JP5644257B2 - 温度センサ - Google Patents

温度センサ Download PDF

Info

Publication number
JP5644257B2
JP5644257B2 JP2010185148A JP2010185148A JP5644257B2 JP 5644257 B2 JP5644257 B2 JP 5644257B2 JP 2010185148 A JP2010185148 A JP 2010185148A JP 2010185148 A JP2010185148 A JP 2010185148A JP 5644257 B2 JP5644257 B2 JP 5644257B2
Authority
JP
Japan
Prior art keywords
temperature
heat
infrared
sensing element
infrared absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010185148A
Other languages
English (en)
Other versions
JP2012042384A (ja
Inventor
健太郎 潮田
健太郎 潮田
小林 浩
浩 小林
裕 松尾
裕 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010185148A priority Critical patent/JP5644257B2/ja
Publication of JP2012042384A publication Critical patent/JP2012042384A/ja
Application granted granted Critical
Publication of JP5644257B2 publication Critical patent/JP5644257B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Description

本発明は熱源の温度を非接触測定する温度センサに関する。
熱源の温度を非接触測定するための温度センサとして、熱源から輻射される赤外線の熱量を検出する方式が知られている。この種の温度センサは、熱源からの赤外線を効率よく吸収する赤外線吸収膜を備えており、赤外線受光に起因する赤外線吸収膜の温度上昇を感温素子で検知する。感温素子は、温度に対応して電気的特性が変化する温度特性を有しており、感温素子から出力される電気信号に基づいて熱源の温度を推定することができる。このような感温素子として、温度に応じて抵抗値が変化する抵抗温度特性を有するサーミスタ、又は温度に応じた熱起電力を発生する熱電対等が知られている。また、赤外線吸収膜として、遠赤外線の波長帯域を吸収する特性を有するポリイミド等の高分子フィルムが知られている。
感温素子から出力される電気信号は、赤外線吸収膜上に配線されたリード配線を伝わって検出回路に供給される。リード配線の熱伝導率(400W/mK)は、赤外線吸収膜の熱伝導率(0.2〜0.4W/mK)よりも極めて高いため、赤外線吸収膜から感温素子に流れ込んだ熱量の一部は、感温素子の温度上昇に殆ど寄与せずに、リード配線を伝わって外部に流出してしまい、感温素子の感度低下を招く要因の一つとして指摘されている。このような事情に鑑み、感温素子からリード配線を伝わって外部に熱が流出することを抑制するための配線パターンとして、例えば、実用新案登録2506241号公報に開示されているように、ミアンダ状の配線パターンが知られている。ミアンダ状の配線パターンは、繰り返し折り返しながら屈曲しているため、実質的な配線長を長くすることが可能になり、熱抵抗を高くできるという利点を有している。
実用新案登録2506241号公報
しかし、赤外線吸収膜の面積が小さいと、限られたスペース内にミアンダ状のリード配線を詰め込まなければならないので、折り曲げの曲率半径は極めて小さいものとなり、回路設計上の制限を受ける虞がある。また、リード配線を小さな曲率半径で繰り返し屈曲させると、折り返し箇所に作用する応力によってリード配線の剥離やひび割れ等を引き起こす場合があるので、好ましくない。特に、感温素子からの熱流出抑制のためにリード配線の熱抵抗を高くする場合には、リード配線を細く薄くするので、応力に対して脆くなりやすくなる。
そこで、本発明は、リード配線の曲率半径を小さくすることなく、その配線長を長くできる温度センサを提案することを課題とする。
上記の課題を解決するため、本発明に係わる温度センサは、熱源の温度に対応した電気信号を出力する感温素子と、電気信号を出力するためのリード配線と、を備え、リード配線は、所定点の周囲を巻回するように配線されている。このような配線構造によれば、リード配線が配線される領域の周縁に沿ってリード配線を巻回させることができるので、リード配線が配線される領域面積が小さくても、リード配線の配線長を長くできる。
温度センサは、熱源から輻射される赤外線を吸収して発熱する赤外線吸収膜を更に備えてもよい。感温素子は、赤外線吸収膜の熱量を検知することにより熱源の温度に対応した電気信号を出力することができる。また、赤外線吸収膜の周縁に沿ってリード配線を巻回させることができるので、赤外線吸収膜の面積が小さくても、リード配線の配線長を長くできる。リード配線による熱伝導以外の熱が感温素子から逃げる場合を想定した場合、熱の逃げる方向に対してリード配線が横断しているため、熱がより逃げにくい構成を提供できる。
本発明に係わる温度センサは、赤外線吸収膜に分布する熱量を感温素子に集熱するための集熱部材を更に備えてもよい。赤外線吸収膜に分布する熱量は、集熱部材を伝わって感温素子に速やかに伝熱するため、熱源の温度を正確かつ応答性よく測定することができる。
本発明に係わる温度センサによれば、リード配線の曲率半径を小さくすることなくその配線長を長くできる。
実施例1に係わる温度センサの説明図である。 実施例2に係わる温度センサの説明図である。 比較例に係わる温度センサの説明図である。 実施例4に係わる温度センサの回路構成図である。 実施例4に係わる温度センサの断面図である。 実施例4に係わる温度センサの一部平面図である。 実施例4に係わる温度センサの説明図である。 実施例4に係わる温度センサの一部断面図である。 実施例4に係わる温度センサの一部断面図である。
以下、各図を参照しながら本発明に係わる実施例について説明する。同一の部材については同一の符号を付すものとし、重複する説明を省略する。なお、図面は、模式的なものであり、部材相互間の寸法の比率や部材の形状等は、本発明の効果が得られる範囲内で現実のセンサ構造とは異なっていてもよい。
図1は実施例1に係わる温度センサ100の説明図である。温度センサ100は、熱源から輻射される赤外線を吸収して発熱する赤外線吸収膜20と、赤外線吸収膜20の熱量を検知することにより熱源の温度に対応した電気信号を出力する感温素子10と、感温素子10から電気信号を出力するためのリード配線31,32とを備える。赤外線吸収膜20の材質は、熱源からの輻射赤外線を効率よく吸収して発熱する材質であればよく、例えば、遠赤外線と称される4μm〜10μmの波長帯域の光に吸収スペクトラムを有する材質が望ましい。このような材質として、フッ素、シリコーン、ポリエステル、ポリイミド、ポリエチレン、ポリカーボネート、PPS(ポリフェニレンスルフィド)等の高分子材料からなる樹脂が好ましい。感温素子10は、温度に応じて電気的特性が変化するセンサ素子(例えば、抵抗温度特性を有するサーミスタ、サーモパイル、金属測温度体等)である。感温素子10は、リード配線31,32にそれぞれ接続する電極11,12を備えており、感温素子10の温度変化に対応する電気特性の変化は、熱源の温度に対応する電気信号としてリード配線31,32から外部に取り出される。例えば、感温素子10が抵抗温度特性を有するサーミスタである場合には、感温素子10の温度変化は、抵抗値変化として現れる。感温素子10に予め所定の電流を流しておくことにより、感温素子10の抵抗値変化は、電圧変化として検出される。感温素子10の出力電圧は、熱源の温度に対応する電気信号として信号処理される。
リード配線31,32は、所定点の周囲を巻回するように配線されている。所定点の位置は、特に限定されるものではないが、例えば、感温素子10が配置されている箇所の任意の箇所が好ましく、感温素子10の中心位置がより好ましい。このような配線構造によれば、赤外線吸収膜20の周縁に沿ってリード配線31,32を巻回させることができるので、赤外線吸収膜20の面積が小さくても、リード配線31,32の配線長を長くできる。また、所定点の周囲を巻回するようにリード配線31,32を巻回させることにより、リード配線31,32の屈曲部分50の曲率半径を大きくできるため、リード配線31,32を急峻に折り曲げる必要がなく、リード配線31,32の剥離やひび割れ等を効果的に抑制できる。例えば、赤外線吸収膜20の形状が矩形である場合には、リード配線31,32の屈曲部分50の折り曲げ角度を90°程度に抑えることができる。
図2は実施例2に係わる温度センサ200の説明図である。同図に示すように、温度センサ200は、集熱部材40を備える点において実施例1と相違し、その余の点で実施例1,2は共通のセンサ構造を有している。集熱部材40は、赤外線吸収膜20の各所に分布している熱量を捕捉し、これを感温素子10に集熱させるための部材である。集熱部材40は、感温素子10近傍の領域だけでなく感温素子10から離れた領域からも広範囲にわたって熱量を捕捉し、感温素子10に効率良く集熱できるように、電極11,12を起点として赤外線吸収膜20の面内に放射状に形成されている。集熱部材40は、電気信号の伝送に係わる部材ではなく、熱伝導のみに係わる部材であるため、外部の部品に接続することなく、赤外線吸収膜20の面内で終端している。このため、集熱部材40から外部に熱が流出することはなく、集熱部材40の終端から感温素子10へ向かって一方向に熱が流れる。集熱部材40は、赤外線吸収膜20の各所に蓄熱している熱量を万遍なく捕捉するために、電極11,12を起点として赤外線吸収膜20の外周端部に向かって枝分かれを繰り返しながら放射状に形成されているのが好ましい。このような構成により、赤外線吸収膜20に分布する熱量は、集熱部材40の枝と枝との間に島状に点在し、赤外線吸収膜20と感温素子10との間の温度勾配により、感温素子10へ向けて熱の流れを生じさせることができる。また、集熱部材40を放射状に形成することで、熱を捕捉できる集熱範囲50を赤外線吸収膜20全体に拡大することが可能になり、集熱効率を高めることができる。また、集熱部材40と電極11,12との接続部分から赤外線吸収膜20の各点へ至る伝熱経路を短くできるため、赤外線吸収膜20に分布する熱量を低熱抵抗の伝熱経路を通じて感温素子10へ素早く集熱することができる。これにより、感温素子10は、熱源の温度変化に対して応答性よく反応することができる。
集熱部材40を流れる熱量は、感温素子10に近づく程、多くなるので、感温素子10に近づく程、集熱部材40を太くして熱抵抗を下げるのが好ましい。これにより、集熱部材40は、終端に近づく程、細くなり、熱抵抗が高くなるので、終端方向への熱の流れを抑制し、感温素子10への熱の流れを促進させることができる。また、赤外線吸収膜20の各点に分布する熱量が少ない場合であっても、低抵抗の集熱部材40を介して熱が集められ、感温素子10へ流れ込むため、感温素子10の温度低下を抑制し、感度特性を高めることができる。
熱源からの赤外線が赤外線吸収膜20に輻射され始めた時点では、感温素子10と赤外線吸収膜20との間の温度差は大きく、両者の温度勾配によって集熱部材40から感温素子10へ熱が流入する。すると、感温素子10の温度上昇に伴い、温度勾配は小さくなるので、感温素子10への熱流入は少なくなる。一方、感温素子10に集熱された熱量の一部は、リード配線31,32や外界雰囲気を伝わって放熱され、感温素子10の温度低下が生じるため、温度勾配によって感温素子10への熱流入が持続する。そして、感温素子10へ流れ込む熱量と感温素子10から流れ出す熱量とが釣り合ったところで、熱平衡状態になり、感温素子10の温度は一定になる。
集熱部材40の材質は、赤外線吸収膜20の熱抵抗よりも小さい熱抵抗を有し、熱伝導性に優れている材質であればよい。例えば、集熱部材40の材質は、リード配線31,32の材質と同一でもよく、或いは異なるものでもよい。集熱部材40の材質がリード配線31,32の材質と同一である場合には、集熱部材40とリード配線31,32とを同一の成膜工程で形成できるという利点を有する。例えば、赤外線吸収膜20上に銅箔を形成し、公知の印刷技術を用いてこれを所定形状にパターニングすることで、導電性を有する集熱部材40とリード配線31,32とを一括形成することができる。集熱部材40の材質がリード配線31,32の材質と異なる場合には、集熱部材40の材質として、例えば、金属以外の熱伝導率の高い材質(カーボングラファイト膜など)を用いてもよい。
リード配線31,32は、所定点の周囲(より詳細には、集熱部材40の周囲)を巻回するように配線されている。このような配線構造によれば、赤外線吸収膜20の周縁に沿ってリード配線31,32を巻回させることができるので、集熱部材40の形成領域41の面積を十分に確保しつつ、リード配線31,32の配線長を長くできる。一方、図3に示す比較例に係わる温度センサ300では、リード配線31,32をミアンダ状に折り返し屈曲させているため、リード配線31,32の形成領域71,72の占有面積によって集熱部材40の形成領域42の面積が圧迫されてしまい、集熱部材40の大面積化が困難である。また、リード配線31,32の屈曲部分70の折り曲げ角度は、回路設計上の制約により限度があるため、限られたスペースの中でその配線長を長くするのは困難である。実施例2と比較例とを比較すると、実施例2に係わる集熱部材40の形成領域41の面積は、比較例に係わる集熱部材40の形成領域42の面積の約1.5倍であり、且つ実施例2に係わるリード配線31,32の配線長は、比較例に係わるリード配線31,32の配線長の約1.5倍である。このように、実施例2によれば、集熱部材40の大面積化による集熱効率の向上と、リード配線31,32の熱抵抗増大による熱流出の抑制を両立させることができる。
比較例では、リード配線31,32の屈曲部分70に作用する応力を低減するために、屈曲部分70の曲率半径を大きくすると、リード配線31,32の折り返し回数が少なくなるので、結果的にその配線長が短くなってしまう。これに対し、実施例2では、リード配線31,32の屈曲部分60に作用する応力を低減するために、屈曲部分60の折り曲げ角度を大きくしても、その配線長は殆ど短くならない。このように、実施例2によれば、屈曲部分60の曲率半径を大きくすることによって、屈曲部分60に作用する応力を低減しつつ、リード配線31,32の配線長を長くすることができる。なお、実施例2において、赤外線吸収膜20の四隅が丸まっている場合には、その丸みに沿って屈曲部分60を緩やかに(曲率半径を大きく)してもリード配線31,32の長さに殆ど影響は生じないが、比較例において、赤外線吸収膜20の四隅が丸まっている場合には、リード配線31,32と赤外線吸収膜20の四隅とが接触しないように屈曲部分70を緩やかにすると、屈曲部分60が広がるため折返し数が減り、リード配線31,32の配線長が短くなるという不都合が生じる。
図4は実施例3に係わる温度センサ400の回路構成図である。赤外線温度センサ400は、直列接続された赤外線検知用感温素子10A及び固定抵抗素子13Aから成るハーフブリッジ回路と、直列接続された温度補償用感温素子10B及び固定抵抗素子13Bから成るハーフブリッジ回路とが並列接続されたフルブリッジ回路を有している。二つの固定抵抗素子13A,13Bの接続点と、二つの感温素子10A,10Bの接続点との間には、電源14が接続されており、フルブリッジ回路に電流が流れるように構成されている。赤外線検知用感温素子10Aは、熱源から放射される赤外線の熱量を検知するためのセンサ素子であり、温度補償用感温素子10Bは、外部環境からの熱量を検知するためのセンサ素子である。赤外線検知用感温素子10Aが受け取る熱量は、熱源から放射される赤外線の熱量に限らず、外部環境からの熱量も受け取るため、外部環境からの熱量を温度補償用感温素子10Bで検出することにより、熱源から放射される赤外線の熱量(即ち、熱源の温度)を推定することができる。このため、赤外線検知用感温素子10Aは、熱源から放射される赤外線を受光できるように配置される一方、温度補償用感温素子10Bは、熱源から放射される赤外線を受光しないように(言い換えれば、外部環境からの熱量のみを検知できるように)配置される。
赤外線検知用感温素子10Aと固定抵抗素子13Aとの接続点には出力端子15が接続され、温度補償用感温素子10Bと固定抵抗素子13Bとの接続点には出力端子16が接続されている。赤外線検知用感温素子10A及び温度補償用感温素子10Bの抵抗温度特性を略同一に調整し、固定抵抗素子13A,13Bの抵抗値を略同一に調整すると、赤外線温度センサ400に熱源からの赤外線が照射されない状態では、出力端子15,16の間の電圧はゼロとなる一方、赤外線温度センサ400に熱源からの赤外線が照射される状態では、赤外線検知用感温素子10A及び温度補償用感温素子10Bのそれぞれの抵抗値変化の相違により、出力端子電極15,16の間に不平衡電圧が出力される。この不平衡電圧と熱源の温度とを予め対応付けたマップデータを用意しておくことで、不平衡電圧から熱源の温度を推定することができる。
図5は温度センサ400の断面図であり、図6は温度センサ400の一部平面図である。図6に示すように、赤外線検知用感温素子10Aは、赤外線吸収膜20A上においてリード配線31A,32Aにそれぞれ接続する電極11A,12Aを備えており、赤外線検知用感温素子10Aの温度変化に対応する電気特性の変化は、熱源と外部環境からもたらされる熱量に対応する電気信号としてリード配線31A,32Aから外部に取り出される。同様に、温度補償用感温素子10Bは、赤外線吸収膜20B上においてリード配線31B,32Bにそれぞれ接続する電極11B,12Bを備えており、温度補償用感温素子10Bの温度変化に対応する電気特性の変化は、外部環境からもたらされる熱量に対応する電気信号としてリード配線31B,32Bから外部に取り出される。リード配線31A,32A,31B,32Bは、半田412を介して電線411に接続されている。なお、赤外線吸収膜20A,20Bは、相互に熱伝導しないように分離しているのが好ましい。図5に示すように、赤外線吸収膜20A,20Bは、スペーサ403を介してカバー402と底板401との間に介挿されている。カバー402は、熱源からの赤外線が温度補償用感温素子10Bに入射しないように遮蔽するとともに、熱源からの赤外線を赤外線吸収膜20Aに導くための導光部420を備える。電線411は、接着剤413によって底板401に接着されている。
温度センサ400の感度を向上させるための構造として、導光部420の開口面積を大きくとることが考えられるが、感温素子10A近傍の赤外線吸収膜20Aの温度分布しか感温素子10Aの温度変化に寄与しないため、図7に示すように、赤外線吸収膜20Aの面積(受光面積)は、導光部420の開口面積よりも小さくてもよい。赤外線吸収膜20Aの面積を導光部420の開口面積よりも小さくするための構造として、例えば図8に示すように、赤外線の受光面にアパーチャ421を設けて、赤外線吸収膜20Aの面積を小さくする構造、又は図9に示すように、導光部420の内壁をテーパ状にして赤外線吸収膜20Aの面積を小さくする構造等が考えられる。このような構造においては、赤外線吸収膜20Aの面積は、小さくなるため、リード配線31A,31Bの配線パターンは、実施例1或いは実施例2と同様の配線パターンに設計するのが好ましい。なお、図8に示すθ1及び図9に示すθ2は、それぞれ赤外線入射角度範囲を示す。赤外線吸収膜20Aには、実施例2と同様に、集熱部材を設けてもよい。また、導光部420の内壁には、赤外線吸収膜又は赤外線反射膜の何れか一方を形成してもよい。
本発明に係わる温度センサは、熱源の温度を非接触測定する用途に利用できる。
10…感温素子
11,12…電極
20…赤外線吸収膜
31,32…リード配線
40…集熱部材
100,200,300,400…温度センサ

Claims (1)

  1. 熱源から輻射される赤外線を吸収して発熱する赤外線吸収膜と、
    前記赤外線吸収膜の発熱を検知して前記熱源の温度に対応した電気信号を出力する感温素子と、
    前記電気信号を出力するためのリード配線と、を備え、
    前記リード配線は、感温素子の中心位置の周囲を巻回するように前記赤外線吸収膜上に配線され、
    前記赤外線吸収膜に分布する熱量を前記感温素子に集熱するための集熱部材を更に備え、
    前記感温素子は、前記赤外線吸収膜上において前記リード配線に接続する電極を備えており、
    前記集熱部材は、前記電極を起点として前記赤外線吸収膜の面内に放射状に形成され、
    前記リード配線は、前記集熱部材の周囲を巻回するように配線されている、温度センサ。
JP2010185148A 2010-08-20 2010-08-20 温度センサ Expired - Fee Related JP5644257B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010185148A JP5644257B2 (ja) 2010-08-20 2010-08-20 温度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010185148A JP5644257B2 (ja) 2010-08-20 2010-08-20 温度センサ

Publications (2)

Publication Number Publication Date
JP2012042384A JP2012042384A (ja) 2012-03-01
JP5644257B2 true JP5644257B2 (ja) 2014-12-24

Family

ID=45898876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185148A Expired - Fee Related JP5644257B2 (ja) 2010-08-20 2010-08-20 温度センサ

Country Status (1)

Country Link
JP (1) JP5644257B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677925B2 (ja) 2016-01-29 2020-04-08 三菱マテリアル株式会社 赤外線センサ
JP7008881B2 (ja) * 2019-11-21 2022-01-25 株式会社芝浦電子 赤外線温度センサ、温度検出装置、および画像形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771277B2 (ja) * 1989-09-06 1998-07-02 株式会社豊田中央研究所 赤外線センサ
JP2506241Y2 (ja) * 1989-09-26 1996-08-07 石塚電子株式会社 非接触形温度検出器
DE69610118T2 (de) * 1995-12-04 2001-02-01 Lockheed-Martin Ir Imaging Systems, Lexington Infrarot-strahlungsdetektor mit verkleinerter wirksamer fläche
JP5046198B2 (ja) * 2010-04-30 2012-10-10 Tdk株式会社 温度センサ

Also Published As

Publication number Publication date
JP2012042384A (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5866881B2 (ja) 赤外線温度センサ
US9568371B2 (en) Infrared sensor
JP4502256B2 (ja) 流量センサ
JP5514071B2 (ja) 温度センサ
JP5640529B2 (ja) 赤外線センサ及びこれを備えた回路基板
JP5046198B2 (ja) 温度センサ
EP2813826B1 (en) Infrared sensor and infrared sensor device
JP2007526472A (ja) アクティブ・マイクロボロメータおよびパッシブ・マイクロボロメータを備える放射の熱検出用装置の製造方法
CN105393097B (zh) 用于感测的装置
JP5644257B2 (ja) 温度センサ
JP5741830B2 (ja) 赤外線センサ装置
JP6476596B2 (ja) 温度センサ
JP2013113732A (ja) 赤外線センサ及びこれを備えた誘導加熱調理器
JP5564681B2 (ja) 赤外線センサ
JP6160381B2 (ja) 温度センサ
JP6319406B2 (ja) 赤外線センサ装置
JP5920388B2 (ja) 温度センサ
JP6030273B1 (ja) 赤外線温度センサ及び赤外線温度センサを用いた装置
JP2011128065A (ja) 赤外線アレイセンサ装置
CN109781267B (zh) 一种温度检测装置
CN212963724U (zh) 红外传感器及电子设备
JP5569268B2 (ja) バッテリー用温度センサ装置
JP5573599B2 (ja) 赤外線センサおよびこれを備えた誘導加熱調理器
JP2015197371A (ja) サーモパイル素子およびガス検知器
JP2017219339A (ja) 非接触温度センサ及び非接触温度測定装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees