JP5637420B1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP5637420B1
JP5637420B1 JP2014536033A JP2014536033A JP5637420B1 JP 5637420 B1 JP5637420 B1 JP 5637420B1 JP 2014536033 A JP2014536033 A JP 2014536033A JP 2014536033 A JP2014536033 A JP 2014536033A JP 5637420 B1 JP5637420 B1 JP 5637420B1
Authority
JP
Japan
Prior art keywords
liquid crystal
carbon atoms
group
crystal display
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014536033A
Other languages
English (en)
Other versions
JPWO2015045441A1 (ja
Inventor
小川 真治
真治 小川
芳典 岩下
芳典 岩下
淳一郎 小池
淳一郎 小池
博志 牧
博志 牧
宍倉 正視
正視 宍倉
亮介 浅見
亮介 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2014536033A priority Critical patent/JP5637420B1/ja
Priority claimed from PCT/JP2014/056465 external-priority patent/WO2015045441A1/ja
Application granted granted Critical
Publication of JP5637420B1 publication Critical patent/JP5637420B1/ja
Publication of JPWO2015045441A1 publication Critical patent/JPWO2015045441A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal Substances (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、特定の液晶組成物と有機顔料の凝集程度を示す特定の傾きパラメータを有するカラーフィルタを用いた液晶表示装置に関する。本発明は、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題を解決する液晶表示装置を提供するものである。本発明の液晶表示装置は液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、焼き付き等の表示不良の発生を抑制する特徴を有することから、特に、アクティブマトリックス駆動用のVAモード、PSVAモード液晶表示装置に有用であり、液晶TV、モニター、携帯電話、スマートフォン等の液晶表示装置に適用できる。

Description

本発明は、液晶表示装置に関する。
液晶表示装置は、時計、電卓をはじめとして、家庭用各種電気機器、測定機器、自動車用パネル、ワープロ、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型、IPS(インプレーンスイッチング)型、OCB(光学補償複屈折)型、ECB(電圧制御複屈折)型、VA(垂直配向)型、CSH(カラースーパーホメオトロピック)型、あるいはFLC(強誘電性液晶)等を挙げることができる。また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、単純マトリックス方式、最近ではTFT(薄膜トランジスタ)やTFD(薄膜ダイオード)等により駆動されるアクティブマトリックス(AM)方式が主流となっている。
一般的なカラー液晶表示装置は、図1に示すように、それぞれ配向膜(4)を有する2枚の基板(1)の一方の配向膜と基板の間に、共通電極となる透明電極層(3a)及びカラーフィルタ層(2)を備え、もう一方の配向膜と基板の間に画素電極層(3b)備え、これらの基板を配向膜同士が対向するように配置し、その間に液晶層(5)を挟持して構成されている。
前記カラーフィルタ層は、ブラックマトリックスと赤色着色層(R)、緑色着色層(G)、青色着色層(B)、及び必要に応じて黄色着色層(Y)から構成されるカラーフィルタにより構成される。
液晶層を構成する液晶材料は、材料中に不純物が残留すると表示装置の電気的特性に大きな影響を及ぼすことから不純物についての高度な管理がなされてきた。又、配向膜を形成する材料に関しても配向膜は液晶層が直接接触し、配向膜中に残存した不純物が液晶層に移動することにより、液晶層の電気的特性に影響を及ぼすことは既に知られており、配向膜材料中の不純物に起因する液晶表示装置の特性についての検討がなされつつある。
一方、カラーフィルタ層に用いられる有機顔料等の材料についても、配向膜材料と同様に含有する不純物による、液晶層への影響が想定される。しかし、カラーフィルタ層と液晶層の間には、配向膜と透明電極が介在するため、液晶層への直接的な影響は配向膜材料と比較して大幅に少ないものと考えられていた。しかし、配向膜は通常0.1μm以下の膜厚に過ぎず、透明電極もカラーフィルタ層側に用いられる共通電極は導電率を上げるために膜厚を上げたものでも通常0.5μm以下である。従って、カラーフィルタ層と液晶層は完全に隔離された環境におかれているとは言えず、カラーフィルタ層が、配向膜及び透明電極を介してカラーフィルタ層に含まれる不純物により、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加による白抜け、配向むら、焼き付きなどの表示不良を発現する可能性がある。
カラーフィルタ層を構成する顔料に含まれる不純物に起因した表示不良を解決する方法として、顔料の蟻酸エチルによる抽出物の割合を特定値以下とした顔料を用いて、不純物の液晶への溶出を制御する方法(特許文献1)や青色着色層中の顔料を特定することで不純物の液晶への溶出を制御する方法(特許文献2)が検討されてきた。しかしながら、これらの方法では顔料中の不純物を単純に低減することと大きな差異はなく、近年、顔料の精製技術が進歩している現状においても表示不良を解決するための改良としては不十分なものであった。
一方、カラーフィルタ層中に含まれる有機不純物と液晶組成物の関係に着目し、この有機不純物の液晶層への溶解しにくさを液晶層に含まれる液晶分子の疎水性パラメータによって表し、この疎水性パラメータの値を一定値以上とする方法やこの疎水性パラメータと液晶分子末端の−OCF基に相関関係があることから、液晶分子末端に−OCF基を有する液晶化合物を一定割合以上含有する液晶組成物とする方法(特許文献3)が開示されている。
しかしながら、当該引用文献の開示においても顔料中の不純物による液晶層への影響を抑えることが発明の本質となっており、カラーフィルタ層に使用される染顔料等の色材自身の性質と液晶材料の構造との直接的な関係については検討が行われておらず、高度化する液晶表示装置の表示不良問題の解決には至っていなかった。
特開2000−19321号公報 特開2009−109542号公報 特開2000−192040号公報
本発明は、特定の液晶組成物と有機顔料の凝集程度を示す特定の傾きパラメータを有するカラーフィルタを用いることで、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題を解決する液晶表示装置を提供することにある。
本願発明者らは、上記課題を解決するために有機顔料を含有するカラーフィルタ及び液晶層を構成する液晶材料の構造の組み合わせについて鋭意検討した結果、特定の液晶材料及び特定の傾きパラメータを有するカラーフィルタを用いた液晶表示装置が、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付きなどの表示不良の問題を解決することを見出し本願発明の完成に至った。
即ち、本発明は、
第一の基板と、第二の基板と、前記第一の基板と第二の基板間に挟持された液晶組成物層と、ブラックマトリックス及び少なくともRGB三色画素部から構成されるカラーフィルタと、画素電極と共通電極とを備え、
前記液晶組成物層が一般式(I)
Figure 0005637420
(式中、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Aは1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表す。)で表される化合物を30〜50%含有し、一般式(II-1)
Figure 0005637420
(式中、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Rは炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表し、Zは単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物を5〜30%含有し、一般式(II-2)
Figure 0005637420
(式中、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Rは炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表し、Bはフッ素置換されていてもよい、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表し、Zは単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物を25〜45%含有する液晶組成物から構成され、
前記カラーフィルタが、有機顔料を含有するカラーフィルタであって、
超小角エックス線散乱法に基づき、カラーフィルタ中の有機顔料の超小角エックス線プロファイルを測定する工程(A)と、該散乱プロファイル上で湾曲点を算出する工程(B)と、該湾曲点から設定される解析領域(c1)を算出する工程(C)と、解析領域c1での傾きパラメータを算出する工程(D)とを有する、有機顔料の散乱プロファイル解析において、解析領域(c1)での傾きパラメータが2以下であることを特徴とする、カラーフィルタである液晶表示装置を提供する。
本発明の液晶表示装置は、特定の液晶組成物と有機顔料の凝集程度を示す特定の傾きパラメータを有するカラーフィルタを用いることで、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止することができ、白抜け、配向むら、焼き付けなどの表示不良の発生を防止することができる。
従来の一般的な液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 カラーフィルタの透過スペクトルである。 カラーフィルタの透過スペクトルである。
1 基板
2 カラーフィルタ層
2a 特定の傾きパラメータを有するカラーフィルタ層
3a 透明電極層(共通電極)
3b 画素電極層
4 配向膜
5 液晶層
5a 特定の液晶組成物を含有する液晶層
本発明の液晶表示装置の一例を図2に示す。配向膜(4)を有する第一の基板と第二の基板の2枚の基板(1)の一方の配向膜と基板の間に、共通電極となる透明電極層(3a)及び特定の傾きパラメータを有するカラーフィルタ層(2a)を備え、もう一方の配向膜と基板の間に画素電極層(3b)備え、これらの基板を配向膜同士が対向するように配置し、その間に特定の液晶組成物を含有する液晶層(5a)を挟持して構成されている。
前記表示装置における2枚の基板は、周辺領域に配置されたシール材及び封止材によって貼り合わされていて、多くの場合その間には基板間距離を保持するために粒状スペーサーまたはフォトリソグラフィー法により形成された樹脂からなるスペーサー柱が配置されている。
(液晶層)
本発明の液晶表示装置における液晶層は、一般式(I)
Figure 0005637420
(式中、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Aは1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表す。)で表される化合物を30〜50%含有し、一般式(II-1)
Figure 0005637420
(式中、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Rは炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表し、Zは単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物を5〜30%含有し、一般式(II-2)
Figure 0005637420
(式中、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Rは炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表し、Bはフッ素置換されていてもよい、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表し、Zは単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物を25〜45%含有する液晶組成物から構成される。
本発明の液晶表示装置における液晶層は、一般式(I)で表される化合物を30〜50%含有するが、32〜48%含有することが好ましく、34〜46%含有することがより好ましい。
一般式(I)において、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表すが、Aがトランス−1,4−シクロヘキシレン基を表す場合には、
炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基、炭素原子数1〜5のアルコキシ基又は炭素原子数2〜5のアルケニルオキシ基を表すことが好ましく、
炭素原子数2〜5のアルキル基、炭素原子数2〜4のアルケニル基、炭素原子数1〜4のアルコキシ基又は炭素原子数2〜4のアルケニルオキシ基を表すことがより好ましく、
がアルキル基を表すことが好ましいが、この場合炭素原子数2、3又は4のアルキル基が特に好ましい。Rが炭素原子数3のアルキル基を表す場合には、Rは炭素原子数2、4又は5のアルキル基、または炭素原子数2〜3のアルケニル基である場合が好ましく、Rは炭素原子数2のアルキル基である場合がより好ましい。
Aが1,4−フェニレン基を表す場合には、
炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基、炭素原子数1〜5のアルコキシ基又は炭素原子数3〜5のアルケニルオキシ基を表すことが好ましく、
炭素原子数2〜5のアルキル基、炭素原子数4〜5のアルケニル基、炭素原子数1〜4のアルコキシ基又は炭素原子数2〜4のアルケニルオキシ基を表すことがより好ましく、
がアルキル基を表すことが好ましいが、この場合炭素原子数1、3又は5のアルキル基が特に好ましい。さらに、Rが炭素原子数1〜2のアルコキシ基を表すことが好ましい。
及びRの少なくとも一方の置換基が炭素原子数3〜5のアルキル基である一般式(I)で表される化合物の含有量が、一般式(I)で表される化合物中の50%以上であることが好ましく、70%以上がより好ましく、80%以上であることがさらに好ましい。又、R及びRの少なくとも一方の置換基が炭素原子数3のアルキル基である一般式(I)で表される化合物の含有量が、一般式(I)で表される化合物中の50%以上であることが好ましく、70%以上がより好ましく、80%以上であることがさらに好ましく、100%であることが最も好ましい。
一般式(I)で表される化合物は1種又は2種以上含有することができるが、Aがトランス−1,4−シクロヘキシレン基を表す化合物、及びAが1,4−フェニレン基を表す化合物をそれぞれ少なくとも1種以上含有するのが好ましい。
又、Aがトランス−1,4−シクロヘキシレン基を表す一般式(I)で表される化合物の含有量が、一般式(I)で表される化合物中の50%以上で有ることが好ましく、70%以上がより好ましく、80%以上であることがさらに好ましい。
一般式(I)で表される化合物は具体的には次に記載する一般式(Ia)〜一般式(Ik)で表される化合物が好ましい。
Figure 0005637420
(式中、R及びRはそれぞれ独立して、炭素原子数1〜5のアルキル基又は炭素原子数1〜5のアルコキシ基を表すが、一般式(I)におけるR及びRと同様の実施態様が好ましい。)
一般式(Ia)〜一般式(Ik)において、一般式(Ia)、一般式(Ic)及び一般式(Ig)が好ましく、一般式(Ia)及び一般式(Ig)がより好ましく、一般式(Ia)が特に好ましいが、応答速度を重視する場合には一般式(Ib)も好ましく、より応答速度を重視する場合には、一般式(Ib)、一般式(Ic)、一般式(Ie)及び一般式(Ik)が好ましく、一般式(Ic)及び一般式(Ik)がより好ましく、一般式(Ik)で表されるジアルケニル化合物は特に応答速度を重視する場合に好ましい。
これらの点から、一般式(Ia)及び一般式(Ic)で表される化合物の含有量が、一般式(I)で表される化合物中の50%以上で有ることが好ましく、70%以上がより好ましく、80%以上であることがさらに好ましく、100%であることが最も好ましい。又、一般式(Ia)で表される化合物の含有量が、一般式(I)で表される化合物中の50%以上で有ることが好ましく、70%以上がより好ましく、80%以上であることがさらに好ましい。
本発明の液晶表示装置における液晶層は、一般式(II-1)で表される化合物を5〜30%含有するが、8〜27%含有することが好ましく、10〜25%含有することがより好ましい。 一般式(II-1)において、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表すが、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基を表すことが好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜4のアルケニル基を表すことがより好ましく、炭素原子数3〜5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましい。
は炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表すが、炭素原子数1〜5のアルキル基又は炭素原子数1〜5のアルコキシ基を表すことが好ましく、炭素原子数1〜3のアルキル基又は炭素原子数1〜3のアルコキシ基を表すことがより好ましく、炭素原子数3のアルキル基又は炭素原子数2のアルコキシ基を表すことがさらに好ましく、炭素原子数2のアルコキシ基を表すことが特に好ましい。
は単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表すが、単結合、−CHCH−、−COO−、−OCH−、−CHO−、−OCF−又は−CFO−を表すことが好ましく、単結合又は−CHO−を表すことがより好ましい。
本発明の液晶表示装置における液晶層は、一般式(II-1)で表される化合物を1種又は2種以上含有することができるが、1種又は2種含有することが好ましい。
一般式(II-1)で表される化合物は具体的には次に記載する一般式(II-1a)〜一般式(II-1d)で表される化合物が好ましい。
Figure 0005637420
(式中、Rは炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基を表し、R4aは炭素原子数1〜5のアルキル基を表す。)
一般式(II-1a)及び一般式(II-1c)においてRは、一般式(II-1)における同様の実施態様が好ましい。R4aは炭素原子数1〜3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
一般式(II-1b)及び一般式(II-1d)においてRは、一般式(II-1)における同様の実施態様が好ましい。R4aは炭素原子数1〜3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数3のアルキル基が特に好ましい。
一般式(II-1a)〜一般式(II-1d)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-1a)及び一般式(II-1c)が好ましく、一般式(II-1a)が好ましい。
本発明の液晶表示装置における液晶層は、一般式(II-1a)〜一般式(II-1d)で表される化合物を1種又は2種以上含有することが好ましく、1種又は2種含有することが好ましく、一般式(II-1a)で表される化合物を1種又は2種含有することが好ましい。
本発明の液晶表示装置における液晶層は、一般式(II-2)で表される化合物を25〜45%含有するが、28〜42%含有することが好ましく、30〜40%含有することがより好ましい。
一般式(II-2)において、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表すが、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基を表すことが好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜4のアルケニル基を表すことがより好ましく、炭素原子数3〜5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましい。
は炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表すが、炭素原子数1〜5のアルキル基又は炭素原子数1〜5のアルコキシ基を表すことが好ましく、炭素原子数1〜3のアルキル基又は炭素原子数1〜3のアルコキシ基を表すことがより好ましく、炭素原子数3のアルキル基又は炭素原子数2のアルコキシ基を表すことがさらに好ましく、炭素原子数2のアルコキシ基を表すことが特に好ましい。
Bはフッ素置換されていてもよい、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表すが、無置換の1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基が好ましく、トランス−1,4−シクロヘキシレン基がより好ましい。
は単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表すが、単結合、−CHCH−、−COO−、−OCH−、−CHO−、−OCF−又は−CFO−を表すことが好ましく、単結合又は−CHO−を表すことがより好ましい。
一般式(II-2)で表される化合物は具体的には次に記載する一般式(II-2a)〜一般式(II-2f)で表される化合物が好ましい。
Figure 0005637420
(式中、Rは炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基を表し、R6aは炭素原子数1〜5のアルキル基を表すが、一般式(II-2)におけるR及びRと同様の実施態様が好ましい。)
一般式(II-2a)、一般式(II-2b)及び一般式(II-2e)においてR5は、一般式(II-2)における同様の実施態様が好ましい。R6aは炭素原子数1〜3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
一般式(II-2c)、一般式(II-2d)及び一般式(II-2f)においてRは、一般式(II-2)における同様の実施態様が好ましい。R6aは炭素原子数1〜3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数3のアルキル基が特に好ましい。
一般式(II-2a)〜一般式(II-2f)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-2a)、一般式(II-2b)及び一般式(II-2e)が好ましい。
一般式(II-2)で表される化合物は1種又は2種以上含有することができるが、Bが1,4−フェニレン基を表す化合物、及びBがトランス−1,4−シクロヘキシレン基を表す化合物をそれぞれ少なくとも1種以上含有することが好ましい。
本発明の液晶表示装置における液晶層は、更に、一般式(III)
Figure 0005637420
(式中、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、D、E及びFはそれぞれ独立して、フッ素置換されていてもよい、1,4−フェニレン基又はトランス−1,4−シクロヘキシレンを表し、Zは単結合、−OCH−、−OCO−、−CHO−又は−COO−、−OCO−を表し、nは0、1又は2を表す。ただし、一般式(I)、一般式(II-1)及び一般式(II-2)で表される化合物は除く。)で表される化合物を含有するのが好ましい。
一般式(III)で表される化合物は3〜35%含有することが好ましく、5〜33%含有することが好ましく、7〜30%含有することが好ましい。
一般式(III)において、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表すが、
Dがトランス−1,4−シクロヘキシレンを表す場合、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基を表すことが好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜4のアルケニル基を表すことがより好ましく、炭素原子数3〜5のアルキル基又は炭素原子数2又は3のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
Dがフッ素置換されていてもよい、1,4−フェニレン基を表す場合、炭素原子数1〜5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2〜5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2〜4のアルキル基を表すことがさらに好ましい。
は炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表すが、
Fがトランス−1,4−シクロヘキシレンを表す場合、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基を表すことが好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜4のアルケニル基を表すことがより好ましく、炭素原子数3〜5のアルキル基又は炭素原子数2又は3のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
Fがフッ素置換されていてもよい、1,4−フェニレン基を表す場合、炭素原子数1〜5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2〜5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2〜4のアルキル基を表すことがさらに好ましい。
及びRがアルケニル基を表し、結合するD又はFがフッ素置換されていてもよい、1,4−フェニレン基を表す場合す場合、炭素原子数4又は5のアルケニル基としては以下の構造が好ましい。
Figure 0005637420
(式中、環構造へは右端で結合するものとする。)
この場合においても、炭素原子数4のアルケニル基がさらに好ましい。
D、E及びFはそれぞれ独立して、フッ素置換されていてもよい、1,4−フェニレン基又はトランス−1,4−シクロヘキシレンを表すが、2−フルオロ−1,4−フェニレン基、2,3−ジフルオロ−1,4−フェニレン基、1,4−フェニレン基又はトランス−1,4−シクロヘキシレンを表すことが好ましく、2−フルオロ−1,4−フェニレン基又は2,3−ジフルオロ−1,4−フェニレン基、1,4−フェニレン基がより好ましく、2,3−ジフルオロ−1,4−フェニレン基又は1,4−フェニレン基が特に好ましい。
は単結合、−OCH−、−OCO−、−CHO−又は−COO−を表すが、単結合、−CHO−又は−COO−を表すことが好ましく、単結合がより好ましい。
nは0、1又は2を表すが、0又は1を表すことが好ましい。また、Zが単結合以外の置換基を表す場合、1を表すことが好ましい。
一般式(III)で表される化合物は、nが1を表す場合において、負の誘電率異方性を大きくする観点からは、一般式(III-1a)〜一般式(III-1e)で表される化合物が好ましく、応答速度を速くする観点からは、一般式(III-1f)〜一般式(III-1j)で表される化合物が好ましい。
Figure 0005637420
Figure 0005637420
(式中、R及びRはそれぞれ独立して、炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基又は炭素原子数1〜5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。)
一般式(III)で表される化合物は、nが2を表す場合、負の誘電率異方性を大きくする観点からは、一般式(III-2a)〜一般式(III-2i)で表される化合物が好ましく、応答速度を速くする観点からは、一般式(III-2j)〜一般式(III-2l)で表される化合物が好ましい。
Figure 0005637420
Figure 0005637420
(式中、R及びRはそれぞれ独立して、炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基又は炭素原子数1〜5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。)
一般式(III)で表される化合物は、nが0を表す場合、負の誘電率異方性を大きくする観点からは、一般式(III-3a)で表される化合物が好ましく、応答速度を速くする観点からは、一般式(III-3b)で表される化合物が好ましい。
Figure 0005637420
Figure 0005637420
(式中、R及びRはそれぞれ独立して、炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基又は炭素原子数1〜5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。)
は炭素原子数2〜5のアルキル基が好ましく、炭素原子数3のアルキル基がより好ましい。Rは炭素原子数1〜3のアルコキシ基が好ましく、炭素原子数2のアルコキシ基がより好ましい。
一般式(II-1)及び一般式(II-2)で表される化合物は共に、誘電率異方性が負であってその絶対値が比較的大きい化合物であるが、これら化合物の合計含有量は、30〜65%が好ましく、40〜55%がより好ましく、43〜50%が特に好ましい。
一般式(III)で表される化合物は誘電率異方性については正の化合物も負の化合物も包含しているが、誘電率異方性が負であって、その絶対値が0.3以上の化合物を用いる場合、一般式(II-1)、一般式(II-2)及び一般式(III)で表される化合物の合計含有量は、35〜70%が好ましく、45〜65%がより好ましく、50〜60%が特に好ましい。
一般式(I)で表される化合物を30〜50%含有し、且つ一般式(II-1)、一般式(II-2)及び一般式(III)で表される化合物を35〜70%含有することが好ましく、一般式(I)で表される化合物を35〜45%含有し、且つ一般式(II-1)、一般式(II-2)及び一般式(III)で表される化合物を45〜65%含有することがより好ましく、一般式(I)で表される化合物を38〜42%含有し、且つ一般式(II-1)、一般式(II-2)及び一般式(III)で表される化合物を50〜60%含有することが特に好ましい。
一般式(I)、一般式(II-1)、一般式(II-2)及び一般式(III)で表される化合物の合計含有量は、組成物全体に対して、80〜100%が好ましく、90〜100%がより好ましく、95〜100%が特に好ましい。
本発明の液晶表示装置における液晶層は、ネマチック相-等方性液体相転移温度(Tni)を幅広い範囲で使用することができるものであるが、60から120℃であることが好ましく、70から100℃がより好ましく、70から85℃が特に好ましい。
誘電率異方性は、25℃において、−2.0から−6.0であることが好ましく、−2.5から−5.0であることがより好ましく、−2.5から−4.0であることが特に好ましい。
屈折率異方性は、25℃において、0.08から0.13であることが好ましいが、0.09から0.12であることがより好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.12であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。
回転粘度(γ1)は150以下が好ましく、130以下がより好ましく、120以下が特に好ましい。
本発明の液晶表示装置における液晶層においては、回転粘度と屈折率異方性の関数であるZが特定の値を示すことが好ましい。
Figure 0005637420
(式中、γ1は回転粘度を表し、Δnは屈折率異方性を表す。)
Zは、13000以下が好ましく、12000以下がより好ましく、11000以下が特に好ましい。
本発明の液晶表示装置における液晶層は、アクティブマトリクス表示素子に使用する場合においては、1012(Ω・m)以上の比抵抗を有することが必要であり、1013(Ω・m)が好ましく、1014(Ω・m)以上がより好ましい。
本発明の液晶表示装置における液晶層は、上述の化合物以外に、用途に応じて、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、酸化防止剤、紫外線吸収剤、重合性モノマーなどを含有しても良い。
重合性モノマーとしては、一般式(V)
Figure 0005637420
(式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、
Sp及びSpはそれぞれ独立して、単結合、炭素原子数1〜8のアルキレン基又は−O−(CH−(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、
は−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CHCH−、−CFCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CY=CY−(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、−C≡C−又は単結合を表し、
Cは1,4−フェニレン基、トランス−1,4−シクロヘキシレン基又は単結合を表し、式中の全ての1,4−フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表されるニ官能モノマーが好ましい。
及びXは、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。
Sp及びSpはそれぞれ独立して、単結合、炭素原子数1〜8のアルキレン基又は−O−(CH−を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1〜8のアルキレン基又は−O−(CH−を表す態様が好ましい。この場合1〜4のアルキル基が好ましく、sは1〜4が好ましい。
は、−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CHCH−、−CFCF−又は単結合が好ましく、−COO−、−OCO−又は単結合がより好ましく、単結合が特に好ましい。
Cは任意の水素原子がフッ素原子により置換されていても良い1,4−フェニレン基、トランス−1,4−シクロヘキシレン基又は単結合を表すが、1,4−フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Zは単結合以外の連結基も好ましく、Cが単結合の場合、Zは単結合が好ましい。
これらの点から、一般式(V)において、Sp及びSpの間の環構造は、具体的には次に記載する構造が好ましい。
一般式(V)において、Cが単結合を表し、環構造が二つの環で形成される場合において、次の式(Va-1)から式(Va-5)を表すことが好ましく、式(Va-1)から式(Va-3)を表すことがより好ましく、式(Va-1)を表すことが特に好ましい。
Figure 0005637420
(式中、両端はSp又はSpに結合するものとする。)
これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
以上のことから、重合性モノマーとしては、一般式(V-1)〜一般式(V-4)が特に好ましく、中でも一般式(V-2)が最も好ましい。
Figure 0005637420
(式中、Spは炭素原子数2から5のアルキレン基を表す。)
重合性モノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。また、保存安定性を向上させるために、安定剤を添加しても良い。使用できる安定剤としては、例えば、ヒドロキノン類、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類、ニトロソ化合物等が挙げられる。
重合性モノマーを含有する液晶層は、液晶表示素子に有用であり、特にアクティブマトリクス駆動用液晶表示素子に有用であり、PSAモード、PSVAモード、VAモード、IPSモード又はECBモード用液晶表示素子に用いることができる。
重合性モノマーを含有する液晶層は、これに含まれる重合性モノマーが紫外線照射により重合することで液晶配向能が付与され、液晶組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。液晶表示素子として、AM−LCD(アクティブマトリックス液晶表示素子)、TN(ネマチック液晶表示素子)、STN−LCD(超ねじれネマチック液晶表示素子)、OCB−LCD及びIPS−LCD(インプレーンスイッチング液晶表示素子)に有用であるが、AM−LCDに特に有用であり、透過型あるいは反射型の液晶表示素子に用いることができる。
(カラーフィルタ)
本発明におけるカラーフィルタとは、有機顔料を含有することで、ある特定の波長を吸収することで、それ以外の特定の波長の光を透過するものをいう。
基材としては、光を透過するものであればよく、用途によって適時選択すればよい。例えば樹脂や無機材料が挙げられ、ガラスが特に好ましい。
上記カラーフィルタは、基材と有機顔料を有し、有機顔料は基材中に分散していてもよいし、基材の表面にのみ存在していてもかまわない。樹脂中に有機顔料を分散し、成形してもよく、基材の表面に塗膜として分散させてもよい。
カラーフィルタの形状は任意であり、板状、フィルム状、レンズ状、球体、一部に三次元の凹凸を有するものや、表面に微細な凹凸加工をしたものなど、どのような形状でも構わない。
〔有機顔料〕
本発明の有機顔料としては、フタロシアニン系、不溶性アゾ系、アゾレーキ系、アントラキノン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリミジン系、アンザンスロン系、インダンスロン系、フラバンスロン系、ペリノン系、ペリレン系、チオインジゴ系、トリアリールメタン系、イソインドリノン系、イソインドリン系、金属錯体系、キノフタロン系、染付レーキ系等が挙げられる。
透過したい波長に合わせて、顔料種は適時選択すればよい。
赤色カラーフィルタの場合、赤色系顔料を用いればよく、具体的には600nm以上700nm以下の透過波長における透過度が高い顔料が挙げられる。当該顔料は、1種のみであってもよいし、2種以上を併用してもよい。好ましく使用できる顔料の具体例として、例えば、C.I.Pigment Red 81、同 122、同 177,同 209,同 242,同 254,Pigment Violet 19が挙げられる。中でもC.I.Pigment Red 254が特に好ましく、その極大透過波長は、660nmから700nmの間にある。
また、前記赤色カラーフィルタは、調色用として更に、C.I.Pigment Orange 38、同71、C.I.Pigment Yellow 150、同215、同185、同138、同139からなる群から選ばれる少なくとも1種の有機顔料を含有することも可能である。
緑色カラーフィルタの場合、緑色系顔料を用いればよく、500nm以上600nm以下に極大透過波長を持つ顔料が挙げられる。当該顔料は、1種のみであってもよいし、2種以上を併用してもよい。好ましく使用できる顔料の具体例として、例えば、C.I.Pigment Green 7、同 36、同 58が挙げられる。中でも同 58が特に好ましく、その極大透過波長は、510nmから550nmの間にある。
前記緑色カラーフィルタは、調色用として更に、C.I.Pigment Yellow 150、同215、同185、同138からなる群から選ばれる少なくとも1種の有機顔料を含有することも可能である。
青色カラーフィルタの場合、青色系顔料を用いればよく、400nm以上500nm以下に極大透過波長を持つ顔料が挙げられる。当該顔料は、1種のみであってもよいし、2種以上を併用してもよい。好ましく使用できる顔料の具体例として、C.I.Pigment Blue 15:3,同15:6,トリアリールメタン顔料として、C.I.Pigment Blue 1,及び/又は下記一般式(1)(式中、R〜Rは各々独立して水素原子、置換基を有していてもよい炭素数1〜8のアルキル基、又は置換基を有してもよいアリール基を表す。R〜Rが置換基を有していてもよいアルキル基を表す場合、隣接するRとR、RとR、RとRが結合して環構造を形成してもよい。X及びXは各々独立して水素原子、ハロゲン原子、又は置換基を有してもよい炭素数1〜8のアルキル基を示す。Z−は(P2MoyW18−yO62)6−/6で表され、y=0、1、2または3の整数であるヘテロポリオキソメタレートアニオンか、(SiMoW11O40)4−/4であるヘテロポリオキソメタレートアニオンか、欠損ドーソン型リンタングステン酸ヘテロポリオキソメタレートアニオンから選ばれる少なくとも一種のアニオンである。1分子中に複数の式(1)が含まれる場合、それらは同じ構造であっても異なる構造であってもよい。)で表されるトリアリールメタン顔料が挙げられる。
一般式(1)において、R〜Rは同一でも異なるものであってもよい。従って、−NRR(RRは、R、R、及びRのいずれかの組み合わせを表す。)基は対称であっても非対称であってもよい。
C.I.Pigment Blue 15:3の極大透過波長は、440nmから480nmの間にあり,同15:6の極大透過波長は、430nmから470nmの間にあり、トリアリールメタン顔料の極大透過波長は、410nmから450nmの間にある。
前記青色カラーフィルタは、調色用として更にC.I.Pigment Violet 23、同37、C.I.Pigment Blue 15、同15:1、同15:2、同15:4からなる群から選ばれる少なくとも1種の有機顔料を含有することも可能である。
Figure 0005637420
上記有機顔料を、顔料分散体とした上で基材に塗布する方法で、カラーフィルタを製造することができる場合、顔料分散体としては、有機顔料のほかに公知の顔料分散剤や溶媒等を含有してもかまわない。有機顔料を予め溶剤や顔料分散剤で分散させた分散液を調整し、得られた分散液を基材に塗布すればよく、塗布方法としては例えば、スピンコート法、ロールコート法、インクジェット法等、スプレーコート法、印刷法等が挙げられる。
有機顔料を基材に塗布して乾燥させた状態でカラーフィルタとしてもよいし、顔料分散体に硬化性樹脂が含まれる場合、熱や活性エネルギー線により硬化することでカラーフィルタとしてもよい。また、ホットプレート、オーブン等の加熱装置により、100〜280℃で、所定時間加熱処理(ポストベーク)することによって、塗膜中の揮発性成分を除去する工程を行ってもかまわない。
〔カラーフィルタにおける顔料の粒子状態〕
本発明のカラーフィルタは、有機顔料の凝集程度の指標となる傾きパラメータが2以下であることを特徴とするものである。カラーフィルタにおいて、カラーフィルタの状態での有機顔料の状態が、もっとも白抜け、配向むら、焼き付けなどの表示不良の抑制に貢献する。カラーフィルタとなった状態での有機顔料粒子の凝集程度の指標となる傾きパラメータを規定することで、上記の表示不良を防止するカラーフィルタとなる。傾きパラメータが小さい値ほど凝集程度は小さくなるので、より好ましくは傾きパラメータが1.5以下である。
上記有機顔料において、1000nmより大きいような粗大粒子は表示状態に悪影響を及ぼし好ましくないため、1%以下である必要がある。これは、カラーフィルタ表面を適当な光学顕微鏡等で観察すればよい。
〔超小角エックス線散乱プロファイル〕
有機顔料の凝集程度を示す傾きパラメータを算出するには、超小角エックス線散乱法に基づいた超小角X線散乱プロファイルを解析することで求めることができる。
具体的には、超小角エックス線散乱法に基づき、有機顔料の超小角エックス線散乱プロファイル(測定散乱プロファイル)を測定する工程(A)と、該散乱プロファイル上で湾曲点を算出する工程(B)と、該湾曲点から設定される解析領域(c1)を決定する工程(C)と、解析領域c1での傾きパラメータを算出する工程(D)とを有する測定方法である。
超小角エックス線散乱法(Ultra−Small Angle X−ray Scattering:USAXS)とは、散乱角が0.1<(2θ)<10℃である小角領域だけでなく、0°<(2θ)≦0.1°という超小角領域で生じる散漫な散乱・回折も同時に測定する方法である。小角エックス線散乱法では、物質中に1〜100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱を計測することができるが、この超小角エックス線散乱法では、物質中に1〜1000nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の傾きパラメータを求める。
超小角エックス線散乱法を実現する主要技術は、入射X線の波長幅やビーム径を絞り超小角領域のバックグラウンド散乱強度を低減する高度な光学系制御技術を用い、できるだけサンプルから検出器までの距離、いわゆるカメラ長を長くして散乱角の小さい部分を高精度に測定する2つの技術で達成される。実験室用の小型の装置では主に前者の技術で達成される。
また、X線小角散乱プロファイルから傾きパラメータを求めるためのプログラムとしては、汎用の微分計算やデータ補間処理ができるプログラムを用いることができるが、例えばMATLAB(MathWorks社)等のプログラムを用いることが好ましい。傾きパラメータを算出するための最小自乗法によるフィッティングには上記プログラムに加え、Excel(マイクロソフト社製)などのプログラムを用いることができる。
有機顔料の散乱プロファイルを測定する場合、エックス線散乱装置の入射エックス線の輝度が10Brilliance(photons/sec/mm/mrad/0.1%bandwidth)以上であれば、十分な散乱強度を測定することが可能であり、好ましくは10Brilliance以上である。塗膜の基板がガラスなどの場合、エックス線を吸収しやすいため、入射エックス線の輝度が著しく不足するので、有機顔料の散乱プロファイルを精度よく測定するには、入射X線の輝度が1016Brilliance以上であることが好ましく、より好ましくは1018Brilliance以上である。
1016Brilliance以上の高輝度エックス線源を得るために、前記の大型放射光施設、たとえば兵庫県のSPring−8や茨城県のPhoton Factory等の光源を用いることができる。このような設備では、任意のカメラ長を選択することで目的の散乱領域を設定できる。また、十分な散乱強度を得るためや、試料ダメージを防ぐため、さらには検出器の保護のために入射側にアテネーターと呼ばれる数種の金属製の吸収板を使用したり、露光時間を0.5〜60秒程度で任意で調整することにより、最適な測定条件を広範囲の目的から選択することができる。アテネーターは、例えばAu、Ag、モリブデン製の薄膜などが挙げられる。
測定の具体的な手順としては、まず、工程(A)で、カラーフィルタを市販のエックス線回折装置の試料ホルダー、試料台等に設置した後、散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイル(測定散乱プロファイル)を測定する。
基板がガラスである塗膜の場合に用いる放射光による超小角散乱装置は、蓄積リングと呼ばれる円形加速器から取り出した白色光を二結晶分光器で単色化し、X線領域の波長(例えば1Å)を線源とし、試料台に設置した塗膜に入射させ、散乱光を2次元検出器で一定時間露光し、同心円状に得られた散乱プロファイルを1次元に平均化し、散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iに変換し、小角エックス線散乱プロファイル(測定散乱プロファイル)を得る作業を工程(A)とする。
