JP5650185B2 - Integrated circuit device comprising discrete elements or semiconductor devices comprising dielectric material - Google Patents
Integrated circuit device comprising discrete elements or semiconductor devices comprising dielectric material Download PDFInfo
- Publication number
- JP5650185B2 JP5650185B2 JP2012269037A JP2012269037A JP5650185B2 JP 5650185 B2 JP5650185 B2 JP 5650185B2 JP 2012269037 A JP2012269037 A JP 2012269037A JP 2012269037 A JP2012269037 A JP 2012269037A JP 5650185 B2 JP5650185 B2 JP 5650185B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric material
- oxide
- integrated circuit
- circuit device
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003989 dielectric material Substances 0.000 title claims description 52
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 36
- 150000004706 metal oxides Chemical class 0.000 claims description 36
- 239000002019 doping agent Substances 0.000 claims description 24
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- 230000007547 defect Effects 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 229910021480 group 4 element Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 238000000231 atomic layer deposition Methods 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 9
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims 1
- 229910001935 vanadium oxide Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 62
- 239000010409 thin film Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000013590 bulk material Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28211—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/511—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Integrated Circuits (AREA)
- Formation Of Insulating Films (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は半導体デバイス及び部品、より具体的には、半導体デバイス及び要素中で用いるための金属酸化物誘電体材料に係る。 The present invention relates to semiconductor devices and components, and more particularly to metal oxide dielectric materials for use in semiconductor devices and elements.
[関連出願の記述]
本出願は1997年6月6日に出願された米国特許出願第08/871,024号と一部連続したものであり、この特許出願は1996年10月10日に出願された米国暫定出願60/027612号の利点を、特許請求の範囲としたものである。米国特許出願第08/871,024号が、ここに参照文献として含まれている。
[Description of related application]
This application is a continuation of US patent application Ser. No. 08 / 871,024, filed Jun. 6, 1997, which is a US provisional application 60 filed Oct. 10, 1996. The advantages of / 027612 are as claimed. US patent application Ser. No. 08 / 871,024 is hereby incorporated by reference.
誘電体材料は半導体デバイスの特性の鍵である。デバイスがより小さくなり、より高特性への必要性が大きくなるにつれ、半導体デバイス中の誘電体層の厚さは減少しつつある。同時に、最も一般的な誘電体材料、SiO2の誘電定数より大きな誘電定数をもつ誘電体材料への必要性が増している。また、半導体デバイス中の誘電層の厚さが減少するにつれ、誘電体材料層が非常に薄い(例えば100Å以下)時ですら、電荷を漏らさない材料への必要性が増している。 Dielectric materials are key to the characteristics of semiconductor devices. As devices become smaller and the need for higher performance increases, the thickness of dielectric layers in semiconductor devices is decreasing. At the same time, there is an increasing need for dielectric materials having a dielectric constant greater than that of the most common dielectric material, S i O 2 . Also, as the thickness of the dielectric layer in the semiconductor device decreases, the need for a material that does not leak charge increases even when the dielectric material layer is very thin (eg, 100 mm or less).
しかし、全ての誘電体材料が、半導体デバイス及び部品中で用いるのに許容しうる薄い誘電体層を形成するわけではない。半導体デバイスは効率、動作パワー等のいくつかの特性要件をもつ。誘電体材料層の特性は、デバイス特性に直接影響を及ぼす。たとえば、薄い誘電体層があまりに多くの電流を、それを貫いて透過させると(この好ましくない電流は漏れ電流と呼ばれる)、得られるデバイス又は部品は、所望の特性要件にあわないであろう。MOS(金属−酸化物−半導体−電界効果トランジスタ)のゲート誘電体を貫く漏れ電流は、誘電体の絶縁特性(抵抗及び信頼性)を示すから、貫く漏れ電流が高すぎるゲート誘電体層は、誘電体層の抵抗及び信頼性が低すぎることを示している。誘電体材料層がポリ間(すなわち誘電体材料が多結晶シリコンの2つの層間にはさまれている)誘電体材料(IPD)半導体デバイス類において、IPD中の漏れ電流は、フラッシュメモリの保持時間に関連する。もし、IPDを貫く漏れ電流が高すぎると、デバイスの保持時間は低くなるであろう。 However, not all dielectric materials form a thin dielectric layer that is acceptable for use in semiconductor devices and components. Semiconductor devices have several characteristic requirements such as efficiency and operating power. The properties of the dielectric material layer directly affect the device properties. For example, if a thin dielectric layer transmits too much current through it (this undesirable current is called leakage current), the resulting device or component will not meet the desired characteristic requirements. Since the leakage current through the gate dielectric of MOS (metal-oxide-semiconductor-field effect transistor) indicates the dielectric's insulating properties (resistance and reliability), the gate dielectric layer with too high leakage current through It indicates that the resistance and reliability of the dielectric layer is too low. In dielectric material (IPD) semiconductor devices where the dielectric material layer is between poly (ie, the dielectric material is sandwiched between two layers of polycrystalline silicon), the leakage current in the IPD is dependent on the retention time of the flash memory. is connected with. If the leakage current through the IPD is too high, the device retention time will be low.
誘電体層と下の半導体界面との間の界面準位密度もまた、デバイス特性に影響を与える。界面準位密度は電流デバイス(チャネルを横切る電流)及びMOSFETとMIS(金属−絶縁体−半導体)FETの信頼性を劣化させる。したがって、もし界面準位密度が高すぎると、得られるデバイス又は部品は、所望の特性要件にあわないであろう。 The interface state density between the dielectric layer and the underlying semiconductor interface also affects device characteristics. The interface state density degrades the reliability of current devices (current across the channel) and MOSFETs and MIS (metal-insulator-semiconductor) FETs. Thus, if the interface state density is too high, the resulting device or component will not meet the desired characteristic requirements.
従って、許容しうる漏れ特性及び他の特性を有する薄い誘電体層を形成する誘電体材料が探求されている。 Accordingly, a dielectric material is sought that forms a thin dielectric layer with acceptable leakage and other properties.
[本発明の要約]
本発明は誘電体材料層を有する集積回路デバイス及び線形容量のような集積又は個別部品のような電子部品に係る。誘電体材料はIV族元素をドープしたIII族金属又はVB族金属の金属酸化物に係る。III族(族はここで用いるように、メンデレーフ周期律表の族を意味する)金属酸化物の例には、アルミニウム酸化物(Al2O3)及びイットリウム酸化物(Y2O3)が含まれる。VB族金属酸化物の例は、五酸化タンタル(Ta2O5)及び五酸化バナジウム(V2O5)である。適当なIV族ドーパントの例には、ジルコニウム(Zr)、シリコン(Si)、チタン(Ti)及びハフニウム(Hf)が含まれる。ドーパントは金属酸化物の約0.1重量パーセントないし約30重量パーセントである。もし、ドーパントが金属酸化物の約0.1重量パーセントないし約10重量パーセントであると有利である。
[Summary of the Invention]
The present invention relates to integrated circuit devices having a dielectric material layer and electronic components such as integrated or discrete components such as linear capacitors. The dielectric material relates to a metal oxide of a group III metal or a group VB metal doped with a group IV element. Examples of group III metal oxides (groups as used herein means groups of the Mendeleev Periodic Table) include aluminum oxide (Al 2 O 3 ) and yttrium oxide (Y 2 O 3 ). It is. Examples of Group VB metal oxides are tantalum pentoxide (Ta 2 O 5 ) and vanadium pentoxide (V 2 O 5 ). Examples of suitable group IV dopants include zirconium (Zr), silicon (Si), titanium (Ti) and hafnium (Hf). The dopant is about 0.1 weight percent to about 30 weight percent of the metal oxide. It is advantageous if the dopant is about 0.1 weight percent to about 10 weight percent of the metal oxide.
スパッタリング、化学気相堆積(CVD)、有機金属CVD(MOCVD)及び原子層堆積(ALD)といった従来の堆積技術を用いて、所望のデバイス又は部品に適した基板の表面上に、誘電体材料層が形成される。基板上に層を形成する間に、ドーパントが金属酸化物に加えられる。所望の厚さのドープされた金属酸化物が基板上に形成されたら、次にデバイスを完成させるために、従来のプロセス技術が用いられる。 Using conventional deposition techniques such as sputtering, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD), a dielectric material layer on the surface of the substrate suitable for the desired device or component. Is formed. During the formation of the layer on the substrate, a dopant is added to the metal oxide. Once the desired thickness of the doped metal oxide has been formed on the substrate, conventional process techniques are then used to complete the device.
本発明の一実施例において、半導体デバイスはMOS又はMISデバイスである。そのようなデバイスの構造は、当業者には良く知られており、ここで詳細には述べない。これらのデバイス中のゲート誘電体層は、先に述べたようなドープされた金属酸化物である。低い漏れ、低い界面準位密度及びこれらの材料の高い誘電率のため、これらのデバイス中のゲート誘電体層は、直接トンネル漏れ電流の開始によって制限される最小の許容厚さ(たとえば約30Å又はそれ以下)ほどに薄い。多くのトンネル電流が存在するが、ここではトンネル電流は直接トンネル電流をさす。このように、本発明のデバイス中のゲート誘電体層は、SiO2(この場合、最小厚はトンネル漏れ電流の開始によって制限される)又は、たとえばAl2O3のようなアンドープ金属酸化物(この場合、最小厚は高い界面準位密度及びトンネル漏れ電流の開始の両方によって制限される)のような従来の誘電体材料より利点をもつ。 In one embodiment of the invention, the semiconductor device is a MOS or MIS device. The structure of such devices is well known to those skilled in the art and will not be described in detail here. The gate dielectric layer in these devices is a doped metal oxide as described above. Due to the low leakage, low interface state density, and the high dielectric constant of these materials, the gate dielectric layer in these devices has a minimum allowable thickness that is limited by the onset of direct tunnel leakage current (eg, about 30 mm or Less than that). There are many tunnel currents, but here the tunnel current directly refers to the tunnel current. Thus, the gate dielectric layer in the device of the present invention is composed of S i O 2 (where the minimum thickness is limited by the onset of tunnel leakage current) or undoped metal oxidation such as Al 2 O 3. There are advantages over conventional dielectric materials such as objects (in this case, the minimum thickness is limited by both high interface state density and onset of tunnel leakage current).
本発明のMOSデバイスは当業者に良く知られた従来の技術を用いて作製される。ゲート誘電体層の堆積前及び後の従来のプロセス工程が適当と考えられる。 The MOS device of the present invention is fabricated using conventional techniques well known to those skilled in the art. Conventional process steps before and after the deposition of the gate dielectric layer are considered appropriate.
本発明の第2の実施例において、デバイスは不揮発性メモリデバイスである。不揮発性メモリは、パワーが除去された時、蓄積されたデータを保持するメモリの型である。不揮発性メモリの例には、消去可能でプログラム可能なリードオンリーメモリー(EPROM)及び電気的に消去可能なプログラム可能なリードオンリーメモリー(EEPROM)が含まれる。便宜上、フラッシュEEPROM及びEPROMはここではまとめてEPROMとよぶ。 In a second embodiment of the invention, the device is a non-volatile memory device. Non-volatile memory is a type of memory that holds stored data when power is removed. Examples of non-volatile memory include erasable programmable read only memory (EPROM) and electrically erasable programmable read only memory (EEPROM). For convenience, flash EEPROM and EPROM are collectively referred to herein as EPROM.
本発明の不揮発性メモリデバイスは、従来の構造をもつが、デバイスのIPD層は本発明の誘電体材料である。IPD層は先に述べた堆積技術を用いて堆積させる。本発明の不揮発性メモリデバイスは、IPD層を形成する前及び後の両方で、そのようなデバイスを形成するために、従来のプロセス技術を用いて形成される。 The non-volatile memory device of the present invention has a conventional structure, but the IPD layer of the device is the dielectric material of the present invention. The IPD layer is deposited using the deposition technique described above. The non-volatile memory device of the present invention is formed using conventional process techniques to form such a device both before and after forming the IPD layer.
本発明の誘電体材料が有用と考えられる他のデバイスは、ダイナミックランダムアクセスメモリ(DRAM)用の蓄積容量である。本発明の誘電体材料はまた、線形容量及び他の集積容量及び容量デバイス中の誘電体層として有用である。 Another device in which the dielectric material of the present invention may be useful is a storage capacitor for dynamic random access memory (DRAM). The dielectric material of the present invention is also useful as a dielectric layer in linear capacitors and other integrated capacitors and capacitive devices.
[詳細な記述]
本発明はドープされた金属酸化物材料に係る。これらのドープされた金属酸化物は、MOSデバイス、フラッシュEPROMデバイス、DRAM用容量、線形容量及び他の容量といった各種デバイス部品中の誘電体材料層を形成するために用いられる。本発明のドープされた金属酸化物誘電体材料は、IV族元素をドープしたIII族金属又はVB族金属の金属酸化物である。与えられた金属とドーパントの組合せに対し、もしドーパントに対する酸化物形成のエネルギーが、ドープされる金属酸化物に対する酸化物形成のエネルギーより小さければ有利である。III族(族はここではメンデレーフの周期律表の族を意味する)金属酸化物の例には、アルミニウム酸化物(Al2O3)及びイットリウム酸化物(Y2O3)が含まれる。VB族金属酸化物の例は、五酸化タンタル(Ta2O5)及び五酸化バナジウム(V2O5)である。適当なIV族ドーパントの例には、ジルコニウム(Zr)、シリコン(Si)、チタン(Ti)及びハフニウム(Hf)が含まれる。ドープされた金属酸化物は、約0.1重量パーセントないし約30重量パーセントのドーパントを含む。もし、ドープされた金属酸化物が約0.1重量パーセントないし約10重量パーセントのドーパントを含むと有利である。
[Detailed description]
The present invention relates to doped metal oxide materials. These doped metal oxides are used to form dielectric material layers in various device components such as MOS devices, flash EPROM devices, DRAM capacitors, linear capacitors and other capacitors. The doped metal oxide dielectric material of the present invention is a Group III or Group VB metal oxide doped with a Group IV element. For a given metal and dopant combination, it is advantageous if the energy of oxide formation for the dopant is less than the energy of oxide formation for the doped metal oxide. Examples of group III metal oxides (group here means the group of the Mendeleev Periodic Table) include aluminum oxide (Al 2 O 3 ) and yttrium oxide (Y 2 O 3 ). Examples of Group VB metal oxides are tantalum pentoxide (Ta 2 O 5 ) and vanadium pentoxide (V 2 O 5 ). Examples of suitable group IV dopants include zirconium (Zr), silicon (Si), titanium (Ti) and hafnium (Hf). The doped metal oxide includes about 0.1 weight percent to about 30 weight percent dopant. It is advantageous if the doped metal oxide comprises about 0.1 weight percent to about 10 weight percent dopant.
出願人は特定の理論を保持することを望まないが、ドーパントが存在することにより、金属酸化物のバルク中の欠陥及び金属酸化物と隣接した半導体又は金属層間の界面に形成される欠陥が安定化されると確信する。そのような欠陥には、未結合手又は歪結合又は粒界が含まれる。未結合手は、その名称が暗示するように、不完全な結合をもつ原子である。従って、未結合手(ここではトラップ準位とも呼ぶ)は望ましくない。歪結合は、界面の物理的な性質から、ある種の歪を受けた結合である。これらの歪んだ結合は、より容易に切断され、未結合手を生じる。従って、歪んだ結合も望ましくない。 Applicants do not wish to retain a particular theory, but the presence of dopants stabilizes defects in the bulk of the metal oxide and defects formed at the interface between the semiconductor or metal layer adjacent to the metal oxide. I am convinced that Such defects include dangling bonds or strain bonds or grain boundaries. An unbonded hand is an atom with an incomplete bond, as its name implies. Therefore, dangling bonds (also referred to as trap levels here) are not desirable. Strain bonds are bonds that have undergone some kind of strain due to the physical properties of the interface. These distorted bonds are more easily broken, resulting in unbonded hands. Thus, distorted bonds are also undesirable.
未結合手及び歪結合の数を減らし、バルク材料中及び誘電体材料と隣接する層との間の界面における粒界を安定させることは有利である。なぜなら、そのような減少により、誘電体材料の電気的特性が改善されるからである。先に述べたドーパントを、ここで述べた誘電体材料に添加することにより、実際にこれらの好ましくない欠陥が減少するというのが、出願人の確信するところである。金属酸化物中に導入されるドーパントの量は、誘電体材料の所望の電気的特性に依存するであろう。出願人は本発明のドープされた誘電体材料は、ドーパントに対する酸化物形成のエネルギーが、酸化後ドープされる金属に対する酸化物形成のエンタルピーより小さいため、有利であると確信する。 It is advantageous to reduce the number of dangling bonds and strain bonds and to stabilize the grain boundaries in the bulk material and at the interface between the dielectric material and the adjacent layer. This is because such a reduction improves the electrical properties of the dielectric material. Applicants are convinced that the addition of the above-described dopants to the dielectric materials described herein actually reduces these undesirable defects. The amount of dopant introduced into the metal oxide will depend on the desired electrical properties of the dielectric material. Applicants believe that the doped dielectric material of the present invention is advantageous because the energy of oxide formation for the dopant is less than the enthalpy of oxide formation for the post-oxidation doped metal.
たとえば、アルミニウム酸化物に対する形成のエンタルピーは、−390kcal/molである。ジルコニウム酸化物に対する形成のエンタルピーは、−266kcal/molである。シリコン酸化物に対する形成のエンタルピーは、−217kcal/molである。アルミニウム酸化物材料の層は、ある数の未結合手、歪結合、及び粒界をバルク材料及び誘電体材料及び隣接する層との界面に含む。もしアルミニウム酸化物の同じ層に、ジルコニウム又は他のIV族金属をドープするなら、バルク材料中及び誘電体材料と隣接する層間の界面における未結合手、歪結合及び粒界の数は減少する。出願人は、金属酸化物(たとえばアルミニウム酸化物)の形成より、ドーパント酸化物(たとえばジルコニウム酸化物)の形成に適した反応熱力学の結果であると確信する。バルク材料中及び誘電滞在量感の界面における未結合手、歪結合及び粒界は、同程度には形成されない。なぜなら、ドーパント(たとえばジルコニウム)がこれらの発生しうる欠陥の位置において、酸素と反応でき、それによりそれらの少くとも一部が取り除かれるからである。その結果、誘電体材料の特性は、アンドープの誘電体材料より改善される。 For example, the enthalpy of formation for aluminum oxide is -390 kcal / mol. The enthalpy of formation for zirconium oxide is -266 kcal / mol. The enthalpy of formation for silicon oxide is -217 kcal / mol. A layer of aluminum oxide material includes a number of dangling bonds, strain bonds, and grain boundaries at the interface with the bulk and dielectric materials and adjacent layers. If the same layer of aluminum oxide is doped with zirconium or other Group IV metal, the number of dangling bonds, strain bonds and grain boundaries in the bulk material and at the interface between the dielectric material and adjacent layers is reduced. Applicants believe that it is a result of reaction thermodynamics that is more suitable for the formation of dopant oxides (eg, zirconium oxide) than the formation of metal oxides (eg, aluminum oxide). The dangling bonds, strain bonds, and grain boundaries at the bulk material and at the interface of the amount of dielectric stay are not formed to the same extent. This is because dopants (eg, zirconium) can react with oxygen at the location of these possible defects, thereby removing at least some of them. As a result, the properties of the dielectric material are improved over the undoped dielectric material.
先に述べたように、本発明の誘電体材料は、さまざまな電子デバイス及び電子部品中で用いられる。 As previously mentioned, the dielectric materials of the present invention are used in a variety of electronic devices and electronic components.
本発明の一実施例において、ドープされた誘電体材料はMOSFETデバイス中のゲート誘電体材料である。そのようなデバイスが、図1に概略的に描かれている。MOSFET(10)はソース(11)、ドレイン(12)及びゲート(13)をもつ。ゲート(13)は側壁スペーサ(14)及び(15)の間に配置されている。ソース(11)及びドレイン(12)は側壁スペーサ(14)及び(15)に関する接触から、各フィールド酸化物領域(16)及び(17)まで延びている。ゲート誘電体層(18)は本発明のドープされた金属酸化物材料である。 In one embodiment of the invention, the doped dielectric material is a gate dielectric material in a MOSFET device. Such a device is schematically depicted in FIG. The MOSFET (10) has a source (11), a drain (12) and a gate (13). The gate (13) is disposed between the side wall spacers (14) and (15). The source (11) and drain (12) extend from contact with the sidewall spacers (14) and (15) to each field oxide region (16) and (17). The gate dielectric layer (18) is the doped metal oxide material of the present invention.
本発明の第2の実施例において、ドープされた誘電体材料は、フラッシュEPROMデバイスのIPDである。そのようなデバイスが、図2に示されている。デバイスは中に形成されたソース(112)、ドレイン(114)及びチャネル領域(116)を有する基板(110)上に形成された二酸化シリコン(SiO2)の層をもつ。酸化物は当業者にはよく知られたO2及びN2Oのような通常の雰囲気中での炉酸化及び急速熱酸化(RTO)といった従来の技術によって形成される。 In a second embodiment of the invention, the doped dielectric material is the IPD of a flash EPROM device. Such a device is shown in FIG. The device has a layer of silicon dioxide (S i O 2 ) formed on a substrate (110) having a source (112), a drain (114) and a channel region (116) formed therein. The oxides are formed by conventional techniques such as furnace oxidation and rapid thermal oxidation (RTO) in a normal atmosphere, such as O 2 and N 2 O, well known to those skilled in the art.
ポリシリコンフローティングゲート(122)が、ゲート酸化物層(120)上に形成される。ポリシリコン層(122)は化学気相堆積(CVD)のような従来の技術を用いて形成される。ポリシリコン層(122)の厚さは、設計上の選択である。典型的な場合、フローティングゲートの厚さは、約50nmないし約100nmである。 A polysilicon floating gate (122) is formed on the gate oxide layer (120). The polysilicon layer (122) is formed using conventional techniques such as chemical vapor deposition (CVD). The thickness of the polysilicon layer (122) is a design choice. Typically, the thickness of the floating gate is about 50 nm to about 100 nm.
IPD(124)は従来の技術を用いて、フローティングゲート上に形成される。典型的な場合、スパッタリング、化学気相堆積又は酸化といった技術が、IPD層を形成するために用いられる。先に述べたように、もしIPD層が少くとも約8の誘電定数をもつが、フローティングゲートからの著しい漏れ電流を生じなければ有利である。この実施例において、ドーパント濃度は許容されない高い漏れ及び許容されない低い降伏強度をもつ材料を生じさせてはならない。 The IPD (124) is formed on the floating gate using conventional techniques. Typically, techniques such as sputtering, chemical vapor deposition or oxidation are used to form the IPD layer. As mentioned earlier, it is advantageous if the IPD layer has a dielectric constant of at least about 8 but does not cause significant leakage current from the floating gate. In this example, the dopant concentration should not result in a material with unacceptably high leakage and unacceptably low yield strength.
少くとも約10年間その電荷を、デバイスが保持するためには、IPD層を貫く電荷の漏れは、約10−14A/cm2以下にすべきである。この実施例において、電荷がフローティングゲート上に保たれるように、低漏れ材料が望ましい。上述の誘電材料は、この要件にあう材料の例である。 In order for the device to retain that charge for at least about 10 years, the charge leakage through the IPD layer should be no more than about 10 −14 A / cm 2 . In this embodiment, a low leakage material is desirable so that charge is kept on the floating gate. The dielectric materials described above are examples of materials that meet this requirement.
制御ゲート(126)はIPD層(124)上に形成された導電性材料の層である。制御ゲートはドープされたポリシリコン、金属シリサイド、チタン窒化物又はポリシリコンと金属シリサイドの二重層である。制御ゲート層はMOSデバイスを作製する従来の技術を用いて形成され、パターン形成される。 The control gate (126) is a layer of conductive material formed on the IPD layer (124). The control gate is doped polysilicon, metal silicide, titanium nitride or a double layer of polysilicon and metal silicide. The control gate layer is formed and patterned using conventional techniques for fabricating MOS devices.
この実施例において、本発明のデバイスでは、IPD層の材料及び厚さは、低電圧で動作し、フローティングゲート上の電荷を、適切な長期間保持するデバイスが実現されるように選択される。本発明のデバイスにおいて、IPD層の材料及び厚さと、トンネル酸化物(TO)層の厚さは、KIPDEIPD≒KTOETOであるように選択される。この式において、材料の誘電定数はKで示され、層の電界はEで示されている。本発明に関しては、ETOはデバイスが短時間で消去できる雰囲気ができるほど大きいと有利である。この点に関して、EIPD が少くとも約8MV(メガボルト)/cmであると有利である。また、EIPD が小さければ小さいほど、IPDの信頼性は高いから、EIPD が小さいと有利である。この点に関して、EIPD が約5MV/cmより小さいと有利である。KTOは固定されているから、KIPD が増すと、与えられた制御ゲート上のバイアスに対し、またトンネル酸化物及びIPDに対し、ETOは増加する。 In this embodiment, in the device of the present invention, the material and thickness of the IPD layer are selected to achieve a device that operates at a low voltage and holds the charge on the floating gate for an appropriate long period of time. In the device of the present invention, the material and thickness of the IPD layer and the thickness of the tunnel oxide (TO) layer are selected such that K IPD E IPD ≈K TO E TO . In this equation, the dielectric constant of the material is denoted by K and the electric field of the layer is denoted by E. In the context of the present invention, ETO is advantageously large enough to create an atmosphere in which the device can be erased in a short time. In this regard, it is advantageous if the E IPD is at least about 8 MV (megavolt) / cm. Also, the smaller the E IPD, since the reliability of the IPD is high, it is advantageous and E IPD is small. In this regard, it is advantageous if the E IPD is less than about 5 MV / cm. Since K TO is fixed, the K IPD increases, to bias on a given control gate, also with respect to the tunnel oxide and IPD, E TO increases.
本発明の第3の実施例において、DRAMデバイスの蓄積容量中で誘電体材料が用いられる。本発明の第4の実施例において、誘電体材料は線形容量中で用いられる。他の集積及び個別容量用に、本発明の誘電体材料を用いることも考えられる。 In a third embodiment of the present invention, a dielectric material is used in the storage capacitor of a DRAM device. In a fourth embodiment of the invention, the dielectric material is used in a linear capacitor. It is also conceivable to use the dielectric material of the present invention for other integrations and discrete capacitors.
上述の実施例において、誘電体材料は1種のドーパントを含む単一の層として述べてきた。しかし、誘電体層が材料の1ないし複数の個別の層を含むことも考えられる。多層の実施例において、層の少くとも1つは、先に述べたようにドープされている。当業者は1つの層を所望の誘電体層を作るために用い、1つの層を誘電体層と隣接した層間の界面を改善するために用いる時、多層構造は有用であることを認識するであろう。同様に、ドープされた層は1ないし複数のドーパントを含むことも考えられる。たとえば、第1のドーパントは金属酸化物の誘電特性を改善するために、金属酸化物中に添加し、第2のドーパントは誘電体材料と誘電体層に隣接した材料間の界面を改善するために添加できる。 In the above embodiments, the dielectric material has been described as a single layer containing one dopant. However, it is also conceivable that the dielectric layer includes one or more individual layers of material. In the multi-layer embodiment, at least one of the layers is doped as described above. Those skilled in the art will recognize that multilayer structures are useful when one layer is used to make the desired dielectric layer and one layer is used to improve the interface between the dielectric layer and the adjacent layer. I will. Similarly, a doped layer can include one or more dopants. For example, a first dopant is added in the metal oxide to improve the dielectric properties of the metal oxide, and a second dopant is to improve the interface between the dielectric material and the material adjacent to the dielectric layer. Can be added.
実施例1
ドープ及びアンドープアルミニウム酸化物のいくつかの薄膜を形成した。用いたドーパントはジルコニウム及びシリコンである。薄膜は6インチシリコンウエハ上に形成した。金属酸化物薄膜を基板上に形成する前に、フッ化水素酸の水溶液(15:1HF)を用いて、基板を清浄化した。清浄化後、それ以上自然の酸化物が成長しないように、シリコン基板をロードロック真空容器中に置いた。
Example 1
Several thin films of doped and undoped aluminum oxide were formed. The dopants used are zirconium and silicon. The thin film was formed on a 6 inch silicon wafer. Prior to forming the metal oxide thin film on the substrate, the substrate was cleaned with an aqueous solution of hydrofluoric acid (15: 1 HF). After cleaning, the silicon substrate was placed in a load lock vacuum vessel so that no further native oxide grew.
アルゴン/酸素雰囲気中での反応性スパッタリングを用いて、ドープ及びアンドープアルミニウム酸化物薄膜を基板上に形成した。重量で1パーセントのシリコンを一様に分布させたアルミニウムターゲットを、シリコンドープ薄膜を形成するために用いた。0.5重量パーセントのジルコニウムを一様に分布させたアルミニウムターゲットを、ジルコニウムドープ薄膜を形成するために用いた。高純度(99.9重量パーセント)アルミニウムターゲットを、アンドープアルミニウム酸化物薄膜を形成するために用いた。 Doped and undoped aluminum oxide thin films were formed on the substrate using reactive sputtering in an argon / oxygen atmosphere. An aluminum target with a uniform distribution of 1 percent silicon by weight was used to form the silicon doped thin film. An aluminum target with a uniform distribution of 0.5 weight percent zirconium was used to form the zirconium doped thin film. A high purity (99.9 weight percent) aluminum target was used to form the undoped aluminum oxide thin film.
薄膜は所望のターゲットをスパッタ室中に置くことにより形成した。次に、アルゴン及び酸素を容器中に導入した。約1kWないし約2kWの範囲で、交流(AC)パワーを陰極と陽極間に印加することにより、プラズマグローを成長させた。(用いる具体的な電流は、用いるシステムに依存する。)ターゲットの表面を酸化するために、堆積前にターゲットに焼き入れを行った。焼き入れが完了したことを確かめるために、電流及び電圧をモニターした。 The thin film was formed by placing a desired target in the sputtering chamber. Next, argon and oxygen were introduced into the container. A plasma glow was grown by applying alternating current (AC) power between the cathode and anode in the range of about 1 kW to about 2 kW. (The specific current used depends on the system used.) In order to oxidize the target surface, the target was quenched prior to deposition. Current and voltage were monitored to ensure that quenching was complete.
金属酸化物薄膜を上にスパッタ堆積する間、基板は380℃に保った。堆積速度は1.1Å/秒であった。得られる薄膜の厚さは、ウエハの表面上で2パーセント以内で変化した。酸素及びアルゴン流速は、マスフローコントローラを用いて薄膜堆積中制御した。 The substrate was kept at 380 ° C. while the metal oxide thin film was sputter deposited onto it. The deposition rate was 1.1 kg / sec. The resulting thin film thickness varied within 2 percent on the surface of the wafer. Oxygen and argon flow rates were controlled during thin film deposition using a mass flow controller.
各薄膜の厚さは、約10nmであった。薄膜の各型の1つは、続いて550℃に置いて窒素雰囲気中で30分間アニールした。薄膜の各型の第2のものは、続いて550℃において酸素雰囲気中で30分間アニールした。 The thickness of each thin film was about 10 nm. One of each type of thin film was then annealed at 550 ° C. for 30 minutes in a nitrogen atmosphere. The second of each type of thin film was subsequently annealed at 550 ° C. in an oxygen atmosphere for 30 minutes.
各種薄膜を貫く漏れ電流は、当業者に周知の標準的な電流−電圧(I−V)試験を用いて測定した。印加した電圧は1.5MV(メガボルト)/cmであった。薄膜の表面積は、1000μm2 であった。550℃でアニールした薄膜についての結果は、図2に報告されている。図2はアンドープ薄膜を貫く漏れ電流は、シリコン又はジルコニウムをドープしたアルミニウム酸化物薄膜中の漏れ電流より、1桁以上大きいことを示している。酸素雰囲気中でアニールした薄膜の漏れ電流特性は、窒素雰囲気中でアニールした薄膜の漏れ特性と実質的に同一であった。800℃でアニールした薄膜とアニールしない薄膜は、同様な傾向を示した。 The leakage current through the various films was measured using standard current-voltage (IV) tests well known to those skilled in the art. The applied voltage was 1.5 MV (megavolt) / cm. The surface area of the thin film was 1000 μm 2 . The results for thin films annealed at 550 ° C. are reported in FIG. FIG. 2 shows that the leakage current through the undoped thin film is more than an order of magnitude greater than the leakage current in the silicon oxide or zirconium doped aluminum oxide thin film. The leakage current characteristics of the thin film annealed in the oxygen atmosphere were substantially the same as the leakage characteristics of the thin film annealed in the nitrogen atmosphere. The thin film annealed at 800 ° C. and the thin film not annealed showed the same tendency.
各種薄膜の界面とラップ密度は、当業者には周知の標準的な容量−電圧(C−V)準静的法を用いて測定した。薄膜の表面積は100μm2 であった。結果は図3に示されている。図3はアンドープ薄膜の界面状態密度は、シリコン又はジルコニウムをドープしたアルミニウム酸化物薄膜中の界面状態密度より、1桁以上大きかった。 The interface and lap density of the various thin films were measured using standard capacitance-voltage (CV) quasi-static methods well known to those skilled in the art. The surface area of the thin film was 100 μm 2 . The result is shown in FIG. In FIG. 3, the interface state density of the undoped thin film was one order of magnitude higher than the interface state density in the aluminum oxide thin film doped with silicon or zirconium.
10 MOSFET
11 ソース
12 ドレイン
13 ゲート
14,15 側壁スペーサ
16,17 フィールド酸化物領域
110 基板
112 ソース
114 ドレイン
116 チャネル領域
120 ゲート酸化物層
122 フローティングゲート,ポリシリコン層
124 IPD,IPD層
126 制御ゲート
10 MOSFET
11
Claims (8)
前記誘電体材料は、アルミニウム酸化物、イットリウム酸化物、五酸化タンタル、バナジウム酸化物からなる群より選択された金属酸化物であって、
ジルコニウム、チタン及びハフニウムからなる群より選択された少なくとも一つのIV族元素でドープし、前記ドーピング後に前記IV族元素がその状態において酸化され、前記誘電体材料は、酸素の存在下、スパッタリング、化学気相堆積及び原子層堆積からなる群より選択される堆積法により生成され、
前記金属酸化物は第1の酸化物形成エネルギーを有し、前記IV族元素の酸化物は第2の酸化物形成エネルギーを有し、前記第1の酸化物形成エネルギーは前記第2の酸化物形成エネルギーより大きく、
前記ドーパントの量は、0.1重量パーセントないし30重量パーセントであり、
前記ドーパントの存在は金属酸化物のバルク中の欠陥及び前記金属酸化物と隣接する半導体又は金属層の界面に形成する欠陥を安定化する、
集積回路デバイスの製造方法。 A method of manufacturing an integrated circuit device comprising discrete elements comprising a dielectric material or a semiconductor device comprising:
The dielectric material is a metal oxide selected from the group consisting of aluminum oxide, yttrium oxide, tantalum pentoxide, vanadium oxide,
Zirconium doped with at least one Group IV element selected from the group consisting of titanium and hafnium, the Group IV element after said doping is oxidized in this state, the dielectric material in the presence of oxygen, sputtering, Produced by a deposition method selected from the group consisting of chemical vapor deposition and atomic layer deposition;
The metal oxide has a first oxide formation energy, the group IV element oxide has a second oxide formation energy, and the first oxide formation energy is the second oxide. Greater than the formation energy,
The amount of dopant is from 0.1 weight percent to 30 weight percent;
The presence of the dopant stabilizes defects in the bulk of the metal oxide and defects formed at the interface of the semiconductor or metal layer adjacent to the metal oxide;
A method of manufacturing an integrated circuit device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/041434 | 1998-03-12 | ||
US09/041,434 US5923056A (en) | 1996-10-10 | 1998-03-12 | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008139084A Division JP2008252118A (en) | 1998-03-12 | 2008-05-28 | Electronic component with doped metal oxide dielectric material, and process for manufacturing electronic component with doped metal oxide dielectric material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013093589A JP2013093589A (en) | 2013-05-16 |
JP5650185B2 true JP5650185B2 (en) | 2015-01-07 |
Family
ID=21916496
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11065742A Pending JPH11297867A (en) | 1998-03-12 | 1999-03-12 | Electronic component having doped metal oxide dielectric material and manufacturing process of electronic component having doped metal oxide dielectric material |
JP2008139084A Pending JP2008252118A (en) | 1998-03-12 | 2008-05-28 | Electronic component with doped metal oxide dielectric material, and process for manufacturing electronic component with doped metal oxide dielectric material |
JP2012269037A Expired - Fee Related JP5650185B2 (en) | 1998-03-12 | 2012-12-10 | Integrated circuit device comprising discrete elements or semiconductor devices comprising dielectric material |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11065742A Pending JPH11297867A (en) | 1998-03-12 | 1999-03-12 | Electronic component having doped metal oxide dielectric material and manufacturing process of electronic component having doped metal oxide dielectric material |
JP2008139084A Pending JP2008252118A (en) | 1998-03-12 | 2008-05-28 | Electronic component with doped metal oxide dielectric material, and process for manufacturing electronic component with doped metal oxide dielectric material |
Country Status (2)
Country | Link |
---|---|
JP (3) | JPH11297867A (en) |
KR (1) | KR100319571B1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100604536B1 (en) * | 1999-12-24 | 2006-07-24 | 주식회사 하이닉스반도체 | Method of forming a gate dielectric film in a semiconductor device |
KR100373165B1 (en) * | 1999-12-24 | 2003-02-25 | 주식회사 하이닉스반도체 | Method of manufacturing a semiconductor device utilizing a gate dielelctric |
US7419903B2 (en) | 2000-03-07 | 2008-09-02 | Asm International N.V. | Thin films |
DE60125338T2 (en) * | 2000-03-07 | 2007-07-05 | Asm International N.V. | GRADED THIN LAYERS |
JP2001257344A (en) | 2000-03-10 | 2001-09-21 | Toshiba Corp | Semiconductor device and manufacturing method of semiconductor device |
KR100390831B1 (en) * | 2000-12-18 | 2003-07-10 | 주식회사 하이닉스반도체 | Method for forming Ta2O5 dielectric layer by Plasma Enhanced Atomic Layer Deposition |
JP4895430B2 (en) | 2001-03-22 | 2012-03-14 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US7253467B2 (en) | 2001-06-28 | 2007-08-07 | Samsung Electronics Co., Ltd. | Non-volatile semiconductor memory devices |
US20060180851A1 (en) | 2001-06-28 | 2006-08-17 | Samsung Electronics Co., Ltd. | Non-volatile memory devices and methods of operating the same |
US8253183B2 (en) | 2001-06-28 | 2012-08-28 | Samsung Electronics Co., Ltd. | Charge trapping nonvolatile memory devices with a high-K blocking insulation layer |
KR100440777B1 (en) * | 2001-11-12 | 2004-07-21 | 주식회사 하이닉스반도체 | Method of manufacturing capacitor in semiconductor device |
KR100655780B1 (en) | 2004-12-20 | 2006-12-08 | 삼성전자주식회사 | Flash memory device and Method of manufacturing the flash memory device using the same |
KR100623177B1 (en) | 2005-01-25 | 2006-09-13 | 삼성전자주식회사 | Dielectric structure having a high dielectric constant, method of forming the dielectric structure, non-volatile semiconductor memory device including the dielectric structure, and method of manufacturing the non-volatile semiconductor memory device |
KR100648632B1 (en) | 2005-01-25 | 2006-11-23 | 삼성전자주식회사 | Method for forming a dielectric structure having a high dielectric constant and method of manufacturing a semiconductor device having the dielectric structure |
JP4719035B2 (en) | 2006-03-13 | 2011-07-06 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
JP2007053392A (en) * | 2006-10-02 | 2007-03-01 | Toshiba Corp | Method of manufacturing mis field effect transistor and method of manufacturing semiconductor memory device |
JP5060110B2 (en) | 2006-11-27 | 2012-10-31 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
WO2009133500A1 (en) * | 2008-04-28 | 2009-11-05 | Nxp B.V. | Method of forming a nanocluster-comprising dielectric layer and device comprising such a layer |
KR102014132B1 (en) | 2017-11-28 | 2019-08-26 | 광운대학교 산학협력단 | Fabrication method of solution-processed high quality Al2O3/BN dielectric films for high performance IGZO TFTs, and IGZO TFTs thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56147470A (en) * | 1980-04-17 | 1981-11-16 | Nec Corp | Semiconductor device |
JPH0722183B2 (en) * | 1981-10-09 | 1995-03-08 | 富士通株式会社 | Method for manufacturing dielectric layer for semiconductor device |
US4432035A (en) * | 1982-06-11 | 1984-02-14 | International Business Machines Corp. | Method of making high dielectric constant insulators and capacitors using same |
US4698787A (en) * | 1984-11-21 | 1987-10-06 | Exel Microelectronics, Inc. | Single transistor electrically programmable memory device and method |
JPS61156865A (en) * | 1984-12-28 | 1986-07-16 | Nec Corp | Semiconductor device |
JPS632363A (en) * | 1986-06-20 | 1988-01-07 | Nec Corp | Capacity film |
JP2770856B2 (en) * | 1987-08-20 | 1998-07-02 | 東京農工大学長 | Method of forming high dielectric constant oxide thin film |
JPH0656877B2 (en) | 1987-09-10 | 1994-07-27 | シャープ株式会社 | Method for producing tantalum oxide thin film |
JPH01225148A (en) * | 1988-03-04 | 1989-09-08 | Toshiba Corp | Thin film of dielectric and manufacture thereof |
JP2933351B2 (en) * | 1990-04-25 | 1999-08-09 | 沖電気工業株式会社 | Method for manufacturing semiconductor device |
JPH04359557A (en) * | 1991-06-06 | 1992-12-11 | Nec Corp | Method of manufacturing semiconductor device |
KR960004462B1 (en) * | 1992-08-07 | 1996-04-06 | 삼성전자주식회사 | Process for producing memory capacitor in semiconductor device |
JPH06188420A (en) * | 1992-12-16 | 1994-07-08 | Matsushita Electric Ind Co Ltd | Insulation thin film and tft liquid crystal display using same |
JP3207978B2 (en) * | 1993-06-28 | 2001-09-10 | 康夫 垂井 | Capacitor and method of forming the same |
-
1999
- 1999-03-11 KR KR1019990008028A patent/KR100319571B1/en not_active IP Right Cessation
- 1999-03-12 JP JP11065742A patent/JPH11297867A/en active Pending
-
2008
- 2008-05-28 JP JP2008139084A patent/JP2008252118A/en active Pending
-
2012
- 2012-12-10 JP JP2012269037A patent/JP5650185B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008252118A (en) | 2008-10-16 |
JPH11297867A (en) | 1999-10-29 |
KR100319571B1 (en) | 2002-01-09 |
KR19990077767A (en) | 1999-10-25 |
JP2013093589A (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5650185B2 (en) | Integrated circuit device comprising discrete elements or semiconductor devices comprising dielectric material | |
US5923056A (en) | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials | |
US5973911A (en) | Ferroelectric thin-film capacitor | |
KR100258979B1 (en) | Method for manufacturing capacitor of semiconductor by heat treatment of dieledtric layer under hydrogen ambitent | |
US7193280B2 (en) | Indium oxide conductive film structures | |
US6673668B2 (en) | Method of forming capacitor of a semiconductor memory device | |
JP3833841B2 (en) | Semiconductor device and manufacturing method thereof | |
US6566186B1 (en) | Capacitor with stoichiometrically adjusted dielectric and method of fabricating same | |
KR100360413B1 (en) | Method of manufacturing capacitor of semiconductor memory device by two-step thermal treatment | |
US6586796B2 (en) | Capacitor with high dielectric constant materials | |
US20030116795A1 (en) | Method of manufacturing a tantalum pentaoxide - aluminum oxide film and semiconductor device using the film | |
US6670668B2 (en) | Microelectronic structure, method for fabricating it and its use in a memory cell | |
JP4063570B2 (en) | Capacitor forming method for semiconductor device | |
KR100559136B1 (en) | Semiconductor capacitor and manufacutring method therefor | |
KR100580771B1 (en) | Method of forming flash memory device | |
JPH06232344A (en) | Capacitor of semiconductor device | |
Han et al. | Effects of post-deposition annealing on the electrical properties and reliability of ultrathin chemical vapor deposited Ta/sub 2/O/sub 5/films | |
KR100293721B1 (en) | Capacitor manufacturing method having a tantalum oxide film as a dielectric film | |
KR100231604B1 (en) | Manufacturing method of capacitor of semiconductor device | |
KR100611386B1 (en) | Method For Treating The High Temperature Of Tantalium Oxide Capacitor | |
KR100538074B1 (en) | Capacitor Manufacturing Method of Semiconductor Device | |
KR960010001B1 (en) | Semiconductor memory device fabrication process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131029 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131031 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140129 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20140819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141014 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5650185 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |