nanowires were not grown was high. In contrast, Examples 1 and 2 have a high percentage of nanowires grown vertically. This result suggests that the low temperature heat treatment was once performed at 400 ° C. after the high heat treatment.

また実施例1は、実施例2と比較して、さらに垂直に成長したナノワイヤの割合が高い。これは、交互原料供給変調により半導体薄膜を形成しているためである。   In addition, compared to Example 2, Example 1 has a higher percentage of nanowires grown vertically. This is because the semiconductor thin film is formed by alternating source supply modulation.

[実施例3]シリコン基板面へのGaAsナノワイヤの形成
実施例1と同様に、n型シリコン(111)半導体基板の表面に、開口部を有する絶縁膜を形成し、得られた基板を減圧横型MOVPE装置にセットした。さらに、実施例1と同様に、925℃にて処理して基板に形成された自然酸化膜を除去し(図8Aの符号30)、その後400℃に戻して水素化ヒ素(AsH)を提供した(図8Aの符号31)。
[Example 3] Formation of GaAs nanowires on silicon substrate surface In the same manner as in Example 1, an insulating film having an opening was formed on the surface of an n-type silicon (111) semiconductor substrate, and the resulting substrate was formed into a reduced pressure horizontal type. Set in MOVPE device. Furthermore, as in Example 1, the natural oxide film formed on the substrate was removed by treatment at 925 ° C. (reference numeral 30 in FIG. 8A), and then returned to 400 ° C. to provide arsenic hydride (AsH 3 ). (Reference numeral 31 in FIG. 8A).

次に、交互原料供給変調法によりGaAsの薄膜を形成した(図8Aの符号32参照)。装備の内温を、3分かけて、400℃から750℃にあげながら、水素化ヒ素とトリメチルインジウムを交互に供給した。供給する水素化ヒ素の分圧を2.5×10−4atm、トリメチルガリウムの分圧を1.0×10−6atmとした。 Next, a GaAs thin film was formed by the alternating source supply modulation method (see reference numeral 32 in FIG. 8A). Arsenic hydride and trimethylindium were alternately supplied while raising the internal temperature of the equipment from 400 ° C. to 750 ° C. over 3 minutes. The partial pressure of arsenic hydride supplied was 2.5 × 10 −4 atm, and the partial pressure of trimethylgallium was 1.0 × 10 −6 atm.

また、供給のタイミングは、実施例1と同様に、トリメチルガリウムの供給を2秒間、水素ガスによるインターバルを1秒間、水素化ヒ素の供給を2秒間、水素ガスによるインターバルを2秒間の組合せを1サイクルとして、このサイクルを30回繰り返した。   Similarly to the first embodiment, the supply timing is 1 for the combination of supplying trimethylgallium for 2 seconds, supplying hydrogen gas for 1 second, supplying arsenic hydride for 2 seconds, and using hydrogen gas for 2 seconds. As a cycle, this cycle was repeated 30 times.

装置の内温を400℃から750℃にかげながら交互原料供給変調することにより、インジウムと比較して蒸発しやすいガリウムの蒸発を抑制しつつ、(111)B面を形成することができた。   By alternating supply of raw materials while increasing the internal temperature of the apparatus from 400 ° C. to 750 ° C., the (111) B plane could be formed while suppressing evaporation of gallium, which is easier to evaporate than indium.

また、GaAsナノワイヤの形成の場合は、交互原料供給変調の工程は必ずしも必要ではなく、この工程を省略したとしても、ナノワイヤの成長方向を垂直に制御することができる。Ga金属はその融点(29℃)が低いため、溶融しやすい。そのためGaAsナノワイヤの形成の場合は、AsH存在下で低温熱処理をすることにより、交互原料供給変調の工程をしなくても、本発明の効果を得ることもできる。 Further, in the case of forming GaAs nanowires, the alternating material supply modulation step is not necessarily required, and even if this step is omitted, the growth direction of the nanowires can be controlled vertically. Ga metal is easy to melt because its melting point (29 ° C.) is low. Therefore, in the case of forming GaAs nanowires, the effect of the present invention can be obtained by performing a low-temperature heat treatment in the presence of AsH 3 without performing the alternating material supply modulation step.

さらに、750℃にて水素化ヒ素と、トリメチルガリウムを水素ガスとともに供給して、GaAsナノワイヤを、MOVPE法で成長させた(図8Aの符号33参照)。その結果、3μm程度のGaAsナノワイヤが基板表面に形成された。そのSEM写真を図8Bに示す。図8Bに示されるように、ナノワイヤは基板面に対して、選択的に垂直に成長している。ほぼ100%のナノワイヤが垂直に成長していることが確認された。   Furthermore, arsenic hydride and trimethylgallium were supplied together with hydrogen gas at 750 ° C., and GaAs nanowires were grown by the MOVPE method (see reference numeral 33 in FIG. 8A). As a result, GaAs nanowires of about 3 μm were formed on the substrate surface. The SEM photograph is shown in FIG. 8B. As shown in FIG. 8B, nanowires are selectively grown perpendicular to the substrate surface. It was confirmed that almost 100% of nanowires were growing vertically.

本発明により、シリコントランジスタやIII-V族化合物半導体太陽電池などの高性能化や高機能化が実現される。   According to the present invention, high performance and high functionality of a silicon transistor, a III-V compound semiconductor solar cell, and the like are realized.

本発明の半導体構造物製造プロセスを説明する図である。It is a figure explaining the semiconductor structure manufacturing process of this invention. シリコン表面の再構成構造(表面原子の配列周期が変化する現象)について、基板温度を上昇させた時と、高温から減少させた時に生じる再構成の分類図である。FIG. 4 is a classification diagram of reconstruction that occurs when the substrate temperature is raised and when it is reduced from a high temperature, regarding the reconstruction structure of the silicon surface (a phenomenon in which the arrangement period of surface atoms changes). 図3Aは(111)面を、図3Bは(111)1×1面を、模式的に説明する図である。3A schematically illustrates the (111) plane, and FIG. 3B schematically illustrates the (111) 1 × 1 plane. 実施例1のInAsナノワイヤを成長させるときの反応条件を示すグラフである。4 is a graph showing reaction conditions when growing the InAs nanowires of Example 1. FIG. 実施例2および比較例1のInAsナノワイヤを成長させるときの反応条件を示すグラフである。It is a graph which shows reaction conditions when growing the InAs nanowire of Example 2 and Comparative Example 1. 実施例1および2、並びに比較例1で得られた半導体構造物における、半導体ナノワイヤの制御結果を示す図である。It is a figure which shows the control result of the semiconductor nanowire in the semiconductor structure obtained by Example 1 and 2 and the comparative example 1. FIG. 実施例1で得られた半導体構造物の半導体ナノワイヤのSEM写真である。2 is a SEM photograph of semiconductor nanowires of the semiconductor structure obtained in Example 1. 実施例3のGaAsナノワイヤを成長させるときの反応条件を示すグラフ(図8A)と、実施例で得られた半導体構造物の半導体ナノワイヤのSEM写真(図8B)である。It is the graph (FIG. 8A) which shows the reaction conditions when growing the GaAs nanowire of Example 3, and the SEM photograph (FIG. 8B) of the semiconductor nanowire of the semiconductor structure obtained in the Example.

符号の説明Explanation of symbols

1 IV族半導体基板
1−1 (111)面
2 絶縁膜
3 開口部
4 半導体ナノワイヤ
1 Group IV Semiconductor Substrate 1-1 (111) Surface 2 Insulating Film 3 Opening 4 Semiconductor Nanowire

Claims (11)

IV族半導体基板と、前記IV族半導体基板の表面から垂直に延びるIII−V族化合物半導体ナノワイヤとを含む半導体構造物の製造方法であって、
(111)面を有するIV族半導体基板と、前記(111)面を被覆し、開口部を有する絶縁膜とを含む基板を準備するステップと、
前記基板について、化合物半導体ナノワイヤを成長させるのに必要な温度範囲よりも高い温度で高温熱処理を行うことにより生じた(111)7×7面を介し、化合物半導体ナノワイヤを成長させるのに必要な温度範囲よりも低い温度で低温熱処理をして(111)1×1面とするステップと、
前記基板に前記低温熱処理の条件下で、III族原料またはV族原料を供給して、前記(111)1×1面を、(111)A面または(111)B面に変換するステップと、
前記(111)A面または(111)B面に、V族原料とIII族原料を交互に供給することで、III−V族化合物半導体の薄膜を形成するステップと、
前記III−V族化合物半導体の薄膜を形成した後に、前記IV族半導体基板の表面から前記開口部を通して、III−V化合物半導体ナノワイヤを成長させるステップとを含む、製造方法。
A method for producing a semiconductor structure comprising a group IV semiconductor substrate and a group III-V compound semiconductor nanowire extending perpendicularly from the surface of the group IV semiconductor substrate,
Preparing a substrate including a group IV semiconductor substrate having a (111) plane and an insulating film covering the (111) plane and having an opening;
About the substrate , the temperature necessary for growing the compound semiconductor nanowire through the (111) 7 × 7 plane generated by performing the high temperature heat treatment at a temperature higher than the temperature range necessary for growing the compound semiconductor nanowire. A low temperature heat treatment at a temperature lower than the range to form a (111) 1 × 1 surface;
And converting under conditions of the low-temperature heat treatment to the substrate, by supplying the group III source or group V raw material, the (111) 1 × 1 surface, the (111) A plane or (111) B plane,
Forming a thin film of a III-V compound semiconductor by alternately supplying a group V material and a group III material to the (111) A surface or the (111) B surface;
And forming a III-V compound semiconductor nanowire from the surface of the group IV semiconductor substrate through the opening after forming a thin film of the group III-V compound semiconductor.
前記開口部を有する絶縁膜を含む基板を準備した後に、前記基板を高温熱処理することにより、前記IV半導体基板の表面に形成された自然酸化膜を除去するステップ、をさらに含む、請求項1に記載の製造方法。   2. The method according to claim 1, further comprising: removing a natural oxide film formed on a surface of the IV semiconductor substrate by performing a high temperature heat treatment on the substrate after preparing a substrate including an insulating film having the opening. The manufacturing method as described. 前記(111)A面または(111)B面に、V族原料とIII族原料を交互に供給するステップは、
前記変換された面が前記(111)A面のときはまずIII族原料を供給し、その後V族原料とIII族原料を交互に供給し、
前記変換された面が前記(111)B面のときはまずV族原料を供給し、その後III族原料とV族原料を交互に供給する、請求項1に記載の製造方法。
The step of alternately supplying the group V material and the group III material to the (111) A surface or the (111) B surface,
When the converted surface is the (111) A surface, first supply a group III material, and then supply a group V material and a group III material alternately,
2. The method according to claim 1, wherein when the converted surface is the (111) B surface, a Group V material is first supplied, and then a Group III material and a Group V material are alternately supplied.
前記(111)面を(111)1×1面とするステップと、前記(111)面を前記(111)A面または(111)B面に変換するステップとを、順に行なうか、または同時に行う、請求項1に記載の製造方法。   The step of setting the (111) plane to the (111) 1 × 1 plane and the step of converting the (111) plane to the (111) A plane or the (111) B plane are sequentially or simultaneously performed. The manufacturing method according to claim 1. 前記IV族半導体基板はシリコン基板またはゲルマニウム基板である、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the group IV semiconductor substrate is a silicon substrate or a germanium substrate. 前記III族原料は、ホウ素、アルミニウム、ガリウム、インジウムおよびタリウムのいずれかを含むガスである、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the group III raw material is a gas containing any of boron, aluminum, gallium, indium, and thallium. 前記V族原料は、窒素、リン、ヒ素、アンチモン、ビスマスのいずれかを含むガスである、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the group V raw material is a gas containing any of nitrogen, phosphorus, arsenic, antimony, and bismuth. 前記III−V化合物半導体は、InAs、InP、GaAs、GaN、InSb、GaSb、AlSb、AlGaAs、InGaAs、InGaN、AlGaN、GaNAs、InAsSb、GaAsSb、InGaSb、AlInSb、InGaAlN、AlInGaP、InGaAsPまたはGaInAsN、InGaAlSb、InGaAsSb、AlInGaPSbである、請求項1に記載の製造方法。   The III-V compound semiconductor is InAs, InP, GaAs, GaN, InSb, GaSb, AlSb, AlGaAs, InGaAs, InGaN, AlGaN, GaNAs, InAsSb, GaAsSb, InGaSb, AlInSb, InGaAlN, AlInGaP, InGaAsP or GaInAsN, InGaAlSb, The manufacturing method of Claim 1 which is InGaAsSb and AlInGaPSb. 前記(111)面を被覆する絶縁膜は、前記IV族半導体基板の表面の熱酸化膜である、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the insulating film covering the (111) plane is a thermal oxide film on a surface of the group IV semiconductor substrate. IV族半導体基板と、前記IV族半導体基板の(111)面を(111)1×1面を経て変換された(111)A面または(111)B面の表面から延びる、複数本のIII−V族化合物半導体ナノワイヤとを含む半導体構造物であって、
前記複数本のIII−V族化合物半導体ナノワイヤのうちの90%以上が、前記IV族半導体基板の前記(111)A面または前記(111)B面の表面から垂直に延びている、半導体構造物。
A group IV semiconductor substrate, and a plurality of III− layers extending from the (111) A plane or the (111) B plane converted from the (111) 1 × 1 plane of the (111) plane of the group IV semiconductor substrate. A semiconductor structure including a group V compound semiconductor nanowire,
90% or more of the plurality of group III-V compound semiconductor nanowires extend vertically from the surface of the (111) A plane or the (111) B plane of the group IV semiconductor substrate. .
前記IV族半導体基板の表面1cm2あたり、1億本以上の前記III−V族化合物半導体ナノワイヤを有する、請求項10に記載の半導体構造物。 The semiconductor structure according to claim 10, comprising 100 million or more III-V compound semiconductor nanowires per 1 cm 2 of the surface of the group IV semiconductor substrate.
JP2008223713A 2008-09-01 2008-09-01 Manufacturing method of semiconductor structure Active JP5655228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223713A JP5655228B2 (en) 2008-09-01 2008-09-01 Manufacturing method of semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223713A JP5655228B2 (en) 2008-09-01 2008-09-01 Manufacturing method of semiconductor structure

Publications (2)

Publication Number Publication Date
JP2010058988A JP2010058988A (en) 2010-03-18
JP5655228B2 true JP5655228B2 (en) 2015-01-21

Family

ID=42186258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223713A Active JP5655228B2 (en) 2008-09-01 2008-09-01 Manufacturing method of semiconductor structure

Country Status (1)

Country Link
JP (1) JP5655228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698239B2 (en) 2015-08-12 2017-07-04 International Business Machines Corporation Growing groups III-V lateral nanowire channels

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2973936B1 (en) * 2011-04-05 2014-01-31 Commissariat Energie Atomique METHOD OF SELECTIVE GROWTH ON SEMICONDUCTOR STRUCTURE
JP5409707B2 (en) * 2011-06-15 2014-02-05 シャープ株式会社 Semiconductor element, method for manufacturing semiconductor element, light emitting diode, photoelectric conversion element, solar cell, lighting device, backlight and display device
JP6187394B2 (en) * 2014-06-18 2017-08-30 富士通株式会社 Manufacturing method of semiconductor nanowire and manufacturing method of semiconductor nanowire element
CN104445057A (en) * 2014-12-11 2015-03-25 中国科学院合肥物质科学研究院 Gallium arsenide nanowire array and preparation method thereof
CN104638031A (en) * 2015-01-21 2015-05-20 中电投西安太阳能电力有限公司 Solar cell based on GaN (gallium nitride) nanowire arrays and preparation method thereof
JP2019182712A (en) * 2018-04-12 2019-10-24 株式会社デンソー Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2643439C (en) * 2006-03-10 2015-09-08 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698239B2 (en) 2015-08-12 2017-07-04 International Business Machines Corporation Growing groups III-V lateral nanowire channels
US9859397B2 (en) 2015-08-12 2018-01-02 International Business Machines Corporation Growing groups III-V lateral nanowire channels
US10103242B2 (en) 2015-08-12 2018-10-16 International Business Machines Corporation Growing groups III-V lateral nanowire channels
US10763340B2 (en) 2015-08-12 2020-09-01 International Business Machines Corporation Growing Groups III-V lateral nanowire channels

Also Published As

Publication number Publication date
JP2010058988A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
US11450528B2 (en) Process for growing nanowires or nanopyramids on graphitic substrates
US11264536B2 (en) Nanowires or nanopyramids grown on a graphene substrate
JP5655228B2 (en) Manufacturing method of semiconductor structure
JP6343608B2 (en) Solar cell
Yi Semiconductor nanostructures for optoelectronic devices: processing, characterization and applications
CN104145340B (en) Nanowire device with graphene top electrodes and bottom electrode and the method for manufacturing the device
KR102356432B1 (en) Iii-v or ii-vi compound semiconductor films on graphitic substrates
TWI459589B (en) Method for making epitaxial structure
US20220262978A1 (en) Nanowire device
Bao Group III-nitride nanowires
Wang Lattice engineering: technology and applications
JP7008292B2 (en) Nitride semiconductor light emitting device and its manufacturing method
WO2023037490A1 (en) Nanowires and method for producing same
JP6232611B2 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
WO2024042219A1 (en) Nanowire device with mask layer
Kang et al. Improvement of morphology, structure, and optical properties of GaAs nanowires grown on Si substrates
JP2006108440A (en) Semiconductor device and its manufacturing method
Janik et al. ZnTe nanowires grown catalytically on GaAs (001) substrates by molecular beam epitaxy
Takayama et al. Selective‐area MOVPE of GaSb on GaAs (111)‐oriented substrates

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110712

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5655228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250