次いで、工程(B)では、得られた測定散乱プロファイルにおいて散乱ベクトルq<0.5[nm−1]以下の領域における湾曲点を算出する。ここで言う湾曲点とは、散乱ベクトルqと散乱強度Iをそれぞれ両対数プロットしたグラフであらわされる散乱プロファイルにおける、上に凸で現れる湾曲部分を意味している。
まず、散乱ベクトルqおよび散乱強度Iのそれぞれを基数10の対数Log(q)およびLog(I)となる値に変換する。ここで便宜上、xとy座標のグラフにおける関数y=f(x)を考えたときの散乱プロファイルをLog(I) =F(Log(q))という関数で表されると仮定する。ここでさらに、Log(q)=Q、およびLog(I)=Jと表記すると、J=F(Q)という形で散乱プロファイルが表記されこれを散乱プロファイル関数と呼ぶことにする。
J=F(Q)であらわされる散乱プロファイル関数をスプライン関数によるスムージングを行い、さらにスムージング処理後の関数G(Q)について1次微分関数G′(Q)=dG(Q)/dQを求める。前記スプライン関数によるスムージング処理後の関数G(Q)および1次微分関数G′(Q)の導出は例えば非特許文献1に記載されている手法を用いる。
次に、前記1次微分関数G′(Q)において、Q=0からQマイナス方向に向けて極小値G′minとそのx座標X_gminを求める。さらに同マイナス方向に向けて極大値G′maxとそのx座標X_gmaxを求める。
次に、前記極大値G′maxと前記極小値G′minとの半値G′c=(G′max−G′min)/2を求める。
前記X_gmaxと前記X_gminの間のx座標範囲において、この半値G′cを示す点が、もとの散乱プロファイル関数F(Q)における湾曲点に相当する。このときの湾曲点のx座標についてQ=Qと表す。湾曲点のx座標を散乱ベクトルqで表記すると、Log(q)=Qの関係式からq=qが散乱プロファイル上の湾曲点のx座標となる。
次いで、工程(C)では、まず散乱プロファイルの傾きを求めるための解析領域(c1)を算出する。湾曲点のx座標Qよりも小さいQの領域、つまりQ<Qの領域において、1次微分関数G′(Q)がほぼ平坦になる領域を解析領域c1とする。
このとき、微分していないもとの散乱プロファイル関数F(Q)においては解析領域c1である一定の傾きをもった直線に近似できるプロファイル部分となる。
解析領域c1は、端点1と端点2で区切られた領域となるように、端点1と端点2を決定する。それぞれの端点でのx軸の値は、端点1ではQ=QとなりLog(q)=Log(q),端点2ではQ=QとなりLog(q)=Log(q)で表されるとする。
まず、解析領域c1の端点1は以下のように決定する。前記最大値G′maxと、端点1に設定したい点での値G′(Q)との値の差分Δ=G′max−G′(Q)を計算し、湾曲点x座標QからQが小さくなる方向へ順にデータを着目したときに差分Δ<0.1となる最初の点を端点1とする。この端点1のx座標がQ=Qとなりq=qである。
端点2の決め方については、測定データによって最適な値を決める必要がある。具体的には、小さいqの領域では実験時に用いたビームストッパー近傍における寄生散乱などの影響が強くなり散乱強度が大きくなってしまい顔料粒子に由来する散乱とは別の要因で散乱プロファイルの傾きが変化してしまう。つまり、端点2をQが十分小さい超小角域側に決めて解析領域c1を広くとるのは必ずしも適さない。一方で、端点2を端点1の近い位置にとってしまうのはデータのノイズの影響などが大きくなり最終的に次の工程(D)で解析領域c1における傾きパラメータを最小自乗法で算出する解析上、意味を為さなくなる。
これらを考慮し、端点2のx座標を決定する必要がある。端点2のx座標の値はQ=Log(q)である。qの値の決定には先に決定したqの値を用いて q=q/2 〜 q/3の範囲でできるだけ広く散乱プロファイルが直線で近似できるようにとるのが望ましい。
次に、工程(D)では、端点1と端点2で決定した解析領域c1における散乱プロファイルの傾きパラメータを算出する。この解析領域c1では散乱強度Iと散乱ベクトルqが I(q)∝q−dM の関係にある。よって、両対数プロットで散乱プロファイルを表した散乱プロファイル関数Log(I) =F(Log(q))は解析領域c1での理論相関関数として下記式(1)のように表される。
Log(I)=−d×Log(q)+C(C:定数) ・・・(1)
上記式(1)において、dが解析領域c1における傾きパラメータとなり、Cは定数である。
上記式(1)で表される理論相関関数と解析領域c1における散乱プロファイルとの関数フィッティングを最小自乗法により実行することで傾きパラメータdを算出する。
関数フィッティングにおける変数は上記のdおよびCである。関数フィッティングは理論相関関数と散乱プロファイル関数との残差二乗和Z値が最小自乗法により最小となるよう実行され、この残差二乗和Z値が小さいほどフィッティングの精度は高いとされる。一般にZ値は2%未満になればフィッティングが収束したと判断してよい。好ましくはZ値が1%未満であり、よりこのましくは0.5%未満である。
本工程における関数フィッティングが良好に収束しない場合、すなわちZ値が2%以上である場合は解析領域c1内のデータにばらつきが多いか、もしくは直線形状から大きく外れていることを意味する。この原因のひとつとして解析領域c1が適切でないことが考えられる。とくに解析領域c1を広くとりすぎて不要な散乱寄与を含んだデータになっている場合が考えられ、その場合は工程(C)で求めた端点2を端点1に近いところに調整してもよく、そのうえで工程(D)を繰り返す。
もう1つの原因としては、十分な強度のないエックス線で測定した場合において得られた散乱強度データが大きくばらついていることが原因として考えられる。その場合は、S/N比が良好な散乱強度データが得られるような、より強力なエックス線を照射できる実験施設での超小角散乱実験によって測定データを得る必要がある。
ここで、散乱プロファイルにおいて明瞭な湾曲部分が見られない場合、つまり前記極大値G′maxと前記極小値G′minの差分△G′max−min<0.1の場合には、仮想的に湾曲点Q(またはq)を決める必要が生じる。もしこのとき、同じ顔料を用いている別のカラーフィルタ試料で散乱プロファイルに湾曲部が明瞭に現れている場合には、そのときの湾曲点Qを、湾曲部が明瞭に現れていない試料の湾曲点Qに代用することができる。散乱プロファイルにおいて明瞭な湾曲部分がみられず、代用できるQが得られない場合には、q<0.5の範囲、Q<Log(0.5)の範囲において散乱プロファイル上の任意の部分を解析領域c1と設定することができる。その解析領域c1において最小自乗法により傾きパラメータdを求めればよい。
なお、この傾きパラメータdは、物理的には質量フラクタル次元数と呼ばれることがあり、解析領域c1で精度良く傾きパラメータdが求められるということは散乱光強度Iが I(q)∝q−dMで表されて散乱ベクトルqのべき乗則に従っていることを示している。そのため、原理的にはdは3以上の値をとらない。もし、dが3以上の値になった場合は、先述のような不適切な解析領域c1やノイズの多いデータの原因が考えられるので、解析領域c1の見直しや高強度エックス線による再実験を行い、あらためて工程(A)から工程(D)を実施することで散乱プロファイルの傾きパラメータを解析結果として得られる。
以上のように解析領域c1で精度良く傾きパラメータdが求められるということはすなわち質量フラクタル次元数が明確に決定できていることであり、原理的、物理的にはカラーフィルタに含まれる有機顔料の凝集構造がフラクタル的な自己相似的構造をとっていることを示している。dで表される傾きパラメータが大きい値であるほど自己相似的凝集構造が大きいことを意味し、凝集程度が大きいことを示している。よって、このdをカラーフィルタにおける顔料凝集程度の定量的指標とすることができる。
(配向膜)
本発明の液晶表示装置において、第一の基板と、第二の基板上の液晶組成物と接する面には液晶組成物を配向させるため、配向膜を必要とする液晶表示装置においてはカラーフィルタと液晶層間に配置するものであるが、配向膜の膜厚が厚いものでも100nm以下と薄く、カラーフィルタを構成する顔料等の色素と液晶層を構成する液晶化合物との相互作用を完全に遮断するものでは無い。
又、配向膜を用いない液晶表示装置においては、カラーフィルタを構成する顔料等の色素と液晶層を構成する液晶化合物との相互作用はより大きくなる。
配向膜材料としては、ポリイミド、ポリアミド、BCB(ペンゾシクロブテンポリマー)、ポリビニルアルコールなどの透明性有機材料を用いることができ、特に、p−フェニレンジアミン、4,4’−ジアミノジフエニルメタンなどの脂肪族または脂環族ジアミン等のジアミン及びブタンテトラカルボン酸無水物や2,3,5−トリカルボキシシクロペンチル酢酸無水物等の脂肪族又は脂環式テトラカルボン酸無水物、ピロメリット酸二無水物等の芳香族テトラカルボン酸無水物から合成されるポリアミック酸をイミド化した、ポリイミド配向膜が好ましい。この場合の配向付与方法は、ラビングを用いることが一般的であるが、垂直配向膜等に使用する場合は配向を付与しないで使用することもできる。
配向膜材料としては、カルコン、シンナメート、シンナモイル又はアゾ基等を化合物中に含む、材料を使用することができ、ポリイミド、ポリアミド等の材料と組み合わせて使用してもよく、この場合配向膜はラビングを用いてもよく光配向技術を用いてもよい。
配向膜は、基板上に前記配向膜材料をスピンコート法などの方法により塗布して樹脂膜を形成することが一般的であるが、一軸延伸法、ラングミュア・ブロジェット法等を用いることもできる。
(透明電極)
本発明の液晶表示装置において、透明電極の材料としては、導電性の金属酸化物を用いることができ、金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)、酸化インジウム亜鉛(In―ZnO)、ニオブ添加二酸化チタン(Ti1-xNbx)、フッ素ドープ酸化スズ、グラフェンナノリボン又は金属ナノワイヤー等が使用できるが、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)又は酸化インジウム亜鉛(In―ZnO)が好ましい。これらの透明導電膜のパターニングには、フォト・エッチング法やマスクを用いる方法などを使用することができる。
本液晶表示装置と、バックライトを組み合わせて、液晶テレビ、パソコンのモニター、携帯電話、スマートフォンのディスプレイや、ノート型パーソナルコンピューター、携帯情報端末、デジタルサイネージ等の様々な用途で使用される。バックライトとしては、冷陰極管タイプバックライト、無機材料を用いた発光ダイオードや有機EL素子を用いた、2波長ピークの擬似白色バックライトと3波長ピークのバックライト等がある。
以下、実施例を挙げて本発明の最良の形態の一部を詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
実施例中、測定した特性は以下の通りである。
ni :ネマチック相−等方性液体相転移温度(℃)
Δn :25℃における屈折率異方性
Δε :25℃における誘電率異方性
η :20℃における粘度(mPa・s)
γ :25℃における回転粘度(mPa・s)
gap:セルの第一基板と第二基板のギャップ(μm)
VHR :70℃における電圧保持率(%)
(セル厚3.5μmのセルに液晶組成物を注入し、5V印加、フレームタイム200ms、パルス幅64μsの条件で測定した時の測定電圧と初期印加電圧との比を%で表した値)
ID :70℃におけるイオン密度(pC/cm
(セル厚3.5μmのセルに液晶組成物を注入し、MTR−1(株式会社東陽テクニカ製)で20V印加、周波数0.05Hzの条件で測定した時のイオン密度値)
焼き付き :
液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
◎残像無し
○残像ごく僅かに有るも許容できるレベル
△残像有り許容できないレベル
×残像有りかなり劣悪
尚、実施例において化合物の記載について以下の略号を用いる。
(側鎖)
-n -CnH2n+1 炭素数nの直鎖状のアルキル基
n- CnH2n+1- 炭素数nの直鎖状のアルキル基
-On -OCnH2n+1 炭素数nの直鎖状のアルコキシル基
nO- CnH2n+1O- 炭素数nの直鎖状のアルコキシル基
-V -CH=CH2
V- CH2=CH-
-V1 -CH=CH-CH3
1V- CH3-CH=CH-
-2V -CH2-CH2-CH=CH3
V2- CH3=CH-CH2-CH2-
-2V1 -CH2-CH2-CH=CH-CH3
1V2- CH3-CH=CH-CH2-CH2
