JP5683856B2 - Radiation detector - Google Patents

Radiation detector Download PDF

Info

Publication number
JP5683856B2
JP5683856B2 JP2010160582A JP2010160582A JP5683856B2 JP 5683856 B2 JP5683856 B2 JP 5683856B2 JP 2010160582 A JP2010160582 A JP 2010160582A JP 2010160582 A JP2010160582 A JP 2010160582A JP 5683856 B2 JP5683856 B2 JP 5683856B2
Authority
JP
Japan
Prior art keywords
radiation
substrate
radiation detector
semiconductor elements
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010160582A
Other languages
Japanese (ja)
Other versions
JP2012021906A (en
Inventor
主鉉 柳
主鉉 柳
山田 直之
直之 山田
井上 愼一
愼一 井上
昭浩 蛭田
昭浩 蛭田
千尋 大久保
千尋 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2010160582A priority Critical patent/JP5683856B2/en
Priority to US13/809,903 priority patent/US9006674B2/en
Priority to PCT/JP2011/066196 priority patent/WO2012008568A1/en
Priority to CN201180034124.6A priority patent/CN102985849B/en
Publication of JP2012021906A publication Critical patent/JP2012021906A/en
Application granted granted Critical
Publication of JP5683856B2 publication Critical patent/JP5683856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/243Modular detectors, e.g. arrays formed from self contained units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、放射線検出装置に関する。特に、本発明は、γ線、X線等の放射線を検出するエッジオン型の放射線検出器を用いる放射線検出装置に関する。   The present invention relates to a radiation detection apparatus. In particular, the present invention relates to a radiation detection apparatus using an edge-on type radiation detector that detects radiation such as gamma rays and X-rays.

従来の放射線検出器として、複数のコモン電極板と、複数の半導体セルと、複数の電極板とを、コモン電極板、半導体セル、電極板、半導体セル、コモン電極板・・・のように積層させた積層体を2つのフレームの間に設け、一方のフレームと他方のフレームとをピンで固定することにより構成される放射線検出器が知られている(例えば、特許文献1参照。)。   As a conventional radiation detector, a plurality of common electrode plates, a plurality of semiconductor cells, and a plurality of electrode plates are laminated as a common electrode plate, a semiconductor cell, an electrode plate, a semiconductor cell, a common electrode plate, etc. There is known a radiation detector configured by providing a laminated body between two frames and fixing one frame and the other frame with pins (for example, refer to Patent Document 1).

特許文献1に記載の放射線検出器は、横方向に隣接する一対の半導体セルがコモン電極板を共有するので、放射線を検出できない領域を従来より減少させることができ、放射線の検出効率を向上させることができる。   In the radiation detector described in Patent Document 1, since a pair of semiconductor cells adjacent in the horizontal direction share a common electrode plate, it is possible to reduce a region where radiation cannot be detected, and to improve radiation detection efficiency. be able to.

米国特許第6236051号明細書US Pat. No. 6,236,051

しかし、特許文献1に係る放射線検出器は、コモン電極板、半導体セル等の複数の構成部材を積層させて放射線検出装置が構成されることから、構成部材を積み重ねるごとに各構成部材が有する寸法誤差が加算されるので、複数の半導体セルを高密度で並べつつ、放射線を検出することのできない領域(例えば、コモン電極板が存在する領域等)を低減させることは困難である。   However, since the radiation detector according to Patent Document 1 is configured by stacking a plurality of constituent members such as a common electrode plate and a semiconductor cell to form a radiation detection device, the dimensions of each constituent member each time the constituent members are stacked. Since errors are added, it is difficult to reduce a region where radiation cannot be detected (for example, a region where a common electrode plate exists) while arranging a plurality of semiconductor cells at high density.

したがって、本発明の目的は、放射線検出器を稠密に配置した場合でも、放射線を検出することのできない領域を低減することができる放射線検出装置を提供することにある。   Accordingly, an object of the present invention is to provide a radiation detection apparatus capable of reducing a region where radiation cannot be detected even when the radiation detectors are densely arranged.

本発明は、上記目的を達成するため、放射線を検出可能な複数の半導体素子が固定される基板を有するエッジオン型の放射線検出器を備える放射線検出装置であって、複数の半導体素子それぞれが、放射線が入射する面に複数の素子内ピクセル領域を有し、平面視にてX方向と、X方向に直交するY方向とを規定した場合に、複数の放射線検出器それぞれの基板が平行になる配置で複数の放射線検出器がX方向に沿って配列され、複数の放射線検出器のそれぞれが、基板の一方の面及び他方の面のそれぞれにY方向に配列する複数の半導体素子を有し、基板を挟んで設けられる半導体素子間の距離をXG1、一の放射線検出器の半導体素子から、当該半導体素子に対向し、一の放射線検出器に隣接する他の放射線検出器の半導体素子までの距離をXG2とし、Y方向に配列している半導体素子間の距離をYG1とし、放射線検出器が用いられる所定のピクセルピッチの横ピッチをa、縦ピッチをbとし、複数の半導体素子それぞれの放射線が入射する面の幅をc、長さをdとし、複数の半導体素子それぞれの複数の素子内ピクセル領域のうち、複数の半導体素子それぞれの両端部に位置する素子内ピクセル領域の長さをそれぞれe、複数の半導体素子それぞれの両端部に位置する素子内ピクセル領域に挟まれる複数の素子内ピクセル領域のそれぞれの長さをfとした場合に、
c=a−(XG1+XG2)/2
d=b−YG1=2e+(n−2)f
e=b/n−YG1/2
f=b/n (ただし、nは正の整数)の関係を満たす放射線検出装置が提供される。
In order to achieve the above object, the present invention is a radiation detection apparatus including an edge-on type radiation detector having a substrate on which a plurality of semiconductor elements capable of detecting radiation are fixed, and each of the plurality of semiconductor elements includes a radiation When the X-direction and the Y-direction orthogonal to the X-direction are defined in plan view, the substrates of the plurality of radiation detectors are arranged in parallel when there are a plurality of in-element pixel regions on the surface where is incident The plurality of radiation detectors are arranged along the X direction, and each of the plurality of radiation detectors has a plurality of semiconductor elements arranged in the Y direction on one surface and the other surface of the substrate, respectively. XG1, the distance between the semiconductor elements of one radiation detector from the semiconductor element of one radiation detector to the semiconductor element of another radiation detector facing the semiconductor element and adjacent to the one radiation detector Is XG2, the distance between semiconductor elements arranged in the Y direction is YG1, the horizontal pitch of a predetermined pixel pitch in which the radiation detector is used is a, the vertical pitch is b, and the radiation of each of the plurality of semiconductor elements is The width of the incident surface is c, the length is d, and the lengths of the in-element pixel regions located at both ends of each of the plurality of semiconductor elements among the plurality of in-element pixel areas of each of the plurality of semiconductor elements are each e. When the length of each of the plurality of in-element pixel regions sandwiched between the in-element pixel regions located at both ends of each of the plurality of semiconductor elements is f,
c = a- (XG1 + XG2) / 2
d = b−YG1 = 2e + (n−2) f
e = b / n-YG1 / 2
A radiation detection apparatus that satisfies the relationship f = b / n (where n is a positive integer) is provided.

また、上記放射線検出装置において、放射線検出器上に設置可能なマッチドコリメーターのセプタ幅をCdとした場合に、
Cd≧XG1
Cd≧XG2
の関係を満たすことが好ましい。
Further, in the above radiation detector, when the septum width of the matched collimator that can be installed on the radiation detector is Cd,
Cd ≧ XG1
Cd ≧ XG2
It is preferable to satisfy the relationship.

また、上記放射線検出装置において、XG1=XG2の関係を満たすことが好ましい。   Moreover, in the said radiation detection apparatus, it is preferable to satisfy | fill the relationship of XG1 = XG2.

また、上記放射線検出装置において、XG1=XG2=YG1の関係を満たすことが好ましい。   Moreover, in the said radiation detection apparatus, it is preferable to satisfy | fill the relationship of XG1 = XG2 = YG1.

また、上記放射線検出装置において、複数の半導体素子のそれぞれが、放射線が入射する面に垂直な一の面に(n−1)個の溝を有すると共に、複数の溝間、及び一の面の反対側の面に電極を有することにより、n個の素子内ピクセル領域が構成されることができる。   In the radiation detection apparatus, each of the plurality of semiconductor elements has (n−1) grooves on one surface perpendicular to the surface on which the radiation is incident, and between the plurality of grooves and on one surface. By having an electrode on the opposite surface, n in-device pixel regions can be configured.

また、上記放射線検出装置において、複数の半導体素子のそれぞれが、基板の一方の面及び他方の面に、基板を対称面として設けられることができる。   In the radiation detection apparatus, each of the plurality of semiconductor elements can be provided on one surface and the other surface of the substrate with the substrate as a symmetrical surface.

本発明に係る放射線検出装置によれば、放射線検出器を稠密に配置した場合でも、放射線を検出することのできない領域を低減することができる放射線検出装置を提供することができる。   According to the radiation detection apparatus according to the present invention, it is possible to provide a radiation detection apparatus that can reduce a region where radiation cannot be detected even when the radiation detectors are densely arranged.

本発明の実施の形態に係る放射線検出器の斜視図である。It is a perspective view of a radiation detector concerning an embodiment of the invention. 本発明の実施の形態に係る半導体素子の斜視図である。1 is a perspective view of a semiconductor element according to an embodiment of the present invention. 本発明の実施の形態に係る放射線検出装置の斜視図である。1 is a perspective view of a radiation detection apparatus according to an embodiment of the present invention. 本実施の形態に係る複数の放射線検出器が配列した状態の概要図である。It is a schematic diagram in the state where a plurality of radiation detectors concerning this embodiment were arranged. 本実施の形態に係る放射線検出器上にマッチドコリメーターを備え付けた場合の模式的な上面図である。It is a typical top view at the time of providing the matched collimator on the radiation detector which concerns on this Embodiment.

[実施の形態]
図1は、本発明の実施の形態に係る放射線検出器の斜視図の概要を示す。
[Embodiment]
FIG. 1 shows an outline of a perspective view of a radiation detector according to an embodiment of the present invention.

(放射線検出器1の構成の概要)
本実施の形態に係る放射線検出器1は、γ線、X線等の放射線を検出可能な複数の半導体素子10が固定された基板20を有し、カード型の形状を呈する放射線検出器である。図1において放射線100は、紙面の上方から下方に沿って入射してくる。すなわち、放射線100は、放射線検出器1の半導体素子10からカードホルダ30及びカードホルダ31に向かう方向に沿って伝搬して放射線検出器1に到達する。そして、放射線検出器1は、半導体素子10の側面(つまり、図1の上方に面している面)に放射線100が入射する。したがって、半導体素子10の側面が放射線100の入射面となっている。このように、半導体素子10の側面を放射線100の入射面とする放射線検出器を、本実施の形態ではエッジオン型の放射線検出器と称する。
(Outline of configuration of radiation detector 1)
The radiation detector 1 according to the present embodiment is a radiation detector having a substrate 20 on which a plurality of semiconductor elements 10 capable of detecting radiation such as γ rays and X rays are fixed, and exhibiting a card shape. . In FIG. 1, the radiation 100 enters from the upper side to the lower side of the page. That is, the radiation 100 propagates along the direction from the semiconductor element 10 of the radiation detector 1 toward the card holder 30 and the card holder 31 and reaches the radiation detector 1. In the radiation detector 1, the radiation 100 is incident on the side surface of the semiconductor element 10 (that is, the surface facing upward in FIG. 1). Therefore, the side surface of the semiconductor element 10 is an incident surface for the radiation 100. As described above, the radiation detector in which the side surface of the semiconductor element 10 is the incident surface of the radiation 100 is referred to as an edge-on type radiation detector in the present embodiment.

なお、放射線検出器1は、特定の方向(例えば、放射線検出器1に向かう方向)に沿って伝搬してくる放射線100が通過する複数の開口を有するコリメータ(例えば、マッチドコリメーター、ピンホールコリメーター等)を介して放射線100を検出する複数の放射線検出器1が並べられて構成される放射線検出装置用の放射線検出器1として用いることができる。   The radiation detector 1 includes a collimator (for example, a matched collimator, a pinhole collimator) having a plurality of openings through which the radiation 100 propagating along a specific direction (for example, a direction toward the radiation detector 1) passes. It can be used as a radiation detector 1 for a radiation detection apparatus configured by arranging a plurality of radiation detectors 1 that detect radiation 100 via a meter or the like.

図1を参照すると、放射線検出器1は、放射線100を検出可能な一対の半導体素子10と、薄い基板20と、一対の半導体素子10の隣接部分にて基板20を挟み込むことにより基板20を支持するカードホルダ30及びカードホルダ31とを備える。そして、本実施の形態においては、一対の半導体素子10が4組、基板20を挟み込む位置において基板20に固定される。すなわち、各組の一対の半導体素子10は、基板20の一方の面と他方の面とのそれぞれに基板20を対称面として対称の位置に固定される。   Referring to FIG. 1, the radiation detector 1 supports a substrate 20 by sandwiching the substrate 20 between a pair of semiconductor elements 10 capable of detecting the radiation 100, a thin substrate 20, and adjacent portions of the pair of semiconductor elements 10. Card holder 30 and card holder 31 are provided. In the present embodiment, four pairs of semiconductor elements 10 are fixed to the substrate 20 at positions where the substrate 20 is sandwiched. That is, the pair of semiconductor elements 10 in each set is fixed to a symmetric position with the substrate 20 as a symmetry plane on each of one surface and the other surface of the substrate 20.

また、基板20はカードホルダ30とカードホルダ31とに挟み込まれて支持される。カードホルダ30とカードホルダ31とはそれぞれ同一形状を有して形成され、カードホルダ30が有する溝付穴34にカードホルダ31が有する突起部36が嵌め合うと共に、カードホルダ31が有する溝付穴34(図示しない)にカードホルダ30が有する突起部36(図示しない)が嵌め合うことにより基板20を支持する。   The substrate 20 is supported by being sandwiched between a card holder 30 and a card holder 31. The card holder 30 and the card holder 31 are formed to have the same shape, and the protruding portion 36 of the card holder 31 is fitted into the grooved hole 34 of the card holder 30 and the grooved hole of the card holder 31 is fitted. The board | substrate 20 is supported by the projection part 36 (not shown) which the card holder 30 has fitting to 34 (not shown).

また、弾性部材実装部32及び凹部32aは、複数の放射線検出器1を支持する放射線検出器立てに放射線検出器1が挿入された場合に、放射線検出器1を放射線検出器立てに押し付けて固定する弾性部材が設けられる部分である。なお、放射線検出器立てはカードエッジ部29が挿入されるコネクタを有しており、放射線検出器1は、カードエッジ部29がコネクタに挿入され、コネクタとパターン29aとが電気的に接続することにより外部の電気回路としての制御回路、外部からの電源線、グランド線等に電気的に接続される。   The elastic member mounting portion 32 and the recess 32a are fixed by pressing the radiation detector 1 against the radiation detector stand when the radiation detector 1 is inserted into the radiation detector stand supporting the plurality of radiation detectors 1. This is a portion where an elastic member is provided. The radiation detector stand has a connector into which the card edge portion 29 is inserted. In the radiation detector 1, the card edge portion 29 is inserted into the connector, and the connector and the pattern 29a are electrically connected. Thus, the circuit is electrically connected to a control circuit as an external electric circuit, an external power supply line, a ground line, and the like.

また、放射線検出器1は、一対の半導体素子10の基板20の反対側に、各半導体素子10の電極パターンと複数の基板端子22とのそれぞれを電気的に接続する配線パターン(なお、半導体素子10の基板20の反対側の素子表面の電極パターン、及びフレキシブル基板40の半導体素子10側の配線パターンは図示しない)を有するフレキシブル基板40を更に備える。   The radiation detector 1 includes a wiring pattern (semiconductor element) that electrically connects the electrode pattern of each semiconductor element 10 and the plurality of substrate terminals 22 to the opposite side of the substrate 20 of the pair of semiconductor elements 10. 10 is further provided with a flexible substrate 40 having an electrode pattern on the element surface opposite to the substrate 20 and a wiring pattern on the semiconductor element 10 side of the flexible substrate 40 (not shown).

フレキシブル基板40は、一対の半導体素子10の一方の半導体素子10側、及び他方の半導体素子10側の双方に設けられる(なお、本実施の形態においては、4組の一対の半導体素子10の一方の半導体素子10側のそれぞれと、他方の半導体素子10側のそれぞれとの双方に、フレキシブル基板40がそれぞれ設けられる)。そして、フレキシブル基板40の複数の配線パターンの一端はそれぞれ、カードホルダ30及びカードホルダ31の複数のフレキリード結合部のそれぞれにおいて基板端子22に電気的に接続する。具体的に、フレキシブル基板40の配線パターンの一方の端は、半導体素子10の素子表面に導電性接着剤等で接続される。そして、当該配線パターンの他方の端は、基板端子22の端子表面に導電性接着剤等を用いて電気的に接続される。なお、基板端子22は基板20の表面に設けられており、基板20の配線パターンに電気的に接続されている。   The flexible substrate 40 is provided on both the one semiconductor element 10 side and the other semiconductor element 10 side of the pair of semiconductor elements 10 (in the present embodiment, one of the four pairs of semiconductor elements 10). The flexible substrate 40 is provided on each of the semiconductor element 10 side and the other semiconductor element 10 side). One end of each of the plurality of wiring patterns of the flexible substrate 40 is electrically connected to the substrate terminal 22 at each of the plurality of flexible lead coupling portions of the card holder 30 and the card holder 31. Specifically, one end of the wiring pattern of the flexible substrate 40 is connected to the element surface of the semiconductor element 10 with a conductive adhesive or the like. The other end of the wiring pattern is electrically connected to the terminal surface of the substrate terminal 22 using a conductive adhesive or the like. The substrate terminal 22 is provided on the surface of the substrate 20 and is electrically connected to the wiring pattern of the substrate 20.

(基板20の詳細)
基板20は、金属導体等の導電性材料からなる導電性薄膜(例えば、銅箔)が表面に形成された薄肉基板(例えば、FR4等のガラスエポキシ基板)を、ソルダーレジスト等の絶縁材料からなる絶縁層で挟んで可撓性を有して形成される。なお、基板20は、一例として、幅広の方向、すなわち長手方向は40mm程度の長さを有して形成される。そして、基板20は、幅広の部分の端部から幅が狭くなっている部分の端部までの短手方向において、20mm程度の長さを有して形成される。ここで、基板20は放射線を検出できない領域であるので、一対の半導体素子10によって挟まれる基板20の領域は不感領域になる。よって、基板20の厚さは、薄いことが好ましい。具体的に、基板20は、0.4mm以下の厚さを有することが好ましい。本実施の形態では、一例として、基板20は、0.2mmの厚さを有する。
(Details of substrate 20)
The substrate 20 is a thin substrate (for example, a glass epoxy substrate such as FR4) on which a conductive thin film (for example, copper foil) made of a conductive material such as a metal conductor is formed, and is made of an insulating material such as a solder resist. It is formed with flexibility by being sandwiched between insulating layers. As an example, the substrate 20 is formed to have a length of about 40 mm in the wide direction, that is, the longitudinal direction. The substrate 20 is formed to have a length of about 20 mm in the short direction from the end of the wide portion to the end of the narrow portion. Here, since the substrate 20 is a region where radiation cannot be detected, the region of the substrate 20 sandwiched between the pair of semiconductor elements 10 becomes a dead region. Therefore, it is preferable that the thickness of the substrate 20 is thin. Specifically, the substrate 20 preferably has a thickness of 0.4 mm or less. In the present embodiment, as an example, the substrate 20 has a thickness of 0.2 mm.

また、基板20は、半導体素子10の電極パターンに電気的に接続する第1の配線パターンを有する。第1の配線パターンは、カードエッジ部29のパターン29aに電気的に接続するように形成される。更に、基板20は、基板端子22とカードエッジ部29のパターン29aとを電気的に接続する第2の配線パターンを有する。これにより、基板20において、半導体素子10の基板20側の面の電極は、基板20の第1の配線パターンによりカードエッジ部29のパターン29aに電気的に接続される。また、半導体素子10の基板20側の反対側の面の電極は、フレキシブル基板40の配線パターンと、基板端子22と、基板20の第2の配線パターンとを経由してカードエッジ部29のパターン29aに電気的に接続される。ここで、例えば、半導体素子10の基板20側の電極をアノード電極、半導体素子10の基板20側の反対側の面の電極をカソード電極とする。この場合、アノード電極からの信号とカソード電極からの信号とはそれぞれ、カードエッジ部29のパターン29aを介し、外部の電気回路へ出力される。   The substrate 20 has a first wiring pattern that is electrically connected to the electrode pattern of the semiconductor element 10. The first wiring pattern is formed so as to be electrically connected to the pattern 29 a of the card edge portion 29. Further, the substrate 20 has a second wiring pattern that electrically connects the substrate terminal 22 and the pattern 29 a of the card edge portion 29. Thereby, in the board | substrate 20, the electrode of the surface at the side of the board | substrate 20 of the semiconductor element 10 is electrically connected to the pattern 29a of the card edge part 29 by the 1st wiring pattern of the board | substrate 20. The electrode on the surface opposite to the substrate 20 side of the semiconductor element 10 is connected to the pattern of the card edge portion 29 via the wiring pattern of the flexible substrate 40, the substrate terminal 22, and the second wiring pattern of the substrate 20. It is electrically connected to 29a. Here, for example, an electrode on the substrate 20 side of the semiconductor element 10 is an anode electrode, and an electrode on the opposite side of the substrate 20 side of the semiconductor element 10 is a cathode electrode. In this case, the signal from the anode electrode and the signal from the cathode electrode are each output to an external electric circuit via the pattern 29 a of the card edge portion 29.

(半導体素子10の詳細)
図2は、本実施の形態に係る放射線検出器が備える1つの半導体素子の斜視図の概要である。
(Details of semiconductor element 10)
FIG. 2 is an outline of a perspective view of one semiconductor element included in the radiation detector according to the present embodiment.

半導体素子10は、略直方体状に形成され、素子表面10cと、この素子表面10cの反対側の素子表面とのそれぞれに電極パターンが設けられる(図示しない)。放射線は各半導体素子10の端部から入射して、カードエッジ部29側に向かって半導体素子10中を走行する。また、本実施の形態に係る半導体素子10は、放射線が入射する面に垂直な一の面である素子表面10cに複数の溝10bが設けられる。溝10bの幅は、一例として、0.2mmである。   The semiconductor element 10 is formed in a substantially rectangular parallelepiped shape, and an electrode pattern is provided on each of the element surface 10c and the element surface opposite to the element surface 10c (not shown). Radiation enters from the end of each semiconductor element 10 and travels through the semiconductor element 10 toward the card edge portion 29 side. Further, in the semiconductor element 10 according to the present embodiment, a plurality of grooves 10b are provided on the element surface 10c, which is one surface perpendicular to the surface on which the radiation is incident. As an example, the width of the groove 10b is 0.2 mm.

そして、放射線が入射する半導体素子10の面であって、各溝10bから、溝10bが設けられている面の反対側の面への仮想的な垂線により区切られる領域、及び当該仮想的な垂線と半導体素子10の端部とで区切られる領域を、本実施の形態では素子内ピクセル領域10aとして表す。半導体素子10が、(n−1)個の溝10bを有すると共に、複数の溝10b間、及び素子表面10cの反対側の面にそれぞれ電極を有することにより、n個の素子内ピクセル領域10aが構成される。複数の素子内ピクセル領域10aのそれぞれが、放射線を検出する実効的な1つの画素(ピクセル)に対応する。これにより、一の半導体素子10は、複数の画素を有することになる。   A region of the semiconductor element 10 on which the radiation is incident, the region separated from each groove 10b by a virtual perpendicular to the surface opposite to the surface where the groove 10b is provided, and the virtual perpendicular In the present embodiment, a region divided by the semiconductor element 10 and the end portion of the semiconductor element 10 is represented as an in-element pixel region 10a. The semiconductor element 10 has (n-1) grooves 10b, and electrodes are provided between the plurality of grooves 10b and on the surface opposite to the element surface 10c, so that n element pixel regions 10a are formed. Composed. Each of the plurality of in-element pixel regions 10a corresponds to one effective pixel (pixel) for detecting radiation. Thereby, one semiconductor element 10 has a plurality of pixels.

そして、一例として、1つの放射線検出器1が8つの半導体素子10(4組の一対の半導体素子10)を備え、1つの半導体素子10がそれぞれ8つの素子内ピクセル領域10aを有する場合、1つの放射線検出器1は、64ピクセルの解像度を有することになる。溝10bの数を増減させることにより、一の半導体素子10のピクセル数を増減させることができる。   As an example, when one radiation detector 1 includes eight semiconductor elements 10 (four pairs of semiconductor elements 10) and each semiconductor element 10 includes eight in-element pixel regions 10a, The radiation detector 1 will have a resolution of 64 pixels. By increasing or decreasing the number of grooves 10b, the number of pixels of one semiconductor element 10 can be increased or decreased.

ここで、半導体素子10の放射線が入射する面の幅を「c」、放射線が入射する面の長さを「d」、半導体素子10の高さを「h」とする。平面視にてX方向と、X方向に直交するY方向とを規定した場合に、幅についてはX方向に、長さについてはY方向で規定することにする。なお、一例として、幅cは1.2mm程度、長さdは11.2mm程度、高さhは5mm程度である。   Here, the width of the surface on which the radiation of the semiconductor element 10 is incident is “c”, the length of the surface on which the radiation is incident is “d”, and the height of the semiconductor element 10 is “h”. When the X direction and the Y direction orthogonal to the X direction are defined in plan view, the width is defined in the X direction and the length is defined in the Y direction. As an example, the width c is about 1.2 mm, the length d is about 11.2 mm, and the height h is about 5 mm.

そして、半導体素子10の複数の素子内ピクセル領域10aのうち、複数の半導体素子10それぞれの両端部に位置する素子内ピクセル領域10aの長さをそれぞれ「e」、半導体素子10の両端部に位置する素子内ピクセル領域10aに挟まれる複数の素子内ピクセル領域10aそれぞれの長さを「f」とする。すなわち、半導体素子10の長さ方向において、半導体素子10の端部から一番目の溝10bまでの距離を「e」と規定し、一の溝10bから、当該一の溝10bに隣接する他の溝10bまでの距離を「f」と規定する。したがって、「d=2e+(n−2)f (ただし、nは正の整数)」という関係式が成り立つ。図2の例においては、「n=8」の例、すなわち、一つの半導体素子10に8つの素子内ピクセル領域10aが形成されている例を示している。   The lengths of the in-element pixel regions 10 a located at both ends of each of the plurality of semiconductor elements 10 among the plurality of in-element pixel regions 10 a of the semiconductor element 10 are respectively “e”, and are located at both ends of the semiconductor element 10. The length of each of the plurality of in-element pixel regions 10a sandwiched between the in-element pixel regions 10a is “f”. That is, in the length direction of the semiconductor element 10, the distance from the end of the semiconductor element 10 to the first groove 10 b is defined as “e”, and from one groove 10 b to another adjacent to the one groove 10 b The distance to the groove 10b is defined as “f”. Therefore, the relational expression “d = 2e + (n−2) f (where n is a positive integer)” holds. In the example of FIG. 2, an example of “n = 8”, that is, an example in which eight element pixel regions 10 a are formed in one semiconductor element 10 is illustrated.

半導体素子10を構成する材料としては、CdTeを用いることができる。また、γ線等の放射線を検出できる限り、半導体素子10はCdTe素子に限られない。例えば、半導体素子10として、CdZnTe(CZT)素子、HgI素子等の化合物半導体素子を用いることもできる。なお、半導体素子10はそれぞれ、Agペースト等の導電性接着材により基板20の配線パターンに電気的に接続される。 As a material constituting the semiconductor element 10, CdTe can be used. Further, the semiconductor element 10 is not limited to a CdTe element as long as radiation such as γ rays can be detected. For example, a compound semiconductor element such as a CdZnTe (CZT) element or an HgI 2 element can also be used as the semiconductor element 10. Each of the semiconductor elements 10 is electrically connected to the wiring pattern of the substrate 20 by a conductive adhesive such as Ag paste.

(放射線検出装置の概要)
図3は、本発明の実施の形態に係る放射線検出装置の斜視図の一例を示す。
(Outline of radiation detector)
FIG. 3 shows an example of a perspective view of the radiation detection apparatus according to the embodiment of the present invention.

放射線検出器1は、例えば、複数の放射線検出器1を放射線検出器立て5によって保持することにより構成される放射線検出装置119の放射線検出器1として用いることができる。一例として、複数の放射線検出器1が並べられる間隔に応じて予め定められた距離をおいて並び、複数の放射線検出器1が挿入される複数の溝が形成された複数の支持体2と、支持体2を搭載する支持板3と、複数の支持体2の間に設けられ、複数の放射線検出器1のカードエッジ部29のそれぞれが接続されて外部の制御回路と複数の放射線検出器1のそれぞれとを接続する複数のコネクタ4とを備える放射線検出器立て5に複数の放射線検出器1を保持することができる。図3においては、X方向に沿って、放射線検出器立て5に16枚の放射線検出器1が挿入、保持されている例を示す。また、放射線検出器1の弾性部材実装部32及び凹部32aには、例えば、板金からなるばね部材が組み込まれ、支持体2の溝に放射線検出器1が挿入された場合に、このばね部材により放射線検出器1が支持体2に押し付けられて固定される。   The radiation detector 1 can be used as, for example, the radiation detector 1 of the radiation detection device 119 configured by holding a plurality of radiation detectors 1 by the radiation detector stand 5. As an example, a plurality of supports 2 in which a plurality of radiation detectors 1 are arranged at a predetermined distance according to an interval at which the plurality of radiation detectors 1 are arranged, and a plurality of grooves into which the plurality of radiation detectors 1 are inserted are formed; Provided between the support plate 3 on which the support body 2 is mounted and the plurality of support bodies 2, each of the card edge portions 29 of the plurality of radiation detectors 1 is connected to the external control circuit and the plurality of radiation detectors 1. A plurality of radiation detectors 1 can be held in a radiation detector stand 5 provided with a plurality of connectors 4 for connecting each of them. FIG. 3 shows an example in which 16 radiation detectors 1 are inserted and held in the radiation detector stand 5 along the X direction. Moreover, when the elastic member mounting part 32 and the recessed part 32a of the radiation detector 1 incorporate a spring member made of sheet metal, for example, and the radiation detector 1 is inserted into the groove of the support 2, the spring member The radiation detector 1 is pressed against the support 2 and fixed.

本実施の形態においては、複数の放射線検出器1が、X方向に沿って配置されることにより、平面視にてマトリックス状に配列され、1つの放射線検出装置119として構成される。なお、複数の放射線検出器1をY方向に沿って配置することもできる。   In the present embodiment, a plurality of radiation detectors 1 are arranged along the X direction, so that they are arranged in a matrix in a plan view and configured as one radiation detection device 119. A plurality of radiation detectors 1 can also be arranged along the Y direction.

(放射線検出器1の配列の概要)
図4は、本実施の形態に係る複数の放射線検出器が配列した状態の概要の一部を示す。
(Outline of arrangement of radiation detectors 1)
FIG. 4 shows a part of an outline of a state in which a plurality of radiation detectors according to the present embodiment are arranged.

図4は、複数の放射線検出器を放射線が入射する側(すなわち、上面側)からの図であり、説明の便宜上、半導体素子10の溝10b、基板20の配線パターン、フレキシブル基板40等の図示は省略する。   FIG. 4 is a view from the radiation incident side (that is, the upper surface side) of a plurality of radiation detectors. For convenience of explanation, illustration of the groove 10b of the semiconductor element 10, the wiring pattern of the substrate 20, the flexible substrate 40, etc. Is omitted.

本実施の形態においては、複数の放射線検出器1それぞれの基板20が平行になる配置で複数の放射線検出器1がX方向に沿って配列される。そして、複数の放射線検出器1のそれぞれが、基板20の一方の面及び他方の面のそれぞれにY方向に直列に配列する複数の半導体素子10を有する。   In the present embodiment, the plurality of radiation detectors 1 are arranged along the X direction in an arrangement in which the substrates 20 of the plurality of radiation detectors 1 are parallel to each other. Each of the plurality of radiation detectors 1 includes a plurality of semiconductor elements 10 arranged in series in the Y direction on each of one surface and the other surface of the substrate 20.

ここで、基板20を挟んで設けられる半導体素子10間の距離を「XG1」、一の放射線検出器1の半導体素子10から、当該半導体素子10に対向し、一の放射線検出器1に隣接する他の放射線検出器1の半導体素子10までの距離を「XG2」とする。また、Y方向に配列している半導体素子10間の距離を「YG1」とし、放射線検出器1が用いられる所定の半導体素子ピッチ110の横ピッチを「a」、縦ピッチを「b」とする。なお、図4において、破線で区切られる長方形状の一つ一つが本実施の形態に係る半導体素子ピッチ110に該当する。   Here, the distance between the semiconductor elements 10 provided across the substrate 20 is “XG1”, the semiconductor element 10 of one radiation detector 1 faces the semiconductor element 10 and is adjacent to the one radiation detector 1. The distance to the semiconductor element 10 of the other radiation detector 1 is “XG2”. Further, the distance between the semiconductor elements 10 arranged in the Y direction is “YG1”, the horizontal pitch of the predetermined semiconductor element pitch 110 in which the radiation detector 1 is used is “a”, and the vertical pitch is “b”. . In FIG. 4, each rectangular shape divided by broken lines corresponds to the semiconductor element pitch 110 according to the present embodiment.

ここで、複数の放射線検出器1が有する複数の半導体素子10それぞれのサイズを以下の4つの関係式を満たすサイズに規定する。
c=a−(XG1+XG2)/2
d=b−YG1=2e+(n−2)f
e=b/n−YG1/2
f=b/n (ただし、nは正の整数)
Here, the size of each of the plurality of semiconductor elements 10 included in the plurality of radiation detectors 1 is defined as a size satisfying the following four relational expressions.
c = a- (XG1 + XG2) / 2
d = b−YG1 = 2e + (n−2) f
e = b / n-YG1 / 2
f = b / n (where n is a positive integer)

ここで、複数の放射線検出器1が配列された放射線検出装置の上方にマッチドコリメーターを設置する場合は、以下の関係式を満たす配置にすることが好ましい。なお、以下の2つの関係式においてマッチドコリメーターのセプタ幅をCdとする。セプタ幅は、一例として、0.2mm以上0.3mm以下程度である。また、XG1は0.18mm以上0.2mm以下程度であり、XG2は0.20mm以上0.24mm以下程度である。   Here, when a matched collimator is installed above a radiation detection apparatus in which a plurality of radiation detectors 1 are arranged, it is preferable that the arrangement satisfy the following relational expression. In the following two relational expressions, the ceptor width of the matched collimator is Cd. As an example, the septa width is about 0.2 mm or more and 0.3 mm or less. XG1 is about 0.18 mm to 0.2 mm, and XG2 is about 0.20 mm to 0.24 mm.

Cd≧XG1
Cd≧XG2
Cd ≧ XG1
Cd ≧ XG2

また、マッチドコリメーターのセプタ幅と、放射線検出器1の基板20等の存在により、若しくは複数の放射線検出器1が配列された場合に各放射線検出器1間の隙間により生じる放射線を検出することができない不感領域の幅とを一致させることを目的とした場合、XG1=XG2の関係を満たすことがより好ましく、XG1=XG2=YG1の関係を満たすことが更に好ましい。   In addition, the radiation generated by the gap between the radiation detectors 1 due to the scepter width of the matched collimator and the presence of the substrate 20 of the radiation detector 1 or when a plurality of radiation detectors 1 are arranged is detected. For the purpose of matching the width of the insensitive area that cannot be satisfied, it is more preferable to satisfy the relationship of XG1 = XG2, and it is even more preferable to satisfy the relationship of XG1 = XG2 = YG1.

図5は、本実施の形態に係る放射線検出器上にマッチドコリメーターを備え付けた場合の模式的な上面図である。   FIG. 5 is a schematic top view when a matched collimator is provided on the radiation detector according to the present embodiment.

マッチドコリメーター50は、複数の放射線検出器1が配列されて構成される1つ以上の放射線検出装置を覆うように設けられる。そして、マッチドコリメーター50を用いる場合において、マッチドコリメーター50の複数の開口51それぞれの位置と、半導体素子10の複数の素子内ピクセル領域10aそれぞれの位置とを対応させることが要求される。この対応関係がずれた場合、素子内ピクセル領域10aの位置にマッチドコリメーター50の複数の開口51を隔てるセプタ52(「隔壁」という場合もある)が位置することになる。この場合、素子内ピクセル領域10aとセプタ52とが重なった領域は、放射線を検出することができない不感領域になる。   The matched collimator 50 is provided so as to cover one or more radiation detection devices configured by arranging a plurality of radiation detectors 1. When the matched collimator 50 is used, it is required that the positions of the plurality of openings 51 of the matched collimator 50 correspond to the positions of the plurality of in-element pixel regions 10 a of the semiconductor element 10. When this correspondence is deviated, a septa 52 (also referred to as a “partition wall”) that separates the plurality of openings 51 of the matched collimator 50 is positioned at the position of the in-element pixel region 10a. In this case, a region where the in-element pixel region 10a and the septa 52 overlap becomes a dead region where radiation cannot be detected.

そこで、上述した4つの関係式、すなわち、
c=a−(XG1+XG2)/2
d=b−YG1=2e+(n−2)f
e=b/n−YG1/2
f=b/n (ただし、nは正の整数)
という関係式を満たすように複数の半導体素子10のサイズを決定し、複数の放射線検出器1を配列することにより、複数の放射線検出器1に内包される不可避的な不感領域(例えば、半導体素子10の電極が存在する領域、基板20の配線パターンが存在する領域、基板20が存在する領域、フレキシブル基板40が存在する領域、一の放射線検出器1と一の放射線検出器に隣接する他の放射線検出器1との間の領域等)とセプタ52の位置とを対応させることができる。
Therefore, the above four relational expressions, that is,
c = a- (XG1 + XG2) / 2
d = b−YG1 = 2e + (n−2) f
e = b / n-YG1 / 2
f = b / n (where n is a positive integer)
The size of the plurality of semiconductor elements 10 is determined so as to satisfy the following relational expression, and the plurality of radiation detectors 1 are arranged, whereby an inevitable insensitive region (for example, a semiconductor element) included in the plurality of radiation detectors 1 A region where 10 electrodes are present, a region where a wiring pattern of the substrate 20 is present, a region where the substrate 20 is present, a region where the flexible substrate 40 is present, one radiation detector 1 and another adjacent to one radiation detector The area between the radiation detector 1 and the like) and the position of the septa 52 can be made to correspond to each other.

(実施の形態の効果)
本発明の実施の形態に係る放射線検出器1は、特定の関係式により半導体素子10のサイズを規定すると共に、素子内ピクセル領域10aの幅を規定したので、放射線検出器1に由来する不感領域と、例えば、マッチドコリメーター50のセプタ52幅とを容易に一致させることができる。これにより不感領域を低減できるので、放射線検出器1を稠密に配置した場合でも不感領域を低減でき、放射線検出感度の高い放射線検出器1及び放射線検出器1を備える放射線検出装置を提供することができる。
(Effect of embodiment)
In the radiation detector 1 according to the embodiment of the present invention, the size of the semiconductor element 10 is defined by a specific relational expression and the width of the in-element pixel region 10a is defined. Therefore, the insensitive area derived from the radiation detector 1 For example, the width of the septa 52 of the matched collimator 50 can be easily matched. Thus, since the insensitive area can be reduced, it is possible to reduce the insensitive area even when the radiation detectors 1 are densely arranged, and to provide a radiation detector 1 including the radiation detector 1 and the radiation detector 1 having high radiation detection sensitivity. it can.

また、本実施の形態に係る放射線検出器1はエッジオン型であり、平面寸法が比較的大きなプラナー形状の半導体素子を製造することを要さない。したがって、本実施の形態においては、プラナー形状の半導体素子を製造する場合に比べ、より均質な結晶の半導体素子1を歩留り良く得られるので放射線検出器1の製造コストを低減できる。また、放射線検出器1がエッジオン型であることから、small pixel effect及びco−planar grid技術が不要となり、small pixel effectに伴うCharge sharingがないという利点もある。   Further, the radiation detector 1 according to the present embodiment is an edge-on type, and it is not necessary to manufacture a planar semiconductor element having a relatively large planar dimension. Therefore, in the present embodiment, the semiconductor element 1 having a more uniform crystal can be obtained with a high yield as compared with the case of manufacturing a planar semiconductor element, so that the manufacturing cost of the radiation detector 1 can be reduced. In addition, since the radiation detector 1 is an edge-on type, the small pixel effect and co-planar grid techniques are unnecessary, and there is an advantage that there is no charge sharing associated with the small pixel effect.

また、エッジオン型の放射線検出器1であることから、半導体素子1の高さhを高くしても(すなわち、放射線が走行する深さを深くしても)、電極間距離は変わらないので電荷収集効率の低下が少ない。これにより、本実施の形態に係る放射線検出器1は、高エネルギーのγ線を効率よく検出できる。なお、本実施の形態に係る放射線検出器1及び放射線検出器1を備える放射線検出装置において、ガンマカメラ等に用いられる放射線核種の一例を表1に示す。   In addition, since the radiation detector 1 is an edge-on type radiation detector, even if the height h of the semiconductor element 1 is increased (that is, the depth of travel of the radiation is increased), the distance between the electrodes does not change, so that the charge is increased. Little decrease in collection efficiency. Thereby, the radiation detector 1 concerning this Embodiment can detect a high energy gamma ray efficiently. Table 1 shows an example of a radionuclide used in a gamma camera or the like in the radiation detector 1 and the radiation detection apparatus including the radiation detector 1 according to the present embodiment.

Figure 0005683856
Figure 0005683856

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

1 放射線検出器
2 支持体
3 支持板
4 コネクタ
10 半導体素子
10a 素子内ピクセル領域
10b 溝
10d 素子表面
20 基板
22 基板端子
29 カードエッジ部
29a パターン
30、31 カードホルダ
32 弾性部材実装部
32a 凹部
34 溝付穴
36 突起部
40 フレキシブル基板
50 マッチドコリメーター
51 開口
52 セプタ
100 放射線
110 半導体素子ピッチ
119 放射線検出装置
DESCRIPTION OF SYMBOLS 1 Radiation detector 2 Support body 3 Support plate 4 Connector 10 Semiconductor element 10a In-element pixel area 10b Groove 10d Element surface 20 Substrate 22 Substrate terminal 29 Card edge part 29a Pattern 30, 31 Card holder 32 Elastic member mounting part 32a Concave part 34 Groove Attached hole 36 Projection 40 Flexible substrate 50 Matched collimator 51 Aperture 52 Septa 100 Radiation 110 Semiconductor element pitch 119 Radiation detection device

Claims (6)

放射線を検出可能な複数の半導体素子が固定される基板を有するエッジオン型の放射線検出器を備える放射線検出装置であって、
前記複数の半導体素子それぞれが、前記放射線が入射する面に複数の素子内ピクセル領域を有し、
平面視にてX方向と、前記X方向に直交するY方向とを規定した場合に、複数の前記放射線検出器それぞれの前記基板が平行になる配置で複数の前記放射線検出器が前記X方向に沿って配列され、
複数の前記放射線検出器のそれぞれが、前記基板の一方の面及び他方の面のそれぞれに前記Y方向に配列する前記複数の半導体素子を有し、
前記基板を挟んで設けられる前記半導体素子間の距離をXG1、一の前記放射線検出器の前記半導体素子から、当該半導体素子に対向し、前記一の放射線検出器に隣接する他の放射線検出器の前記半導体素子までの距離をXG2とし、
前記Y方向に配列している前記半導体素子間の距離をYG1とし、
前記放射線検出器が用いられる所定のピクセルピッチの横ピッチをa、縦ピッチをbとし、前記複数の半導体素子それぞれの放射線が入射する面の幅をc、長さをdとし、前記複数の半導体素子それぞれの前記複数の素子内ピクセル領域のうち、前記複数の半導体素子それぞれの両端部に位置する素子内ピクセル領域の長さをそれぞれe、前記複数の半導体素子それぞれの両端部に位置する素子内ピクセル領域に挟まれる複数の素子内ピクセル領域のそれぞれの長さをfとした場合に、
c=a−(XG1+XG2)/2
d=b−YG1=2e+(n−2)f
e=b/n−YG1/2
f=b/n (ただし、nは3以上の正の整数)
の関係を満たす放射線検出装置。
A radiation detection apparatus comprising an edge-on type radiation detector having a substrate on which a plurality of semiconductor elements capable of detecting radiation are fixed,
Each of the plurality of semiconductor elements has a plurality of in-element pixel regions on a surface on which the radiation is incident,
When the X direction and the Y direction orthogonal to the X direction are defined in a plan view, the plurality of radiation detectors are arranged in the X direction in an arrangement in which the substrates of the plurality of radiation detectors are parallel to each other. Arranged along
Each of the plurality of radiation detectors includes the plurality of semiconductor elements arranged in the Y direction on each of one surface and the other surface of the substrate,
The distance between the semiconductor elements provided across the substrate is XG1, from the semiconductor element of one radiation detector to the semiconductor element, and to the other radiation detector adjacent to the one radiation detector. The distance to the semiconductor element is XG2,
The distance between the semiconductor elements arranged in the Y direction is YG1,
The horizontal pitch of a predetermined pixel pitch in which the radiation detector is used is a, the vertical pitch is b, the width of the incident surface of each of the semiconductor elements is c, the length is d, and the semiconductors Of the plurality of in-element pixel regions of each element, the length of the in-element pixel region located at both ends of each of the plurality of semiconductor elements is e, and the length of each of the plurality of semiconductor elements is within the element located at both ends When the length of each of the plurality of in-element pixel regions sandwiched between the pixel regions is f,
c = a- (XG1 + XG2) / 2
d = b−YG1 = 2e + (n−2) f
e = b / n-YG1 / 2
f = b / n (where n is a positive integer of 3 or more )
Radiation detection device that satisfies the relationship.
放射線検出器上に設置可能なマッチドコリメーターのセプタ幅をCdとした場合に、
Cd≧XG1
Cd≧XG2
の関係を満たす請求項1に記載の放射線検出装置。
When the scepter width of the matched collimator that can be installed on the radiation detector is Cd,
Cd ≧ XG1
Cd ≧ XG2
The radiation detection apparatus according to claim 1, satisfying the relationship:
XG1=XG2の関係を満たす請求項2に記載の放射線検出装置。 The radiation detection apparatus according to claim 2, wherein XG1 = XG2 is satisfied. XG1=XG2=YG1の関係を満たす請求項3に記載の放射線検出装置。 The radiation detection apparatus according to claim 3, satisfying a relationship of XG1 = XG2 = YG1. 前記複数の半導体素子のそれぞれが、前記放射線が入射する面に垂直な一の面に(n−1)個の溝を有すると共に、前記複数の溝間、及び前記一の面の反対側の面に電極を有することにより、n個の前記素子内ピクセル領域が構成される請求項4に記載の放射線検出装置。 Each of the plurality of semiconductor elements has (n−1) grooves on one surface perpendicular to the surface on which the radiation is incident, and the surface between the plurality of grooves and the surface opposite to the one surface. The radiation detection apparatus according to claim 4, wherein n pixel regions in the element are configured by having electrodes in the electrode. 前記複数の半導体素子のそれぞれが、前記基板の一方の面及び他方の面に、前記基板を対称面として設けられる請求項5に記載の放射線検出装置。 The radiation detection apparatus according to claim 5, wherein each of the plurality of semiconductor elements is provided on one surface and the other surface of the substrate with the substrate as a symmetrical surface.
JP2010160582A 2010-07-15 2010-07-15 Radiation detector Expired - Fee Related JP5683856B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010160582A JP5683856B2 (en) 2010-07-15 2010-07-15 Radiation detector
US13/809,903 US9006674B2 (en) 2010-07-15 2011-07-15 Radioactive ray detecting apparatus
PCT/JP2011/066196 WO2012008568A1 (en) 2010-07-15 2011-07-15 Radiation detector
CN201180034124.6A CN102985849B (en) 2010-07-15 2011-07-15 Radiation detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160582A JP5683856B2 (en) 2010-07-15 2010-07-15 Radiation detector

Publications (2)

Publication Number Publication Date
JP2012021906A JP2012021906A (en) 2012-02-02
JP5683856B2 true JP5683856B2 (en) 2015-03-11

Family

ID=45469562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160582A Expired - Fee Related JP5683856B2 (en) 2010-07-15 2010-07-15 Radiation detector

Country Status (4)

Country Link
US (1) US9006674B2 (en)
JP (1) JP5683856B2 (en)
CN (1) CN102985849B (en)
WO (1) WO2012008568A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605321A (en) * 1978-03-31 1989-07-19 Philips Electronic Associated Thermal radiation imaging devices and systems
JPS586911B2 (en) * 1978-04-07 1983-02-07 株式会社東芝 Multichannel semiconductor radiation detector
US4622467A (en) * 1982-04-21 1986-11-11 California Institute Of Technology System for mapping radioactive specimens
CA1219086A (en) * 1983-08-19 1987-03-10 Kazuhiro Iinuma Radiation imaging apparatus
US5434417A (en) * 1993-11-05 1995-07-18 The Regents Of The University Of California High resolution energy-sensitive digital X-ray
BR9510290A (en) * 1994-12-23 1997-11-11 Digirad Semiconductor gamma ray camera and medical imaging system
US5585638A (en) * 1995-12-14 1996-12-17 General Electric Company X-ray detector for automatic exposure control of an imaging apparatus
JPH11337646A (en) * 1998-05-29 1999-12-10 Toshiba Corp Radiation semiconductor detector, radiation semiconductor detector array and collimator installating device
JPH11281747A (en) * 1998-03-27 1999-10-15 Toshiba Corp Semiconductor radiation detector
US6236051B1 (en) 1998-03-27 2001-05-22 Kabushiki Kaisha Toshiba Semiconductor radiation detector
WO2006046384A1 (en) * 2004-10-29 2006-05-04 Shimadzu Corporation Radiation detector
JP4885529B2 (en) * 2005-12-08 2012-02-29 住友重機械工業株式会社 Radiation detection unit and radiation inspection apparatus
JP4834467B2 (en) 2006-06-15 2011-12-14 株式会社日立製作所 Printed circuit board mounting structure and nuclear medicine diagnostic apparatus
JP4909847B2 (en) * 2006-09-29 2012-04-04 株式会社日立製作所 Nuclear medicine diagnostic equipment
JP5044809B2 (en) * 2006-10-20 2012-10-10 独立行政法人 宇宙航空研究開発機構 Radiation detector and radiation imaging apparatus
JP2009147147A (en) 2007-12-14 2009-07-02 Fujifilm Corp Organic photoelectric conversion device
US8017906B2 (en) * 2008-04-08 2011-09-13 Robert Sigurd Nelson Slit and slot scan, SAR, and compton devices and systems for radiation imaging

Also Published As

Publication number Publication date
CN102985849A (en) 2013-03-20
CN102985849B (en) 2015-08-19
WO2012008568A1 (en) 2012-01-19
US9006674B2 (en) 2015-04-14
JP2012021906A (en) 2012-02-02
US20130241016A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
CN101542315A (en) Radiation detector with multiple electrodes on a sensitive layer
US8497482B2 (en) Radiation detector module
JP5436879B2 (en) Radiation detector
US8025439B2 (en) Radiation detector attaching and detaching device
JP5683856B2 (en) Radiation detector
JP5436880B2 (en) Radiation detector
JP5711476B2 (en) Radiation detector card
JP2012047550A (en) Radiation detector unit
CN215769043U (en) Sealed spliced high-counting-rate multi-air-gap resistive plate chamber detector
US9171987B2 (en) Radioactive ray detector and radioactive ray detecting apparatus
US8203121B2 (en) Radiation detector stand
JP5654793B2 (en) Radiation detection element and method for manufacturing radiation detection element
JP2012032212A (en) Radiation detector
JP5714255B2 (en) Radiation detection unit
JP2011209210A (en) Radiation detector
JP5710176B2 (en) Radiation detector
JP2012037273A (en) Radiation detector module
JP2012037281A (en) Radiation detector module
JP2012037348A (en) Radiation detector module
JP2019002815A (en) Radiation detection device
JP2015161594A (en) radiation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150114

R150 Certificate of patent or registration of utility model

Ref document number: 5683856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees