JP5639714B2 - Nanofluid thermal conductivity measurement system using unsteady hot wire method - Google Patents

Nanofluid thermal conductivity measurement system using unsteady hot wire method Download PDF

Info

Publication number
JP5639714B2
JP5639714B2 JP2013524782A JP2013524782A JP5639714B2 JP 5639714 B2 JP5639714 B2 JP 5639714B2 JP 2013524782 A JP2013524782 A JP 2013524782A JP 2013524782 A JP2013524782 A JP 2013524782A JP 5639714 B2 JP5639714 B2 JP 5639714B2
Authority
JP
Japan
Prior art keywords
fixing means
thermal conductivity
fixing
hot wire
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013524782A
Other languages
Japanese (ja)
Other versions
JP2013534322A (en
Inventor
イ、ウクヒョン
パク、ソンリョン
チャン、ソクピル
ファン、キョシク
イ、スンヒョン
Original Assignee
コリア インスティチュート オブ エナジー リサーチ
コリア インスティチュート オブ エナジー リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コリア インスティチュート オブ エナジー リサーチ, コリア インスティチュート オブ エナジー リサーチ filed Critical コリア インスティチュート オブ エナジー リサーチ
Publication of JP2013534322A publication Critical patent/JP2013534322A/en
Application granted granted Critical
Publication of JP5639714B2 publication Critical patent/JP5639714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、非定常熱線法を用いたナノ流体の熱伝導度測定装置に関し、更に詳しくは、熱線の張力及び勾配を考慮して測定誤差を最小化することによって、ナノ流体の熱伝導度を正確に測定できる非定常熱線法を用いたナノ流体の熱伝導度測定装置に関する。   The present invention relates to an apparatus for measuring the thermal conductivity of a nanofluid using the unsteady hot wire method. More specifically, the present invention relates to the thermal conductivity of a nanofluid by minimizing measurement errors in consideration of the tension and gradient of the hot wire. The present invention relates to an apparatus for measuring thermal conductivity of nanofluids using an unsteady hot wire method that can be accurately measured.

非定常熱線法(transient hot-wire method)は、流体の熱伝導度を測定するのに最も広く用いられる方法であって、極細の熱線に電流を印加した後、時間による熱線の温度上昇を利用して熱伝導度を測定する方法である。   The transient hot-wire method is the most widely used method for measuring the thermal conductivity of fluids, and uses the temperature rise of the hot wire over time after applying an electric current to a fine hot wire. And measuring the thermal conductivity.

このような非定常熱線法は、流体の熱伝導度を測定する他の方法である定常法と比較して流体内で起きる自然対流の影響を効果的に抑制できる。従って、流体の熱伝導度を正確に測定できるだけでなく、流体の熱伝導度の測定に多くの時間がかからないため、効果的である。   Such an unsteady hot wire method can effectively suppress the influence of natural convection occurring in the fluid as compared with the steady method which is another method for measuring the thermal conductivity of the fluid. Therefore, not only can the thermal conductivity of the fluid be accurately measured, but it does not take much time to measure the thermal conductivity of the fluid, which is effective.

図7は、従来の非定常熱線法を用いた熱伝導度測定システムを示す概略図であり、図8は、従来の非定常熱線法を用いた熱伝導度測定装置を示す図であり、図9は、熱線の勾配変化による自然対流の発生時点を示すグラフである。   FIG. 7 is a schematic diagram showing a thermal conductivity measurement system using a conventional unsteady hot wire method, and FIG. 8 is a diagram showing a thermal conductivity measurement device using a conventional unsteady hot wire method. 9 is a graph showing the time of occurrence of natural convection due to a change in the gradient of heat rays.

図面を参照すれば、一般の非定常熱線法を用いた熱伝導度測定システムは、熱伝導度測定装置10、標準精密抵抗及び精密可変抵抗で構成されたホイートストンブリッジ20、電源供給装置30、熱伝導測定装置10で測定されたデータを収集するデータ収集装置40で構成される。   Referring to the drawings, a thermal conductivity measurement system using a general unsteady hot wire method includes a thermal conductivity measuring device 10, a Wheatstone bridge 20 composed of a standard precision resistor and a precision variable resistor, a power supply device 30, a heat The data collection device 40 collects data measured by the conductivity measuring device 10.

このうち、熱伝導度測定装置10は、長さが比較的長い1本の熱線を用いる構造(図8の(a)参照)と、長さが互いに異なる2本の熱線を用いる構造(図8の(b)参照)とに区分される。   Among them, the thermal conductivity measuring device 10 has a structure using one heat wire having a relatively long length (see FIG. 8A) and a structure using two heat wires having different lengths (FIG. 8). (See (b)).

前の装置は熱線を1つのみ用いるので、構成が簡単であり、測定が容易であるが、熱線の両端の接合点で伝導による熱損失が生じ、このような熱損失による測定誤差によって熱伝導度を正確に測定し難いという問題がある。反面、後者の構造は、前者に比べて相対的に複雑であるが、2本の熱線の両端の接合点で同一に発生した熱損失量を回路構成と資料の処理を通じて互いに相殺させることで、伝導損失による測定誤差が発生せず、熱伝導度を正確に測定できる。   The previous device uses only one heat wire, so the structure is simple and the measurement is easy. However, heat loss due to conduction occurs at the junctions at both ends of the heat wire, and the measurement error due to such heat loss causes heat conduction. There is a problem that it is difficult to accurately measure the degree. On the other hand, the latter structure is relatively complicated compared to the former, but the amount of heat loss generated at the junctions at both ends of the two heat wires is offset by the processing of the circuit configuration and the material. Measurement error due to conduction loss does not occur, and thermal conductivity can be measured accurately.

しかしながら、従来の熱伝導度測定装置は、測定時に測定時間に対する基準点を明確にしない場合、自然対流による測定誤差が発生する。特に熱線の張力が適正な値に到達できなかったり、熱線が鉛直に配置されていない場合、図9に示すように、自然対流が予測した時間よりも早く発生して信頼できる水準の測定値を得ることができない。   However, in the conventional thermal conductivity measuring device, a measurement error due to natural convection occurs when the reference point for the measurement time is not clarified at the time of measurement. Especially when the tension of the hot wire cannot reach an appropriate value or the hot wire is not arranged vertically, as shown in FIG. Can't get.

また、従来の熱伝導測定装置は、熱線が半田付けにより固定された構造であるので、熱線を交換する度に半田付けをしなければならないという煩雑さがあり、交換した熱線が鉛直に配置されるように、勾配を調節する作業が容易でない。   In addition, since the conventional heat conduction measuring device has a structure in which the heat wire is fixed by soldering, there is a trouble that soldering must be performed every time the heat wire is replaced, and the replaced heat wire is arranged vertically. As described above, it is not easy to adjust the gradient.

本発明は、前述した従来技術の問題を解決するためのものであって、その目的は、熱線の張力及び勾配を考慮して測定誤差を最小化することによって、ナノ流体の熱伝導度を正確に測定できる非定常熱線法を用いたナノ流体の熱伝導度測定装置を提供することにある。   The present invention is to solve the above-mentioned problems of the prior art, and its purpose is to accurately measure the thermal conductivity of nanofluids by minimizing measurement errors in consideration of the tension and gradient of the hot wire. It is an object of the present invention to provide a nanofluid thermal conductivity measuring apparatus using a non-stationary hot wire method that can be measured in a continuous manner.

また、本発明の他の目的は、熱線の設置及び交換が非常に容易な非定常熱線法を用いたナノ流体の熱伝導度測定装置を提供することにある。   Another object of the present invention is to provide a nanofluid thermal conductivity measuring device using the unsteady hot wire method, which is very easy to install and replace the hot wire.

前記目的を達成するための本発明に係る非定常熱線法を用いたナノ流体の熱伝導度測定装置は、以下のような構成を含んでなされる。   In order to achieve the above object, a nanofluid thermal conductivity measuring apparatus using the unsteady hot wire method according to the present invention includes the following configuration.

上下に離間した上部板及び下部板と、前記上部板及び前記下部板の間に設置されたシリンダと、前記シリンダ内に設置され、上下移動が可能な稼動板と、前記上部板を貫通するように結合された第1固定手段と、前記稼動板の上面に設置され、前記第1固定手段と同一の鉛直線上に位置する第2固定手段と、前記第1固定手段及び前記第2固定手段に両端がそれぞれ固定された熱線。   An upper plate and a lower plate separated vertically, a cylinder installed between the upper plate and the lower plate, an operation plate installed in the cylinder and movable up and down, and coupled so as to penetrate the upper plate Both ends of the first fixing means, the second fixing means installed on the upper surface of the operating plate and located on the same vertical line as the first fixing means, and the first fixing means and the second fixing means. Each fixed heat ray.

前記構成の本発明の装置によれば、張力調節手段を用いて第1固定手段を上昇又は下降させれば、熱線の張力を調節できる。また、熱線が固定される第1固定手段と第2固定手段が鉛直線上に位置するため、熱線の勾配が鉛直線と平行に維持され得る。従って、ナノ流体の熱伝導度の測定時に熱線の張力及び勾配により発生する誤差を最小化できるので、熱伝導度を正確に測定できる。   According to the apparatus of the present invention configured as described above, the tension of the hot wire can be adjusted by raising or lowering the first fixing means using the tension adjusting means. Moreover, since the 1st fixing means and 2nd fixing means to which a heat ray is fixed are located on a perpendicular line, the gradient of a heat ray can be maintained in parallel with a perpendicular line. Accordingly, since the error caused by the tension and gradient of the hot wire when measuring the thermal conductivity of the nanofluid can be minimized, the thermal conductivity can be accurately measured.

このとき、前記張力調節手段に設置されて熱線の張力を測定するセンサを更に含むことが好ましい。   At this time, it is preferable to further include a sensor that is installed in the tension adjusting means and measures the tension of the heat ray.

また、前記第1固定手段と前記第2固定手段は、棒状の本体と、傾斜した形状の固定具と、内壁面が前記固定具と対応する傾斜した形状に形成され、前記本体とネジ結合される固定ナットとを含む。このとき、固定具の中央には、熱線が貫通する固定ホールが形成され、固定具の上面又は下面には、固定ホールを中心とする十字状溝が形成される。   The first fixing means and the second fixing means are formed in a rod-shaped main body, an inclined fixing tool, and an inner wall surface in an inclined shape corresponding to the fixing tool, and are screwed to the main body. Including a fixing nut. At this time, a fixing hole through which the heat ray penetrates is formed in the center of the fixing tool, and a cross-shaped groove centering on the fixing hole is formed on the upper surface or the lower surface of the fixing tool.

このような構造の第1固定手段と第2固定手段によれば、熱線が固定具に挿入された状態で固定ナットを締めれば、熱線の固定作業が完了する。従って、熱線の設置及び交換が容易であるだけでなく、第1固定手段と第2固定手段が鉛直線上に位置するため、熱線の勾配を調節する作業が不要である。   According to the 1st fixing means and the 2nd fixing means of such a structure, if the fixing nut is tightened in a state where the heat ray is inserted into the fixture, the fixing operation of the heat ray is completed. Therefore, not only is the installation and replacement of the heat ray easy, but the first fixing means and the second fixing means are located on the vertical line, so that the work of adjusting the gradient of the heat ray is not necessary.

前述したように構成された本発明は、張力調節手段及びセンサ、そして鉛直線上に位置する第1固定手段と第2固定手段を用いてナノ流体の熱伝導度の測定時に熱線の張力及び勾配により発生する誤差を最小化できるので、熱伝導度を正確に測定できるという効果を奏する。   The present invention configured as described above is based on the tension and gradient of the hot wire when measuring the thermal conductivity of the nanofluid using the tension adjusting means and the sensor, and the first fixing means and the second fixing means located on the vertical line. Since the generated error can be minimized, the thermal conductivity can be accurately measured.

また、固定手段が半田付けの方法でないネジ締結を通じて熱線を固定することで、設置及び交換が容易であるだけでなく、第1固定手段と第2固定手段が鉛直線上に位置するため、熱線の勾配を調節する作業が不要であるという効果を奏する。   In addition, fixing the heat wire through screw fastening that is not a soldering method is not only easy to install and replace, but also because the first fixing device and the second fixing device are located on the vertical line, There is an effect that the work of adjusting the gradient is unnecessary.

本発明の一実施形態に係る非定常熱線法を用いた熱伝導度測定装置を示す断面図である。It is sectional drawing which shows the heat conductivity measuring apparatus using the unsteady hot wire method which concerns on one Embodiment of this invention. 図1の実施形態に係る非定常熱線法を用いた熱伝導度測定装置のうち、第1固定手段を示す分解斜視図である。It is a disassembled perspective view which shows a 1st fixing means among the thermal conductivity measuring apparatuses using the unsteady hot-wire method which concerns on embodiment of FIG. 図1の実施形態に係る非定常熱線法を用いた熱伝導度測定装置のうち、第1固定手段を示す断面図である。It is sectional drawing which shows a 1st fixing means among the thermal conductivity measuring apparatuses using the unsteady hot-wire method which concerns on embodiment of FIG. 図1の実施形態に係る非定常熱線法を用いた熱伝導度測定装置のうち、一部を拡大した図である。It is the figure which expanded a part among thermal conductivity measuring apparatuses using the unsteady hot-wire method which concerns on embodiment of FIG. 図1の実施形態に係る非定常熱線法を用いた熱伝導度測定装置を用いた測定方法を示す順序図である。It is a flowchart which shows the measuring method using the thermal conductivity measuring apparatus using the unsteady hot wire method which concerns on embodiment of FIG. 図1の実施形態に係る非定常熱線法を用いた熱伝導度測定装置を用いた水の熱伝導度の測定結果を示すグラフである。It is a graph which shows the measurement result of the thermal conductivity of water using the thermal conductivity measuring apparatus using the unsteady heat ray method which concerns on embodiment of FIG. 従来の非定常熱線法を用いた熱伝導度測定システムを示す概略図である。It is the schematic which shows the thermal conductivity measuring system using the conventional unsteady hot-wire method. 従来の非定常熱線法を用いた熱伝導度測定装置を示す図である。It is a figure which shows the thermal conductivity measuring apparatus using the conventional unsteady hot-wire method. 熱線の勾配変化による自然対流の発生時点を示すグラフである。It is a graph which shows the generation | occurrence | production time of the natural convection by the gradient change of a heat ray.

添付の図面を参照して本発明に係る実施形態を詳細に説明する。以下、本発明に係る実施形態を説明するにおいて、そして各図面の構成要素に参照符号を付すにおいて、同一の構成要素に対しては、たとえ他の図面上に示されていても、可能な限り同一の符号を付した。   Embodiments according to the present invention will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, embodiments according to the present invention are described, and reference numerals are given to components in each drawing, and even if the same components are shown in other drawings, as much as possible. The same reference numerals are given.

図1に示すように、本実施形態に係る非定常熱線法を用いたナノ流体の熱伝導度測定装置(100、以下、測定装置という)は、上下に離間した上部板110及び下部板120と、上部板110及び下部板120の間に設置されたシリンダ130と、シリンダ130の内側下部に設置された稼動板140と、上部板110を貫通するように結合された第1固定手段150と、稼動板140の上面に設置された第2固定手段160と、第1固定手段150及び第2固定手段160に両端がそれぞれ固定された熱線Wと、上部板110の上面に設置された張力調節手段170と、張力調節手段170に設置されたセンサ180とを含む。   As shown in FIG. 1, a nanofluid thermal conductivity measuring device (100, hereinafter referred to as a measuring device) using the unsteady hot wire method according to the present embodiment includes an upper plate 110 and a lower plate 120 that are separated vertically. A cylinder 130 installed between the upper plate 110 and the lower plate 120, an operation plate 140 installed at the inner lower portion of the cylinder 130, and a first fixing means 150 coupled to penetrate the upper plate 110, The second fixing means 160 installed on the upper surface of the working plate 140, the heat wire W fixed at both ends to the first fixing means 150 and the second fixing means 160, and the tension adjusting means installed on the upper surface of the upper plate 110. 170 and a sensor 180 installed on the tension adjusting means 170.

上部板110は、所定厚さの円板形状である。その中央には、第1固定手段150が結合される結合孔112が形成され、結合孔112の周囲には、後述するロッド192が貫通する貫通孔114及びシリンダ130との結合のためのネジがS締結される締結孔116が形成される。また、上部板110の上面中央には、第1固定手段150の上部、張力調節手段170及びセンサ180の下部が内装されるカバー118が形成される。   The upper plate 110 has a disk shape with a predetermined thickness. A coupling hole 112 to which the first fixing means 150 is coupled is formed at the center, and a screw for coupling with a through-hole 114 through which a rod 192 described later passes and a cylinder 130 is formed around the coupling hole 112. A fastening hole 116 to be S-fastened is formed. In addition, a cover 118 in which the upper part of the first fixing means 150, the tension adjusting means 170, and the lower part of the sensor 180 are provided is formed at the center of the upper surface of the upper plate 110.

下部板120は、下面に溝122が形成された円板形状であり、溝122には、シリンダ130との結合のためのネジがS締結される締結孔124が形成される。このように下部板120の下面に溝122が形成された理由は、ネジSが突出するのを防止し、測定装置100の設置時に水平を維持するためである。   The lower plate 120 has a disk shape in which a groove 122 is formed on the lower surface, and a fastening hole 124 in which a screw for coupling with the cylinder 130 is fastened is formed in the groove 122. The reason why the groove 122 is formed on the lower surface of the lower plate 120 in this way is to prevent the screw S from protruding and maintain the level when the measuring apparatus 100 is installed.

シリンダ130は、熱伝導度測定用流体(以下、ナノ流体という)が充填される部分である。上端及び下端にフランジ132が形成された円筒形状に形成され、フランジ132には、上部板110及び下部板120との結合のためのネジがS締結される締結孔134が形成される。   The cylinder 130 is a portion filled with a thermal conductivity measurement fluid (hereinafter referred to as nanofluid). The flange 132 is formed in a cylindrical shape having an upper end and a lower end, and the flange 132 is formed with a fastening hole 134 in which screws for coupling with the upper plate 110 and the lower plate 120 are S-fastened.

前述した形状のシリンダ130は、内部に充填されたナノ流体が漏れないように封止された構造でなければならない。このために、シリンダ130と上部板110との間、シリンダ130と下部板120との間、そして上部板110と第1固定手段150との間には、気密保持用O−リング194が設けられる。   The cylinder 130 having the above-described shape must have a sealed structure so that the nanofluid filled therein does not leak. For this purpose, an airtight holding O-ring 194 is provided between the cylinder 130 and the upper plate 110, between the cylinder 130 and the lower plate 120, and between the upper plate 110 and the first fixing means 150. .

稼動板140は、シリンダ130の内側下部に設置され、熱線Wの長さを調節できるように、上下に移動可能に設置される。これを更に詳細に説明すれば、稼動板140は、上部板110に上端が固定されたロッド192の下方に設置され、稼動板140の上面及び下面でナットNにより固定される。即ち、ナットNを緩め、稼動板140を上下に移動させる場合、設置高さを調節できる。   The operation plate 140 is installed at the inner lower part of the cylinder 130 and is installed so as to be movable up and down so that the length of the heat ray W can be adjusted. More specifically, the operation plate 140 is installed below a rod 192 whose upper end is fixed to the upper plate 110, and is fixed by nuts N on the upper and lower surfaces of the operation plate 140. That is, when the nut N is loosened and the operating plate 140 is moved up and down, the installation height can be adjusted.

このとき、上部板110と稼動板140は、テフロン(登録商標)材質であることが好ましい。また、稼動板140を支持するロッド192は、ナノ流体の熱伝導度の測定に影響を及ぼさないように、熱伝導度に優れたステンレススチール又は銅材質であることが好ましい。   At this time, the upper plate 110 and the operation plate 140 are preferably made of a Teflon (registered trademark) material. In addition, the rod 192 that supports the operating plate 140 is preferably made of stainless steel or copper material having excellent thermal conductivity so as not to affect the measurement of the thermal conductivity of the nanofluid.

第1固定手段150と第2固定手段160は、熱線Wを固定する手段である。第1固定手段150は、上部板110の中央に形成された結合孔112に設置され、第2固定手段160は、稼動板140上面の中央に設置される。   The first fixing means 150 and the second fixing means 160 are means for fixing the heat ray W. The first fixing means 150 is installed in the coupling hole 112 formed in the center of the upper plate 110, and the second fixing means 160 is installed in the center of the upper surface of the operation plate 140.

このように第1固定手段150と第2固定手段160を同一の鉛直線上に位置させた理由は、熱線Wの勾配がナノ流体の熱伝導度の測定に影響を及ぼす点を考慮したからである。即ち、第1固定手段150と第2固定手段160を同一の鉛直線上に位置させることで、自然対流の発生を遅延させて熱伝導度の測定誤差を最小化するためである。   The reason why the first fixing means 150 and the second fixing means 160 are positioned on the same vertical line is that the gradient of the heat ray W has an influence on the measurement of the thermal conductivity of the nanofluid. . That is, by positioning the first fixing means 150 and the second fixing means 160 on the same vertical line, the occurrence of natural convection is delayed and the measurement error of thermal conductivity is minimized.

一方、図2と図3を参照して第1固定手段150と第2固定手段160の構造を詳察すれば、以下の通りである。ここで、第2固定手段160は、第1固定手段150と同一の構造及び形状を有するので、第1固定手段150を代表として説明する。   Meanwhile, the structure of the first fixing means 150 and the second fixing means 160 will be described in detail with reference to FIGS. Here, since the second fixing means 160 has the same structure and shape as the first fixing means 150, the first fixing means 150 will be described as a representative.

第1固定手段150は、本体150a、本体150aの下部に位置する固定具150b、固定具150bを覆い、本体150aの下部にネジ結合される固定ナット150cを含んで構成される。   The first fixing means 150 includes a main body 150a, a fixing tool 150b positioned at the lower part of the main body 150a, and a fixing nut 150c that covers the fixing tool 150b and is screwed to the lower part of the main body 150a.

本体150aは棒状であり、張力調節手段170との結合のための雄ネジ(図4の151)が中間部分に形成される。また、本体150aの下端には、固定ナット150cとの結合のための螺子山152が形成され、下面には、熱線Wが挿入される挿入溝153が形成される(図3参照)。   The main body 150a has a rod shape, and a male screw (151 in FIG. 4) for coupling with the tension adjusting means 170 is formed in the intermediate portion. Further, a screw thread 152 for coupling with the fixing nut 150c is formed at the lower end of the main body 150a, and an insertion groove 153 into which the heat ray W is inserted is formed on the lower surface (see FIG. 3).

図3において、固定具150bは、上部へ行くほど直径が広くなる傾斜した形状に形成された弾性体である。その中央には、熱線Wが貫通する固定ホール154が形成され、下面には、固定ホール154を中心とする十字状溝155が形成される。この十字状溝155は、熱線Wの結合時に固定ホール154を拡張させ、固定ナット150cの結合時に固定具150bを熱線Wに圧着させるための空間である。   In FIG. 3, the fixture 150b is an elastic body formed in an inclined shape whose diameter increases toward the top. A fixed hole 154 through which the heat ray W passes is formed in the center, and a cross-shaped groove 155 centering on the fixed hole 154 is formed in the lower surface. The cross-shaped groove 155 is a space for expanding the fixing hole 154 when the heat wire W is coupled and for crimping the fixing tool 150b to the heat wire W when the fixing nut 150c is coupled.

図2において、このような十字状溝155は、固定具150bの上面で一定深さに形成される。固定ナット150cは、本体150aにネジ結合されて固定具150bを熱線Wに圧着させるための締め付け手段である。図3に示すように、固定ナット150cの内壁面の下部156は、固定具150bと対応する傾斜した形状に形成され、内壁面の上部には、本体150aの螺子山152と対応する螺子山157が形成される。   In FIG. 2, such a cross-shaped groove 155 is formed at a certain depth on the upper surface of the fixture 150b. The fixing nut 150c is a fastening means that is screwed to the main body 150a and presses the fixing tool 150b to the heat ray W. As shown in FIG. 3, a lower portion 156 of the inner wall surface of the fixing nut 150c is formed in an inclined shape corresponding to the fixing tool 150b, and a screw thread 157 corresponding to the screw thread 152 of the main body 150a is formed on the upper portion of the inner wall surface. Is formed.

前述した構造の第1固定手段150では、固定ナット150cが本体150aとネジ結合されるため、熱線Wの設置及び交換が容易である。即ち、熱線Wを固定ホール154に挿入した状態で固定具150bを本体150aと固定ナット150cとの間に位置させた後、固定ナット150cを結合すれば、設置が完了する。   In the first fixing means 150 having the above-described structure, the fixing nut 150c is screwed to the main body 150a, so that the heat wire W can be easily installed and replaced. That is, after the fixing tool 150b is positioned between the main body 150a and the fixing nut 150c with the heat ray W inserted into the fixing hole 154, the installation is completed when the fixing nut 150c is coupled.

このとき、固定ナット150cが本体150aにネジ結合される過程で固定ナット150cの内壁面の下部156が固定具150bを加圧し、固定具150bが圧着されれば、熱線Wを固定する。反面、固定ナット150cが緩めば、固定具150bを加圧していた固定具150bの圧着状態が解除され、熱線Wを簡単に分離できる。   At this time, the lower part 156 of the inner wall surface of the fixing nut 150c presses the fixing tool 150b in the process of screwing the fixing nut 150c to the main body 150a, and the heat ray W is fixed if the fixing tool 150b is crimped. On the other hand, if the fixing nut 150c is loosened, the crimping state of the fixing tool 150b that has pressurized the fixing tool 150b is released, and the heat ray W can be easily separated.

図4を参照すれば、上部板110の結合孔112には、直線運動ベアリング196が設置され、直線運動ベアリング196の内部には、第1固定手段150が設置される。また、第1固定手段150の中間には、張力調節手段170が設置され、第1固定手段150の上端には、熱線Wの張力を測定するセンサが設置される。   Referring to FIG. 4, a linear motion bearing 196 is installed in the coupling hole 112 of the upper plate 110, and a first fixing unit 150 is installed inside the linear motion bearing 196. Further, a tension adjusting unit 170 is installed in the middle of the first fixing unit 150, and a sensor for measuring the tension of the hot wire W is installed at the upper end of the first fixing unit 150.

このとき、第1固定手段150と張力調節手段170は、第1固定手段150の中間に形成された雄ネジ151と張力調節手段170の内部に形成された雌ネジ172を通じて互いに結合される。   At this time, the first fixing unit 150 and the tension adjusting unit 170 are coupled to each other through a male screw 151 formed in the middle of the first fixing unit 150 and a female screw 172 formed inside the tension adjusting unit 170.

このような構造によれば、張力調節手段170を図面の矢印A方向に回転させる場合、雄ネジ151と雌ネジ172が噛み合って動くことによって、第1固定手段150が上方へ動き、熱線Wを緊張させる。反面、張力調節手段170を矢印A反対方向に回転させれば、第1固定手段150が下方へ動きながら、熱線Wを弛緩させる。   According to such a structure, when the tension adjusting means 170 is rotated in the direction of the arrow A in the drawing, the first fixing means 150 moves upward by moving the male screw 151 and the female screw 172 in mesh with each other, and the heat wire W is moved. Tension. On the other hand, if the tension adjusting means 170 is rotated in the direction opposite to the arrow A, the first fixing means 150 moves downward while relaxing the heat ray W.

結局、熱線Wの張力を適正な値に調節することで、熱線Wの張力を考慮して測定誤差を最小化できる。従って、ナノ流体の熱伝導度を正確に測定できる。   After all, by adjusting the tension of the hot wire W to an appropriate value, the measurement error can be minimized in consideration of the tension of the hot wire W. Therefore, the thermal conductivity of the nanofluid can be accurately measured.

前述した測定装置100を用いたナノ流体の熱伝導度の測定方法を図5を参照して詳察する。   A method for measuring the thermal conductivity of the nanofluid using the above-described measuring apparatus 100 will be described in detail with reference to FIG.

まず、測定装置100に熱線Wを設置する(S10)。図3を参照すれば、本体150aから固定ナット150cを分離し、熱線Wを固定具150bの固定ホール154に貫通させる。その後、固定具150bが圧着されて熱線Wを固定できるように、固定ナット150cを本体150aにネジ結合する。   First, the hot wire W is installed in the measuring apparatus 100 (S10). Referring to FIG. 3, the fixing nut 150c is separated from the main body 150a, and the heat ray W is passed through the fixing hole 154 of the fixing tool 150b. Thereafter, the fixing nut 150c is screwed to the main body 150a so that the fixing tool 150b is crimped to fix the heat ray W.

熱線Wの設置が完了すれば、図4に示すように、張力調節手段170を用いて第1固定手段150を上昇又は下降させることで、熱線Wの張力を所望の値に設定する(S20)。   When the installation of the heat ray W is completed, as shown in FIG. 4, the tension of the heat ray W is set to a desired value by raising or lowering the first fixing means 150 using the tension adjusting means 170 (S20). .

次に、シリンダ130に水を注入した後、熱線Wに電源を供給して水の熱伝導度を測定する(S30)。即ち、張力調節手段170とセンサ180を用いて熱線Wの張力を調節し、水の熱伝導度を測定する場合、測定誤差が最も小さな熱線Wの張力を把握できる。   Next, after water is injected into the cylinder 130, power is supplied to the heat wire W to measure the thermal conductivity of the water (S30). That is, when the tension of the hot wire W is adjusted using the tension adjusting means 170 and the sensor 180 and the thermal conductivity of water is measured, the tension of the hot wire W with the smallest measurement error can be grasped.

前述した段階で測定された張力値によって熱線の張力を調節する(S40)。   The tension of the hot wire is adjusted according to the tension value measured in the above step (S40).

最終的に、シリンダ130に注入された水を排出し、熱伝導度を測定するナノ流体を注入した後、ナノ流体の熱伝導度を測定する(S50、S60)。   Finally, the water injected into the cylinder 130 is discharged, and after the nanofluid for measuring the thermal conductivity is injected, the thermal conductivity of the nanofluid is measured (S50, S60).

このように、本実施形態に係る測定装置100を用いてナノ流体の熱伝導度を測定する場合、熱線Wに適正な張力が印加される。また、熱線Wが鉛直方向に配置される。従って、熱線Wの張力及び勾配により発生する測定誤差を最小化でき、熱伝導度を正確に測定できる。   As described above, when the thermal conductivity of the nanofluid is measured using the measuring apparatus 100 according to the present embodiment, an appropriate tension is applied to the hot wire W. Moreover, the heat ray W is arranged in the vertical direction. Therefore, measurement errors caused by the tension and gradient of the hot wire W can be minimized, and the thermal conductivity can be accurately measured.

また、固定手段150、160が半田付けでないネジ締結を通じて熱線Wを固定するので、設置及び交換が容易であり、第1固定手段150と第2固定手段160が鉛直線上に位置するので、熱線Wの勾配調節作業が不要なため、測定が容易である。   Further, since the fixing means 150 and 160 fix the heat ray W through screw fastening which is not soldered, the installation and replacement are easy, and the first fixing means 150 and the second fixing means 160 are located on the vertical line. Measurement is easy because no gradient adjustment work is required.

一方、本実施形態に係る測定装置100及び測定方法を用いた流体の熱伝導度の実験結果を詳察すれば、以下の通りである。   On the other hand, it will be as follows if the experimental result of the thermal conductivity of the fluid using the measuring apparatus 100 and measuring method which concerns on this embodiment is investigated in detail.

水を利用して熱伝導度を測定した結果、図6に示すように、熱伝導度の測定誤差範囲が1.5%以内であることを確認でき、実験結果の信頼性を示せる結果の線形性が0.9999以上であることが分かった。   As a result of measuring the thermal conductivity using water, as shown in FIG. 6, it can be confirmed that the measurement error range of the thermal conductivity is within 1.5%, and the linearity of the result showing the reliability of the experimental result It was found that the property was 0.9999 or more.

以上、本発明を好適な実施形態を通じて説明したが、前述した実施形態は、本発明の技術的思想を例示的に説明したものに過ぎず、本発明の技術的思想から逸脱しない範囲内で多様な変化が可能であることは、この分野における通常の知識を有する者であれば、理解できるはずである。従って、本発明の保護範囲は、特定の実施形態ではなく、特許請求の範囲に記載された事項により解釈されるべきであり、それと同等な範囲内にある全ての技術的思想も本発明の権利範囲に含まれるものと解釈されるべきである。   The present invention has been described above through the preferred embodiments. However, the above-described embodiments are merely illustrative of the technical idea of the present invention, and various modifications can be made without departing from the technical idea of the present invention. It should be understood by those having ordinary knowledge in the field that such changes are possible. Therefore, the protection scope of the present invention should be construed based on the matters described in the claims, not the specific embodiments, and all technical ideas within the scope equivalent thereto also apply to the rights of the present invention. It should be construed as included in the scope.

100 測定装置
110 上部板
120 下部板
130 シリンダ
140 稼動板
150 第1固定手段
160 第2固定手段
170 張力調節手段
180 センサ
100 measuring device 110 upper plate 120 lower plate 130 cylinder 140 operation plate 150 first fixing means 160 second fixing means 170 tension adjusting means 180 sensor

Claims (5)

上下に離間した上部板及び下部板と、
前記上部板及び前記下部板の間に設置されたシリンダと、
前記シリンダ内に設置され、上下移動が可能な稼動板と、
前記上部板を貫通するように結合された第1固定手段と、
前記稼動板の上面に設置され、前記第1固定手段と同一の鉛直線上に位置する第2固定手段と、
前記第1固定手段及び前記第2固定手段に両端がそれぞれ固定された熱線と
前記上部板の上面に設置されて前記第1固定手段を上下に移動させる張力調節手段と、
前記熱線の張力を測定するセンサと
を含む非定常熱線法を用いた流体の熱伝導度測定装置。
An upper plate and a lower plate spaced apart from each other;
A cylinder installed between the upper plate and the lower plate;
An operating plate installed in the cylinder and capable of moving up and down;
First fixing means coupled to penetrate the upper plate;
Second fixing means installed on the upper surface of the operating plate and located on the same vertical line as the first fixing means;
A heat wire having both ends fixed to the first fixing means and the second fixing means ;
Tension adjusting means installed on the upper surface of the upper plate and moving the first fixing means up and down;
An apparatus for measuring the thermal conductivity of a fluid using an unsteady hot wire method, comprising: a sensor for measuring the tension of the hot wire .
前記第1固定手段の中間に雄ネジが形成され、前記張力調節手段の内側に雌ネジが形成されて前記張力調節手段の回転時に前記第1固定手段が上昇又は下降することを特徴とする請求項1に記載の非定常熱線法を用いた流体の熱伝導度測定装置。 A male screw is formed in the middle of the first fixing means, a female screw is formed inside the tension adjusting means, and the first fixing means is raised or lowered when the tension adjusting means is rotated. An apparatus for measuring thermal conductivity of a fluid using the unsteady hot wire method according to Item 1. 前記第1固定手段又は第2固定手段が、
本体と、
前記熱線が貫通する固定ホールが形成され、前記固定ホールを中心に十字状溝が下面に形成された弾性体の固定具と、
前記本体の下部にネジ結合されて前記固定具を締める固定ナットと
を含むことを特徴とする請求項1に記載の非定常熱線法を用いた流体の熱伝導度測定装置。
The first fixing means or the second fixing means is
The body,
A fixing hole of an elastic body in which a fixing hole through which the heat ray penetrates is formed, and a cross-shaped groove is formed on the lower surface around the fixing hole;
The apparatus for measuring thermal conductivity of fluid using the unsteady hot wire method according to claim 1, further comprising: a fixing nut screwed to a lower portion of the main body to fasten the fixture.
前記固定具が上部へ行くほど直径が広くなる傾斜した形状であることを特徴とする請求項に記載の非定常熱線法を用いた流体の熱伝導度測定装置。 The apparatus for measuring thermal conductivity of fluid using the unsteady hot wire method according to claim 3 , wherein the fixing tool has an inclined shape whose diameter increases toward the top. 前記稼動板に連結されて稼動板の上下移動をガイドするロッドを更に含み、前記上部板と稼板がテフロン(登録商標)材質であることを特徴とする請求項1に記載の非定常熱線法を用いた流体の熱伝導度測定装置。 Unsteady heat rays according to claim 1, wherein the operating plate is connected further comprising a rod for guiding the vertical movement of the operation plate, wherein the upper plate and稼kinematic plate is Teflon material Measuring device for thermal conductivity of fluids using the method.
JP2013524782A 2010-08-20 2011-08-12 Nanofluid thermal conductivity measurement system using unsteady hot wire method Active JP5639714B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020100080982A KR101236284B1 (en) 2010-08-20 2010-08-20 Thermal conductivity measuring device of nanofluid using transient hot-wire method
KR10-2010-0080982 2010-08-20
PCT/KR2011/005924 WO2012023758A2 (en) 2010-08-20 2011-08-12 Device for measuring the thermal conductivity of a nanofluid using the transient hot-wire method

Publications (2)

Publication Number Publication Date
JP2013534322A JP2013534322A (en) 2013-09-02
JP5639714B2 true JP5639714B2 (en) 2014-12-10

Family

ID=45605528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013524782A Active JP5639714B2 (en) 2010-08-20 2011-08-12 Nanofluid thermal conductivity measurement system using unsteady hot wire method

Country Status (3)

Country Link
JP (1) JP5639714B2 (en)
KR (1) KR101236284B1 (en)
WO (1) WO2012023758A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374207B1 (en) * 2013-10-07 2014-03-13 한국지질자원연구원 Device for measuring thermal conductivity of rocks and using method of the same
WO2015137915A1 (en) 2014-03-10 2015-09-17 Halliburton Energy Services Inc. Identification of thermal conductivity properties of formation fluid
US9791595B2 (en) 2014-03-10 2017-10-17 Halliburton Energy Services Inc. Identification of heat capacity properties of formation fluid
CN104614399B (en) * 2015-02-17 2017-10-10 中国科学院上海硅酸盐研究所 A kind of hot physical property transient hot wire technique temperature probe of liquid
CN106483162B (en) * 2016-09-14 2017-10-20 西安交通大学 The device and method for solving and measuring method of a kind of use transient state Thermomembrane method measurement stream body thermal conductivity factor
KR101984236B1 (en) * 2017-07-04 2019-09-03 한국과학기술원 Method and apparatus for measuring heat transfer performance of fluid
CN109580708A (en) * 2018-12-27 2019-04-05 西南科技大学 The voltage measurement method of the hot physical property of heat-pole method instantaneous measurement material
CN117110370B (en) * 2023-10-20 2023-12-29 江苏矽时代材料科技有限公司 Low-error silica gel heat conductivity testing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068792B2 (en) * 1987-12-07 1994-02-02 新日本製鐵株式会社 Bonding wire neck part coarse grain area reproducing method and device
JPH0317542A (en) * 1989-06-14 1991-01-25 Uchu Kankyo Riyou Kenkyusho:Kk Measuring method of thermal conductivity
JP2594867B2 (en) * 1992-09-24 1997-03-26 雪印乳業株式会社 Measuring device for thermal conductivity of fluid
JPH08324923A (en) * 1995-05-31 1996-12-10 Hitachi Building Syst Eng & Service Co Ltd Main rope tension adjusting device for elevator
JP4113294B2 (en) * 1998-12-14 2008-07-09 ブルカー・エイエックスエス株式会社 Method and apparatus for measuring thermal conductivity
JP2002307392A (en) * 2001-04-10 2002-10-23 Kubota Corp Hot wire retention means for hot wire working machine
KR100544564B1 (en) * 2003-10-01 2006-01-23 한국전력공사 Sensor modules for the measurement of thermal conductivity of nanofluids using multi-wires in the transient hot wire method
US7104680B2 (en) * 2003-10-31 2006-09-12 Sii Nanotechnology Inc. Thermal analyzer with gas mixing chamber
JP2009000586A (en) * 2007-06-19 2009-01-08 Terumo Corp Ultrasound generator and ultrasound generating system
KR100975205B1 (en) * 2008-05-30 2010-08-10 한국전력공사 Heat transfer analysing apparatus and method for nanofluids

Also Published As

Publication number Publication date
JP2013534322A (en) 2013-09-02
KR101236284B1 (en) 2013-02-22
WO2012023758A3 (en) 2012-05-24
WO2012023758A2 (en) 2012-02-23
KR20120017977A (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP5639714B2 (en) Nanofluid thermal conductivity measurement system using unsteady hot wire method
RU2561797C1 (en) Adjusting device for surface temperature measurement sensor
CN2847309Y (en) Flat plate semiconductor device steady-state thermal resistance detector
CN103822724B (en) A kind of temp probe stationary installation of superconducting experiment
CN106505018B (en) Chuck surface temperature uniformity detection device and detection method
CN207571259U (en) A kind of surface mount chip and semiconductor power device crust thermal resistance measurement fixture
CN103219053B (en) The adjustable test section apparatus of pipe leakage is simulated in nuclear power station pipeline leakage rate test
CN208968689U (en) A kind of thermocouple mounting structure
CN104155005B (en) Comparison method radiant heat-flow meter calibration apparatus
CN202075054U (en) Pressure contact type temperature measuring device of thermocouple
CN103513010B (en) Artificial gap device for researching gap corrosion simulation test and use method of artificial gap device
CN112198189B (en) Power module thermal resistance testing device based on static measurement method
CN218937594U (en) Temperature detection device of high-temperature test equipment
CN202210048U (en) Telescopic airflow sampler
CN210514052U (en) Static friction coefficient measurement experiment clamp
CN104460689B (en) Electronics tension gage detection probe self-checking device
CN203704851U (en) Top part supporting plate local heat treatment deformation monitoring auxiliary device
CN203824898U (en) Sample holder for solid powdervariable-temperaturefluorescence tests
CN108036710B (en) Vibration displacement sensor installing support
CN207964109U (en) A kind of spring-pressing fix type thermocouple
CN111830326A (en) Conductivity measuring device and system for strip-shaped electrical material at different temperatures
CN205898764U (en) Novel pH meter
CN205192992U (en) Single slit diffraction measures metal coefficient of linear expansion's device
KR100308202B1 (en) Thermocouple fixture
CN204389052U (en) The real time temperature proving installation of solder horn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141024

R150 Certificate of patent or registration of utility model

Ref document number: 5639714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250