(環構造)
Figure 0005637420
[カラーフィルタの製造]
[顔料分散液の製造]
〈合成例1〉 共重合体aの合成
キシレン100部を、窒素気流中80℃に保ち、攪拌しながらメタクリル酸エチル68部、メタクリル酸2−エチルヘキシル29部、チオグリコール酸3部、および重合開始剤(「パーブチル(登録商標)O」〔有効成分ペルオキシ2−エチルヘキサン酸t−ブチル、日本油脂(株)製〕)0.2部からなる混合物を4時間かけて滴下した。滴下終了後、4時間ごとに「パーブチル(登録商標)O」0.5部を添加し、80℃で12時間攪拌した。反応終了後不揮発分調整のためキシレンを加え、不揮発分50%の共重合体aのキシレン溶液を得た。
〈合成例2〉 共重合体bの合成
キシレン100部を、窒素気流中80℃に保ち、攪拌しながらメタクリル酸エチル66部、メタクリル酸2−エチルヘキシル28部、チオグリコール酸6部、および重合開始剤(「パーブチル(登録商標)O」〔有効成分ペルオキシ2−エチルヘキサン酸t−ブチル、日本油脂(株)製〕)0.3部からなる混合物を4時間かけて滴下した。滴下終了後、4時間ごとに「パーブチル(登録商標)O」0.5部を添加し、80℃で12時間攪拌した。反応終了後、不揮発分調整のため適宜量のキシレンを添加し、不揮発分50%の、共重合体bのキシレン溶液を得た。
〈合成例3〉 ポリマーPの合成
撹拌機,還流冷却器,窒素吹込み管、温度計を備えたフラスコに、キシレン54.5部、合成例2で得た共重合体aを19.0部、共重合体bを38.0部、およびポリアリルアミン15%水溶液(日東紡績(株)製「PAA−05」、数平均分子量約5,000)7.5部からなる混合物を仕込み、窒素気流下撹拌しながら140℃で撹拌し、分離装置を使用して水を溜去すると共に、キシレンを反応溶液に返流しながら8時間140℃で反応を行った。
反応終了後、不揮発分調整のため適宜量のキシレンを添加し、不揮発分40%の、変性ポリアミンであるポリマーPを得た。該樹脂の重量平均分子量は11000、アミン価は16.0mgKOH/gであった。
〈製造例1〉 粉末顔料1の製造
DIC株式会社製のFASTOGEN Green A110(C.I.Pigment Green 58、臭素化塩素化亜鉛フタロシアニン)を、粉末顔料1とした。
〈製造例2〉 粉末顔料2の製造
製造例1で得た粉末顔料1を100部、ヘプタンを300部、ポリマーPを10部混合し、1.25mmジルコニアビーズを300部加えて、ペイントシェーカー(東洋精機株式会社製)で常温にて、1時間撹拌したのち、ヘプタン200部で希釈し、ジルコニアビーズを濾別し、顔料混合液を得た。
得られた顔料混合液の400部を温度計、攪拌機、還流冷却器および窒素ガス導入管を備えたセパラブルフラスコに仕込んだ後、メタクリル酸メチルの5部およびエチレングリコールジメタクリレートの5部の重合性単量体組成物に2,2’−アゾビス(2−メチルブチロニトリル)の2部を溶解したものを加えた。室温で30分間攪拌を続けた後、80℃に昇温し、同温度で15時間反応を続けた。降温後、濾過を行い、得られたウエットケーキを熱風乾燥機により100℃で5時間乾燥後、粉砕機にて粉砕を行い、粉末顔料2を得た。
〈製造例3〉 粉末顔料3の製造
製造例1で得た粉末顔料1を10部、粉砕した塩化ナトリウムを100部、ジエチレングリコール10部を双腕型ニーダーで100℃8時間混練した。混練後、80℃の水1000部を加え、一時間撹拌後、濾過、湯洗、乾燥、粉砕し、粉末顔料3を得た。
〈製造例4〉 分散液1の製造
製造例1で得た粉末顔料1を5部、プロピレングリコールモノメチルエーテル(PGM
A)を33.3部、ポリマーPを3部混合し、0.5mmセプラビーズを65部加えて、
ペイントシェーカー(東洋精機株式会社製)で4時間撹拌した。得られた混合液からセプ
ラビーズを濾別し、分散液1を得た。
〈製造例5〉 分散液2の製造
製造例4において、粉末顔料1を粉末顔料2に、ポリマーPをアジスパーPB821(味の素ファインテクノ株式会社製)に変更し、更にキノリンを0.1部添加した以外は同様にして、分散液2を得た。
〈製造例6〉 分散液3の製造
製造例5において、粉末顔料2を5部、PGMAを33.3部、アジスパーPB821を3部、キノリンをピロールに変更した以外は同様にして、分散液3を得た。
〈製造例7〉 分散液4の製造
製造例6において、ピロールをオキサゾールに変更した以外は同様にして、分散液4を得た。
〈製造例8〉 分散液5の製造
製造例7において、オキサゾールをピロリジンに変更した以外は同様にして、分散液5を得た。
〈製造例9〉 粉末顔料4及び分散液6の製造
ε型銅フタロシアニン顔料(DIC株式会社製「ファストゲン ブルー EP−193」)を粉末顔料4とし、粉末顔料4を5部、プロピレングリコールモノメチルエーテル(PGMA)を33.3部、ポリマーPを3部混合し、0.5mmセプラビーズを65部加えて、ペイントシェーカー(東洋精機株式会社製)で4時間撹拌した。得られた混合液からセプラビーズを濾別し、分散液6を得た。





〈製造例10〉 粉末顔料5及び分散液7の製造
ジケトピロロピロール系赤色顔料PR254(チバスペシャリティケミカルズ社製「イルガフォアレッドB-CF」;R−1)を粉末顔料5とし、粉末顔料5を5部、プロピレングリコールモノメチルエーテル(PGMA)を33.3部、ポリマーPを3部混合し、0.5mmセプラビーズを65部加えて、ペイントシェーカー(東洋精機株式会社製)で4時間撹拌した。得られた混合液からセプラビーズを濾別し、分散液7を得た。
[カラーフィルタの製造]
〈製造例11〉 カラーフィルタ1の製造
カバーガラス(東京硝子器械社製、硼珪酸製カバーガラス)をスピンコーター(ミカサ(株)社製、Opticoat MS−A100)にセットし、製造例4で得た分散液1を1.5ml供し、600rpmで塗工した。得られた塗工物を恒温機中で90℃3分間乾燥させ、続けて230℃3時間加熱処理してカラーフィルタ1を得た。カラーフィルタ1の極大透過波長は、523nmであった。透過スペクトルを図3に示す。
〔USAXSでのカラーフィルタ1の測定〕
カラーフィルタをアルミ製試料ホルダーに固定した。その後、ホルダーを透過測定用試料台にセットした。以下の条件で超小角エックス線散乱測定および傾きパラメータ算出を行い、結果を表1に示した。
測定機器、測定方法は以下の通り。
測定装置:大型高輝度放射光施設:SPring−8内のフロンティアソフトマター開発産学連合体が所有するビームライン:BL03XU 第2ハッチ
測定モード:超小角X線散乱(USAXS)
測定条件:波長0.1nm、カメラ長6m、ビームスポットサイズ 140μm×80μ
m、アテネーターなし、露光時間 30秒、2θ= 0.01〜1.5°
解析ソフト:2次元データの画像化と1次元散乱プロファイル化をFit2D (European Synchrotron Radiation Facilityのホームページ[http://www.esrf.eu/computing/scientific/FIT2D/]より入手)
散乱プロファイルの微分計算およびスムージング処理の解析をMathWorks製ソフトMATLABで行った。次いでマイクロソフト社製ソフトウェアExcelを用いて湾曲点の算出、解析領域の算出を経て傾きパラメータを得た。
Z値:直線性の判断として2%以内とした。
〈製造例12〉 カラーフィルタ2の製造
実施例1において、分散液1を分散液2に変更した以外は同様にして、カラーフィルタ2を得た。カラーフィルタ2の極大透過波長は、522nmであった。透過スペクトルを図3に示す。得られたカラーフィルタ2については、製造例11と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例13〉 カラーフィルタ3の製造
製造例11において、分散液1を分散液3に変更した以外は同様にして、カラーフィルタ3を得た。カラーフィルタ3の極大透過波長は、523nmであった。透過スペクトルを図3に示す。得られたカラーフィルタ3については、製造例11と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例14〉 カラーフィルタ4の製造
製造例11において、分散液1を分散液4に変更した以外は同様にして、カラーフィルタ4を得た。カラーフィルタ4の極大透過波長は、523nmであった。透過スペクトルを図4に示す。得られたカラーフィルタ4については、製造例11と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例15〉 カラーフィルタ5の製造
製造例11において、分散液1を分散液5に変更した以外は同様にして、カラーフィルタ5を得た。得られたカラーフィルタ5については、製造例11と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例16〉 カラーフィルタ6の製造
カバーガラス(東京硝子器械社製、硼珪酸製カバーガラス)をスピンコーター(ミカサ(株)社製、Opticoat MS−A100)にセットし、製造例6で得た分散液3を1.5ml供し、600rpmで塗工した。得られた塗工物を恒温機中で90℃3分間乾燥させ、カラーフィルタ6を得た。カラーフィルタ6の極大透過波長は、515nmであった。透過スペクトルを図4に示す。得られたカラーフィルタ6については、製造例11と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例17〉 カラーフィルタ7の製造
製造例11において、分散液1を分散液6に変更した以外は同様にして、カラーフィルタ7を得た。カラーフィルタ7の極大透過波長は、435nmであった。得られたカラーフィルタ7について、製造例11と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例18〉 カラーフィルタ8の製造
製造例16において、製造例6で得た分散液3を製造例10で得た分散液6に変えた以外は同様にして、カラーフィルタ8を得た。カラーフィルタ8の極大透過波長は、435nmであった。得られたカラーフィルタ8について、製造例11と同様に超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例19〉 カラーフィルタ9の製造
製造例11において、分散液1を分散液7に変更した以外は同様にして、カラーフィルタ9を得た。得られたカラーフィルタ9について、製造例11と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
〈製造例20〉 カラーフィルタ10の製造
製造例16において、製造例6で得た分散液3を製造例10で得た分散液7に変えた以外は同様にして、カラーフィルタ10を得た。得られたカラーフィルタ10について、実施例1と同様に、超小角エックス線散乱測定および傾きパラメータ算出を行い、表1に示した。
Figure 0005637420
(実施例1〜7)
電極構造を第一及び第二の基板に作成し、各々の対向側に垂直配向性の配向膜を形成したのち弱ラビング処理を行い、VAセルを作成し、第一の基板と第二の基板の間に以下の表2に示す液晶組成物1を挟持した。次に、表1に示すカラーフィルタ1〜5、7、9を用いて実施例1〜7の液晶表示装置を作成した(dgap=3.5μm、配向膜SE−5300)。得られた液晶表示装置のVHR及びIDを測定した。また、得られた液晶表示装置の焼き付き評価を行った。その結果を表3に示す。
Figure 0005637420
Figure 0005637420
液晶組成物1は、TV用液晶組成物として実用的な81℃の液晶層温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることが解る。
実施例1〜7の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例8〜21)
実施例1と同様に表4に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例8〜21の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表5及び6に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例8〜21の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例22〜42)
実施例1と同様に表7に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例22〜42の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表8〜10に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例22〜42の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例43〜63)
実施例1と同様に表11に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例43〜63の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表12〜14に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例43〜63の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例64〜84)
実施例1と同様に表15に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例64〜84の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表16〜18に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例64〜84の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例85〜105)
実施例1と同様に表19に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例85〜105の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表20〜22に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例85〜105の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例106〜126)
実施例1と同様に表23に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例106〜126の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表24〜26に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例106〜126の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例127〜147)
実施例1と同様に表27に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例127〜147の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表28〜30に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例127〜147の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例148〜168)
実施例1と同様に表31に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例148〜168の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表32〜34に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例148〜168の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例169〜189)
実施例1と同様に表35に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例169〜189の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表36〜38に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例169〜189の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例190〜196)
液晶組成物1に2−メチル−アクリル酸4−{2−[4−(2−アクリロイルオキシ−エチル)−フェノキシカルボニル]−エチル}−ビフェニル−4’−イルエステル0.3質量%を混合し液晶組成物28とした。実施例1で用いたVAセルにこの液晶組成物28を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、次に、表1に示すカラーフィルタ1〜5、7,9を用いて実施例190〜196の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表39に示す。
Figure 0005637420
実施例190〜196の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例197〜203)
液晶組成物13にビスメタクリル酸ビフェニル‐4,4’‐ジイル 0.3質量%を混合し液晶組成物29とした。実施例1で用いたVAセルにこの液晶組成物29を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、次に、表1に示すカラーフィルタ1〜5、7、9を用いて実施例197〜203の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表40に示す。
Figure 0005637420
実施例197〜203の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例204〜210)
液晶組成物19にビスメタクリル酸 3‐フルオロビフェニル‐4,4’‐ジイル 0.3質量%を混合し液晶組成物30とした。実施例1で用いたVAセルにこの液晶組成物30を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、次に、表1に示すカラーフィルタ1〜5、7、9を用いて実施例204〜210の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表41に示す。
Figure 0005637420
実施例204〜210の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(比較例1〜21)
実施例1と同様に表42に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて比較例1〜21の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表43〜45に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
比較例1〜21の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例22〜42)
実施例1と同様に表46に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて比較例22〜42の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表47〜49に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
比較例22〜42の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例43〜63)
実施例1と同様に表50に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて比較例43〜63の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表51〜53に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
比較例43〜63の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例64〜77)
実施例1と同様に表54に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて比較例64〜77の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表55〜56に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
比較例64〜77の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例78〜98)
実施例1と同様に表57に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて比較例78〜98の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表58〜60に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
比較例78〜98の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例99〜105)
実施例1と同様に表61に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて比較例99〜105の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表62に示す。
Figure 0005637420
Figure 0005637420
比較例99〜105の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(比較例106〜129)
実施例1で用いたVAセルに液晶組成物1、2、8、13、14、19、20及び26をそれぞれ挟持し、表1に示すカラーフィルタ6、8、10をそれぞれ用いて比較例106〜144の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表63及び64に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
比較例106〜129の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。
(実施例211〜231)
実施例1と同様に表66に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例211〜231の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表67〜69に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例211〜231の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
(実施例232〜245)
実施例1と同様に表70に示す液晶組成物を狭持し、表1に示すカラーフィルタ1〜5、7、9を用いて実施例232〜245の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表71〜72に示す。
Figure 0005637420
Figure 0005637420
Figure 0005637420
実施例232〜245の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。

Claims (16)

  1. 第一の基板と、第二の基板と、前記第一の基板と第二の基板間に挟持された液晶組成物層と、ブラックマトリックス及び少なくともRGB三色画素部から構成されるカラーフィルタと、画素電極と共通電極とを備え、前記液晶組成物層が一般式(I)
    Figure 0005637420
    (式中、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Aは1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表す。)で表される化合物を30〜50%含有し、一般式(II-1)
    Figure 0005637420
    (式中、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Rは炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表し、Zは単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物を5〜30%含有し、一般式(II-2)
    Figure 0005637420
    (式中、Rは炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、Rは炭素原子数1〜8のアルキル基、炭素原子数4〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数3〜8のアルケニルオキシ基を表し、Bはフッ素置換されていてもよい、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基を表し、Zは単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物を25〜45%含有する液晶組成物から構成され、
    前記カラーフィルタが、有機顔料を含有するカラーフィルタであって、
    超小角エックス線散乱法に基づき、カラーフィルタ中の有機顔料の超小角エックス線プロファイルを測定する工程(A)と、該散乱プロファイル上で湾曲点を算出する工程(B)と、該湾曲点から設定される解析領域(c1)を算出する工程(C)と、解析領域c1での傾きパラメータを算出する工程(D)とを有する、有機顔料の散乱プロファイル解析において、解析領域(c1)での傾きパラメータが2以下であることを特徴とするカラーフィルタである液晶表示装置。
  2. 上記カラーフィルタが、上記有機顔料の散乱プロファイル解析において、解析領域(c1)での傾きパラメータが1.5以下である、請求項1に記載の液晶表示装置。
  3. 上記カラーフィルタが、有機顔料の全粒子のうち粒子径が100nm以上1000nm以下の粒子の占める体積分率が7%以下である、請求項1または2に記載の液晶表示装置。
  4. 上記有機顔料の極大透過波長が600nm以上700nm以下である、請求項1〜3のいずれか一項に記載の液晶表示装置。
  5. 上記有機顔料の極大透過波長が500nm以上600nm以下である、請求項1〜3のいずれか一項に記載の液晶表示装置。
  6. 上記有機顔料の極大透過波長が400nm以上500nm以下である、請求項1〜3のいずれか一項に記載の液晶表示装置。
  7. 上記有機顔料が、ガラス基板上で形成された塗膜に分散されたものである、請求項1〜6のいずれか一項に記載の液晶表示装置。
  8. 前記液晶組成物層に、更に一般式(III)
    Figure 0005637420
    (式中、R及びRはそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基を表し、D、E及びFはそれぞれ独立して、フッ素置換されていてもよい1,4−フェニレン基又はトランス−1,4−シクロヘキシレンを表し、Zは単結合、−OCH−、−OCO−、−CHO−又は−COO−を表し、nは0、1又は2を表す。ただし、一般式(I)、一般式(II-1)及び一般式(II-2)で表される化合物を除く。)で表される化合物を3〜35%含有する請求項1〜7のいずれか一項に記載の液晶表示装置。
  9. 一般式(I)において、Aがトランス−1,4−シクロヘキシレン基を表す化合物、及びAが1,4−フェニレン基を表す化合物をそれぞれ少なくとも1種以上含有する請求項1〜8のいずれか一項に記載の液晶表示装置。
  10. 一般式(II-2)において、Bが1,4−フェニレン基を表す化合物、及びBがトランス−1,4−シクロヘキシレン基を表す化合物をそれぞれ少なくとも1種以上含有する請求項1〜9のいずれか一項に記載の液晶表示装置。
  11. 一般式(II-1)、一般式(II-2)及び一般式(III)で表される化合物を35〜70%含有する請求項8記載の液晶表示装置。
  12. 前記液晶組成物層を構成する液晶組成物の、以下の式で表されるZ
    Figure 0005637420
    (式中、γ1は回転粘度を表し、Δnは屈折率異方性を表す。)が13000以下であり、γ1が150以下であり、Δnが0.08〜0.13である請求項1〜11の何れか一項に記載の液晶表示装置。
  13. 前記液晶組成物層を構成する液晶組成物の、ネマチック液晶相上限温度が60〜120℃であり、ネマチック液晶相下限温度が‐20℃以下であり、ネマチック液晶相上限温度と下限温度の差が100〜150である請求項1〜12の何れか一項に記載の液晶表示装置。
  14. 前記液晶組成物層を構成する液晶組成物の比抵抗が1012(Ω・m)以上である請求項1〜13の何れか一項に記載の液晶表示装置。
  15. 前記液晶組成物層が一般式(V)
    Figure 0005637420
    (式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1〜8のアルキレン基又は−O−(CH−(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Zは−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CHCH−、−CFCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CY=CY−(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、−C≡C−又は単結合を表し、Cは1,4−フェニレン基、トランス−1,4−シクロヘキシレン基又は単結合を表し、式中の全ての1,4−フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表される重合性化合物を含有する液晶組成物を重合してなる重合体により構成される請求項1〜14のいずれか一項に記載の液晶表示装置。
  16. 一般式(V)において、Cが単結合を表しZが単結合を表す請求項15記載の液晶表示装置。
JP2014536033A 2013-09-24 2014-03-12 液晶表示装置 Active JP5637420B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536033A JP5637420B1 (ja) 2013-09-24 2014-03-12 液晶表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013196908 2013-09-24
JP2013196908 2013-09-24
PCT/JP2014/056465 WO2015045441A1 (ja) 2013-09-24 2014-03-12 液晶表示装置
JP2014536033A JP5637420B1 (ja) 2013-09-24 2014-03-12 液晶表示装置

Publications (2)

Publication Number Publication Date
JP5637420B1 true JP5637420B1 (ja) 2014-12-10
JPWO2015045441A1 JPWO2015045441A1 (ja) 2017-03-09

Family

ID=52145631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014536033A Active JP5637420B1 (ja) 2013-09-24 2014-03-12 液晶表示装置

Country Status (1)

Country Link
JP (1) JP5637420B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136344A1 (ja) * 2015-02-25 2016-09-01 Jnc株式会社 液晶組成物および液晶表示素子
WO2017150056A1 (ja) * 2016-02-29 2017-09-08 Jnc株式会社 液晶組成物および液晶表示素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192040A (ja) * 1998-12-25 2000-07-11 Toshiba Corp 液晶表示装置
JP2002309255A (ja) * 2001-02-09 2002-10-23 Chisso Corp 液晶uvシャッター用液晶組成物
WO2010095506A1 (ja) * 2009-02-19 2010-08-26 チッソ株式会社 テトラヒドロピランおよび2,2',3,3'-テトラフルオロビフェニルを有する4環液晶性化合物、液晶組成物および液晶表示素子
WO2011092973A1 (ja) * 2010-01-26 2011-08-04 Jnc株式会社 液晶組成物および液晶表示素子
JP2013096944A (ja) * 2011-11-04 2013-05-20 Dic Corp 有機顔料の一次粒子及び高次粒子の平均粒子径、規格化分散値、体積分率の測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192040A (ja) * 1998-12-25 2000-07-11 Toshiba Corp 液晶表示装置
JP2002309255A (ja) * 2001-02-09 2002-10-23 Chisso Corp 液晶uvシャッター用液晶組成物
WO2010095506A1 (ja) * 2009-02-19 2010-08-26 チッソ株式会社 テトラヒドロピランおよび2,2',3,3'-テトラフルオロビフェニルを有する4環液晶性化合物、液晶組成物および液晶表示素子
WO2011092973A1 (ja) * 2010-01-26 2011-08-04 Jnc株式会社 液晶組成物および液晶表示素子
JP2013096944A (ja) * 2011-11-04 2013-05-20 Dic Corp 有機顔料の一次粒子及び高次粒子の平均粒子径、規格化分散値、体積分率の測定方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136344A1 (ja) * 2015-02-25 2016-09-01 Jnc株式会社 液晶組成物および液晶表示素子
JPWO2016136344A1 (ja) * 2015-02-25 2017-11-30 Jnc株式会社 液晶組成物および液晶表示素子
WO2017150056A1 (ja) * 2016-02-29 2017-09-08 Jnc株式会社 液晶組成物および液晶表示素子
JPWO2017150056A1 (ja) * 2016-02-29 2018-12-20 Jnc株式会社 液晶組成物および液晶表示素子
JP7017141B2 (ja) 2016-02-29 2022-02-08 Jnc株式会社 液晶組成物および液晶表示素子

Also Published As

Publication number Publication date
JPWO2015045441A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015045440A1 (ja) 液晶表示装置
WO2015045441A1 (ja) 液晶表示装置
JP5561451B1 (ja) 液晶表示装置
JP5561450B1 (ja) 液晶表示装置
JP5637420B1 (ja) 液晶表示装置
JP6002998B2 (ja) 液晶表示装置
JP5637421B1 (ja) 液晶表示装置
JP6083492B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5637420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250