JP5654793B2 - Radiation detection element and method for manufacturing radiation detection element - Google Patents

Radiation detection element and method for manufacturing radiation detection element Download PDF

Info

Publication number
JP5654793B2
JP5654793B2 JP2010160583A JP2010160583A JP5654793B2 JP 5654793 B2 JP5654793 B2 JP 5654793B2 JP 2010160583 A JP2010160583 A JP 2010160583A JP 2010160583 A JP2010160583 A JP 2010160583A JP 5654793 B2 JP5654793 B2 JP 5654793B2
Authority
JP
Japan
Prior art keywords
radiation detection
detection element
electrode
semiconductor substrate
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010160583A
Other languages
Japanese (ja)
Other versions
JP2012023235A (en
Inventor
勲 ▲高▼橋
勲 ▲高▼橋
哲 ▲高▼杉
哲 ▲高▼杉
須永 義則
義則 須永
主鉉 柳
主鉉 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2010160583A priority Critical patent/JP5654793B2/en
Publication of JP2012023235A publication Critical patent/JP2012023235A/en
Application granted granted Critical
Publication of JP5654793B2 publication Critical patent/JP5654793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

本発明は、放射線検出素子、及び放射線検出素子の製造方法に関する。特に、本発明は、γ線、X線等の放射線を検出する放射線検出素子、及び放射線検出素子の製造方法に関する。   The present invention relates to a radiation detection element and a method for manufacturing the radiation detection element. In particular, the present invention relates to a radiation detection element that detects radiation such as gamma rays and X-rays, and a method for manufacturing the radiation detection element.

従来の放射線検出器として、一つの検出素子に、チャンネルをなす検出部が一の方向に沿って三つ以上設けられた放射線検出器であって、検出素子の端部に位置する検出部は、その体積が、隣接する検出部の体積よりも大きい放射線検出器が知られている(例えば、特許文献1参照。)。特許文献1に記載の放射線検出器においては、複数のアノード電極により複数のチャンネルの信号読出電極が構成され、一つのカソード電極でバイアス印加電極が構成されている。そして、アノード電極間に、アノード電極を分割する電極分割溝が形成されている。   As a conventional radiation detector, one detection element is a radiation detector in which three or more detection units forming a channel are provided along one direction, and the detection unit located at the end of the detection element is: A radiation detector whose volume is larger than the volume of an adjacent detector is known (for example, see Patent Document 1). In the radiation detector described in Patent Document 1, signal readout electrodes of a plurality of channels are configured by a plurality of anode electrodes, and a bias application electrode is configured by one cathode electrode. An electrode dividing groove for dividing the anode electrode is formed between the anode electrodes.

特許文献1に記載の放射線検出器によれば、複数チャンネルの検出感度を一様化することができる放射線検出器を提供できる。   According to the radiation detector described in Patent Literature 1, it is possible to provide a radiation detector that can make the detection sensitivity of a plurality of channels uniform.

特開2009−259859号公報JP 2009-259859 A

ここで、特許文献1に係る放射線検出器は、アノード電極を分割する電極分割溝の断面形状が略矩形状である。電極分割溝の断面形状が矩形状の場合、この電極分割溝の直下の領域で発生した電子及びホールを電極に収集させることができず、当該領域は放射線を検出することのできない不感領域になり得る。不感領域は、放射線の検出感度の向上の観点からは低減させることが望まれる。   Here, in the radiation detector according to Patent Document 1, the cross-sectional shape of the electrode dividing groove for dividing the anode electrode is substantially rectangular. When the cross-sectional shape of the electrode dividing groove is rectangular, electrons and holes generated in the area immediately below the electrode dividing groove cannot be collected by the electrode, and the area becomes a dead area where radiation cannot be detected. obtain. It is desirable to reduce the insensitive area from the viewpoint of improving the detection sensitivity of radiation.

したがって、本発明の目的は、放射線の検出感度を向上させることができる放射線検出素子、及び放射線検出素子の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a radiation detection element capable of improving the detection sensitivity of radiation and a method for manufacturing the radiation detection element.

本発明は、上記目的を達成するため、放射線を検出可能な化合物半導体からなる半導体基板と、半導体基板の表面に設けられ、表面側から半導体基板の内部に向けて徐々に幅が狭まる溝と、半導体基板の表面の平坦な領域と半導体基板の表面の反対側の面とのそれぞれに設けられる電極とを備える放射線検出素子が提供される。   In order to achieve the above object, the present invention provides a semiconductor substrate made of a compound semiconductor capable of detecting radiation, a groove provided on the surface of the semiconductor substrate, and having a gradually narrowing width from the surface side toward the inside of the semiconductor substrate, There is provided a radiation detection element including an electrode provided on each of a flat region on a surface of a semiconductor substrate and a surface opposite to the surface of the semiconductor substrate.

また、上記放射線検出素子において、化合物半導体が、CdTe又はCdTeZnであってもよい。   In the radiation detection element, the compound semiconductor may be CdTe or CdTeZn.

また、上記放射線検出素子において、溝が、断面にてV字形状又はU字形状を有することが好ましい。   In the radiation detection element, the groove preferably has a V shape or a U shape in cross section.

また、上記放射線検出素子において、半導体基板の表面の平坦な領域に設けられる電極が、半導体基板の表面の平坦な領域側からIn層とTi層とを有して構成され、半導体基板の表面の反対側の面に設けられる電極が、Ptから構成されてもよい。   In the radiation detection element, the electrode provided in the flat region on the surface of the semiconductor substrate is configured to include an In layer and a Ti layer from the flat region side of the surface of the semiconductor substrate, and The electrode provided on the opposite surface may be made of Pt.

また、本発明は、上記目的を達成するため、化合物半導体からなる半導体基板を準備する半導体基板準備工程と、半導体基板の表面に表面電極を形成する表面電極形成工程と、半導体基板の裏面に裏面電極を形成する裏面電極形成工程と、先端に向けて断面幅が徐々に狭まるブレードを表面電極に接触させ、表面側から半導体基板の内部に向けて徐々に幅が狭まる溝を半導体基板の表面に形成する溝形成工程とを備える放射線検出素子の製造方法が提供される。   In order to achieve the above object, the present invention provides a semiconductor substrate preparation step of preparing a semiconductor substrate made of a compound semiconductor, a surface electrode formation step of forming a surface electrode on the surface of the semiconductor substrate, and a back surface on the back surface of the semiconductor substrate. The back surface electrode forming step for forming the electrode, and a blade whose cross-sectional width is gradually narrowed toward the tip are brought into contact with the surface electrode, and a groove whose width is gradually narrowed from the front surface toward the inside of the semiconductor substrate is formed on the surface of the semiconductor substrate. A method for manufacturing a radiation detection element is provided.

また、上記放射線検出素子の製造方法において、化合物半導体が、CdTe又はCdTeZnであってもよい。   Moreover, in the said manufacturing method of a radiation detection element, CdTe or CdTeZn may be sufficient as a compound semiconductor.

また、上記放射線検出素子の製造方法において、ブレードの先端部分が、断面にてV字形状又は円弧形状を有していてもよい。   Moreover, in the manufacturing method of the said radiation detection element, the front-end | tip part of a braid | blade may have V shape or circular arc shape in a cross section.

また、上記放射線検出素子の製造方法において、表面電極形成工程が、半導体基板の表面側からIn層、Ti層を形成し、裏面電極形成工程が、半導体基板の裏面にPt層を形成してもよい。   Moreover, in the manufacturing method of the said radiation detection element, even if a surface electrode formation process forms In layer and Ti layer from the surface side of a semiconductor substrate, and a back surface electrode formation process forms a Pt layer on the back surface of a semiconductor substrate. Good.

本発明に係る放射線検出素子、及び放射線検出素子の製造方法によれば、放射線の検出感度を向上させることができる放射線検出素子、及び放射線検出素子の製造方法を提供することができる。   According to the radiation detection element and the method for manufacturing the radiation detection element according to the present invention, it is possible to provide a radiation detection element capable of improving the radiation detection sensitivity and a method for manufacturing the radiation detection element.

本発明の実施の形態に係る放射線検出素子を備える放射線検出器の斜視図である。It is a perspective view of a radiation detector provided with a radiation detection element concerning an embodiment of the invention. 本発明の実施の形態に係る放射線検出素子の斜視図である。It is a perspective view of a radiation detection element concerning an embodiment of the invention. (a)は本発明の実施の形態に係る放射線検出素子の溝の断面の概要を拡大して示し、(b)は従来技術に係る放射線検出素子の溝の断面の概要を拡大して示す。(A) expands and shows the outline of the cross section of the groove | channel of the radiation detection element which concerns on embodiment of this invention, (b) expands and shows the outline of the cross section of the groove | channel of the radiation detection element concerning a prior art. 本発明の実施の形態に係る放射線検出素子の製造工程の流れを示す図である。It is a figure which shows the flow of the manufacturing process of the radiation detection element which concerns on embodiment of this invention. 本発明の実施の形態の変形例に係る放射線検出素子の断面図である。It is sectional drawing of the radiation detection element which concerns on the modification of embodiment of this invention.

[実施の形態]
図1は、本発明の実施の形態に係る放射線検出素子を備える放射線検出器の斜視図の一例を示す。
[Embodiment]
FIG. 1 shows an example of a perspective view of a radiation detector including a radiation detection element according to an embodiment of the present invention.

(放射線検出器1の構成の概要)
本実施の形態に係る放射線検出素子10を備える放射線検出器1は、カード型の形状を呈し、γ線、X線等の放射線を検出する放射線検出器である。図1において放射線200は、紙面の上方から下方に沿って入射してくる。すなわち、放射線200は、放射線検出器1の放射線検出素子10からカードホルダ30及びカードホルダ31に向かう方向に沿って伝搬して放射線検出器1に到達する。そして、放射線検出器1は、放射線検出素子10の側面(つまり、図1の上方に面している面)に放射線200が入射する。したがって、放射線検出素子10の側面が放射線200の入射面となっている。このように、放射線検出素子10の側面を放射線200の入射面とする放射線検出器を、本実施の形態ではエッジオン型の放射線検出器と称する。なお、放射線検出器1は、特定の方向(例えば、放射線検出器1に向かう方向)に沿って入射してくる放射線200が通過する複数の開口を有するコリメータを介して放射線200を検出する複数の放射線検出器1が並べられて構成される放射線検出装置用の放射線検出器1として用いることができる。
(Outline of configuration of radiation detector 1)
The radiation detector 1 including the radiation detection element 10 according to the present embodiment is a radiation detector that has a card shape and detects radiation such as γ rays and X rays. In FIG. 1, the radiation 200 enters from the upper side to the lower side of the page. That is, the radiation 200 propagates along the direction from the radiation detection element 10 of the radiation detector 1 toward the card holder 30 and the card holder 31 and reaches the radiation detector 1. In the radiation detector 1, the radiation 200 is incident on the side surface of the radiation detection element 10 (that is, the surface facing upward in FIG. 1). Therefore, the side surface of the radiation detection element 10 is an incident surface of the radiation 200. Thus, the radiation detector in which the side surface of the radiation detection element 10 is the incident surface of the radiation 200 is referred to as an edge-on type radiation detector in the present embodiment. The radiation detector 1 detects a plurality of radiations 200 through a collimator having a plurality of openings through which the radiation 200 incident along a specific direction (for example, a direction toward the radiation detector 1) passes. The radiation detector 1 can be used as a radiation detector 1 for a radiation detection apparatus configured by arranging the radiation detectors 1 side by side.

具体的に、放射線検出器1は、放射線200を検出可能な一対の放射線検出素子10と、薄い基板20と、一対の放射線検出素子10の隣接部分にて基板20を挟み込むことにより基板20を支持するカードホルダ30及びカードホルダ31とを備える。そして、一例として、一対の放射線検出素子10が4組、基板20を挟み込む位置において基板20に固定される。すなわち、各組の一対の放射線検出素子10は、基板20の一方の面と他方の面とのそれぞれに基板20を対称面として対称の位置に固定される。   Specifically, the radiation detector 1 supports the substrate 20 by sandwiching the substrate 20 between a pair of radiation detection elements 10 capable of detecting the radiation 200, a thin substrate 20, and adjacent portions of the pair of radiation detection elements 10. Card holder 30 and card holder 31 are provided. As an example, four pairs of radiation detection elements 10 are fixed to the substrate 20 at positions where the substrate 20 is sandwiched. That is, the pair of radiation detection elements 10 of each set is fixed to a symmetric position with the substrate 20 as a symmetry plane on each of one surface and the other surface of the substrate 20.

また、基板20はカードホルダ30とカードホルダ31とに挟み込まれて支持される。カードホルダ30とカードホルダ31とはそれぞれ同一形状を有して形成され、カードホルダ30が有する溝付穴34にカードホルダ31が有する突起部36が嵌め合うと共に、カードホルダ31が有する溝付穴34(図示しない)にカードホルダ30が有する突起部36(図示しない)が嵌め合うことにより基板20を支持する。   The substrate 20 is supported by being sandwiched between a card holder 30 and a card holder 31. The card holder 30 and the card holder 31 are formed to have the same shape, and the protruding portion 36 of the card holder 31 is fitted into the grooved hole 34 of the card holder 30 and the grooved hole of the card holder 31 is fitted. The board | substrate 20 is supported by the projection part 36 (not shown) which the card holder 30 has fitting to 34 (not shown).

また、弾性部材実装部32及び凹部32aは、複数の放射線検出器1を支持する放射線検出器立てに放射線検出器1が挿入された場合に、放射線検出器1を放射線検出器立てに押し付けて固定する板ばね等の弾性部材が設けられる部分である。なお、放射線検出器立てはカードエッジ部29が挿入されるコネクタを有しており、放射線検出器1は、カードエッジ部29がコネクタに挿入され、コネクタとパターン29aとが電気的に接続することにより外部の電気回路としての制御回路、外部からの電源線、グランド線等に電気的に接続される。   The elastic member mounting portion 32 and the recess 32a are fixed by pressing the radiation detector 1 against the radiation detector stand when the radiation detector 1 is inserted into the radiation detector stand supporting the plurality of radiation detectors 1. This is a portion where an elastic member such as a leaf spring is provided. The radiation detector stand has a connector into which the card edge portion 29 is inserted. In the radiation detector 1, the card edge portion 29 is inserted into the connector, and the connector and the pattern 29a are electrically connected. Thus, the circuit is electrically connected to a control circuit as an external electric circuit, an external power supply line, a ground line, and the like.

また、放射線検出器1は、一対の放射線検出素子10の基板20の反対側に、各放射線検出素子10の電極と複数の基板端子22とのそれぞれを電気的に接続する配線パターン(放射線検出素子10の基板20の反対側の素子表面の電極、及びフレキシブル基板40の放射線検出素子10側の配線パターン等は図示しない)を有するフレキシブル基板40を更に備える。   Further, the radiation detector 1 includes a wiring pattern (radiation detection element) that electrically connects each of the electrodes of each radiation detection element 10 and the plurality of substrate terminals 22 to the opposite side of the substrate 20 of the pair of radiation detection elements 10. 10 further includes a flexible substrate 40 having electrodes on the element surface opposite to the substrate 20 and a wiring pattern on the radiation detection element 10 side of the flexible substrate 40 (not shown).

フレキシブル基板40は、一対の放射線検出素子10の一方の放射線検出素子10側、及び他方の放射線検出素子10側の双方に設けられる(本実施の形態においては、4組の一対の放射線検出素子10の一方の放射線検出素子10側のそれぞれと、他方の放射線検出素子10側のそれぞれとの双方に、フレキシブル基板40がそれぞれ設けられる)。そして、フレキシブル基板40の複数の配線パターンの一端はそれぞれ基板端子22に電気的に接続する。なお、基板端子22は、基板20の表面に設けられており、基板20の配線パターンに電気的に接続される。   The flexible substrate 40 is provided on both the one radiation detection element 10 side and the other radiation detection element 10 side of the pair of radiation detection elements 10 (in the present embodiment, four pairs of radiation detection elements 10). The flexible substrate 40 is provided on each of the one radiation detection element 10 side and each of the other radiation detection element 10 side). Then, one end of each of the plurality of wiring patterns of the flexible substrate 40 is electrically connected to the substrate terminal 22. The substrate terminal 22 is provided on the surface of the substrate 20 and is electrically connected to the wiring pattern of the substrate 20.

(基板20の詳細)
基板20は、金属導体等の導電性材料からなる導電性薄膜(例えば、銅箔)が表面に形成された薄肉基板(例えば、FR4等のガラスエポキシ基板)を、ソルダーレジスト等の絶縁材料からなる絶縁層で挟んで可撓性を有して形成される。基板20は、一例として、0.2mm以下の厚さを有して形成される。また、基板20は、放射線検出素子10の電極に電気的に接続する配線パターンを有する。配線パターンの表面の一部の領域には導電性を有する銀ペーストが設けられ、放射線検出素子10の電極は銀ペーストを介して配線パターンに電気的に接続される。
(Details of substrate 20)
The substrate 20 is a thin substrate (for example, a glass epoxy substrate such as FR4) on which a conductive thin film (for example, copper foil) made of a conductive material such as a metal conductor is formed, and is made of an insulating material such as a solder resist. It is formed with flexibility by being sandwiched between insulating layers. As an example, the substrate 20 is formed to have a thickness of 0.2 mm or less. The substrate 20 has a wiring pattern that is electrically connected to the electrode of the radiation detection element 10. A conductive silver paste is provided on a part of the surface of the wiring pattern, and the electrodes of the radiation detection element 10 are electrically connected to the wiring pattern through the silver paste.

また、放射線検出素子10の電極に電気的に接続する基板20の配線パターンは、カードエッジ部29のパターン29aに電気的に接続するように形成される。また、基板20は、基板端子22とカードエッジ部29のパターン29aとを電気的に接続する配線パターンを有する。これにより、基板20において、放射線検出素子10の基板20側の面の電極(後述する表面電極116)は、基板20の配線パターンによりカードエッジ部29のパターン29aに電気的に接続される。また、放射線検出素子10の基板20側の反対側の面の電極(後述する裏面電極118)は、フレキシブル基板40の配線パターンと、基板端子22と、基板20の配線パターンとを経由してカードエッジ部29のパターン29aに電気的に接続される。ここで、例えば、放射線検出素子10の基板20側の電極をアノード電極とし、放射線検出素子10の基板20側の反対側の面の電極をカソード電極とする。この場合、アノード電極からの信号とカソード電極からの信号とはそれぞれ、カードエッジ部29のパターン29aに導かれ、パターン29aを介して外部の電気回路へ出力される。   The wiring pattern of the substrate 20 that is electrically connected to the electrode of the radiation detection element 10 is formed so as to be electrically connected to the pattern 29 a of the card edge portion 29. The substrate 20 has a wiring pattern that electrically connects the substrate terminal 22 and the pattern 29 a of the card edge portion 29. Thereby, on the substrate 20, an electrode (surface electrode 116 described later) on the surface of the radiation detection element 10 on the substrate 20 side is electrically connected to the pattern 29 a of the card edge portion 29 by the wiring pattern of the substrate 20. Further, an electrode on the opposite side of the substrate 20 side of the radiation detection element 10 (a back surface electrode 118 described later) is a card via the wiring pattern of the flexible substrate 40, the substrate terminal 22, and the wiring pattern of the substrate 20. It is electrically connected to the pattern 29 a of the edge portion 29. Here, for example, the electrode on the substrate 20 side of the radiation detection element 10 is an anode electrode, and the electrode on the opposite side of the radiation detection element 10 on the substrate 20 side is a cathode electrode. In this case, the signal from the anode electrode and the signal from the cathode electrode are respectively guided to the pattern 29a of the card edge portion 29 and output to an external electric circuit via the pattern 29a.

(放射線検出素子10の詳細)
図2は、本発明の実施の形態に係る放射線検出素子の斜視図の一例を示す。
(Details of radiation detection element 10)
FIG. 2 shows an example of a perspective view of the radiation detection element according to the exemplary embodiment of the present invention.

化合物半導体から主として構成される放射線検出素子10は、略直方体状に形成される。つまり、放射線検出素子10は、平面視にて略四角状に形成される。また、放射線検出素子10の放射線が入射する面に垂直な一の表面である素子表面10aに、複数の溝120が設けられる。ここで、溝120は、素子表面10a側から放射線検出素子10の内部に向けて徐々に幅が狭まる形状を有して設けられる。例えば、溝120は、断面視にてV字形状を有して形成される。溝120の幅(最も長い部分の幅)は、0.2mm程度である。   The radiation detection element 10 mainly composed of a compound semiconductor is formed in a substantially rectangular parallelepiped shape. That is, the radiation detection element 10 is formed in a substantially square shape in plan view. A plurality of grooves 120 are provided on the element surface 10a, which is one surface perpendicular to the surface on which the radiation of the radiation detection element 10 is incident. Here, the groove 120 is provided with a shape in which the width gradually decreases from the element surface 10 a side toward the inside of the radiation detection element 10. For example, the groove 120 is formed to have a V shape in a sectional view. The width of the groove 120 (the width of the longest part) is about 0.2 mm.

そして、放射線が入射する放射線検出素子10の面であって、各溝120から、溝120が設けられている面の反対側の面(つまり、素子表面10b)への仮想的な垂線により区切られる領域、及び当該仮想的な垂線と放射線検出素子10の端部とで区切られる領域をピクセル領域と称する。放射線検出素子10が、(n−1)個の溝120を有することによりn個のピクセル領域が構成される。また、複数の溝120間の平坦な領域としての複数の素子表面10aそれぞれに表面電極116が設けられ、素子表面10bに裏面電極118が設けられる。なお、複数のピクセル領域それぞれが、放射線を検出する1つの画素(ピクセル)に対応する。これにより、一の放射線検出素子10は、複数の画素を有することになる。   And it is the surface of the radiation detection element 10 on which the radiation is incident, and is delimited by a virtual perpendicular from each groove 120 to the surface opposite to the surface on which the groove 120 is provided (that is, the element surface 10b). A region and a region delimited by the virtual perpendicular and the end of the radiation detection element 10 are referred to as a pixel region. The radiation detection element 10 has (n−1) grooves 120 to form n pixel regions. In addition, a surface electrode 116 is provided on each of the plurality of element surfaces 10a as a flat region between the plurality of grooves 120, and a back electrode 118 is provided on the element surface 10b. Each of the plurality of pixel regions corresponds to one pixel (pixel) that detects radiation. Thereby, one radiation detection element 10 has a plurality of pixels.

一例として、1つの放射線検出器1が8つの放射線検出素子10(4組の一対の放射線検出素子10)を備え、1つの放射線検出素子10がそれぞれ8つのピクセル領域を有する場合、1つの放射線検出器1は、64ピクセルの解像度を有することになる。溝120の数を増減させることにより、一の放射線検出素子10のピクセル数を増減させることができる。なお、一例として、放射線検出素子10の幅は1.2mm程度、長さは11.2mm程度、高さは5mm程度である。   As an example, when one radiation detector 1 includes eight radiation detection elements 10 (four pairs of radiation detection elements 10) and each radiation detection element 10 has eight pixel regions, one radiation detection is performed. The device 1 will have a resolution of 64 pixels. By increasing or decreasing the number of grooves 120, the number of pixels of one radiation detection element 10 can be increased or decreased. As an example, the radiation detection element 10 has a width of about 1.2 mm, a length of about 11.2 mm, and a height of about 5 mm.

放射線検出素子10を構成する化合物半導体としては、例えば、CdTeを用いることができる。また、γ線等の放射線を検出できる限り、放射線検出素子10はCdTe素子に限られない。例えば、放射線検出素子10として、CdZnTe(CZT)素子、HgI素子等の化合物半導体素子を用いることもできる。 As the compound semiconductor constituting the radiation detection element 10, for example, CdTe can be used. Further, the radiation detection element 10 is not limited to the CdTe element as long as radiation such as γ rays can be detected. For example, a compound semiconductor element such as a CdZnTe (CZT) element or an HgI 2 element can be used as the radiation detection element 10.

図3の(a)は、本発明の実施の形態に係る放射線検出素子の溝の断面の概要を拡大して示し、(b)は、従来技術に係る放射線検出素子の溝の断面の概要を拡大して示す。   FIG. 3A is an enlarged view of the outline of the groove of the radiation detection element according to the embodiment of the present invention, and FIG. 3B is an outline of the section of the groove of the radiation detection element according to the prior art. Enlarged view.

図3の(a)に示すように、本実施の形態に係る放射線検出素子10の素子表面10aには、上述のとおり、表面電極116が設けられる。具体的に、表面電極116は、素子表面10aの平坦な領域側から第1電極112と第2電極114とをこの順に有して構成される。表面電極116は、放射線検出素子10に対し、ショットキー接合する材料から構成することができる。第1電極112は、例えば、In層から構成でき、第2電極114は、例えば、Ti層から構成することができる。また、素子表面10bには、裏面電極118が設けられる。裏面電極118は、放射線検出素子10にオーミック接合する材料から構成される。例えば、裏面電極118は、Ptから構成することができる。   As shown in FIG. 3A, the surface electrode 116 is provided on the element surface 10a of the radiation detection element 10 according to the present embodiment as described above. Specifically, the surface electrode 116 includes the first electrode 112 and the second electrode 114 in this order from the flat region side of the element surface 10a. The surface electrode 116 can be made of a material that is Schottky bonded to the radiation detection element 10. The first electrode 112 can be composed of, for example, an In layer, and the second electrode 114 can be composed of, for example, a Ti layer. A back electrode 118 is provided on the element surface 10b. The back electrode 118 is made of a material that makes ohmic contact with the radiation detection element 10. For example, the back electrode 118 can be made of Pt.

ここで、表面電極116と裏面電極118との間に電界を発生させると、素子表面10aから素子表面10bに向かう電界130aと、素子表面10aから溝120の側面に沿いつつ素子表面10bに向かう電界130bとが発生する。すなわち、素子表面10aから素子表面10bに向かうにつれて幅が徐々に狭まる断面形状を溝120が有しているので、溝120の近傍を通過する電界130bは、素子表面10aから素子表面10bへ直線的に向かう向きではなく、溝120の側面に沿った向きになる。   Here, when an electric field is generated between the front electrode 116 and the back electrode 118, an electric field 130a from the element surface 10a toward the element surface 10b, and an electric field from the element surface 10a along the side surface of the groove 120 toward the element surface 10b. 130b occurs. That is, since the groove 120 has a cross-sectional shape whose width gradually decreases from the element surface 10a toward the element surface 10b, the electric field 130b passing through the vicinity of the groove 120 is linear from the element surface 10a to the element surface 10b. The direction is along the side surface of the groove 120, not in the direction toward.

そして、溝120の側面に沿った向きの電界130bの存在により、放射線200の入射によって溝120の下部近傍若しくは直下に発生した電子300は表面電極116側へ伝搬し、放射線200の入射によって発生したホール310は裏面電極118側へ伝搬する。これにより、放射線200によって溝120の下部近傍若しくは直下に発生した電子300及びホール310を表面電極116及び裏面電極118に適切に収集させることができ、放射線200の検出感度が向上する。   Then, due to the presence of the electric field 130b oriented along the side surface of the groove 120, the electrons 300 generated near or directly below the groove 120 by the incidence of the radiation 200 propagate to the surface electrode 116 side and are generated by the incidence of the radiation 200. The hole 310 propagates to the back electrode 118 side. Thereby, the electrons 300 and the holes 310 generated near or directly below the groove 120 by the radiation 200 can be appropriately collected by the front electrode 116 and the back electrode 118, and the detection sensitivity of the radiation 200 is improved.

一方、図3の(b)に示すように、断面形状が矩形状の溝122の場合、溝122の幅は素子表面10aから溝122の底部まで略一定である。そして、溝122の断面形状が矩形状の場合、素子表面10aから素子表面10bに向かう電界130aは直線的であり、溝122近傍の電界130cも溝122の側面にはほとんど沿うことがない。したがって、溝122の直下に電界はほとんど存在しない。つまり、溝122の断面形状が矩形状の場合には、溝122の直下の領域は放射線200を検出することのできない不感領域400になる。不感領域400に放射線200が入射した場合、放射線200の入射により発生した電子300及びホール310は表面電極116及び裏面電極118によって収集されない場合がある。しかしながら、本実施の形態に係る放射線検出素子10は、断面がV字状の溝120を有するので、溝の断面形状が矩形の場合に比べ、放射線200を検出することのできない領域を低減できる。   On the other hand, as shown in FIG. 3B, in the case of the groove 122 having a rectangular cross section, the width of the groove 122 is substantially constant from the element surface 10 a to the bottom of the groove 122. When the cross-sectional shape of the groove 122 is rectangular, the electric field 130a from the element surface 10a toward the element surface 10b is linear, and the electric field 130c in the vicinity of the groove 122 hardly follows the side surface of the groove 122. Therefore, there is almost no electric field immediately below the groove 122. That is, when the cross-sectional shape of the groove 122 is rectangular, the area immediately below the groove 122 becomes a dead area 400 where the radiation 200 cannot be detected. When the radiation 200 is incident on the insensitive region 400, the electrons 300 and the holes 310 generated by the incidence of the radiation 200 may not be collected by the front electrode 116 and the back electrode 118. However, since the radiation detection element 10 according to the present embodiment includes the groove 120 having a V-shaped cross section, the region where the radiation 200 cannot be detected can be reduced as compared with the case where the groove has a rectangular cross section.

(放射線検出素子1の製造方法)
図4は、本発明の実施の形態に係る放射線検出素子の製造工程の流れの一例を示す。
(Manufacturing method of radiation detecting element 1)
FIG. 4 shows an example of the flow of the manufacturing process of the radiation detection element according to the embodiment of the present invention.

まず、例えば、放射線を検出可能なCdTe等の化合物半導体からなる半導体基板100を準備する(半導体基板準備工程、図4の(a))。次に、半導体基板100の表面としての素子表面10aに表面電極116を形成する(表面電極形成工程、図4の(b))。表面電極形成工程は、一例として、半導体基板100の素子表面10a側からIn層と、Ti層とをこの順に形成する。更に、半導体基板100の裏面としての素子表面10bに裏面電極118を形成する(裏面電極形成工程、図4の(b))。裏面電極形成工程は、一例として、Pt層を裏面電極118として形成する。なお、表面電極形成工程、及び裏面電極形成工程は、蒸着法、スパッタ法等により実施できる。   First, for example, a semiconductor substrate 100 made of a compound semiconductor such as CdTe capable of detecting radiation is prepared (semiconductor substrate preparation step, FIG. 4A). Next, the surface electrode 116 is formed on the element surface 10a as the surface of the semiconductor substrate 100 (surface electrode forming step, FIG. 4B). In the surface electrode forming step, for example, an In layer and a Ti layer are formed in this order from the element surface 10a side of the semiconductor substrate 100. Further, a back electrode 118 is formed on the element surface 10b as the back surface of the semiconductor substrate 100 (back electrode forming process, FIG. 4B). In the back electrode forming step, for example, the Pt layer is formed as the back electrode 118. Note that the front surface electrode forming step and the back surface electrode forming step can be performed by vapor deposition, sputtering, or the like.

続いて、先端に向けて断面幅が徐々に狭まるブレード50を表面電極116に接触させ、素子表面10a側から化合物半導体からなる半導体基板100の内部に向けて徐々に幅が狭まる溝120を半導体基板100の素子表面10aに形成する(溝形成工程、図4(c))。ここで、ブレードの先端50aは、例えば、断面にてV字形状を有する。更に、半導体基板100の予め定められた位置において素子表面10aから素子表面10bまでをカット(すなわち、フルカット)することにより(素子分離工程)、半導体基板100から複数の放射線検出素子1を製造することができる。   Subsequently, the blade 50 whose cross-sectional width is gradually narrowed toward the tip is brought into contact with the surface electrode 116, and the groove 120 whose width is gradually narrowed toward the inside of the semiconductor substrate 100 made of a compound semiconductor from the element surface 10a side is formed on the semiconductor substrate. 100 is formed on the element surface 10a (groove forming step, FIG. 4C). Here, the tip 50a of the blade has, for example, a V shape in cross section. Further, a plurality of radiation detection elements 1 are manufactured from the semiconductor substrate 100 by cutting (that is, full cutting) from the element surface 10a to the element surface 10b at a predetermined position of the semiconductor substrate 100 (element separation step). be able to.

(実施の形態の効果)
本発明の実施の形態に係る放射線検出素子10は、表面電極116を分割する溝として断面がV字状の溝120を有するので、素子表面10aから素子表面10bへの電界の向きを溝120の側面に沿って曲げることができる。これにより、放射線を検出することのできない不感領域を低減できるので、放射線検出素子10の放射線の検出感度を向上させることができる。
(Effect of embodiment)
Since the radiation detection element 10 according to the embodiment of the present invention has the groove 120 having a V-shaped cross section as a groove for dividing the surface electrode 116, the direction of the electric field from the element surface 10 a to the element surface 10 b is changed to the groove 120. Can be bent along the side. Thereby, since the dead area which cannot detect a radiation can be reduced, the detection sensitivity of the radiation of the radiation detection element 10 can be improved.

また、本発明の実施の形態に係る放射線検出素子10は、先端に向けて断面幅が徐々に狭まるブレードの先端50aを有したブレード50を用いて半導体基板100に溝120を形成する。ブレードの先端が平面状の場合、ブレードの回転中にブレードの先端の側面が半導体基板100に接触し、半導体基板100にストレスが蓄積しやすい。これに対し、本実施の形態では、ブレードの先端50aの断面幅が先端に向けて徐々に狭まる形状であるので、ブレードの先端50aの側面と半導体基板100との間でストレスが発生しにくい。これにより、溝120の領域に機械的なストレスが蓄積することを抑制できる。したがって、製造される放射線検出素子10にクラック等のダメージが生じることを抑制でき、放射線検出素子10の検出感度の低下を抑制できる。   Further, in the radiation detection element 10 according to the embodiment of the present invention, the groove 120 is formed in the semiconductor substrate 100 using the blade 50 having the blade tip 50a whose cross-sectional width gradually decreases toward the tip. When the tip of the blade is flat, the side surface of the tip of the blade contacts the semiconductor substrate 100 during rotation of the blade, and stress is likely to accumulate in the semiconductor substrate 100. In contrast, in the present embodiment, since the cross-sectional width of the blade tip 50a gradually narrows toward the tip, stress is unlikely to occur between the side surface of the blade tip 50a and the semiconductor substrate 100. Thereby, accumulation of mechanical stress in the region of the groove 120 can be suppressed. Therefore, it is possible to suppress the occurrence of damage such as cracks in the manufactured radiation detection element 10, and it is possible to suppress a decrease in detection sensitivity of the radiation detection element 10.

[実施の形態の変形例]
図5は、本発明の実施の形態の変形例に係る放射線検出素子の断面の概要を示す。
[Modification of Embodiment]
FIG. 5 shows an outline of a cross section of a radiation detection element according to a modification of the embodiment of the present invention.

実施の形態の変形例に係る放射線検出素子1aにおいては、溝120aの断面形状が異なる点を除き、実施の形態に係る放射線検出素子10と略同一の構成及び機能を備える。したがって、相違点を除き詳細な説明は省略する。   The radiation detection element 1a according to the modification of the embodiment has substantially the same configuration and function as the radiation detection element 10 according to the embodiment, except that the cross-sectional shape of the groove 120a is different. Therefore, a detailed description is omitted except for differences.

すなわち、溝120aは、素子表面10a側から放射線検出素子1aの内部に向けて徐々に幅が狭まる形状であって、曲面を有して形成される。例えば、溝120aは、断面視にてU字形状を有して形成される。溝120aは、一例として、断面にて円弧形状の先端を有するブレードを用いて形成することができる。   That is, the groove 120a has a shape that gradually decreases in width from the element surface 10a side toward the inside of the radiation detection element 1a, and has a curved surface. For example, the groove 120a is formed to have a U shape in a sectional view. As an example, the groove 120a can be formed using a blade having an arc-shaped tip in cross section.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

1 放射線検出器
1a 放射線検出素子
10 放射線検出素子
10a、10b 素子表面
20 基板
22 基板端子
29 カードエッジ部
29a パターン
30、31 カードホルダ
32 弾性部材実装部
32a 凹部
34 溝付穴
36 突起部
40 フレキシブル基板
50 ブレード
50a ブレードの先端
100 半導体基板
112 第1電極
114 第2電極
116 表面電極
118 裏面電極
120、120a 溝
122 溝
130a、130b、130c 電界
200 放射線
300 電子
310 ホール
400 不感領域
DESCRIPTION OF SYMBOLS 1 Radiation detector 1a Radiation detection element 10 Radiation detection element 10a, 10b Element surface 20 Board | substrate 22 Board | substrate terminal 29 Card edge part 29a Pattern 30, 31 Card holder 32 Elastic member mounting part 32a Recessed part 34 Grooved hole 36 Projection part 40 Flexible board 50 Blade 50a Blade tip 100 Semiconductor substrate 112 First electrode 114 Second electrode 116 Front electrode 118 Back electrode 120, 120a Groove 122 Groove 130a, 130b, 130c Electric field 200 Radiation 300 Electron 310 Hole 400 Dead area

Claims (6)

放射線を検出可能な化合物半導体からなる半導体基板と、
前記半導体基板の表面に設けられ、前記表面側から前記半導体基板の内部に向けて徐々に幅が狭まる、断面にてV字形状を有する溝と、
前記半導体基板の前記表面の平坦な領域に設けられる表面電極と、前記半導体基板の前記表面の反対側の裏面に設けられる裏面電極とを備え、
前記溝は、前記表面電極を分割し前記裏面電極を分割しない溝であり、前記裏面電極は1つであり、前記溝の最も長い部分の幅は、分割された前記表面電極の幅より狭い
ことを特徴とする放射線検出素子。
A semiconductor substrate made of a compound semiconductor capable of detecting radiation; and
A groove having a V-shape in cross section , which is provided on the surface of the semiconductor substrate and gradually decreases in width from the surface side toward the inside of the semiconductor substrate;
A surface electrode provided in a flat region of the surface of the semiconductor substrate; and a back electrode provided on a back surface opposite to the surface of the semiconductor substrate;
The groove is a groove that does not divide the back electrode by dividing the surface electrode, the back electrode Ri 1 Tsudea, the width of the longest portion of the groove is narrower than the width of the divided said surface electrode <br/> A radiation detection element characterized by the above.
前記化合物半導体が、CdTe又はCdTeZnである請求項1に記載の放射線検出素子。 The radiation detection element according to claim 1, wherein the compound semiconductor is CdTe or CdTeZn. 前記表面電極が、前記半導体基板の前記表面の平坦な領域側からIn層とTi層とを有して構成され、
前記裏面電極が、Ptから構成される請求項1または2のいずれか1項に記載の放射線検出素子。
The surface electrode is configured to have an In layer and a Ti layer from the flat region side of the surface of the semiconductor substrate,
The radiation detection element according to claim 1 , wherein the back electrode is made of Pt .
化合物半導体からなる半導体基板を準備する半導体基板準備工程と、
前記半導体基板の表面に1つの表面電極を形成する表面電極形成工程と、
前記半導体基板の裏面に1つの裏面電極を形成する裏面電極形成工程と、
先端に向けて断面幅が徐々に狭まる、先端部分が断面にてV字形状のブレードを前記表面電極に接触させ、前記表面側から前記半導体基板の内部に向けて徐々に幅が狭まる、断面にてV字形状を有する溝であって、前記表面電極を分割し前記裏面電極を分割しない溝を前記半導体基板の表面に形成する溝形成工程とを備え、
前記溝形成工程において、前記溝の最も長い部分の幅を、分割された前記表面電極の幅より狭くする放射線検出素子の製造方法
A semiconductor substrate preparation step of preparing a semiconductor substrate made of a compound semiconductor;
A surface electrode forming step of forming one surface electrode on the surface of the semiconductor substrate;
A back electrode forming step of forming one back electrode on the back surface of the semiconductor substrate;
The cross-sectional width is gradually narrowed toward the tip, a V-shaped blade is brought into contact with the surface electrode at the tip, and the width gradually narrows from the surface side toward the inside of the semiconductor substrate. A groove forming step of forming a groove having a V shape on the surface of the semiconductor substrate by dividing the surface electrode and not dividing the back electrode,
The method for manufacturing a radiation detection element, wherein, in the groove forming step, a width of a longest portion of the groove is narrower than a width of the divided surface electrode .
前記化合物半導体が、CdTe又はCdTeZnである請求項4に記載の放射線検出素子の製造方法。 The method for manufacturing a radiation detection element according to claim 4, wherein the compound semiconductor is CdTe or CdTeZn . 前記表面電極形成工程が、前記半導体基板の表面側からIn層、Ti層を形成し、
前記裏面電極形成工程が、前記半導体基板の裏面にPt層を形成する請求項4または5のいずれか1項に記載の放射線検出素子の製造方法。
The surface electrode forming step forms an In layer and a Ti layer from the surface side of the semiconductor substrate,
The method for manufacturing a radiation detection element according to claim 4, wherein the back electrode forming step forms a Pt layer on the back surface of the semiconductor substrate .
JP2010160583A 2010-07-15 2010-07-15 Radiation detection element and method for manufacturing radiation detection element Expired - Fee Related JP5654793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160583A JP5654793B2 (en) 2010-07-15 2010-07-15 Radiation detection element and method for manufacturing radiation detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160583A JP5654793B2 (en) 2010-07-15 2010-07-15 Radiation detection element and method for manufacturing radiation detection element

Publications (2)

Publication Number Publication Date
JP2012023235A JP2012023235A (en) 2012-02-02
JP5654793B2 true JP5654793B2 (en) 2015-01-14

Family

ID=45777241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160583A Expired - Fee Related JP5654793B2 (en) 2010-07-15 2010-07-15 Radiation detection element and method for manufacturing radiation detection element

Country Status (1)

Country Link
JP (1) JP5654793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239152A (en) * 2013-06-07 2014-12-18 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Semiconductor element having groove to divide electrode layer and method for forming the groove

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811674B1 (en) * 1968-05-07 1973-04-14
JPS56151377A (en) * 1980-04-26 1981-11-24 Toshiba Corp Semiconductor radiation detector
JPS60124879A (en) * 1983-12-08 1985-07-03 Yokogawa Hokushin Electric Corp Multichannel type radiation detector and manufacture thereof
JPH0830735B2 (en) * 1990-11-29 1996-03-27 松下電器産業株式会社 Sensor array
JPH06260671A (en) * 1993-03-09 1994-09-16 Japan Energy Corp Semiconductor radiation detector and manufacture thereof

Also Published As

Publication number Publication date
JP2012023235A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US8344330B2 (en) Radiation detector
JP5711476B2 (en) Radiation detector card
JP5085122B2 (en) Semiconductor light detection element and radiation detection apparatus
JP5654793B2 (en) Radiation detection element and method for manufacturing radiation detection element
US7989774B2 (en) Radiation detector
US8815627B2 (en) Method of manufacturing an ionizing radiation detection device
US9171987B2 (en) Radioactive ray detector and radioactive ray detecting apparatus
CN102414580A (en) Radiation detector
JP5710176B2 (en) Radiation detector
US8203121B2 (en) Radiation detector stand
JP6613827B2 (en) Radiation detector using gas amplification
JP2012037348A (en) Radiation detector module
JP5714255B2 (en) Radiation detection unit
JP2012103036A (en) Radiation detector
JP2012032212A (en) Radiation detector
JP5683856B2 (en) Radiation detector
JP2011102713A (en) Radiation detection element
JP2012037273A (en) Radiation detector module
JP5725747B2 (en) Radiation detector and method for manufacturing radiation detector
JPH08304553A (en) Semiconductor detecting element module and manufacture thereof
JPH03130693A (en) X-ray image sensor
FR2948200A1 (en) RADIATION DETECTION DEVICE WITH IMPROVED ARRANGEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141121

R150 Certificate of patent or registration of utility model

Ref document number: 5654793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees