JP5653996B2 - Equipment for reducing emissions and improving energy efficiency in fossil and biofuel combustion systems - Google Patents

Equipment for reducing emissions and improving energy efficiency in fossil and biofuel combustion systems Download PDF

Info

Publication number
JP5653996B2
JP5653996B2 JP2012501098A JP2012501098A JP5653996B2 JP 5653996 B2 JP5653996 B2 JP 5653996B2 JP 2012501098 A JP2012501098 A JP 2012501098A JP 2012501098 A JP2012501098 A JP 2012501098A JP 5653996 B2 JP5653996 B2 JP 5653996B2
Authority
JP
Japan
Prior art keywords
water
hot water
evaporator
combustion
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012501098A
Other languages
Japanese (ja)
Other versions
JP2012521530A (en
Inventor
エルダッバグ,ファディ
マンデヴィル,ルーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mandeville luc
Original Assignee
Mandeville luc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mandeville luc filed Critical Mandeville luc
Publication of JP2012521530A publication Critical patent/JP2012521530A/en
Application granted granted Critical
Publication of JP5653996B2 publication Critical patent/JP5653996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/68Treating the combustion air or gas, e.g. by filtering, or moistening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • F23L7/005Evaporated water; Steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/18Flue gas recuperation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は温水装置に関するものである。NOx生成を低減するために水量と空気温度が循環制御される温水装置に関する。   The present invention relates to a hot water apparatus. The present invention relates to a hot water apparatus in which the amount of water and the air temperature are circulated and controlled to reduce NOx generation.

エネルギー価格の高騰下にあって、石炭は石油や天然ガスに比べ安価なエネルギーとなっている。石炭は高レベル汚染物質であることも一因となり、温水ボイラーにおける燃料源としての石炭の大部分は、天然ガス、電気及び石油に代替されている。しかし、石炭は経済的であるため、石炭バーナーを使用する温水装置の需要が増加している。石炭は経済的であるが、特に、スモッグ、酸性雨等のような環境問題の原因であるNOxを生成する。   Coal is a cheaper energy than oil and natural gas under the rising energy prices. Partly because coal is a high level pollutant, the majority of coal as a fuel source in hot water boilers has been replaced by natural gas, electricity and oil. However, because coal is economical, there is an increasing demand for hot water devices that use coal burners. Although coal is economical, it produces NOx, which is particularly responsible for environmental problems such as smog, acid rain and the like.

天然ガスバーナーでは、吸気を湿潤化することにより大幅な省エネルギーとNOx削減を達成できることはよく知られている。しかし、経済性を維持する目的で、このような空気湿潤化装置は、スチームポンプ原理に基づき燃焼排ガスのエネルギーを利用してバーナー燃焼用空気を加温し湿潤化している。   It is well known that natural gas burners can achieve significant energy savings and NOx reductions by wetting the intake air. However, for the purpose of maintaining economy, such an air wetting device warms and humidifies burner combustion air using the energy of combustion exhaust gas based on the steam pump principle.

現在の技術水準において、このような装置は、燃焼排ガスの水分量が高いという理由から天然ガスバーナーに限定されている。この燃焼排ガスを冷却して得られる凝縮物は約140℃であり、これを用いてバーナーの吸気を加温し湿潤化する。エネルギー移動はこの温度によって制限される。   In the current state of the art, such devices are limited to natural gas burners because of the high moisture content of the flue gas. The condensate obtained by cooling the combustion exhaust gas is about 140 ° C., and this is used to heat and wet the intake air of the burner. Energy transfer is limited by this temperature.

しかし、石炭が生成する燃焼排ガスは、天然ガスに比べかなり水分量が低いため、このガスの露点が低すぎるため、スチームポンプの設計には使用できない。   However, the flue gas produced by coal has a much lower moisture content than natural gas, so the dew point of this gas is too low and cannot be used for steam pump design.

従って、熱回収システムを利用してバーナーへの吸気流を加温湿潤化するボイラーが非常に望まれている。   Accordingly, a boiler that uses a heat recovery system to heat and wet the intake air flow to the burner is highly desirable.

本発明の一形態によれば、本発明の温水装置は、温水ボイラーと、炎管と、バーナーと、可燃物供給装置と、エバポレーターと、熱交換エレメントと、熱回収システムとを含む。温水ボイラーは、上壁、底壁及び側壁を有する。炎管は、上壁に接続されている。バーナーは、第一のハウジングの側壁に固定されている。可燃物供給装置は、そのバーナーに接続されている。エバポレーターは、ハウジングを有し、そのハウジングは、出口と、ハウジング内に配置される熱交換エレメントと、熱交換エレメントに離間して上方に設けられた排水装置とを有する。エバポレーターは、燃焼生成物の露点を上昇させるため、及び燃焼時のNOx排出物を低減するために、湿潤空気源をバーナーに提供し、熱回収システムは、炎管に接続され、そこで、排水装置に使用される水を加熱するために熱が利用される。   According to one aspect of the present invention, the hot water device of the present invention includes a hot water boiler, a flame tube, a burner, a combustible material supply device, an evaporator, a heat exchange element, and a heat recovery system. The hot water boiler has a top wall, a bottom wall, and a side wall. The flame tube is connected to the upper wall. The burner is fixed to the side wall of the first housing. The combustible material supply device is connected to the burner. The evaporator has a housing, and the housing has an outlet, a heat exchange element disposed in the housing, and a drainage device provided above and spaced apart from the heat exchange element. The evaporator provides a source of wet air to the burner to increase the dew point of the combustion products and to reduce NOx emissions during combustion, and the heat recovery system is connected to the flame tube where the drainage device Heat is used to heat the water used in the process.

本発明の具体的な実施形態において、さらに、温水装置は、燃焼排ガスアナライザーと、コントローラーとを含む。燃焼排ガスアナライザーは、炎管とエバポレーター出口に接続されており、二酸化炭素(CO2)、サーマルNOx、フューエルNOx及び水(H2O)の少なくとも一種の濃度を測定し、かつ、エバポレーター出口における温度と水分量を測定する。コントローラーは、燃焼排ガスアナライザーから得られる数値を分析する。コントローラーは、これら数値の少なくとも一つが、単独又は組み合わせで次善の燃焼条件を示す場合、温水装置の運転パラメータを最適な燃焼条件に到達するよう調整する。 In a specific embodiment of the present invention, the hot water device further includes a flue gas analyzer and a controller. The flue gas analyzer is connected to the flame tube and the evaporator outlet, measures the concentration of at least one of carbon dioxide (CO 2 ), thermal NOx, fuel NOx and water (H 2 O), and the temperature at the evaporator outlet. And measure the water content. The controller analyzes the numerical values obtained from the flue gas analyzer. The controller adjusts the operating parameters of the hot water device to reach the optimal combustion condition when at least one of these values alone or in combination indicates the next best combustion condition.

本発明の好ましい実施形態においては、熱回収システムは、間接的節減装置のような温水供給源である。コントローラー出力に基づく適正量の水を、熱回収システムから取り出す。他のタイプの熱回収システムも本発明に適切であること、及び熱回収システムからの熱とは独立して水を加熱できることも理解されよう。   In a preferred embodiment of the present invention, the heat recovery system is a hot water source such as an indirect saving device. An appropriate amount of water based on the controller output is removed from the heat recovery system. It will also be appreciated that other types of heat recovery systems are suitable for the present invention and that the water can be heated independently of the heat from the heat recovery system.

本装置は、温水ボイラーの代わりに、スチームボイラーや熱電供給装置等、他のタイプの加熱装置が使用され得る。   In this apparatus, other types of heating devices such as a steam boiler and a thermoelectric supply device can be used instead of the hot water boiler.

本発明の更なる形態や利点は、以下に関連する記載を参照することにより、さらに良く理解されよう。   Further aspects and advantages of this invention will be better appreciated by reference to the following associated description.

本発明の装置の一実施形態を示す簡略化された概略図である。FIG. 2 is a simplified schematic diagram illustrating one embodiment of the apparatus of the present invention.

本発明は温水装置に関し、熱回収システムから回収される温水を加熱し、吸気流を湿潤化してバーナーに利用する。本発明の目的は、エネルギー消費を低減し、サーマルNOx及びフューエルNOxが低減されるように火炎温度を下げることにある。本発明の利点は、水量及び空気温度を循環制御することにより、悪影響が現れる前にこれらを最高濃度とすることにある。   The present invention relates to a hot water apparatus, which heats hot water recovered from a heat recovery system, wets an intake air flow and uses it for a burner. An object of the present invention is to reduce energy consumption and lower the flame temperature so that thermal NOx and fuel NOx are reduced. An advantage of the present invention is that by controlling the amount of water and the air temperature in circulation, these are brought to the maximum concentration before adverse effects appear.

以下のパラメータが役割を果たす。すなわち、エアーパイプ内の空気中に水滴を存在させつつ、エアーパイプ内で水を凝結させること、燃焼維持のため酸素利用率を低下させること、及び、煤のような燃焼残渣を存在させることである。   The following parameters play a role. In other words, water is condensed in the air pipe while water droplets are present in the air in the air pipe, the oxygen utilization rate is lowered to maintain combustion, and combustion residues such as soot are present. is there.

ある種の石炭や石油等の含窒素燃料から発生するNOxは、主に燃料結合窒素が、燃焼の際、NOxへ転換されて供給される。燃焼中、燃料結合窒素は、フリーラジカルとして遊離し、最終的に遊離のN2又はNOを生成する。燃料由来のNOxは、石油を燃やした場合には全排出物の約50%となり得る、石炭を燃やした場合には約80%となり得る。本発明者らは、燃焼用空気を湿潤化することにより、遊離のN2又はNOに変換される燃料結合性のNOxの量を大幅に低減する。 NOx generated from nitrogen-containing fuels such as certain types of coal and petroleum is supplied mainly by converting fuel-bound nitrogen to NOx during combustion. During combustion, fuel-bound nitrogen is liberated as free radicals, ultimately producing free N 2 or NO. Fuel-derived NOx can be about 50% of total emissions when burning oil, and about 80% when burning coal. We greatly reduce the amount of fuel-bound NOx converted to free N 2 or NO by wetting the combustion air.

抑制手法
本装置の目的は、燃焼用空気中の水蒸気がガス化を促進する条件を提供することにより、石炭バーナー、石油バーナー又は任意のバイオマスバーナーの燃焼空気の水分量を最大限実用レベルに維持することを保証することにある。
Suppression method The purpose of this equipment is to maintain the moisture content of the combustion air of coal burners, oil burners or any biomass burners to the maximum practical level by providing conditions under which steam in the combustion air promotes gasification. Is to guarantee that

ガス化とは、固体炭素材料(石炭、石油製品又はバイオマス)を熱化学反応によって合成ガスとして知られている燃料ガスに変換する処理である。合成ガスは、水素及び一酸化炭素に富む。最適でない条件下でこの処理を実施するには酸化剤(空気、酸素、水蒸気又はこれらの組み合わせ)が必要である。しかし、工業的には空気と水蒸気の混合物が酸化剤として通常用いられる。合成ガスは、直接タービン又はボイラーに送り込まれ燃焼される。処理の全過程は、次のような幾つかの工程と区域において行われる。
A)熱分解
B)酸化
C)ガス化及び水素化
Gasification is a process of converting a solid carbon material (coal, petroleum product or biomass) into a fuel gas known as synthesis gas by a thermochemical reaction. Syngas is rich in hydrogen and carbon monoxide. Oxidants (air, oxygen, water vapor or combinations thereof) are required to carry out this treatment under non-optimal conditions. However, industrially, a mixture of air and water vapor is usually used as an oxidizing agent. Syngas is fed directly into the turbine or boiler and burned. The entire process takes place in several steps and areas:
A) Pyrolysis B) Oxidation C) Gasification and hydrogenation

熱分解工程は、酸素非存在下で固体炭素材料が加熱(302〜1292°F)されて進行し、揮発成分(タール、水素及び一酸化炭素)が遊離され、チャーを産生する。固体材料の重量損失は、揮発成分含有量及び操作条件に依存する。   In the pyrolysis process, the solid carbon material is heated (302 to 1292 ° F.) in the absence of oxygen, and volatile components (tar, hydrogen and carbon monoxide) are liberated to produce char. The weight loss of the solid material depends on the volatile content and the operating conditions.

酸化ゾーンにおいては、チャーと遊離揮発成分の一部により、次の発熱酸化反応が行なわれる(1292〜3632°F)。:
C + O2 ⇔ CO2 (1)
C + 1/2O2 ⇔ CO (2)
CO + 1/2O2 ⇔ CO2 (3)
2H2 + O2 ⇔ 2H2O (4)
ここでは、Cは、炭素を含む固体及び/又はチャーを表わす。
In the oxidation zone, the following exothermic oxidation reaction takes place (1292 to 3632 ° F.) with char and some of the free volatile components. :
C + O 2 CO CO 2 (1)
C + 1 / 2O 2 ⇔ CO (2)
CO + 1 / 2O 2 CO CO 2 (3)
2H 2 + O 2 ⇔2H 2 O (4)
Here, C represents a solid containing carbon and / or char.

ガス化及び水素化段階が行われると、燃焼生成物、未燃焼生成物及び水蒸気がチャコール床を通過し、この床において次の反応が起こる(1472〜2012°F):
C + CO2 ⇔ 2CO (5) ブードワ反応(吸熱)
C + H2O ⇔ H2 + CO (6) 水性ガス反応(吸熱)
CO + H2O ⇔ CO2 + H2 (7) 水性シフト反応(発熱)
C + 2H2 ⇔ CH4 (8) メタン化(発熱)
As the gasification and hydrogenation stages occur, the combustion products, unburned products and water vapor pass through the charcoal bed where the following reaction occurs (1472-2012 ° F):
C + CO 2 ⇔ 2CO (5) Boudowa reaction (endothermic)
C + H 2 O ⇔ H 2 + CO (6) Water gas reaction (endothermic)
CO + H 2 O CO CO 2 + H 2 (7) Aqueous shift reaction (exotherm)
C + 2H 2 CH CH 4 (8) Methanation (exotherm)

可逆の気相水性ガスシフト反応は、ガス化装置温度で非常に早く平衡に達し、その結果、一酸化炭素、二酸化炭素及び水素の濃度バランスがとれることは重要である。   It is important that the reversible gas phase water gas shift reaction reaches equilibrium very quickly at the gasifier temperature, and as a result, the concentration balance of carbon monoxide, carbon dioxide and hydrogen is important.

ガス化用空気を湿潤化する目的は、ガス化処理全体を改善し、生成する合成ガスの品質と発熱量を向上させることにある。   The purpose of wetting the gasification air is to improve the overall gasification process and to improve the quality and calorific value of the synthesis gas produced.

この処理を最適に制御するために、二種のパラメータ(火炎温度と燃焼排ガスの一酸化炭素(CO)レベル)を、絶えず監視する。燃焼用空気の水分量が増加するにつれ、火炎温度は低下し、一酸化炭素(CO)含量が上昇する。   In order to optimally control this process, two parameters (flame temperature and flue gas carbon monoxide (CO) level) are constantly monitored. As the moisture content of the combustion air increases, the flame temperature decreases and the carbon monoxide (CO) content increases.

火炎温度は、燃焼排ガス温度から推定する。一酸化炭素(CO)レベルは、燃焼排ガスを測定して決定する。一酸化炭素(CO)濃度が、上限の400ppmに維持されつつ、燃焼排ガスの温度が、既定値を下回る場合、燃焼用空気の高水分含有によって燃焼処理が、悪影響を受けることが示唆される。   The flame temperature is estimated from the combustion exhaust gas temperature. Carbon monoxide (CO) levels are determined by measuring flue gas. When the carbon monoxide (CO) concentration is maintained at the upper limit of 400 ppm and the temperature of the combustion exhaust gas is lower than the predetermined value, it is suggested that the combustion treatment is adversely affected by the high moisture content of the combustion air.

制御装置は、これら二種の出力パラメータと以下の入力パラメータを同時に監視する。
1.外気温度/湿度比。
2.水の入口流量と温度。エバポレーターにおける燃焼用空気の湿潤化レベルを制御するために、水の入口流量及び出口流量と温度を測定することが必要である。
3.エバポレーターから出る飽和燃焼用空気の温度。
The control device simultaneously monitors these two types of output parameters and the following input parameters.
1. Ambient temperature / humidity ratio.
2. Water inlet flow rate and temperature. In order to control the wetting level of the combustion air in the evaporator, it is necessary to measure the water inlet and outlet flow rates and temperature.
3. The temperature of the saturated combustion air coming out of the evaporator.

燃焼排ガス温度と一酸化炭素(CO)含有量が、次善の燃焼条件を示す場合、制御装置は、上述の入力項目(1〜3)を変更して最適な燃焼条件を再確立する。この制御装置は、優先順位に従って、これら3種の入力パラメータに基づいて制御される。   When the combustion exhaust gas temperature and the carbon monoxide (CO) content indicate sub-optimal combustion conditions, the control device changes the above-described input items (1 to 3) to reestablish optimal combustion conditions. The control device is controlled based on these three types of input parameters according to the priority order.

図1を参照して、本発明の温水装置の一実施形態(10)を示す。本装置(10)は、垂直な筒状のハウジング(22)を有するエバポレーター(20)を備える。熱
交換エレメント(24)は、ハウジング(22)内に備えられる。熱交換エレメント(24)の頂上部の放水装置(26)から散水され、この水はハウジング(22)を水滴として落下する。湿潤化された空気は出口(28)から排出され、温水ボイラー(30)のバーナー(38)に達する。下降する温水流は、空気入口(29)から供給される上昇気流と熱交換を行う。熱交換性能を向上させるために、さまざまな技術(充填物、スプレーヘッドの数、水滴の大きさ)が利用される。空気が飽和され、露点が約190°Fとなるため、再加熱コイルを用いて更に空気を暖めることにより、パイプ又はボイラーエレメント内での水蒸気凝縮を防止する。
With reference to FIG. 1, one Embodiment (10) of the hot water apparatus of this invention is shown. The device (10) comprises an evaporator (20) having a vertical cylindrical housing (22). A heat exchange element (24) is provided in the housing (22). Water is sprinkled from the water discharge device (26) at the top of the heat exchange element (24), and this water falls as water droplets on the housing (22). The humidified air is discharged from the outlet (28) and reaches the burner (38) of the hot water boiler (30). The descending warm water stream exchanges heat with the ascending air stream supplied from the air inlet (29). Various techniques (filling, number of spray heads, size of water droplets) are used to improve heat exchange performance. Since the air is saturated and the dew point is about 190 ° F., further heating of the air with a reheat coil prevents water vapor condensation within the pipe or boiler element.

温水ボイラー(30)は、上壁(32)、底壁(34)及び側壁(36)を有し、バーナー(38)は、側壁(36)の一つに固定される。可燃物供給装置(39)が、バーナー(38)に取り付けられ、必要な可燃物を供給する。温水ボイラー(30)は、燃焼排ガスを排出するための炎管(40)を更に有する。炎管(40)は、熱回収システム(42)(間接節減装置)に接続され、温水供給源として利用される。   The hot water boiler (30) has a top wall (32), a bottom wall (34) and a side wall (36), and the burner (38) is fixed to one of the side walls (36). A combustible material supply device (39) is attached to the burner (38) and supplies necessary combustible materials. The hot water boiler (30) further includes a flame tube (40) for discharging combustion exhaust gas. The flame tube (40) is connected to a heat recovery system (42) (indirect saving device) and used as a hot water supply source.

続いて燃焼排ガスは、二酸化炭素(CO2)、サーマルNOx及びフューエルNOx、水(H2O)及び他のいずれかの燃焼排ガスのパラメータを測定する燃焼排ガスアナライザー(50)を通過する。このアナライザーは、エバポレーター(20)の出口(28)における温度と水分量も測定する。燃焼排ガスアナライザー(50)は、コントローラー(60)に接続する。コントローラー(60)は、燃焼排ガスアナライザー(50)からの情報を利用してエバポレーター(20)に供給する温水の適切な量を、水温と燃焼の質に基づいて決定する。制御アルゴリズム(ファジー論理又は他の論理)によって、最適な操業条件が維持される。かかる操業条件により、バーナー効率を低下させることなく、最大限の省エネルギーが達成され、大気中の許容限界まで汚染性排出物が低減させられる。 The flue gas then passes through a flue gas analyzer (50) that measures the parameters of carbon dioxide (CO 2 ), thermal NOx and fuel NOx, water (H 2 O) and any other flue gas. This analyzer also measures the temperature and moisture content at the outlet (28) of the evaporator (20). The flue gas analyzer (50) is connected to the controller (60). The controller (60) determines an appropriate amount of hot water to be supplied to the evaporator (20) using information from the combustion exhaust gas analyzer (50) based on the water temperature and the quality of combustion. Optimal operating conditions are maintained by the control algorithm (fuzzy logic or other logic). Such operating conditions achieve maximum energy savings without reducing burner efficiency and reduce pollutant emissions to acceptable limits in the atmosphere.

20 エバポレーター
22 ハウジング
24 熱交換エレメント
26 放水装置
28 出口
29 空気入口
30 温水ボイラ
32 上壁
34 底壁
36 側壁
38 バーナー
39 可燃物供給装置
40 炎管
42 熱回収システム
50 燃焼排ガスアナライザー
60 コントローラー
20 evaporator 22 housing 24 heat exchange element 26 water discharge device 28 outlet 29 air inlet 30 hot water boiler 32 upper wall 34 bottom wall 36 side wall 38 burner 39 combustible material supply device 40 flame tube 42 heat recovery system 50 combustion exhaust gas analyzer 60 controller

Claims (2)

温水ボイラーと、エバポレーターと、熱回収システムとを含む温水装置であって、
前記温水ボイラーは、上壁、底壁及び側壁と、前記上壁に接続する炎管と、一側壁に固定されたバーナーと、前記バーナーに接続された可燃物供給装置とを有し、
前記エバポレーターは、ハウジング及び再加熱コイルを有し、当該ハウジングは、出口と、前記ハウジング内に配置される熱交換エレメントと、前記熱交換エレメントに離間して上方に設けられた放水装置とを有し、前記エバポレーターは、燃焼生成物の露点を上昇させるため、及び燃焼時のNOx排出物を低減するための湿潤空気の原料を前記バーナーに提供し、当該再加熱コイルは前記湿潤空気を更に暖め、
前記熱回収システムは、前記炎管に接続され、ここにおいて前記放水装置に使用される水を加熱するために熱が利用される、温水装置。
A hot water apparatus including a hot water boiler, an evaporator, and a heat recovery system,
The hot water boiler has an upper wall, a bottom wall and a side wall, a flame pipe connected to the upper wall, a burner fixed to one side wall, and a combustible material supply device connected to the burner,
The evaporator includes a housing and a reheating coil , and the housing includes an outlet, a heat exchange element disposed in the housing, and a water discharge device provided above and spaced from the heat exchange element. The evaporator provides a source of wet air to the burner to increase the dew point of the combustion products and to reduce NOx emissions during combustion, and the reheating coil further warms the wet air ,
The heat recovery system is connected to the flame pipe, wherein heat is used to heat water used in the water discharge device.
請求項1に記載の温水装置であって、燃焼排ガスアナライザーとコントローラーとを更に有し、
前記燃焼排ガスアナライザーは、前記炎管及び前記エバポレーターの出口に接続されており、二酸化炭素(CO2)、サーマルNOx、フューエルNOx及び水(H2O)の少なくとも一種の濃度を測定し、且つ前記エバポレーターの出口における温度と水分量を測定し、
前記コントローラーは、二酸化炭素(CO2)、サーマルNOx、フューエルNOx及び水(H2O)の少なくとも一種の濃度を測定し、且つ前記エバポレーターの出口における温度と水分量を分析し、これら数値の少なくとも一が、単独又は組み合わせで次善の燃焼条件を示す場合、前記温水装置の操業パラメータを最適な燃焼条件に到達するよう調整する、温水装置。
The hot water device according to claim 1, further comprising a flue gas analyzer and a controller,
The flue gas analyzer is connected to the flame tube and an outlet of the evaporator, measures at least one concentration of carbon dioxide (CO 2 ), thermal NOx, fuel NOx and water (H 2 O), and Measure the temperature and water content at the outlet of the evaporator,
The controller measures the concentration of at least one of carbon dioxide (CO 2 ), thermal NOx, fuel NOx and water (H 2 O), and analyzes the temperature and water content at the outlet of the evaporator, and at least of these values A hot water apparatus that adjusts operating parameters of the hot water apparatus so as to reach optimum combustion conditions when one shows a sub-optimal combustion condition alone or in combination.
JP2012501098A 2009-03-26 2010-03-26 Equipment for reducing emissions and improving energy efficiency in fossil and biofuel combustion systems Expired - Fee Related JP5653996B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16361809P 2009-03-26 2009-03-26
US61/163,618 2009-03-26
PCT/CA2010/000463 WO2010108281A1 (en) 2009-03-26 2010-03-26 System to lower emissions and improve energy efficiency on fossil fuels and bio-fuels combustion systems

Publications (2)

Publication Number Publication Date
JP2012521530A JP2012521530A (en) 2012-09-13
JP5653996B2 true JP5653996B2 (en) 2015-01-14

Family

ID=42780114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012501098A Expired - Fee Related JP5653996B2 (en) 2009-03-26 2010-03-26 Equipment for reducing emissions and improving energy efficiency in fossil and biofuel combustion systems

Country Status (7)

Country Link
US (1) US20120085339A1 (en)
EP (1) EP2411734A4 (en)
JP (1) JP5653996B2 (en)
CN (1) CN102439359A (en)
BR (1) BRPI1014209A2 (en)
CA (1) CA2756557A1 (en)
WO (1) WO2010108281A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449488B (en) * 2012-05-31 2016-04-13 沈阳铝镁设计研究院有限公司 Reduce the method that Aluminium hydroxide roasting Process Energy consumes
CN103574580B (en) * 2013-11-15 2015-07-01 神华集团有限责任公司 Thermal power generating unit NOx discharge monitoring method and system
EP3290794A1 (en) * 2016-09-05 2018-03-07 Technip France Method for reducing nox emission
CN107238092A (en) * 2017-06-12 2017-10-10 清华大学 The method and apparatus of coal-burning boiler smoke evacuation ultralow temperature condensing units and air intake humidification
US11441199B2 (en) * 2019-04-25 2022-09-13 Les Équipements Lapierre Inc. Controller of the release of energy of a combustion of biomass, system provided with such a controller, kit for assembling the same, and corresponding methods of assembling, operating and use associated thereto
US11624097B2 (en) * 2020-05-14 2023-04-11 Les Equipements Lapierre Inc. Evaporator system, kit for assembling the same, and corresponding methods of assembling, operating and use associated thereto

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2016A (en) * 1841-03-26 Mode of constructing fireplaces and chimney-staoks ii
US8019A (en) * 1851-04-01 Improvement in machines for cutting screws on bedstead-rails
JPS5243131A (en) * 1975-09-30 1977-04-04 Sumitomo Metal Ind Ltd Supression of generation of nitrogen oxides in a heating furnace
US4116388A (en) * 1977-02-10 1978-09-26 Foster Wheeler Energy Corporation Burner nozzle
US4353207A (en) * 1980-08-20 1982-10-12 Westinghouse Electric Corp. Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
GB2112517B (en) * 1981-12-11 1985-04-11 Thorn Emi Heating Limited Heating apparatus
JPS593108U (en) * 1982-06-29 1984-01-10 石川島播磨重工業株式会社 Boiler nitrogen oxide reduction equipment
JPS59130950U (en) * 1983-02-17 1984-09-03 トヨタ自動車株式会社 Combustion furnace NOx control device
JPS61208410A (en) * 1985-03-13 1986-09-16 Rozai Kogyo Kk Method of burner combustion with low nox
US4773846A (en) * 1985-07-30 1988-09-27 Michael Munk Combustion system and method with fog injection and heat exchange
US5050375A (en) * 1985-12-26 1991-09-24 Dipac Associates Pressurized wet combustion at increased temperature
JPS61240009A (en) * 1986-04-01 1986-10-25 Kenichi Nakagawa Method for decreasing nox content and increasing heat recovery efficiency in exhaust gas
US4927430A (en) * 1988-05-26 1990-05-22 Albert Calderon Method for producing and treating coal gases
US5158445A (en) * 1989-05-22 1992-10-27 Institute Of Gas Technology Ultra-low pollutant emission combustion method and apparatus
US5280756A (en) * 1992-02-04 1994-01-25 Stone & Webster Engineering Corp. NOx Emissions advisor and automation system
CA2088018C (en) * 1993-01-25 1998-05-05 Luc Mandeville Direct contact water heater with hybrid heat source
JPH0826780B2 (en) * 1993-02-26 1996-03-21 石川島播磨重工業株式会社 Partially regenerative two-fluid gas turbine
DE4335216C2 (en) * 1993-05-10 2003-04-24 Saar En Gmbh Steam power plant for generating electrical energy
US5543116A (en) * 1994-07-15 1996-08-06 The Babcock & Wilcox Company Method for reducing NOx using atomizing steam injection control
DK0786065T3 (en) * 1994-10-17 2000-07-24 Gaz De France High temperature water heater with direct contact and low NOx and co-emissions
JP3578230B2 (en) * 1995-01-24 2004-10-20 能美防災株式会社 Combustion state monitoring method and apparatus
JP3062582B2 (en) * 1995-11-07 2000-07-10 株式会社日立製作所 Method and apparatus for predicting furnace state of pulverized coal combustion equipment
US5765546A (en) * 1996-05-30 1998-06-16 Sofame Direct contact water heater with dual water heating chambers
US5769067A (en) * 1996-09-23 1998-06-23 Mandeville; Luc Air heater and humidifier using direct contact heating principles and method of operation
US5967061A (en) * 1997-01-14 1999-10-19 Energy And Environmental Research Corporation Method and system for reducing nitrogen oxide and sulfur oxide emissions from carbonaceous fuel combustion flue gases
CA2201259C (en) * 1997-03-27 2007-01-30 Luc Mandeville High efficiency direct-contact high temperature water heater
US6048510A (en) * 1997-09-30 2000-04-11 Coal Tech Corporation Method for reducing nitrogen oxides in combustion effluents
US6321539B1 (en) * 1998-09-10 2001-11-27 Ormat Industries Ltd. Retrofit equipment for reducing the consumption of fossil fuel by a power plant using solar insolation
CN1097151C (en) * 1998-10-23 2002-12-25 株式会社日立制作所 Gas turbine power generation equipment and air humidifying apparatus
US6085674A (en) * 1999-02-03 2000-07-11 Clearstack Combustion Corp. Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
US6325002B1 (en) * 1999-02-03 2001-12-04 Clearstack Combustion Corporation Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
US6578354B2 (en) * 2000-01-21 2003-06-17 Hitachi, Ltd. Gas turbine electric power generation equipment and air humidifier
US6453830B1 (en) * 2000-02-29 2002-09-24 Bert Zauderer Reduction of nitrogen oxides by staged combustion in combustors, furnaces and boilers
US6357367B1 (en) * 2000-07-18 2002-03-19 Energy Systems Associates Method for NOx reduction by upper furnace injection of biofuel water slurry
US6464492B1 (en) * 2001-04-26 2002-10-15 John Zink Company, Llc Methods of utilizing boiler blowdown for reducing NOx
JP3962977B2 (en) * 2001-07-30 2007-08-22 株式会社日立製作所 Gas turbine cogeneration system
JP3781706B2 (en) * 2001-10-05 2006-05-31 川崎重工業株式会社 Operation method of ash melting type U firing combustion boiler
US6694900B2 (en) * 2001-12-14 2004-02-24 General Electric Company Integration of direct combustion with gasification for reduction of NOx emissions
US6935251B2 (en) * 2002-02-15 2005-08-30 American Air Liquide, Inc. Steam-generating combustion system and method for emission control using oxygen enhancement
CN2563500Y (en) * 2002-06-16 2003-07-30 张明辰 Semi gas air purifying and heat supply ventilator
WO2004048850A2 (en) * 2002-11-22 2004-06-10 Aalborg Industries A/S A boiler, a method of controlling the combustion in a boiler and a heat exchanger tube for use in a boiler
US7047748B2 (en) * 2002-12-02 2006-05-23 Bert Zauderer Injection methods to reduce nitrogen oxides emission from gas turbines combustors
EP1587613A2 (en) * 2003-01-22 2005-10-26 Vast Power Systems, Inc. Reactor
US7335014B2 (en) * 2003-06-12 2008-02-26 Mobotec Usa, Inc. Combustion NOx reduction method
US20070227154A1 (en) * 2003-06-09 2007-10-04 Pelini Robert G System and method for producing injection-quality steam for combustion turbine power augmentation
JP2005241184A (en) * 2004-02-27 2005-09-08 Jfe Steel Kk Low nox combustion method
ITBO20040296A1 (en) * 2004-05-11 2004-08-11 Itea Spa High efficiency and reduced environmental impact combustors, and processes for the production of electricity deriving from it
JP2006112666A (en) * 2004-10-12 2006-04-27 Jfe Engineering Kk Combustion device provided with emulsified fuel supply system
JP4811991B2 (en) * 2005-07-06 2011-11-09 株式会社日立製作所 High humidity gas turbine equipment
JP2007147161A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Exhaust gas disposal method and device for combustion apparatus
JP4731293B2 (en) * 2005-11-28 2011-07-20 電源開発株式会社 Combustion control method and apparatus for oxyfuel boiler
US7901204B2 (en) * 2006-01-24 2011-03-08 Exxonmobil Chemical Patents Inc. Dual fuel gas-liquid burner
US7909601B2 (en) * 2006-01-24 2011-03-22 Exxonmobil Chemical Patents Inc. Dual fuel gas-liquid burner
WO2007092706A2 (en) * 2006-02-07 2007-08-16 Bert Zauderer Improving combustion efficiency in coal fired boilers
US7865271B2 (en) * 2006-11-02 2011-01-04 General Electric Company Methods and systems to increase efficiency and reduce fouling in coal-fired power plants
JP5095628B2 (en) * 2006-11-08 2012-12-12 バブコック日立株式会社 Pulverized coal fired boiler
US7553463B2 (en) * 2007-01-05 2009-06-30 Bert Zauderer Technical and economic optimization of combustion, nitrogen oxides, sulfur dioxide, mercury, carbon dioxide, coal ash and slag and coal slurry use in coal fired furnaces/boilers
US7985280B2 (en) * 2007-02-20 2011-07-26 Hitachi Power Systems America, Ltd. Separation of aqueous ammonia components for NOx reduction
JPWO2008143074A1 (en) * 2007-05-14 2010-08-05 バブコック日立株式会社 Pulverized coal boiler, pulverized coal combustion method, pulverized coal fired thermal power generation system, and exhaust gas purification system of pulverized coal boiler
US8196532B2 (en) * 2008-02-27 2012-06-12 Andrus Jr Herbert E Air-fired CO2 capture ready circulating fluidized bed heat generation with a reactor subsystem
US8453585B2 (en) * 2008-04-14 2013-06-04 Babcock & Wilcox Power Generation Group, Inc. Oxy-combustion coal fired boiler and method of transitioning between air and oxygen firing
US8084010B2 (en) * 2008-04-14 2011-12-27 Plasma Energy Technologies Inc. Coal/coke/heavy residual oil boiler with sulfur and carbon dioxide capture and recovery
JP4644725B2 (en) * 2008-05-07 2011-03-02 株式会社日立製作所 Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
US20100251975A1 (en) * 2009-04-01 2010-10-07 Alstom Technology Ltd Economical use of air preheat
CN102459833B (en) * 2009-05-15 2015-06-17 Fmc有限公司 Combustion flue gas NOX treatment
PL2540379T3 (en) * 2010-02-25 2020-06-15 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system, and exhaust gas treatment method

Also Published As

Publication number Publication date
WO2010108281A1 (en) 2010-09-30
EP2411734A1 (en) 2012-02-01
US20120085339A1 (en) 2012-04-12
CN102439359A (en) 2012-05-02
JP2012521530A (en) 2012-09-13
BRPI1014209A2 (en) 2016-04-05
CA2756557A1 (en) 2010-09-30
EP2411734A4 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5653996B2 (en) Equipment for reducing emissions and improving energy efficiency in fossil and biofuel combustion systems
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
JP5107419B2 (en) Combustion control device for oxyfuel boiler
CA2733068C (en) Transient operation of oxy/fuel combustion system
EA022238B1 (en) Method and system for production of a clean hot gas based on solid fuels
CN101492756A (en) Full dry purification and residual heat utilization equipment and method for converter gas
JPWO2009038103A1 (en) High-temperature combustion gas generator from biomass and apparatus for using combustion gas
JP2013241923A (en) Gasification power generation system of carbon-based fuel
CN114350410A (en) Low-rank coal poly-generation coupling carbon dioxide capture and hydrogen production system and control method thereof
CN103509605A (en) Method and device using high temperature air and high temperature steam as gasification agents for coal gas production
CN104089299B (en) Low nitrogen burning method
CN104089279B (en) Low nitrogen burning system
JP5535732B2 (en) Boiler equipment
CN215929622U (en) Natural gas boiler flue gas disappears bletilla waste heat recovery system
CN206175010U (en) Living beings incineration boiler and parallelly connected power generation system of coal fired boiler
CN210398893U (en) Biomass direct-fired boiler
RU2017122296A (en) METHOD FOR CONVERSION OF NATURAL GAS WITH WATER STEAM, INCLUDING TWO COMBUSTION CHAMBERS, GENERATING HOT SMOKE GASES, TRANSFERRING HEAT ENERGY, PERFORMANT FOR CARRY AND CLEANERS
CN113701184A (en) Natural gas boiler flue gas disappears bletilla waste heat recovery system
CN109370664A (en) A kind of saturated vapor processing process for biomass fuel power generation
CN1279144C (en) Method of producing mixed coal gas by using residual heat of electric power plant
JP5812575B2 (en) Boiler equipment
JP6162468B2 (en) Coal gasification system and coal gasification power generation system
CN108728173A (en) A kind of vertical type biomass gasification installation
CN109210910A (en) A method of utilizing coal-burning power plant's Secondary Air dried biomass
CN201237249Y (en) Coal-producing gasification furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140324

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140424

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140526

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

R150 Certificate of patent or registration of utility model

Ref document number: 5653996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees